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Abstract. In this paper, we present a simple sequent calculus for the modal propositional logic
S5. We prove that this sequent calculus is theoremwise equivalent to the Hilbert-style system S5, that
it is contraction-free and cut-free, and finally that it is decidable. All results are proved in a purely
syntactic way.

1. Introduction. Among the many normal systems of modal propositional logic, one
of the most important and well-known is doubtlessly S5.

When considered from the point of view of Kripke semantics, S5 is quite a peculiar
system since it can be described in two different but equivalent ways.1 The first one
specifies the properties that the accessibility relation between worlds of a Kripke frame
should satisfy: S5 is indeed sound and complete with respect to the class of reflexive,
transitive, and symmetric frames (or, equivalently, with respect to the class of reflexive
and euclidean frames). A second and easier way to study S5 semantically exploits Kripke
frames where the accessibility relation is absent:2 S5 is indeed sound and complete with
respect to the class of frames that are just nonempty sets of worlds.

This second way is evidently simpler, and it would be useful and interesting to reflect
this simplicity at the syntactic level, within, for example, a Gentzen system. Unfortunately,
this has not yet been achieved: indeed, it turns out to be quite a challenge to give a sequent
calculus for S5. The efforts in this direction are numerous, and each of them presents some
difficulties. The most common fault of the sequent calculi proposed so far is not being
cut-free (Blumey & Humberstone, 1991; Matsumoto & Ohnishi, 1959) or, in any case,
not satisfying the subformula property (Negri, 2005; Sato, 1980; Wansing, 1994). Other
Gentzen calculi are syntactically impure because they use explicit semantic parameters
(Braüner, 2000; Cerrato, 1993; Mints, 1997). Finally, there exist Gentzen systems for
S5 which are quite laborious since they treat S5 as a system whose accessibility relation
satisfies several conditions (Brünnler, 2006; Došen, 1985; Indrezejczak, 1997).

The best solutions are probably those offered by Avron (1996) and Restall (2006):
both these solutions (i) use hypersequents and (ii) try to reflect the simpler way S5 can
be described semantically. Since the main goal of this paper is to present a new sequent
calculus for S5 which shares with Avron and Restall’s solutions the points (i) and (ii), it is
worth explaining in detail how our approach differs from these two. The major differences
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2 From now on, we will call this kind of frame an S5 Kripke frame.
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are the following. First, in our calculus all the structural rules are (height-preserving) ad-
missible (even the contraction rules) and the logical and modal rules are height-preserving
invertible. Second, the rules that compose our calculus are different from the rules of the
other calculi. Third, we prove the decidability theorem in a purely syntactic way. Finally,
as has been shown in Poggiolesi (2007; 2008), our calculus is closely related to the so-
called tree-hypersequents method (Poggiolesi, 2008) by means of which we can obtain
Gentzen systems for several modal logics. Like Restall, but in contrast to Avron, our rules
are explicit.3 Finally, we point out that Restall is the only one to propose a proofnets
interpretation of his sequent calculus.

2. The calculus CSS5s . We define the modal propositional language L2 in the
following way:

– Atoms: p0, p1, . . .
– Logical constant: 2
– Connectives: ¬, ∨.

The other connectives, the modal operator �, and the formulas of the modal language L2
are defined as usual.

Syntactic conventions:

– α, β, . . .: formulas
– M , N , P , Q, . . .: finite multisets of formulas
– �, �, . . .: classical sequents
– G, H , . . .: hypersequents.

As we will deal with hypersequents, we remind the reader what a hypersequent is.

Definition 1. A hypersequent is a syntactic object of the form:

M1 ⇒ N1|M2 ⇒ N2| · · · |Mn ⇒ Nn,

where Mi ⇒ Ni (i = 1, . . . , n) are classical sequents.

Definition 2. The intended interpretation of a hypersequent is defined inductively in the
following way:

– (M ⇒ N )τ := ∧
M → ∨

N,
– (�1|�2| · · · |�n)τ := 2�τ

1 ∨2�τ
2∨ · · · ∨ 2�τ

n .

Given the definition and interpretation of the notion of hypersequent, it should be clear
that a hypersequent is just a multiset of classical sequents, which is to say that the order of
the sequents in a hypersequent is not important.

The postulates of the calculus C SS5s
4 are the following.

Initial hypersequents

G | M, p ⇒ N , p

3 Intuitively, the rules of a sequent calculus are explicit when they can be presented in such a
way that the symbol they introduce does not appear in their premise(s). For a definition of the
explicitness property, see Wansing (1994).

4 The name C SS5s stands for simple version of the calculus C SS5. Indeed in Poggiolesi (2008),
we have introduced another sequent calculus for S5, called precisely C SS5, which reflects the
more complicated way S5 can be described semantically that was mentioned in the introduction.
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Propositional rules

G | M ⇒ N , α

G | ¬α, M ⇒ N
¬A

G | α, M ⇒ N

G | M ⇒ N , ¬α
¬K

G | α, β, M ⇒ N

G | α ∧ β, M ⇒ N
∧A

G | M ⇒ N , α G | M ⇒ N , β

G | M ⇒ N , α ∧ β
∧K

Modal rules

G | α,2α, M ⇒ N

G | 2α, M ⇒ N
2A1

G | 2α, M ⇒ N | α, P ⇒ Q

G | 2α, M ⇒ N | P ⇒ Q
2A2

G | M ⇒ N | ⇒ α

G | M ⇒ N ,2α
2K

Let us make two remarks on the modal rules. The first one only concerns the rules (2Ai )
(i = 1, 2). The repetition of the principal formula 2α in the premise of each of these rules
only serves to make the rules invertible. This is analogous to the repetition of the formula
(∀x)(α(x)) in the premise of the rule that introduces the symbol ∀ on the left side of the
sequent in some versions of the sequent calculus for first-order classical logic.

The second remark concerns the three modal rules. It is easy to informally understand
these rules if we compare the hypersequent to an S5 Kripke frame and the sequents that
compose the hypersequent to different worlds of the S5 Kripke frame. In this perspective,
the rule (2K ) says, if read bottom up, that if the formula 2α is false at a world x , then we
can create a new world y where the formula α is false; on the other hand, the rules (2Ai )
tell us, if read bottom up and considered together, that if the formula 2α is true at a world
x , then the formula α is true in any world of the frame.

3. Admissibility of the structural rules. In this section, we will show which struc-
tural rules are admissible in the calculus C SS5s . Moreover, in order to show that the two
rules of contraction are height-preserving admissible, we will show that all the logical and
modal rules are height-preserving invertible. The proof of the admissibility of the cut rule
will be shown in the Cut-elimination Theorem section.

Definition 3. We associate to each proof d in C SS5s a natural number h(d) (the height).
Intuitively, the height corresponds to the length of the longest branch in a tree-proof d
minus 1. We define h(d) by induction on the construction of d.

d ≡ G | M ⇒ N : h(d) = 0

d ≡

...

G ′ | M ′ ⇒ N ′ }d1

G | M ⇒ N R : h(d) = h(d1) + 1

d ≡

...
d1 {G | M ′ ⇒ N ′

...

G | M ′′ ⇒ N ′′ }d2

G | M ⇒ N R: h(d) = max(h(d1) + 1, h(d2) + 1)
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Definition 4. d �n G means that d is a proof of G in C SS5s , with h(d) ≤ n. We write
�〈n〉 G, or just 〈n〉G, for ‘there exists a proof d such that d �n G’.

Definition 5. Let G be a hypersequent and G
′

be the result of the application of a certain
ruleR on G. We say that this ruleR is height-preserving admissible when

d �n G ⇒ ∃d
′
(d

′ �n G
′
)

We call a rule,R, which transforms a hypersequent G into a hypersequent G
′
, admissible

when

d �n G ⇒ ∃d
′
(d

′ � G
′
)

Lemma 1. Hypersequents of the form G|α, M ⇒ N , α, with α an arbitrary modal
formula, are derivable in C SS5s .

Proof. By straightforward induction on α. �

Lemma 2. The rule of merge:

G | M ⇒ N | P ⇒ Q

G | M, P ⇒ N , Q
merge

is height-preserving admissible in C SS5s .

Proof. By induction on the height of the derivation of the premise.

If the premise is an initial hypersequent, then so is the conclusion.
If the premise is inferred by a logical rule, then the inference is clearly preserved. We

will give an example using the logical rule (¬K ):

〈n−1〉G | α, M ⇒ N | P ⇒ Q
〈n〉G | M ⇒ N , ¬α | P ⇒ Q

¬K �5

〈n−1〉G | α, M, P ⇒ N , Q
〈n〉G | M, P ⇒ N , Q, ¬α

¬K

If the premise is inferred by the modal rule (2K ), this is clearly preserved:

〈n−1〉G | M ⇒ N | P ⇒ Q | ⇒ α
〈n〉G | M ⇒ N ,2α | P ⇒ Q

2K �

〈n−1〉G | M, P ⇒ N , Q | ⇒ α
〈n〉G | M, P ⇒ N , Q,2α

2K

If the premise is inferred by the modal rule (2A1), this is clearly preserved:

〈n−1〉G | α,2α, M ⇒ N | P ⇒ Q
〈n〉G | 2α, M ⇒ N | P ⇒ Q

2A1 �

〈n−1〉G | 2α, α, M, P ⇒ N , Q
〈n〉G | 2α, M, P ⇒ N , Q

2A1

5 The symbol � means that the premise of the right side is obtained by induction hypothesis on
the premise of the left side.
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If the premise is inferred by the modal rule (2A2), there are two significant cases to
analyze: the one where the rule (2A2) has been applied between the two sequents M ⇒ N
and P ⇒ Q and the one where the rule (2A2) has been applied between a third sequent,
let us call it �, and M ⇒ N (or, equivalently, P ⇒ Q). The two situations are analogous;
therefore, we only analyze the first one in detail:

〈n−1〉G | 2α, M ⇒ N | α, P ⇒ Q
〈n〉G | 2α, M ⇒ N | P ⇒ Q

2A2 �

〈n−1〉G | 2α, α, M, P ⇒ N , Q
〈n〉G | 2α, M, P ⇒ N , Q

2A1 �

Lemma 3. The rule of external weakening:

G

G | M ⇒ N
EW

is height-preserving admissible in C SS5s .

Proof. By straightforward induction on the height of the derivation of the premise. �

Lemma 4. The rule of internal weakening:

G | M ⇒ N

G | M, P ⇒ N , Q
IW

is height-preserving admissible in C SS5s .

Proof. It follows by the height-preserving admissibility of the two rules of merge and
external weakening. �

Lemma 5. All the logical and modal rules of C SS5s are height-preserving invertible.

Proof. The proof proceeds by induction on the height of the derivation of the premise of
the rule considered. The cases of logical rules are dealt with in the classical way. The only
differences – the fact that we are dealing with hypersequents and the cases where the last
applied rule is one of the rules, (2Ai ) or (2K ) – are dealt with easily.

The rules (2Ai ) are trivially height-preserving invertible since both their premises are
obtained by weakening from their respective conclusions, and weakening is height-
preserving admissible.

We show in detail the invertibility of the rule (2K ). If G | M ⇒ N ,2α is an initial
hypersequent, then so is G | M ⇒ N | ⇒ α. If G | M ⇒ N ,2α is obtained by a
logical rule R, we apply the inductive hypothesis on the premise(s), G

′ | M
′ ⇒ N

′
,2α

(G
′′ | M

′′ ⇒ N
′′
,2α) and obtain derivation(s) of height n − 1 of G

′ | M
′ ⇒ N

′ | ⇒ α
(G

′′ | M
′′ ⇒ N

′′ | ⇒ α). By applying the rule R, we obtain a derivation of height n of
G | M ⇒ N | ⇒ α. If G | M ⇒ N ,2α is of the form G | 2β, M

′ ⇒ N ,2α, then it
may have been obtained by the two modal rules (2Ai ). Since the procedure is the same
in both cases, we can just analyze one of the rule (2A1) and the other can be dealt with
analogously. We apply the inductive hypothesis on G | 2β, β, M

′ ⇒ N ,2α and obtain a
derivation of height n − 1 of G | 2β, β, M

′ ⇒ N | ⇒ α. By applying the rule (2A1),
we obtain a derivation of height n of G | 2β, M

′ ⇒ N | ⇒ α. If G | M ⇒ N ,2α is
obtained by the modal rule (2K ) in which 2α is not the principal formula, then this case
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can be treated analogously to the one of (2Ai ). Finally, if G | M ⇒ N ,2α is obtained by
the modal rule (2K ) and 2α is the principal formula, the premise of the last step gives the
conclusion. �

Lemma 6. The rules of contraction:

G | α, α, M ⇒ N

G | α, M ⇒ N
C A

G | M ⇒ N , α, α

G | M ⇒ N , α
C K

are height-preserving admissible in C SS5s .

Proof. By induction on the height of the derivation of the premise, G | M ⇒ N , α, α
(G | α, α, M ⇒ N ). We analyze only the case of the rule C K . The case of the rule C A is
symmetric.

If G | M ⇒ N , α, α is an initial hypersequent, so is G | M ⇒ N , α.
If G | M ⇒ N , α, α is the conclusion of a rule R which does not have either of the

two occurrences of the formula α as principal, we apply the inductive hypothesis on the
premise(s) G

′ | M
′ ⇒ N

′
, α, α (G

′′ | M
′′ ⇒ N

′′
, α, α), obtaining derivation(s) of height

n − 1 of G
′ | M

′ ⇒ N
′
, α (G

′′ | M
′′ ⇒ N

′′
, α). By applying the rule R, we obtain a

derivation of height n of G | M ⇒ N , α.
G | M ⇒ N , α, α is the conclusion of a logical or modal rule and one of the two oc-

currences of the formula α as principal. Hence, the last rule used in the proof of G | M ⇒
N , α, α is a K -rule, and we have to analyze the following three cases: ¬K , ∧K , and 2K .

[¬K ]:

〈n−1〉G | β, M ⇒ N , ¬β
〈n〉G | M ⇒ N , ¬β, ¬β

¬K ���6
〈n−1〉G | β, β, M ⇒ N
〈n−1〉G | β, M ⇒ N
〈n〉G | M ⇒ N , ¬β

¬K

i.h.

[∧K ]:

〈n−1〉G | M ⇒ N , β, β ∧ γ 〈n−1〉G | M ⇒ N , γ, β ∧ γ
〈n〉G | M ⇒ N , β ∧ γ, β ∧ γ

∧K ���

〈n−1〉G | M ⇒ N , β, β
〈n−1〉G | M ⇒ N , β

i.h

〈n−1〉G | M ⇒ N , γ, γ
〈n−1〉G | M ⇒ N , γ

i.h.

〈n〉G | M ⇒ N , β ∧ γ
∧K

[2K ]:

〈n−1〉G | M ⇒ N ,2β | ⇒ β
〈n〉G | M ⇒ N ,2β,2β

2K ���

〈n−1〉G | M ⇒ N | ⇒ β | ⇒ β
〈n−1〉G | M ⇒ N | ⇒ β, β
〈n−1〉G | M ⇒ N | ⇒ β

〈n〉G | M ⇒ N ,2β
2K

i.h.

merge

�

6 The symbol ��� means that the premise of the right side is obtained by an application of Lemma
5 on the premise of the left side.
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4. The adequateness theorem. In this section, we briefly prove that the sequent cal-
culus CSS5s proves exactly the same formulas as its corresponding Hilbert-style system S5.

Theorem 1.

(i) If � α in S5, then �⇒ α in C SS5s .

(ii) If � G in C SS5s , then � (G)τ in S5.

Proof. By induction on the height of proofs in S5 and C SS5s , respectively. In order to
further acquaint the reader with the calculus C SS5s , we verify (i). The classical axioms
and the modus ponens are proved as usual; we just present the proof of axiom T , axiom 4,
axiom B, and axiom 5.

C SS5s �⇒ 2α → α:

2α, α ⇒ α

2α ⇒ α
⇒ 2α → α

C SS5s �⇒ 2α → 22α:

2α ⇒ | ⇒ |α ⇒ α

2α ⇒ | ⇒ | ⇒ α

2α ⇒ | ⇒ 2α

2α ⇒ 22α
⇒ 2α → 22α

C SS5s �⇒ α → 2¬2¬α:

α ⇒ α|2¬α ⇒
¬α, α ⇒ |2¬α ⇒

α ⇒ |2¬α ⇒
α ⇒ | ⇒ ¬2¬α

α ⇒ 2¬2¬α
⇒ α → 2¬2¬α

C SS5s �⇒ ¬2¬α → 2¬2¬α:

⇒ |2¬α ⇒ |α ⇒ α

⇒ |2¬α ⇒ | ⇒ ¬α, α

⇒ |2¬α ⇒ |¬α ⇒ ¬α

⇒ |2¬α ⇒ | ⇒ ¬α

⇒ | ⇒ ¬2¬α| ⇒ ¬α

⇒ 2¬α| ⇒ ¬2¬α

⇒ 2¬α,2¬2¬α

¬2¬α ⇒ 2¬2¬α
⇒ ¬2¬α → 2¬2¬α

�
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5. Cut-elimination theorem. In this section, we prove the cut-elimination theorem
for the calculus C SS5s .

Theorem 2. Let G | M ⇒ N , α and G
′ | α, P ⇒ Q be 2 hypersequents; we want to

prove that:

i f

...
d1{G | M ⇒ N , α

...

G ′ | α, P ⇒ Q}d2

G | G ′ | M, P ⇒ N , Q
cutα

and d1 and d2 do not contain any other application of the cut rule, then we can construct
a proof of G | G

′ | M, P ⇒ N , Q without any application of the cut rule.

Proof. This is proved by induction on the complexity of the cut formula, which is the
number (≥0) of occurrences of logical symbols in the cut formula α, with subinduction
on the sum of the heights of the derivations of the premises of the cut. We will distinguish
cases by the last rule applied on the left premise.

Case 1. G | M ⇒ N , α is an initial hypersequent. Then, either the conclusion is also an
initial hypersequent or the cut can be replaced by various applications of the internal and
external weakening rules on G

′ | α, P ⇒ Q.

Case 2. G | M ⇒ N , α is inferred by a rule R in which α is not principal. The reduction
is carried out in the standard way by induction on the sum of the heights of the derivations
of the premises of the cut.

Case 3. G | M ⇒ N , α is inferred by a ruleR in which α is principal. We distinguish two
subcases: in one subcase,R is a propositional rule and in the other,R is a modal rule.

Case 3.1. As an example, we consider the case where the rule before G | M ⇒ N , α is
¬K , we have

G | β, M ⇒ N

G | M ⇒ N , ¬β
¬K

...

G ′ | ¬β, P ⇒ Q
G | G ′ | M, P ⇒ N , Q

cut¬β

By applying Lemma 5 on G
′ | ¬β, P ⇒ Q, we obtain G

′ | P ⇒ Q, β. Therefore, we can
replace the previous cut with the following one which is eliminable by induction on the
complexity of the cut formula:

G
′ | P ⇒ Q, β G | β, M ⇒ N

G | G ′ | M, P ⇒ N , Q
cutβ

Case 3.2.R is 2K and α ≡ 2β. We have the following situation:

G | M ⇒ N | ⇒ β

G | M ⇒ N ,2β
2K

...

G ′ | 2β, P ⇒ Q
G | G ′ | M, P ⇒ N , Q

cut2β

We have to consider the last ruleR′
of d2. If there is no ruleR′

which introduces G
′ | 2β,

P ⇒ Q because G
′ | 2β, P ⇒ Q is an initial hypersequent, then we can solve the case

as in 1. If R′
is a rule in which 2β is not principal, we solve the case as in 2. The only

problematic cases are thus those in whichR′
is one of the rules (2Ai ). Since the procedure

is the same in both cases, we need to analyze only the case of the rule (2A2); the other
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case is dealt with analogously.

G | M ⇒ N | ⇒ β

G | M ⇒ N ,2β
2K

G
′ | 2β, P ⇒ Q | β, Z ⇒ W

G ′ | 2β, P ⇒ Q | Z ⇒ W
2A2

G | G ′ | M, P ⇒ N , Q | Z ⇒ W
cut2β

We reduce the above to

G | M ⇒ N ,2β G
′ | 2β, P ⇒ Q | β, Z ⇒ W

G | G ′ | M, P ⇒ N , Q | β, Z ⇒ W
cut2β

G | M ⇒ N | ⇒ β G | G
′ | M, P ⇒ N , Q | β, Z ⇒ W

G | G | G
′ | M ⇒ N | M, P ⇒ N , Q | Z ⇒ W

G | G ′ | M, P ⇒ N , Q | Z ⇒ W
merge∗C∗

cutβ ,

where the first cut is eliminable by induction on the sum of the heights of the derivations
of the premises of the cut and the second cut is eliminable by induction on the complexity
of cut formula. �

6. Decidability. In this section, we prove that the calculus C SS5s is decidable, which
is to say that there is an algorithm that, given any hypersequent G, determines whether G
is provable in C SS5s or not.

First, let us observe that our calculus satisfies the subformula property since (i) the cut
rule is admissible in it (see Theorem 2), (ii) in each of its rules, all the formulas that occur
in the premise(s) are subformulas of the formulas that occur in the conclusion. Moreover,
it can also be shown that the contraction rules are admissible (see Lemma 6). It would
therefore seem that any source of potentially nonterminating proof search had been cut off.
Unfortunately, it is not so because of the repetition of the principal formula in each of the
rules (2Ai ). In order to avoid this problem and prove that our calculus is decidable, we
shall obtain a bound on the number of applications of the rules (2Ai ).

For this goal, let us start by only taking into account minimal derivations, which is to say,
derivations where shortenings are not possible. Then, we prove, by means of the following
lemmas and their corollaries, that in minimal derivations it is enough to apply the rule
(2A1) only once on any given pair of principal formulas and the rule (2A2) only once on
any given pair of sequents. This technique is inspired by the one used in Negri (2005).

Lemma 7. The rule (2A1) permutes down with respect to the rules (¬A), (¬K ), (∧A),
(∧K ), (2A2), and (2K ).

Proof. Let us first consider the permutation with 1-premise logical rules, which is straight-
forward. Taking, as an example, the case of the rule (¬K ), we have

G | β, α,2α, M ⇒ N
G | β,2α, M ⇒ N

G | 2α, M ⇒ N , ¬β
¬K

2A1

↓
G | β, α,2α, M ⇒ N

G | α,2α, M ⇒ N , ¬β

G | 2α, M ⇒ N , ¬β
2A1

¬K
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Let us now consider the permutation with the 2-premise rule (∧K ). We have the following
derivation:

G | α,2α, M ⇒ N , β

G | 2α, M ⇒ N , β
2A1

...

G | 2α, M ⇒ N , γ

G | 2α, M ⇒ N , β ∧ γ
∧K

↓
...

G | α,2α, M ⇒ N , β

G | 2α, M ⇒ N , γ

G | α,2α, M ⇒ N , γ
IW

G | α,2α, M ⇒ N , β ∧ γ

G | 2α, M ⇒ N , β ∧ γ
2A1

∧K

Let us remark that the transformation of the first derivation into the second one is done by
means of an application of the height-preserving admissible rule of internal weakening (IW).

Finally, we show the permutation in case of the rule (2K ):

G | α,2α, M ⇒ N | ⇒ β

G | 2α, M ⇒ N | ⇒ β

G | 2α, M ⇒ N ,2β
2K

2A1

↓
G | α,2α, M ⇒ N | ⇒ β

G | α,2α, M ⇒ N ,2β

G | 2α, M ⇒ N ,2β
2A1

2K

�

Lemma 8. The rule (2A2) permutes down with respect to the rules (¬A), (¬K ), (∧A),
(∧K ), and (2A1). It also permutes with the instances of (2K ) when the principal formula
α of its premise is not active in the sequent where the principal formula of the premise of
2K occurs.

Proof. The cases where one permutes with the 1-premise propositional rules or with the 2-
premise rule (∧K ) can be dealt with analogously to the corresponding ones of the previous
lemma. We show the permutation in case of the rule (2K ). We underline that this case is
constrained by the hypothesis that the principal formula α of the premise of the rule (2A2)
is not active in the same sequent where the principal formula of the premise of the rule
(2K ) occurs. By taking into account this restriction, the permutation is straightforward:

G | 2α, M ⇒ N | α, P ⇒ Q | ⇒ β

G | 2α, M ⇒ N | P ⇒ Q | ⇒ β

G | 2α, M ⇒ N ,2β | P ⇒ Q
2K

2A2

↓

G | 2α, M ⇒ N | α, P ⇒ Q | ⇒ β

G | 2α, M ⇒ N ,2β | α, P ⇒ Q

G | 2α, M ⇒ N ,2β | P ⇒ Q
2A2

2K

�
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Corollary 1. In a minimal derivation in C SS5s , the rule (2A1) cannot be applied more
than once on the same pair of principal formulas of any branch.

Proof. Let us suppose to have a minimal derivation where the rule (2A1) has been applied
twice on the same pair of sequents:

G
′ | α,2α, M

′ ⇒ N
′

G ′ | 2α, M ′ ⇒ N ′ 2A1

···
G | α,2α, M ⇒ N

G | 2α, M ⇒ N
2A1 .

By permuting down (2A1) with respect to the steps in the dotted part of the derivation, we
obtain a derivation of the same height ending with

G | α, α,2α, M ⇒ N
G | α,2α, M ⇒ N

G | 2α, M ⇒ N
2A1

2A1

By applying the height-preserving admissible rule (C A) on the two occurrences of the
formula α in place of the upper (2A1), we obtain a shorter derivation, contrary to the
assumption of minimality. �

Corollary 2. In a minimal derivation in C SS5s , the rule (2A2) cannot be applied more
than once on the same pair of sequents of any branch.

Proof. Consider a minimal derivation where the rule (2A2) has been applied twice on the
same pair of sequents:

G
′ | 2α, M

′ ⇒ N
′ | α, P

′ ⇒ Q
′

G ′ | 2α, M ′ ⇒ N ′ | P ′ ⇒ Q ′ 2A2

···
G | 2α, M ⇒ N | α, P ⇒ Q

G | 2α, M ⇒ N | P ⇒ Q
2A2

By permuting down (2A2) with respect to the steps in the dotted part of the derivation, we
obtain a derivation of the same height ending with

G | 2α, M ⇒ N | α, α, P ⇒ Q
G | 2α, M ⇒ N | α, P ⇒ Q

G | 2α, M ⇒ N | P ⇒ Q
2A2

2A2

By applying the height-preserving admissible rule (C A) on the two occurrences of the
formula α in place of the upper (2A2), we obtain a shorter derivation, contrary to the
assumption of minimality.

Finally, we underline that if the principal formulas of the premise of the upper applica-
tion of the rule (2A2) were active in the sequent where the principal formula of the premise
of 2K occurs, then that sequent would disappear, and therefore, we would not find it in
the premise of the lower application of the rule (2A2). The conclusion is that the restriction
of Lemma 8 is not limitative for the proof of this corollary. �
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Now, we prove that the modal logic S5 is decidable by showing effective bounds on
proof search in the calculus C SS5s .

Theorem 3. The calculus C SS5s allows terminating proof search.

Proof. Place an hypersequent G, for which we are looking for a proof search, at the
root of the procedure. Apply first the propositional rules and then the modal rules. The
propositional rules reduce the complexity of the hypersequent. The rule (2K ) removes the
modal constant2 and adds a new sequent; each of the rules (2Ai ) increases the complexity.
However, by Corollary 1, the rule (2A1) cannot be applied more than once on the same
pair of principal formulas, while, by Corollary 2, the rule (2A2) cannot be applied more
than once on the same pair of sequents. Therefore, the number of applications of the two
rules (2A1) and (2A2) is bounded, respectively, by the number of 2’s occurring in the
negative part (see definition below) of the hypersequent to prove and by the number of
the sequents that may appear in the derivation. This derivation, in its turn, is bounded
by the number of sequents belonging to the hypersequent to prove and the sequents that
can be introduced by applications of the rule (2K ).

We finally explain how to calculate explicit bounds. First, define the negative and posi-
tive parts of the hypersequent M1 ⇒ N1| · · · |Mn ⇒ Nn as the negative and positive parts
of each of the following conjuncts and disjuncts:

∧
M1 →

∨
N1, . . . ,

∧
Mn →

∨
Nn .

For any given hypersequent G, let n(2) be the number of 2’s in the negative part of the
hypersequent G and p(2) be the number of 2’s in the positive part of the hypersequent G.

The number of applications of the rule (2A1) in a minimal derivation is bounded by

n(2)

In the case where the root hypersequent is just a sequent, the number of applications of the
rule (2A2) in a minimal derivation is bounded by

n(2) · p (2)

In the case where the root hypersequent is a hypersequent and s is the number of sequents
that occur in it, the number of applications of the rule (2A2) in a minimal derivation is
bounded by

n(2) · (p (2) + s)

�
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Braüner, T. (2000). A cut-free Gentzen formulation of the modal logic S5. Logic Journal
of the IGPL, 8, 629–643.
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