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Stably stratified turbulent flows over an unbounded, smooth, planar sloping surface
at high Grashof numbers are examined using direct numerical simulations (DNS).
Four sloping angles (α = 15◦, 30◦, 60◦ and 90◦) and three Grashof numbers
(Gr = 5 × 1010, 1 × 1011 and 2.1 × 1011) are considered. Variations in mean
flow, second-order statistics and budgets of mean- (MKE) and turbulent-kinetic
energy (TKE) are evaluated as a function of α and Gr at fixed molecular Prandtl
number (Pr= 1). Dynamic and energy identities are highlighted, which diagnose the
convergence of the averaging operation applied to the DNS results. Turbulent anabatic
(upward moving warm fluid along the slope) and katabatic (downward moving cold
fluid along the slope) regimes are identical for the vertical wall set-up (up to the
sign of the along-slope velocity), but undergo a different transition in the mechanisms
sustaining turbulence as the sloping angle decreases, resulting in stark differences at
low α. In addition, budget equations show how MKE is fed into the system through
the imposed surface buoyancy, and turbulent fluctuations redistribute it from the
low-level jet (LLJ) nose towards the boundary and outer flow regions. Analysis of
the TKE budget equation suggests a subdivision of the boundary layer of anabatic
and katabatic flows into four distinct thermodynamical regions: (i) an outer layer,
corresponding approximately to the return flow region, where turbulent transport is
the main source of TKE and balances dissipation; (ii) an intermediate layer, bounded
below by the LLJ and capped above by the outer layer, where the sum of shear and
buoyant production overcomes dissipation, and where turbulent and pressure transport
terms are a sink of TKE; (iii) a buffer layer, located at 5 / z+ / 30, where TKE
is provided by turbulent and pressure transport terms, to balance viscous diffusion
and dissipation; and (iv) a laminar sublayer, corresponding to z+ / 5, where the
influence of viscosity is significant. (·)+ denotes a quantity rescaled in inner units.
Interestingly, a zone of global backscatter (energy transfer from the turbulent eddies
to the mean flow) is consistently found in a thin layer below the LLJ in both anabatic
and katabatic regimes.
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1. Introduction

When an inclined surface is thermally altered from the state of the overlying
fluid, the resulting buoyancy force projects in both the along- and normal-to-slope
directions. Surface cooling results in a downslope flow (katabatic flow), whereas
surface heating generates an upslope flow (anabatic flow). The significance of such
sloping turbulent flows is rarely questioned given their ubiquity and their central role
in land–atmosphere exchange processes. Katabatic and anabatic flows are persistent
over complex terrains (Whiteman 1990; Monti et al. 2002; Rampanelli, Zardi &
Rotunno 2004; Haiden & Whiteman 2005; Rotach & Zardi 2007; Fernando 2010;
Zardi & Whiteman 2013; Nadeau et al. 2013a; Oldroyd et al. 2014, 2016b; Fernando
et al. 2015; Lehner et al. 2015; Grachev et al. 2016; Hang et al. 2016; Jensen
et al. 2016), and despite their local nature, their interaction with larger-scale forcing
mechanisms can favour the development of cyclonic vorticity in the middle and upper
troposphere (Parish 1992; Parish & Bromwich 1998). Katabatic winds regulate energy,
momentum and mass transfer over the ice sheets of Greenland and Antarctica (Egger
1985; Parish 1992; Parish & Bromwich 1998; Renfrew 2004; Renfrew & Anderson
2006), and also influence the movement of the marginal ice zone (Chu 1987). In
addition, katabatic flows are a permanent feature of the atmospheric boundary layer
(ABL) over melting glaciers (Greuell et al. 1994; Smeets, Duynkerke & Vugts
1997; Oerlemans 1998; Oerlemans et al. 1999; Smeets, Duynkerke & Vugts 2000;
Parmhed, Oerlemans & Grisogono 2004), whose constant retreat is a matter of
public interest, given their impact on both the sea level rise and on water resource
management.

Prandtl (1942) framed the problem of slope flows in a conceptually simple model,
considering a doubly infinite (no leading edges) plate that is uniformly heated or
cooled and lies within a stably stratified environment. The Prandtl model (Prandtl
1942) states that the advection of base-state (environmental) potential temperature
is balanced by buoyancy (diffusive) flux divergence, whereas the slope-parallel
component of buoyancy balances momentum (diffusive) flux divergence. This
particular type of flows are termed equilibrium flows (Mahrt 1982), given the nature
of the balance between a turbulent flux divergence and a generation/destruction
mechanism. Under such settings, the Boussinesq equations of motion and thermal
energy reduce to one-dimensional form, which allows for analytical treatment.
Accounting for a base stable stratification admits solutions that approach steady-state
conditions at large times, whereas in the absence of a stable stratification (classical
solutions), the thermal and dynamic boundary layers (TBL and DBL in the following)
grow in an unbounded manner (Menold & Yang 1962).

The original model assumed constant turbulent diffusivities (labelled as K) – and
is therefore incapable of representing the observed steep near-surface gradients
(Grisogono & Oerlemans 2001b). In addition, the return flow region predicted
by the constant-K solution is usually stronger, when compared to measurements
or numerical simulations, and also vanishes more rapidly away from the surface
(Defant 1949; Denby 1999; Grisogono & Oerlemans 2001b). This limitation was
first overcome in Gutman (1983), where a patched analytic solution was proposed,
valid for linearly decreasing K in the inner flow regions. More recently, Grisogono &
Oerlemans (2001b, 2002) proposed an approximate analytical solution able to account
for gradually varying eddy diffusivities, valid under the WKB approximation (after
Wentzel–Kramers–Brillouin), and a closed form solution valid for O’Brien type K was
derived in Giometto et al. (2017). Modifications of the Prandtl model to allow for
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variations in surface forcing (Shapiro & Fedorovich 2007, 2008; Burkholder, Shapiro
& Fedorovich 2009), to account for Coriolis effects (Kavavcic & Grisogono 2007;
Shapiro & Fedorovich 2008), time dependence of the solution (Shapiro & Fedorovich
2004, 2005, 2008; Zardi & Serafin 2015) and for weakly nonlinear effects (Grisogono
et al. 2014; Güttler et al. 2016), were also recently proposed.

The Prandtl conceptual approach is also of interest in numerical modelling. It
alleviates computational costs by constraining the geometry to regular domains,
thus allowing the use of efficient numerical schemes such as methods based on
finite differences or spectral expansions. The existence of a statistically steady-state
solution also provides a benchmark for quantitative analysis. The past decades
have seen significant advances in computational performance, achieved through both
improvements in computer hardware and in numerical algorithms that solve differential
equations. Nevertheless, computational cost of simulating high Reynolds number (Re)
flows over long slopes remains prohibitively high, and has motivated the use of
closure models that aim at reducing resolution requirements in the dissipative range,
especially when energy-containing scales are of primary interest (Pope 2000). Since
the pioneering work of Schumann (1990), large-eddy simulation (LES) has represented
one of the workhorses for the simulation of slope flows within the Prandtl model
framework. It has revealed several aspects of the turbulent structure and illustrated
the sensitivity of the bulk solution to the system parameters (Skyllingstad 2003;
Axelsen & Dop 2009a,b; Grisogono & Axelsen 2012). LES of slope flows in more
complex configurations (i.e. not relying on the Prandtl model set-up) have been
performed in Smith & Skyllingstad (2005), where the effects of varying slope angle
were analysed, and the interaction of slope flows with valley systems have also been
recently addressed via LES (Chow et al. 2006; Weigel et al. 2006; Chemel, Staquet
& Largeron 2009; Burns & Chemel 2014, 2015; Arduini, Staquet & Chemel 2016).
However, the stable stratification and the peculiar features characterizing slope flows
(e.g. the presence of zero-gradient layers in the state variables) question the validity of
the assumptions upon which LES subgrid-scale (SGS) models are derived (Burkholder,
Fedorovich & Shapiro 2011). In addition, the lack of a rigorous similarity theory for
slope flows (Mahrt 1998; Grisogono & Oerlemans 2001a; Grisogono, Kraljevic &
Jericevic 2007; Mahrt 2013; Nadeau et al. 2013b; Monti, Fernando & Princevac 2014;
Oldroyd et al. 2016a) makes it impossible to prescribe adequate surface fluxes in
simulations. These limitations have motivated the use of direct numerical simulations
(DNS), which, despite their modest range of Re, provide the most comprehensive view
of the flow structure (Fedorovich & Shapiro 2009) (FS09 hereafter). These studies
showed that slope-flow statistics are sensitive to variations in the parameter space,
including the magnitude of the surface forcing, the slope angle and the strength of
the ambient stratification. They all play a role in determining the characteristics of the
flow. This finding motivated recent efforts towards a derivation of scaling relations
that allow the elimination of the dependency of the solution on the sloping angle
(Shapiro & Fedorovich 2014). Scaling relations are of interest since they facilitate the
design of experiments and have potentials to yield significant computational savings
in parametric studies when explored through LES and DNS.

In this work, the problem of anabatic and katabatic flows and the properties
of the LLJ in the near-wall region are explored using high resolution DNS. The
focus is on variations in the slope-normal structure of selected flow statistics and
in integrated quantities as a function of the sloping angle (α) and of the Grashof
number (Gr). The flow is driven by a homogeneous constant surface buoyancy force
and the molecular Prandtl number (Pr) is set to unity (instead of a typical 0.7 value

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

37
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.372


592 M. G. Giometto, G. G. Katul, J. Fang and M. B. Parlange

FIGURE 1. Slope-aligned coordinate system.

for air) in line with the FS09 study. The current study complements and extends
the work of FS09, where a similar set-up was adopted to characterize slope flows
driven by an imposed surface buoyancy flux. The aim is to shed additional light on
the interactions between turbulence and the mean flow state as well as the role of
the low-level jet (LLJ) in energy and momentum exchanges. Specifically, the study
aims at (i) assessing how α and Gr influence katabatic and anabatic flows when
constant surface buoyancy is prescribed; (ii) contrasting key features between slope
flows driven by a constant imposed surface buoyancy, when compared against slope
flows generated by a constant imposed surface buoyancy flux; and (iii) characterizing
the vertical structures (and their sensitivity to variations in the parameter space) of
mean kinetic energy (MKE) and of turbulent kinetic energy (TKE) budget terms. The
long-term goal is to provide improvements for current turbulence closure models for
sloping and stable conditions that can then be implemented in large-scale atmospheric
models so as to address the plethora of problems already highlighted earlier on in
the introduction. The manuscript is organized as follows. The governing equations for
the problem are derived in § 2. Section 3 provides details on the numerical algorithm
and on the set-up of simulations and the main results are presented in § 4. Summary
and concluding remarks follow in § 5.

2. Equations of motion

Thermal convection of turbulent stratified fluid flow over sloping surfaces can
be described in a slope-rotated reference system, where x̂ is the along-slope
direction, ŷ denotes the spanwise direction and ẑ is the slope-normal direction, as
displayed in figure 1. (·̂) indicates a dimensional variable. The potential temperature
θ̂ (x̂, t̂) is decomposed into a base state θ̂R(ẑ∗) and a perturbation component
θ̂ ′′(x̂, t̂) ≡ θ̂ (x̂, t̂) − θ̂R(ẑ∗) as originally proposed by Prandtl (1942). Assuming the
base state θ̂R(ẑ∗) to be a linear function of the vertical coordinate direction ẑ∗, results

in N̂ ≡
√
β̂(dθ̂R/dẑ∗)= const., where N̂ is the buoyancy frequency (equivalent to the

Brunt–Väisälä frequency). The thermal expansion coefficient β̂ ≡ ĝ/θ̂0 where ĝ is
the acceleration due to gravity and θ̂0 is a reference constant temperature. Moreover,
invoking the Boussinesq approximation (i.e. ignoring density differences except where
they appear in terms multiplied by ĝ) and neglecting earth rotation effects, the
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conservation equations within the DBL and TBL in dimensional form reduce to

∂ ûi

∂ t̂
+
∂ ûiûj

∂ x̂j
=−

∂π̂

∂ x̂i
+ ν̂

∂2ûi

∂ x̂2
j
− β̂θ̂ ′′(x̂, t̂)[δi1 sin α − δi3 cos α], (2.1)

∂ ûi

∂ x̂i
= 0, (2.2)

∂θ̂ ′′

∂ t̂
+
∂ ûjθ̂

′′

∂ x̂j
=−

∂ ûjθ̂
R

∂ x̂j
+ κ̂

∂2θ̂ ′′

∂ x̂2
j
, (2.3)

where t̂ (s) denotes time, ûi (m s−1), i = 1, 2, 3, are the velocity components in
the three coordinate directions (x̂, ŷ, ẑ) (m), π̂ ≡ [p̂ − p̂R(x̂, ẑ)]/ρ̂0 (m2 s−2) is the
normalized deviation of kinematic pressure from the background hydrostatic state,
ρ̂0 (kg m−3) is a reference constant density, α (rad) is the slope angle, ν̂ (m2 s−1) and
κ̂ (m2 s−1) are the kinematic molecular viscosity and thermal diffusivity coefficients,
and δij is the Kronecker Delta function. Molecular dissipation of kinetic energy
represents an additional source of heat, and should in principle be included in
the equation for θ̂ . However, due to the low velocities involved in slope flows
this term is small and has thus been neglected. Introducing the buoyancy variable
b̂(x̂, t̂)≡ β̂θ̂ ′′(x̂, t̂), and since ẑ∗(x̂)≡−x̂ sin α + ẑ cos α, equations (2.1)–(2.3) can be
re-written as in FS09

∂ ûi

∂ t̂
+
∂ ûiûj

∂ x̂j
=−

∂π̂

∂ x̂i
+ ν̂

∂2ûi

∂ x̂2
j
− b̂(x̂, t̂)[δi1 sin α − δi3 cos α], (2.4)

∂ ûi

∂ x̂i
= 0, (2.5)

∂ b̂
∂ t̂
+
∂ ûjb̂
∂ x̂j
= N̂2
[û1 sin α − û3 cos α] + κ̂

∂2b̂
∂ x̂2

j
. (2.6)

2.1. Normalization of the equations and governing parameters
To express the governing equations as a function of suitable dimensionless parameters,
a characteristic time, length, buoyancy and velocity scale can be defined as

T̂ ≡ N̂−1, L̂≡
|b̂s|

N̂2
, B̂≡ |b̂s|, Û ≡

|b̂s|

N̂
, (2.7a−d)

where the surface buoyancy b̂s determines whether the flow is anabatic (b̂s > 0) or
katabatic (b̂s< 0). These aforementioned parameters can now be used to introduce the
following normalized variables

t≡ t̂/T̂, xi ≡ x̂i/L̂, b≡ b̂/B̂, ui ≡ ûi/Û, π≡ π̂/Û2. (2.8a−e)

Relations (2.7) are derived selecting b̂s and N̂ as repeating parameters though this
choice is by no means unique and other options are possible. Substituting the
expressions (2.8) into the governing equations (2.4)–(2.6) results in

∂ui

∂t
+
∂uiuj

∂xj
=−

∂π

∂xi
− b(δi1 sin α − δi3 cos α)+Gr−1/2 ∂

2ui

∂x2
j
, (2.9)
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Label Lx × Ly ×H Nx ×Ny ×Nz α (deg.) T Gr bs

U90H, S90H 0.2412
× 0.324 3842

× 1032 90 6.28 2.1× 1011
±1

U60H, S60H 0.2412
× 0.324 3842

× 1032 60 7.25 2.1× 1011
±1

U30H, S30H 0.2412
× 0.324 3842

× 1032 30 12.57 2.1× 1011
±1

U15H, S15H 0.2412
× 0.324 3842

× 1032 15 24.28 2.1× 1011
±1

U60M, S60M 0.2412
× 0.324 2562

× 1032 60 7.25 1.0× 1011
±1

U60L, S60L 0.2412
× 0.324 2562

× 1032 60 7.25 5.0× 1010
±1

TABLE 1. Geometry and parameters for the DNS runs. Li and Ni denote the domain
size and the number of collocation nodes in the three coordinate directions, respectively,
T denotes the characteristic oscillation period characterizing the buoyancy and velocity
fields (see § 3.4), Gr≡ b̂4

s ν̂
−2 N̂−6 where bs is the imposed (normalized) surface buoyancy.

Simulation labels indicate whether a specific run is in buoyantly [U]nstable or [S]table
regime (bs = +1 and bs = −1 respectively), the surface sloping angles α, and which
among the three considered Grashof numbers ([H]igh, [M]edium and [L]ow) is used; for
instance U30H denotes an anabatic flows regime with α = 30◦ at the highest among the
considered Grashof numbers.

∂ui

∂xi
= 0, (2.10)

∂b
∂t
+
∂ujb
∂xj
= (u1 sin α − u3 cos α)+ (Gr−1/2Pr−1)

∂2b
∂x2

j
, (2.11)

where Gr≡ b̂4
s ν̂
−2 N̂−6 is the Grashof number, defined as the ratio between buoyancy

and viscous forces. There are a number of advantages to adopting Gr over other
possible dimensionless numbers (e.g. Reynolds number). For the particulars of
sloping flow with zero slip at the boundary, Gr measures the relative strength of
the body (or non-contact) force to the surface (or contact) force arising from friction
(or viscosity). The flow adjustment to this imbalance gives rise to non-hydrostatic
pressure distribution and advective acceleration.

3. Simulations
Equations (2.9)–(2.11) are integrated across a range of sloping angles, α and Gr

numbers, considering both anabatic (upslope) and katabatic (downslope) flow regimes,
as summarized in table 1. Given the computational cost of DNS, variations in Gr are
limited to the α = 60◦ case.

Note that (b, α)→ (−b, α+π) is a symmetry transformation for the system (2.9)–
(2.11), and therefore cases U90H and S90H are equivalent up to a change in the sign
of ui. Because of this symmetry, a heated wall at α = 15◦ is equivalent to a cooled
wall at α = 15◦ + 180◦.

The DNS algorithm is a modification of the code previously used to study
land–atmosphere interaction processes (Albertson & Parlange 1999a,b; Kumar et al.
2006; Bou-Zeid et al. 2009; Calaf, Meneveau & Meyers 2010; Calaf, Parlange &
Meneveau 2011; Giometto et al. 2016; Sharma et al. 2016; Sharma, Parlange &
Calaf 2017), to develop and test linear and nonlinear LES subgrid-scale models
(Porté-Agel, Meneveau & Parlange 2000; Higgins, Parlange & Meneveau 2003;
Bou-Zeid, Meneveau & Parlange 2005; Lu & Porté-Agel 2010; Abkar, Bae & Moin
2016), to design surface-flux parameterizations (Hultmark, Calaf & Parlange 2013)
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and to model scalar transport processes (Chamecki, Meneveau & Parlange 2009).
Equations are solved in rotational form to ensure conservation of mass and kinetic
energy (Orszag & Pao 1975). A pseudospectral collocation approach (Orszag 1969,
1970) based on truncated Fourier expansions is used in the x, y coordinate directions
whereas a second-order accurate centred finite differences scheme is adopted in the
slope-normal direction, requiring a staggered grid approach for the u, v, p, b state
variables (these are stored at (i+ 1/2)∆Z , where i denotes a given layer of collocation
nodes in the slope-normal direction). Time integration is performed adopting a fully
explicit second-order accurate Adams–Bashforth scheme. A fractional step method
(Chorin 1968; Temam 1968) is adopted to compute the pressure field by solving
an additional Poisson equation, which is derived enforcing mass continuity for the
incompressible fluid (∂ui/∂xi = 0). Further, all nonlinear terms are fully de-aliased
adopting a 3/2 rule so as to avoid artificial pile up of energy at the high wavenumber
range (Kravchenko & Moin 1997; Canuto et al. 2006).

Equations are integrated over a regular domain [0, Lx] × [0, Ly] × [0, H], with
boundary conditions ui(x, y, 0)= ui(x, y,H)= b(x, y,H)= 0 and b(x, y, 0)= b̂s/B̂=±1.

A sponge layer (Israeli & Orszag 1981) is applied to the top 20 % of the
computational domain so as to damp spurious internal wave reflections. The thickness
of the sponge layer has been chosen based on a sensitivity analysis performed on
the S15H case, which showed that a minimum of 15 % thickness is required to avoid
non-negligible TKE at the top of the computational domain.

To guide the choice of the grid stencil an estimate of η? = Gr−3/8τ
−1/4
bz for the

α= 90◦ case was first evaluated from the Prandtl laminar flow analytic solution, where
η? is an equivalent of the Kolmogorov scale (FS2009) in the chosen normalized units,
and where τbz denotes the normalized kinematic surface buoyancy flux. Subsequently
the grid stencils were set to ∆x=∆y= 2∆z= 2η?. The resolvability condition ∆< 2η
(Pope 2000) has been checked a posteriori (not shown) for all the considered cases,
where η=Gr−3/8ε−1/4 is the Kolmogorov length scale in normalized units. The vertical
grid stencil satisfies such a criterion in all cases, whereas the horizontal grid stencil
is often off by a factor of two, hence the need to verify the quality of proposed
results. To do so, a higher resolution DNS katabatic run was performed at a sloping
angle α = 90◦, halving the horizontal grid stencil (i.e. doubling the resolution in the
horizontal directions). Note that the Kolmogorov scale is usually larger in stable cases
than in the neutral ones, hence slope flows over vertical walls (α = 90◦) have the
most stringent resolution requirements. First- and second-order statistics are found to
be in good agreement with those presented herein, supporting the working conjecture
that the current resolution is sufficient to represent most of the dissipative scales. The
resulting domain size (see table 1) allows the representation of coherent structures
populating the DBL and TBL at all the considered sloping angles (a domain-size
convergence study was performed for the anabatic case at α = 15◦ to support such
assertion, and variations of statistics were found to be negligible).

Simulations are run for a minimum of 6T , where T= 2π sin−1 α is the characteristic
(normalized) period of internal waves that arise in the system due to the imposed
stable background stratification. Statistics are computed over the last 5T for the cases
α = 90◦, α = 60◦, and over the last 3T for the cases α = 30◦, α = 15◦ (previous
time steps are disregarded to allow turbulence to fully develop). All simulations
are performed using Pr = 1, in line with previous studies of slope flows (FS09).
Throughout, 〈·〉 denotes averaging in time and along spatial coordinates of statistical
homogeneity (x, y) and fluctuations with respect to time and space averages (〈·〉) are
expressed as (·)′.
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FIGURE 2. Time evolution of slope-normal integrated 〈u〉 (solid lines) and 〈b〉 (dashed
lines) fields for simulations S90H, S60H, S30H and S15H (katabatic flow regime). The total
time integration period is shown for each run.

4. Results and discussion
Throughout this section, unless otherwise stated, all results and comments regard

cases characterized by Gr = 2 × 1011. Variations of the solution with respect to Gr
are described and commented in appendix A.

4.1. Time evolution and structure of the flow
The time evolution of the slope-normal integrated, space-averaged (x, y directions),
normalized streamwise velocity 〈u〉 and buoyancy 〈b〉 is displayed in figure 2. The
system exhibits the classical quasi-periodic, low-frequency, oscillatory behaviour
(surges), superimposed to a base flow, as observed in FS09 and in experiments (e.g.
Doran & Horst 1981; Monti et al. 2002; Princevac, Hunt & Fernando 2008). It can
be shown (McNider 1982) that the slope-normal integrated 〈u〉, 〈b〉 variables resemble
a system of coupled oscillators, which in the case of laminar flow are characterized
by a period T̂ ≈ 2π(N̂ sin α)−1 (normalized period is T ≈ 2π/ sin α). The oscillation
periods from DNS are very close to those of corresponding laminar solutions, which
for typical atmospheric values N̂ = 10−2 (Hz), α = 15◦, 30◦ and 60◦, are 40, 20 and
10 min. A recent study (Fedorovich & Shapiro 2017) has shown how damping of
integral oscillations by surface stress in laminar Prandtl flows decays very rapidly
and independently from the flow forcing mechanism. Such fast reduction in the
damping factor was also observed in the turbulent slope flows simulated in FS09.
Current results further support such findings, i.e. observed integral oscillations are
characterized by a progressively weaker decay rate as time advances.

Averaging equations (2.9)–(2.11) in time and over directions of statistical homoge-
neity (x, y) results in

〈b〉 sin (α)=
d〈τ tot

xz 〉

dz
, (4.1)

〈u〉 sin (α)=−
d〈τ tot

bz 〉

dz
, (4.2)

where 〈τ tot
xz 〉 = Gr−1/2(d〈u〉/dz) − 〈u′w′〉 and 〈τ tot

bz 〉 = Gr−1/2Pr−1(d〈b〉/dz) − 〈b′w′〉
are the normalized total (molecular + turbulent) slope-normal kinematic momentum
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FIGURE 3. Dynamic (black lines) and energy (red lines) identities (4.1) and (4.2) for
the considered simulations. Profiles have been shifted on the y axis to allow for proper
visualization. From top to bottom, profiles correspond to U15H, U30H, U60H, U90H
and S15H, S30H, S60H, S90H, respectively. We here denote 〈τ tot

xz 〉=Gr−1/2(d〈u〉/dz)−〈u′w′〉
and 〈τ tot

bz 〉=Gr−1/2Pr−1(d〈b〉/dz)−〈b′w′〉 (sum of molecular and turbulent kinematic fluxes
of streamwise momentum and buoyancy in the slope-normal direction).

and buoyancy fluxes. Equations (4.1) and (4.2) can be used to test the ‘quality’
of computed statistics (steady state is guaranteed only if the two identities hold).
Numerical results are displayed in figure 3, and certify that averaging over 3T , after
a transient of at least 3T is sufficient to satisfy both equations (4.1) and (4.2).

Figures 4 and 5 display a pseudocolour plot of instantaneous streamwise normalized
velocity field (u) and normalized buoyancy field (b) for simulations S60H, S15H and
U60H, U15H, respectively. The TBL appears shallower than the DBL, as previously
noted in FS09. A reversed flow characterizes the above-jet regions, resulting from
the interaction between the flow and the background stably stratified environment,
in qualitative agreement with the predictions of the Prandtl model (Prandtl 1942).
Progressive dissimilarity in DBL and TBL boundary layer thickness arises as the
sloping angle decreases from the reference α= 90◦ vertical wall set-up (recall that at
α= 90◦ the two flow regimes are equal up to a sign in ui). As α decreases, the LLJ
regions in the anabatic flow solution experience a significant thickening induced by
the convective type regime characterizing the flow at small sloping angles. Katabatic
flows are instead characterized by a strong static stability at small sloping angles (see
figure 4), which damps positive slope-normal velocity fluctuations, thus maintaining
the LLJ relatively close to the wall and reducing the overall mixing of momentum
and buoyancy in the near-wall regions. In addition, the strong stability induced by the
imposed surface buoyancy in the katabatic flow regime at small α results in partial
laminarization of the LLJ.

4.2. Mean flow
Mean profiles of kinematic momentum 〈u〉 and buoyancy 〈b〉 are displayed in figure 6.
Computed quantities qualitatively resemble those from the classic constant-K Prandtl

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

37
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.372


598 M. G. Giometto, G. G. Katul, J. Fang and M. B. Parlange

0 0.06

0.06

z

z

x x

0.12

0.12

0.18

0.18

0.24 0 0.06

0.06

0.12

0.12

0.18

0.18

0.30

0.24

0.18

0.12

0.06

0

0

–0.25

–0.50

–0.75

–1.00

0.24

0 0.06

0.06

0.12

0.12

0.18

0.18

0.24 0 0.06

0.06

0.12

0.12

0.18

0.18

0.24

(a)

(c)

(b)

(d)

FIGURE 4. Pseudocolour plot of instantaneous katabatic flow streamwise velocity u (a,b)
and buoyancy b (c,d), on the plane y = Ly/2 for simulations S60H (a,c) and S15H (b,d).
The z-axis denotes the slope-normal coordinate direction, whereas the x-axis denotes the
along-slope direction. The displayed u(x, z) and b(x, z) fields correspond to the crest of
the last simulated oscillation for both runs. For detailed viewing, only the near-surface
region of the total domain is shown.

analytic solution (Prandtl 1942). The most significant features are a peak velocity (uj),
the nose of the LLJ (occurring at zj), and a return flow region capping both the DBL
and TBL. As previously observed in FS09, such features are sensitive to the sloping
angle (α), and as α decreases from the vertical wall set-up (α = 90◦), the anabatic
and katabatic flow solutions progressively depart from each other.

The constant-K Prandtl solution provides a useful framework for the interpretation
of results, and is thus here briefly summarized. Based on the proposed normalization
(see Sect. 2.1), the Prandtl one-dimensional solution for imposed constant surface
buoyancy reads (FS09)

u=−bsPr−1/2 sin (σ z) exp (−σ z), z ∈ [ 0,∞ ), (4.3)
b= bs cos (σ z) exp (−σ z), z ∈ [0,∞), (4.4)

where σ = (Gr Pr−1)1/4 sin (α)1/2 and bs = ±1. Note that (4.3) and (4.4) correspond
to a laminar flow solution of the time and space averaged (2.9)–(2.11). It predicts a
velocity maximum uj = ±1/

√
2 exp (−π/4) that is independent of the sloping angle

(α), whereas the characteristic length scale of the flow L ∝ sin (α)−1/2 whereby zj ∝

sin (α)−1/2 (Grisogono & Axelsen 2012; Grisogono et al. 2014).
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FIGURE 5. Pseudocolour plot of instantaneous anabatic flow streamwise velocity u (a,b)
and buoyancy b (c,d), on the plane y=Ly/2 for simulations U60H (a,c) and U15H (b,d). The
displayed u(x, z) and b(x, z) fields correspond to the crest of the last simulated oscillation
for both runs. For detailed viewing, only the near-surface region of the total domain is
shown.

The location of the LLJ for the katabatic flow DNS solution is in good agreement
with prediction from the Prandtl laminar flow solution, i.e.

zj ≈
π

4σ
. (4.5)

Conversely, uj is significantly smaller (a reduction from ≈ 30 % to ≈ 50 % depending
on the slope angle) when compared to the laminar solution, mainly due to additional
diffusion of momentum caused by turbulent motions at zj (as shown in § 4.5). In
addition, uj is not independent of α as in the Prandtl model, but is characterized by a
modest increase as α decreases. This behaviour can be explained by considering that
as the sloping angle decreases, the stable stratification induced by the imposed surface
buoyancy damps turbulent motions in the LLJ region, thus reducing turbulent mixing
of momentum and resulting in a higher peak velocity uj.

The anabatic flow solution is more sensitive to variations in the sloping angle,
when compared to its katabatic counterpart. As α is reduced, a simultaneous increase
in the height of the LLJ and a reduction in its peak speed are observed. Variations
are significant when compared to those characterizing the katabatic solution and
the laminar case. This pattern is related to the strengthening of the slope-normal
component of the buoyancy force as α decreases (bδi3 cos α in (2.9)). This results
in an unstable near-wall stratification, which enhances the slope-normal flux of
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FIGURE 6. Comparison of streamwise mean velocity 〈u〉 (a) and 〈u+〉 (c) and of mean
buoyancy 〈b〉 (b) and 〈b+〉 (d) for anabatic (dashed lines) and katabatic (solid lines) flows.
Symbols: α = 90◦, black lines; α = 60◦, blue lines; α = 30◦, green lines; α = 15◦, red
lines. All cases are characterized by Gr= 2.1× 1011. The z-axis denotes the slope-normal
coordinate direction.

momentum, and leads to progressively more mixed profiles of velocity and buoyancy
in the LLJ regions, in agreement with the findings of FS09.

Figure 6 also features mean velocity and buoyancy profiles scaled with inner units,
i.e. z+ = ẑû?/ν̂, u+ = û/û?, b+ = b̂/b̂? (where û? ≡

√
〈τ tot

xz 〉|z=0 and b̂? ≡ (〈τ tot
bz 〉|z=0)/u?,

with τ tot
xz and τ tot

bz being the total kinematic momentum and buoyancy fluxes). The nose
of the LLJ is located at z+≈ 25 in katabatic flows, separating the viscosity dominated
wall regions from the turbulent outer layers. Anabatic flow solutions are characterized
by a progressively more mixed LLJ as the sloping angle decreases, with peak speed
at z+ ≈ 100 for α = 15◦, again highlighting a broadening of the DBL as the slope is
reduced.

Another notable difference between the katabatic and the anabatic flow solutions is
the sensitivity of the DBL and TBL thickness to α. The DBL and TBL thickness (δd
and δt respectively), which can be identified as the first and second zero crossing of
〈b〉 and 〈u〉 respectively are insensitive to α for the katabatic flow regime, whereas
they vary by a factor of three across the considered α-range for the anabatic flow
solution. In line with this finding, the slope-normal integrated horizontal momentum
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FIGURE 7. α dependence of the surface buoyancy flux Bw for katabatic (a) and anabatic
(b) flow cases. Simulations correspond to cases S90H, S60H, S30H, S15H and U90H, U60H,
U30H, U15H for the katabatic and anabatic regimes, respectively. Predictions from the
Prandtl laminar solution are included for comparison (black lines).

flux (Iu) in the anabatic flow regime is also strongly sensitive to variations in α,
whereas it is insensitive in the katabatic cases.

Such behaviour can be understood by integrating (4.2),∫ H

0
〈u〉 dz= Iu =−

Bw

sin α
, (4.6)

where Bw is the surface buoyancy flux. From (4.6) is apparent how larger Bw and
shallower slopes are characterized by larger Iu. Variations of the surface buoyancy flux
as a function of α for the considered anabatic and katabatic cases are displayed in
figure 7. As apparent, the anabatic flow solution is characterized by modest variations
in Bw across the considered α range, when compared against the katabatic flow
cases. The latter experience a significant decrease in the surface buoyancy flux as
the sloping angle decreases from 90◦ to 15◦, slowly approaching the surface flux
predicted by the laminar flow solution (at α = 15◦ the difference between the DNS
surface flux and the laminar solution surface flux is only 20 % the magnitude of the
DNS surface flux itself). Such a behaviour is closely related to the strengthening
of the near-surface inversion layer, which damps turbulent motions and leads to
an apparent laminarization of the flow. In contrast, anabatic flows depart from the
laminar solution as α decreases, due to the unstable stratification and likely onset
of convective motions. Based on results shown in figure 7 one could introduce the
equally crude approximations

Bw(α)/Bα=90◦
w ≈ 1 for anabatic flows, (4.7)

Bw(α)/Bα=90◦
w ≈ sin α for katabatic flows, (4.8)

which justifies the observed variations in the vertically integrated horizontal momentum
flux in the anabatic and katabatic flow regimes based on (4.6).
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Note that since Iu=UL, where U and L are the characteristic (normalized) velocity
and length scale of the flow, and given that U ≈ const. for both anabatic and katabatic
flows, from (4.7) and (4.8) follows that L∝ 1/ sinα for anabatic flows, and L≈ const.
for katabatic flows. Such information can be of use for scaling purposes.

Given the strong α dependence of Bw in the katabatic flow solution, profiles are
expected vary significantly – when compared to those proposed herein – if a constant
Bw is used to drive the flow. Conversely, Bw in the anabatic flow solution is weakly
dependent on α, and profiles are therefore expected to be poorly sensitive on the
specific flow driving mechanisms (i.e. constant surface buoyancy or constant surface
buoyancy flux). Because of this, the proposed anabatic flow solutions share strong
similarities with those reported in the FS09 study, especially when considering the α
dependence of zj, uj and δd, δt, whereas the katabatic flow solutions differ significantly.

When a constant surface buoyancy flux is applied, the laminar flow solution is
characterized by zj = π/(4σ) and uj ∝ (sin (α))−1/2 (Grisogono & Axelsen 2012;
Grisogono et al. 2014). Hence, uj increases as the sloping angle decreases and is not
α independent as predicted by (4.3) and (4.4).

Similar variations in zj and a stronger α dependency of uj and δd, δt have been
reported in FS09 for the katabatic flow solution when compared to current DNS
results, qualitatively resembling predictions of the analytic laminar flow solution.

Note that when the flow is forced through a constant surface buoyancy flux, as
in the FS09 study, anabatic and katabatic flow solutions are constraint to share the
same slope-normal integrated horizontal momentum flux Iαu /I

α=90◦
u =1/ sinα, hence the

stronger variability of δd and δt in the FS09 katabatic flow solution, when compared
to the current DNS results.

4.3. TKE and buoyancy variance
Slope-normal variations of TKE and of buoyancy variance 〈b′b′〉 are featured in
figure 8. The buoyancy variance may also be interpreted as a form of turbulent
potential energy. The stronger surface stable stratification that characterizes katabatic
flows as the sloping angle decreases results in a weakening of TKE in the inner flow
regions (below the LLJ), whereas the observed increase of TKE in the outer flow
region as α decreases is likely related to the broadening of the flow length scales,
which despite being modest for the katabatic flow solution, have an apparent effect
on TKE. TKE profiles from the anabatic flow solution are again more sensitive to
α when compared to their katabatic counterparts. In the anabatic flow cases, the
peak TKE location increases as α decreases, but its magnitude shows non-monotonic
behaviour, thus suggesting a more complex dependence on α. Furthermore, the TKE
in the neighbourhood of the LLJ is approximately constant throughout the considered
flow regimes.

The buoyancy variance 〈b′b′〉 peaks in the near-wall regions for both flow regimes
where strong buoyancy gradients occur, in agreement with findings from FS09.
Variations in 〈b′b′〉 as a function of α in the below-LLJ region are significant
only for the katabatic flow regime, with peak value and its location increasing
and decreasing as α is reduced. The above-LLJ regions of the boundary layer are
characterized by a rapid decay in 〈b′b′〉, most evident for the katabatic flow regime.
The anisotropic nature of turbulence in slope flows is apparent from figure 9, where
normal stress components 〈u′u′〉, 〈v′v′〉 and 〈w′w′〉 are compared. The boundary layer
character of the system is apparent with the wall providing an effective damping of
the 〈w′w′〉 central moment, in both anabatic and katabatic flow regimes. It is to be
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FIGURE 8. Comparison of turbulent kinetic energy (1/2)〈u′iu
′

i〉 (a) and buoyancy variance
(〈b′b′〉) (b) for the katabatic (solid lines) and the anabatic flow (dashed lines) regimes at
α= 90◦ (black), α= 60◦ (blue), α= 30◦ (green), and α= 15◦ (red). Simulations correspond
to the highest Gr = 2.1 × 1011 cases. Recall that the z-axis denotes the slope-normal
coordinate direction.
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FIGURE 9. Normal stress components 〈u′u′〉 (solid lines), 〈v′v′〉 (dashed lines) and 〈w′w′〉
(dot-dashed lines) for the katabatic (a) and the anabatic (b) flow regimes at α=90◦ (black),
α = 60◦ (blue), α = 30◦ (green) and α = 15◦ (red). Simulations correspond to the highest
Gr= 2.1× 1011 cases (simulations S90H, S60H, S30H, and S15H and U90H, U60H, U30H and
U15H, respectively).

noted the strong sensitivity of 〈w′w′〉 with respect to α for both wind regimes. This
behaviour is related to the direct effect of stratification (background + perturbation)
on 〈w′w′〉, given that buoyancy is effective at damping/exciting slope-normal velocity
fluctuations w′. Because of this, as α decreases, the turbulence characterizing katabatic
flows becomes more anisotropic (the strong, effective, stable stratification damps
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FIGURE 10. Total (solid lines) and turbulent (dashed lines) momentum flux for the
katabatic (a) and the anabatic (b) flow regimes, and total (solid lines) and turbulent
(dashed lines) buoyancy slope-normal flux for the katabatic (c) and the anabatic (d)
flow regimes. All cases are characterized by Gr = 2.1 × 1011. 〈τ tot

xz 〉 denotes the total
slope-normal flux of momentum, whereas 〈τ tot

bz 〉 denotes the total slope-normal buoyancy
flux. The height of the LLJ (zj) is displayed (horizontal lines) for the different cases to
provide a reference.

〈w′w′〉) in contrast to its anabatic counterpart, where the positive surface buoyancy
leads to more isotropic turbulent motions. The observed trend here supports the
recently proposed scaling of Shapiro & Fedorovich (2014) based on the assumption
of large-scale separation between slope-normal and slope-parallel motions populating
katabatic flows, which might indeed hold at small sloping angles.

4.4. Momentum and buoyancy fluxes
Turbulent and total (turbulent + molecular) vertical buoyancy and momentum fluxes
are displayed in figure 10 for each of the considered runs. Turbulent buoyancy fluxes
obey Fick’s law of diffusion, whereas momentum fluxes consistently feature a thin
layer just below the LLJ where counter gradient fluxes are observed. This feature
is related to the extrema of the mean 〈u〉-profiles not being co-located with the
zero crossing of the turbulent momentum fluxes. At the LLJ location for instance,
a positive (negative) total slope-normal momentum flux for the katabatic (anabatic)
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FIGURE 11. Total (solid lines) and turbulent (dashed lines) momentum flux for the
katabatic (a) and the anabatic (b) flow regimes in inner units. All cases are characterized
by Gr= 2.1× 1011. 〈τ tot

xz 〉 denotes the total slope-normal flux of momentum. The height of
the LLJ (zj) is displayed (horizontal lines) for the different cases to provide a reference.

flow regime are observed. Note that counter gradient fluxes have been previously
reported in experimental studies (Smeets et al. 2000; Oldroyd et al. 2016a). The
peak magnitude of both 〈τ tot

xz 〉 and 〈τ tot
bz 〉 in the above-LLJ regions is dependent on

α for both flow regimes (it decreases as α decreases). In addition, katabatic flow
solutions are characterized by a modest upward shift of flux extrema as the sloping
angle decreases, whereas the upward shift is more significant for the anabatic flow
cases. Such trends are directly related to the combined effects of α on the scales of
the flow (recall that the analytic Prandtl solution predicts L∝ (sin (α))−1/2) and of the
surface induced stratification in katabatic and anabatic flows, whose strength increases
as α decreases, progressively damping (for the katabatic cases) or enhancing (for the
anabatic cases) turbulent fluctuations. In the FS09 study, the peak magnitude of 〈τ tot

xz 〉

and 〈τ tot
bz 〉 in the katabatic flow regime was found to be approximately constant and

independent of α. Conversely, it was sensitive to α in the anabatic flow cases, in
apparent contrast with current findings. Such a mismatch is related to the different
surface forcing approach that characterizes the current and the FS90 study (in FS90
a constant surface buoyancy flux is applied to drive the flow).

Figure 11 features the total and the turbulent momentum fluxes for the considered
katabatic and anabatic flow regimes in inner units. For katabatic flows the viscous
contribution to the total flux is dominant in the below-LLJ regions, and drops to
less than 10 % as z+ > 50 for the α = 90◦ case. As the sloping angle decreases the
viscous contribution in the above-LLJ region increases, due to the strengthening of
the stable stratification resulting from the imposed surface buoyancy, and amounts to
approximately 35 % the total at z+ = 50 for the shallower of the considered slopes
(α = 15◦). In contrast, anabatic flows are characterized by a decrease of viscous
contributions to the total momentum flux as the sloping angle decreases throughout
the boundary layer, with viscous effects remaining dominant up to z+ ≈ 12, where
viscous and turbulent fluxes are roughly of the same magnitude, and becoming
negligible (<10 %) as z+ > 50. From figure 11 is also apparent how the surface
contribution in terms of total stress is larger than the peak stress in the above-LLJ
region for katabatic flows, whereas for anabatic flows as the sloping angle decreases
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FIGURE 12. α dependence of the kinematic surface average stress τw for katabatic (a)
and anabatic (b) flow cases. Simulations correspond to cases S90H, S60H, S30H, S15H and
U90H, U60H, U30H, U15H for the katabatic and anabatic regimes, respectively. Predictions
from the Prandtl laminar solution are included for comparison (black lines).

the surface stress becomes progressively smaller when compared to the outer stress
peak.

Turbulent fluctuations contribute to the overall buoyancy flux in the below-LLJ
region of katabatic flows, whereas they provide a negligible contribution to the
overall momentum flux. This latter behaviour has direct effect on the overall surface
stress, which is nearly equal to the laminar flow prediction for α > 90◦, as displayed
in figure 12. Turbulent motion in the below-jet regions of katabatic flows are thus
‘inactive’ from a momentum transport perspective (in the Townsend (1956) sense), but
are relatively effective in vertically transporting buoyancy. To the contrary, turbulent
fluctuations in the anabatic flow solution contribute to both the overall surface
buoyancy and momentum fluxes that progressively depart from their Prandtl ‘laminar
flow’ counterparts as α is reduced. An interesting feature of the considered anabatic
flow simulations is the magnitude of the time- and space-averaged surface total
momentum flux (τw), as displayed in figure 12. τw is consistently smaller than its
laminar flow prediction in the anabatic cases, and its magnitude decreases as the
sloping angle is reduced. Note that such feature might be related to the relatively
modest Gr value characterizing the various runs.

4.5. The mean kinetic energy budget
The governing equation for the time- and space-averaged velocity 〈ui〉 is readily
derived by applying Reynolds decomposition to the instantaneous flow variables (e.g.
ui = 〈ui〉 + u′i) and space + time averaging (2.9). The budget equation for MKE is
then obtained by multiplying the equation for 〈ui〉 by 〈ui〉 itself. Assuming horizontal
homogeneity (∂〈·〉/∂x= ∂〈·〉/∂y= 0) and no subsidence (〈w〉 = 0) it reads

∂( 1
2 〈u〉〈u〉)
∂t

= 〈u′w′〉
∂〈u〉
∂z
− 〈u〉〈b〉 sin (α)−

∂( 1
2 〈u〉〈u

′w′〉)
∂z

+Gr−1/2
〈u〉
∂2
〈u〉
∂z2

, (4.9)
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FIGURE 13. Slope-normal structure of the MKE budget for the katabatic (a) and for
the anabatic (b) flow regimes at α = 90◦ (solid lines), α = 60◦ (dashed lines), α = 30◦
(dot-dashed lines) and α = 15◦ (dotted lines). All cases are characterized by Gr = 2.1×
1011. The location of the LLJ is highlighted by horizontal lines for the various runs to
provide a reference height (note that as α decreases the LLJ height increases). All terms
are normalized by Û3 L̂−1

≡ b̂s
2

N̂−1.

where the left-hand side of (4.9) is the storage term of MKE, Ps ≡ 〈u′w′〉(∂〈u〉/∂z)
denotes shear production/destruction of MKE, Pb ≡−〈u〉〈b〉 sin (α) denotes buoyancy
production/destruction of MKE, transport of MKE by turbulent motions is Tt ≡

−∂(1/2〈u〉〈u′w′〉)/∂z and dissipation of MKE by viscous diffusion is E ≡ Gr−1/2
〈u〉

(∂2
〈u〉/∂z2). When time averaging over a sufficiently long time period then ∂〈·〉/∂t= 0

and the storage term can be neglected.
The normalized MKE budget terms for the considered anabatic and katabatic

runs are displayed in figure 13. The choice of b̂s
2
N̂−1 as a normalizing factor is

not critical for the interpretation of the budget, since the relative magnitude of the
terms is unchanged. As expected, the overall main source of MKE is from buoyancy
production (Pb), which peaks in the below-jet regions, and is characterized by a
gradual decrease throughout the boundary layer. In the outer regions of the flow,
Pb becomes a sink of MKE in both flow regimes starting from the zero crossing
of 〈b〉 and up to the start of the return flow region. Here, energy is provided by
turbulent transport (Tt), which balances shear production (Ps) and buoyant production
(Pb) (both Ps and Pb are a sink term of MKE in such layer). At the wall, buoyant
production is overcome by dissipation for both upslope and downslope flows, and
transport from turbulent motions is responsible to close the MKE budget. Tt acts as
a sink of MKE in the highly energetic LLJ regions, displacing it toward the wall to
balance the enhanced dissipation, and also into the outer layer of the flow.

In both anabatic and katabatic flow regimes, shear production of MKE (Ps)
acts as a sink of MKE in the above-jet regions, draining energy from the mean
flow and transferring it to turbulence through the classical energy cascade process.
Interestingly, for both regimes and all the considered sloping angles, the below-jet
regions are characterized by Ps> 0, highlighting a region of global energy backscatter,
i.e. energy is transferred from the turbulent eddies to the mean flow. Forward scatter
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is known to be mainly caused by vortex stretching by the mean strain rate, whereas
backscatter indicates vortex compression by the mean strain rate, which is not
commonly observed in canonical wall-bounded flows.

4.6. The turbulent kinetic energy budget
Under the assumptions leading to (4.9), the budget equation for TKE is given as

∂〈 1
2 u′iu

′

i〉

∂t
= −〈u′w′〉

∂〈u〉
∂z
+ 〈b′w′〉 cos (α)− 〈b′u′〉 sin (α)−

∂〈 1
2 u′iu

′

iw
′
〉

∂z

−
∂〈π′w′〉
∂z

+Gr−1/2 ∂
2
〈

1
2 u′iu

′

i〉

∂z2
−Gr−1/2

〈
∂u′i
∂xj

∂u′i
∂xj

〉
, (4.10)

where ∂〈(1/2)u′iu
′

i〉/∂t is the storage of TKE term, shear production of TKE
is denoted as Ps ≡ −〈u′w′〉(∂〈u〉/∂z), buoyant production/destruction of TKE is
composed of two terms, namely Pb,1≡ 〈b′u′〉 sin(α) and Pb,3≡ 〈b′w′〉 cos(α), turbulent
transport of TKE is Tt ≡ −∂〈(1/2)u′iu

′

iw
′
〉/∂z, pressure transport Tp ≡ −∂〈π

′w′〉/∂z,
viscous diffusion of TKE is Tν ≡ Gr−1/2∂2

〈(1/2)u′iu
′

i〉/∂z2 and viscous dissipation
ε ≡ −Gr−1/2

〈(∂u′i/∂xj)(∂u′i/∂xj)〉. With regard to the buoyancy production/destruction
terms, Pb,1 accounts for production/destruction of TKE due to cross-correlation
between along-slope velocity (u) and buoyancy (b), whereas Pb,3 accounts for
production/destruction of TKE due to cross-correlation between normal-to-slope
velocity (w) and buoyancy (b). The splitting of the buoyancy production term is
clearly a result of the inclined reference system that is adopted to describe the
evolution of the system.

TKE budget terms for the considered runs (characterized by Gr = 2.1 × 1011) are
displayed in figure 14. Shear production (Ps) appears with opposite signs in the
budgets of MKE and TKE as expected. It represents the net transfer from MKE
to TKE as the result of their interactions that often sustains turbulence in classical
boundary layer theory on flat slopes. For both anabatic and katabatic flow regimes,
Ps is characterized by two positive peaks, one in the above jet regions and one in
the very near-wall regions, and is negative in a small interval just below the LLJ,
where global energy backscatter occurs. Occurrence of negative Ps is related to
the presence of local (in z) counter-gradient turbulent momentum flux, in line with
findings of § 4.4. In both katabatic and anabatic flow regimes, ε peaks at the wall, is
approximately constant in the near-LLJ region and decreases logarithmically in the
core of the flow. The Pb,3 is a sink of TKE for the katabatic regime and a source of
TKE for the anabatic regime, as expected. In the anabatic regime Pb,3= 0 at α= 90◦,
but gains considerable importance (as a TKE source term) in the overall budget
as α decreases. For instance, considering the α = 15◦ run, Pb,3 alone overcomes
TKE dissipation in the core of the LLJ. To the contrary, the modest magnitude
of Pb,3 highlights how buoyant destruction of TKE is not the primary mechanism
through which buoyancy acts to suppress turbulence in katabatic flows. Following the
same reasoning of Shah & Bou-Zeid (2014) (where stability effects on the Ekman
layer were studied through DNS), it is argued here that negative buoyancy directly
reduces 〈w′w′〉, thus reducing local production of 〈u′w′〉. A reduction in 〈u′w′〉 would
ultimately result in the observed decrease in 〈Ps〉 and related TKE magnitude as α
decreases (i.e. as the static stability of the environment increases). Pb,1 is the major
source of TKE at the LLJ for the katabatic flow regime at all the considered α.
On the other hand, in the anabatic flow regime Pb,3 overcomes Pb,1 as α decreases,
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FIGURE 14. Comparison of TKE budged terms for katabatic (a,c) and anabatic (b,d)
flow regimes at α = 90◦ (solid lines), α = 60◦ (dashed lines), α = 30◦ (dot-dashed lines)
and α = 15◦ (dotted lines). All cases are characterized by Gr = 2.1 × 1011. Production
and destruction terms (a,b) have been separated from transport and residual terms (c,d).
The z-axis represents the slope-normal coordinate direction. The location of the LLJ is
highlighted by horizontal lines for the various runs to facilitate interpretation (note that
α ∝ zj). All terms are normalized by Û3L̂−1

≡ b̂2
s N̂−1.

becoming the leading buoyant production term. Overall, the sum of production terms
(Ps + Pb,1 + Pb,3) overcome dissipation in the above-jet regions (approximately up to
10zj), and transport terms are responsible for dislocating this excess in TKE down
towards the wall and towards the outer regions of the flow. Turbulent transport (Tt)
is a more effective carrier of TKE in the outer regions of the flow, whereas pressure
fluctuations (Tp) are more effective in transporting TKE down toward the wall, to
balance dissipation and viscous diffusion. The viscous diffusion term Tν resembles
its pressure-driven boundary layer analogue, where Tν is a sink of TKE in the buffer
sublayer, and a source of TKE in the laminar sublayer, below z+ = 5 (corresponding
to z= 5× 10−4 in current units).
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FIGURE 15. Comparison of return-to-isotropy terms for katabatic (a) and anabatic (b) flow
regimes at Gr = 2.1 × 1011. We denote Φ1 ≡ 〈p′(∂u′/∂x)〉, Φ2 ≡ 〈p′(∂v′/∂y)〉 and Φ3 ≡

〈p′(∂w′/∂z)〉. The location of the LLJ is once again highlighted with horizontal lines and
the α = 90◦, 60◦, 30◦ and 15◦ runs (simulations S90H, S60H, S30H, S15H for the katabatic
regimes; U90H, U60H, U30H, U15H for the anabatic regimes) are denoted with solid, dashed,
dot-dashed and dotted lines respectively. The z-axis represents the slope-normal coordinate
direction and all terms are normalized by Û3 L̂−1

≡ b̂2
s N̂−1.

Not shown here is the vertical structure of flux Richardson number (Rif =

〈b′w′〉/(d〈u〉/dz)〈u′w′〉), which is positive (negative) throughout the core of the
boundary layer (above the LLJ and below the return flow region) in the katabatic
(anabatic) flow regimes. In the katabatic flow regime Rif is lower in magnitude
than its critical value of 0.25, except in the neighbourhood of the LLJ the stable
stratification and low velocity gradients result instead in Rif � 1.

It is worth noting the significant contribution of turbulent and pressure transport
terms in the neighbourhood of the LLJ and in the wall regions in both flow
regimes. Pressure fluctuations are relevant in the near-wall regions when compared
to corresponding values observed in neutral (Moser, Kim & Moin 1999) and stably
stratified (Iida, Kasagi & Nagano 2002) pressure-driven channel flow DNS. In the
neighbourhood of the LLJ Rif is relatively large in magnitude (not shown) for both
flow regimes, promoting strong internal gravity wave activity, which does not transfer
buoyancy, but can be effective in transporting momentum through the action of
pressure force, thus justifying such relevant contribution of pressure transport to the
TKE budget.

The return-to-isotropy term (also known as pressure redistribution term) contracts
to zero, and so vanishes from the TKE budget equation (4.10). However, when
analysed for the single TKE budget components displayed in figure 15, the role of
turbulence in distributing turbulent energy becomes clear. For instance, wall damping
effects on slope-normal velocity fluctuations are apparent in the below-LLJ regions,
where Φ3 < 0 indicating energy redistribution from the slope-normal component
(〈w′w′〉) to the horizontal components (〈u′u′〉 and 〈v′v′〉 respectively). In the above-jet
regions for the katabatic flow regime, a consistent energy redistribution among the
TKE components are observed across the sloping angles with energy being transferred
from the streamwise component (〈u′u′〉) to the spanwise and slope-normal components
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(〈v′v′〉 and 〈w′w′〉 respectively). For the anabatic flow regime, the return-to-isotropy
terms in the above-jet regions highlight a transition in the system as a function
of α. When the two highest sloping angles are considered (α = 60◦ and α = 90◦),
energy transfer is qualitatively equivalent to that characterizing the katabatic flow
regime, i.e. the streamwise variance feeds the spanwise and slope-normal variance
components. For α = 15◦ and α = 30◦, the return-to-isotropy term becomes a sink
for 〈w′w′〉 and a source for 〈u′u′〉 and 〈v′v′〉, indicative of energy transfer from the
slope-normal TKE component to the streamwise and spanwise TKE components. This
transition suggests that at low sloping angles, anabatic flow regimes are characterized
by slope-normal elongated eddies as apparent from figure 5, which feed 〈u′u′〉 and
〈v′v′〉 from 〈w′w′〉, the latter being directly sustained by the slope-normal projection
of the buoyancy force b cos (α). Conversely, katabatic flow eddies are streamwise
elongated and remove energy from 〈u′u′〉 – directly fed by the streamwise component
of the buoyancy force – to transfer it to 〈w′w′〉 and 〈v′v′〉. This energy redistribution
term ensures some self-preservation of the slope-normal velocity variance in katabatic
flows despite the adverse role of stability.

Overall, the proposed TKE budget analysis suggests a subdivision of the boundary
layer into four distinct regions, for the considered α- and Gr-ranges, namely

(i) an outer layer, corresponding approximately to the return flow region, where
turbulent transport (Tt) is the main source of TKE and balances dissipation (ε);

(ii) an intermediate layer, bounded below by the LLJ and capped above by the
outer layer, where the sum of shear and buoyant production (Ps + Pb,1 + Pb,3)
overcomes dissipation (ε), and where turbulent and pressure transport terms
(Tt, Tp) are a sink of TKE;

(iii) a buffer layer, corresponding to 5/ z+/ 30, where TKE is provided by turbulent
and pressure transport terms, to balance viscous diffusion and dissipation;

(iv) a laminar sublayer, corresponding to z+ / 5, where the influence of viscosity is
significant and the flow is approximately laminar.

5. Summary and conclusions

DNS are used to characterize mean flow and turbulence of thermally driven
flows along a uniformly cooled or heated sloping plate immersed within a stably
stratified environment, using a set-up resembling the one considered by Prandtl’s
slope-flow model. The study focused on sensitivity of the flow statistics to variations
in the sloping angle (α) and Grashof number (Gr) for a fixed molecular Prandtl
number (Pr= 1). Four sloping angles (α = 15◦, 30◦, 60◦ and 90◦) and three Grashof
number (Gr = 5× 1010, Gr = 1× 1011, and Gr = 2.1× 1011) were considered, where
Gr = b̂4

s ν̂
−2N̂−6 is interpreted as the ratio between the energy production at the

surface and the work against the background stratification and viscous forces. The
study complements the Fedorovich & Shapiro (2009) analysis, where a similar range
of sloping angle and Gr was considered but where the flow was forced using a
constant surface buoyancy flux.

The initial transient is characterized by slowly decaying quasi-stationary oscillatory
patterns in the spatially integrated variables, the normalized oscillation frequency being
proportional to the sine of the sloping angle, in agreement with field observations of
slope flows (e.g. Princevac et al. 2008; Monti et al. 2014) and with findings from a
recent theoretical work (Fedorovich & Shapiro 2017). The quality of the averaging
operation has been tested against a dynamic and an energy identity derived from the
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FIGURE 16. Sensitivity of the streamwise velocity 〈u〉 (a) and buoyancy 〈b〉 (b) on the Gr
parameter, for katabatic (solid lines) and anabatic (dashed lines) flow regimes at α= 60◦.

equations of motions, that the time-averaged solution must satisfy in coordinates of
statistical homogeneity.

With respect to their basic features, the katabatic and anabatic mean flow appear
similar to their corresponding laminar (Prandtl) counterparts. The thermal boundary
layer is much shallower when compared to the dynamic boundary layer, the latter
being characterized by a low-level jet near the wall regions, and by a weak return
flow in the outer regions. Turbulent anabatic and katabatic regimes are found to be
structurally similar at high sloping angles but to undergo a different transition in the
turbulence production and transport mechanisms as the sloping angle decreases. In
fact, a stark statistical difference between the two flow regimes for the α/ 30◦ range
was noted from the DNS analysis. As α decreases, the negative surface buoyancy
driving downslope flows leads to the formation of a strong surface inversion layer,
resulting in a progressive laminarization of the solution in the near-LLJ regions. It
also results in small variation in the integrated horizontal momentum flux and in an
overall small variability of mean profiles with respect to α. Anabatic flows on the
other hand are characterized by a strengthening of TKE production and turbulent
momentum fluxes as α decreases, by a significant α dependence of the overall
horizontal momentum flux, and by well mixed profiles of buoyancy and velocity,
suggesting the presence of convective cells for α/ 30◦. Analysis of the slope-normal
integrated energy equation highlights how the characteristic (normalized) scale of
anabatic flow L∝ 1/sinα, whereas the characteristic scale of katabatic flow is found
to be poorly sensitive to α. As in Fedorovich & Shapiro (2009), no region with
constancy (even approximate) of any of the fluxes with distance from the wall has
been identified, and molecular diffusion of momentum and buoyancy are found to be
significant in the below-LLJ regions, when compared to turbulent diffusion. Budget
equations show how MKE is fed into the fluid system through the imposed surface
buoyancy, and turbulent fluctuations redistribute it from the lower edge of the jet
toward the wall and toward the outer layer. Interestingly, as Gr increases, the overall
normalized energy of the system is reduced, but turbulent fluctuations gain importance
in the below-jet regions. Hence, despite the modest Grashof number range considered
here, one might speculate about the existence of a (turbulent) overlap layer at higher
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FIGURE 17. Absolute value of the averaged surface buoyancy flux (a) and momentum flux
(b) as a function of Gr for anabatic (red line) and katabatic (black line) flow regimes at
α = 60◦ (simulations S60H, S60M, S60L and U60H, U60M, U60L, respectively).

Gr, located in the below-jet region, separating the LLJ from the laminar sublayer.
In addition, a zone of global backscatter (energy transfer from the turbulent eddies
to the mean flow) is consistently found just below the LLJ, which highlights the
presence of vortex compression (instead of stretching) dynamical mechanisms, and
failure of gradient diffusion theory in such layer. The behaviour in returning to
isotropy of turbulent fluctuations further highlights how katabatic and anabatic flow
systems differ in their mechanisms sustaining turbulence at shallow slopes, and again
indicates presence of convective cells for α/ 30◦ in anabatic flows. Overall, analysis
of the α dependence of the TKE budget terms suggests a subdivision of the boundary
layer in four distinct regions: (i) an outer layer, approximately corresponding to the
return flow region, where turbulent transport balances dissipation, (ii) an intermediate
layer, bounded below by the LLJ, where shear and buoyant production overcome
dissipation, and turbulent and pressure fluctuations are responsible to relocate the
excess TKE down toward the wall and toward the outer layer, (iii) a buffer layer,
capped above by the LLJ, where pressure and turbulent transport balance dissipation
and viscous diffusion of TKE and (iv) a laminar sublayer, where molecular viscosity
and thermal diffusivity effects are of leading order in the transport of momentum and
buoyancy.

The proposed DNS results, in particular the TKE and MKE budgets, and the role of
turbulence isotropization via pressure fluctuations can be used to guide improvements
in current turbulence closure modelling for sloping and stable conditions that can then
be implemented in the next generation of large-scale atmospheric models.

Appendix A. Sensitivity of solutions to variations in the Grashof number
A.1. Mean flow, TKE and buoyancy variance

The sensitivity of mean velocity and buoyancy profiles to variations in Gr is displayed
in figure 16 for anabatic and katabatic flow regimes characterized by α = 60◦.
Increases in Gr results in weaker thermal and dynamic boundary layers, i.e. in a
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FIGURE 18. Sensitivity of the turbulent kinetic energy ((1/2)〈u′iu
′

i〉) (a) and buoyancy
variance (〈b′b′〉) (b) to the Gr parameter for katabatic (solid lines) and anabatic (dashed
lines) flow regimes at α = 60◦.
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FIGURE 19. Sensitivity of MKE budget terms to Gr for the katabatic (a) and the anabatic
(b) flow regimes at α = 60◦. Profiles correspond to Gr = 1 × 1010 (dot-dashed lines),
Gr= 5× 1011 (dashed lines) and Gr= 2.1× 1011 (solid lines). The location of the LLJ is
highlighted with horizontal dotted black lines for the various runs, to provide a reference
height (note that as Gr increases the LLJ height decreases). All terms are normalized by
Û3 L̂−1

≡ b̂s
2

N̂−1.

decrease of zj, uj, δ, as well as
∫ H

0 〈b〉 dz and
∫ H

0 〈u〉 dz. As apparent from figure 17,
increases in Gr results in a decrease in the surface buoyancy flux 〈τbz〉|z=0, i.e. in
a reduction of the rate of potential energy that is supplied to the system, as could
have been intuitively predicted. Surface momentum fluxes are also decreasing as Gr
increases, as also displayed in figure 17. Conversely, the magnitude of slope-normal
surface gradients of along-slope velocity and buoyancy are stronger as Gr increases,
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FIGURE 20. Sensitivity of TKE budget terms to Gr for the katabatic (a,c) and the anabatic
(b,d) flow regimes at α = 60◦. Profiles correspond to Gr = 5 × 1010 (dot-dashed lines),
Gr= 1× 1011 (dashed lines), and Gr= 2.1× 1011 (solid lines). The z-axis represents the
slope-normal coordinate direction. The location of the LLJ is highlighted with dotted black
lines for the various runs, to provide a reference height (note that as Gr increases the LLJ
height decreases). All terms are normalized by Û3 L̂−1

≡ b̂s
2

N̂−1.

highlighting a relatively stronger momentum (buoyancy) replenishment (extraction)
induced by turbulent fluctuations. Therefore as Gr increases, the LLJ becomes weaker
but better mixed.

The relatively stronger role of turbulent fluctuations in the near-wall regions as Gr
increases is apparent if one focuses on figure 18, where TKE and buoyancy variance
are featured for both flow regimes. Higher Gr results in stronger near-wall TKE and
〈b′b′〉, despite the relatively lower kinetic and potential energy of the system, when
compared to the same simulation at lower Gr. Worth noting also how the near-surface
peak of 〈b′b′〉 is insensitive to Gr. This behaviour is in line with findings from mean
profiles, which suggest a stronger role of turbulent fluctuations in the near-wall region
as Gr increases. In the above-LLJ regions TKE, 〈b′b′〉 and the slope-normal scale of
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the flow increase in magnitude as Gr is reduced for all the considered cases, likely
due to the relatively stronger dynamic and thermal boundary layers.

A.2. MKE and TKE budget terms
The dependence of MKE budget terms on Gr is highlighted in figure 19. Besides the
expected decrease in the slope-normal scale as Gr increases, one of the main features
of the MKE budget terms is a relative strengthening of Ps and Tt in the below-LLJ
regions as Gr increases. With this regard, note how the peak value of Pb and εs are
sensitive to variations in Gr, whereas the peak value of Ps and Tt are insensitive
to Gr.

As Gr increases, TKE budget terms are characterized by a strengthening of Ps in
the neighbourhood of the LLJ and near-surface regions for the katabatic flow regimes
(see figure 20). Anabatic flows are instead characterized by a strengthening of Ps in
the near-wall regions, well below zj. In addition, buoyant production Pb,1 increases
as Gr increases in the below LLJ regions and transport terms tend to decrease. This
suggests that at higher Gr when compared to those considered herein, anabatic and
katabatic flows might be characterized by a relatively important local TKE production
rate in the below-LLJ regions, and negligible TKE transport rates, ultimately resulting
in stronger TKE, and thus larger zj and well-mixed profiles of buoyancy and velocity.
Such a region might well be the equivalent of the overlap (logarithmic) layer in
canonical wall-bounded turbulent flows, which is not observed here, probably because
of the relatively low Gr values.
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