
Mathematical Structures in Computer Science (2019), 29, pp. 872–895
doi:10.1017/S096012951800035X

ARTICLE

Probabilistic logic over equations and domain restrictions
Andreia Mordido1,3,∗,† and Carlos Caleiro1,2,†

1SQIG – Instituto de Telecomunicações, Lisbon, Portugal, 2Department of Mathematics, IST – Universidade de Lisboa,
Lisbon, Portugal and 3LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal
∗Corresponding author. Email: afmordido@fc.ul.pt

(Received 30 December 2015; revised 25 July 2017; accepted 28 May 2017; first published online 8 March 2019)

Abstract
We propose and study a probabilistic logic over an algebraic basis, including equations and domain restric-
tions. The logic combines aspects from classical logic and equational logic with an exogenous approach
to quantitative probabilistic reasoning. We present a sound and weakly complete axiomatization for the
logic, parameterized by an equational specification of the algebraic basis coupled with the intended domain
restrictions.We show that the satisfiability problem for the logic is decidable, under the assumption that its
algebraic basis is given by means of a convergent rewriting system, and, additionally, that the axiomatiza-
tion of domain restrictions enjoys a suitable subterm property. For this purpose, we provide a polynomial
reduction to Satisfiability Modulo Theories. As a consequence, we get that validity in the logic is also
decidable. Furthermore, under the assumption that the rewriting system that defines the equational basis
underlying the logic is also subterm convergent, we show that the resulting satisfiability problem is NP-
complete, and thus the validity problem is coNP-complete. We test the logic with meaningful examples in
information security, namely by verifying and estimating the probability of the existence of offline guessing
attacks to cryptographic protocols.

Keywords: Probabilistic logic; equational logic; satisfiability problem; offfline guessing attacks

1. Introduction
The development of formal methods for the analysis of security protocols is a very active research
area. Obviously, “formal methods” should be read as “logics”, but the situation is more compli-
cated. The problem is usually so intricate that suitable logics have not been developed, and the
reasoning is usually carried over in an underspecified metalogic, often incorporating ingredi-
ents ranging from equational to probabilistic reasoning, from communication and distribution,
to temporal or epistemic reasoning (Cortier et al. 2011).

In this paper we present and study a probabilistic logic aimed at dealing with the kind of rea-
soning used in the verification of security protocols, namely in the analysis of so-called offline
guessing attacks (Baudet 2005) in a setting where the usual Dolev–Yao intruder (Dolev and Yao
1983) is extended with some cryptanalytic power (Conchinha et al. 2013; Montalto and Caleiro
2009). Typically, an attacker eavesdrops on the network and gets hold of a number of messages

†Work done under the scope of R&D Unit 50008, financed by the applicable financial framework (FCT/MEC through
national funds and when applicable co-funded by FEDER–PT2020). The first author was supported by FCT under the grant
SFRH/BD/77648/2011 and by the Calouste Gulbenkian Foundation under Programa de Estímulo à Investigação 2011. The
second author also acknowledges the support of EU FP7Marie Curie PIRSES-GA-2012-318986 project GeTFun: Generalizing
Truth-Functionality. Work also supported by LASIGE Research Unit, ref. UID/CEC/00408/2019.
© Cambridge University Press 2019

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X
mailto:afmordido@fc.ul.pt
https://doi.org/10.1017/S096012951800035X

Mathematical Structures in Computer Science 873

exchanged by the parties. These messages are usually generated from random data and cyphered
using secret keys, but often are known to have strong algebraic relationships between them and
to comply with certain domain restrictions that may be crucial to the attacker analysis. If the
attacker tries to guess the secret keys (a realistic hypothesis in many scenarios, including human-
picked passwords, or protocols involving devices with limited computational power) and takes
advantage of this knowledge, he may use these relationships to validate his guesses.

The probabilistic logic over equations and domain restrictions (DEQPRL) is designed as a global
probabilistic logic built on top of a local equational base with domain constraints. These two layers
are permeated by a quantification mechanism over possible outcomes and a quantitative proba-
bility operator. Intuitively, we refer to algebraic terms using names whose concrete values are
gathered in a set of possible outcomes, which in turn is endowed with a probability space. The
local layer of the logic allows us to reason about equational constraints and domain restrictions on
individual outcomes. At the global layer, we can state and reason about qualitative and quantita-
tive properties of the set of all possible outcomes. Not unexpectedly, the quantification we use can
be understood as a S5-like modality, which also explains why we do not need to consider nested
quantifiers. Arguably in the same lines, we will not consider nested probability operators (Pearl
1987). The logic extends the equation-based classical logic of Mordido and Caleiro (2015) with
domain restrictions and probabilities. Our approach bears important similarities with exogenous
logics in the sense of Mateus et al. (2005), and with probabilistic logics as developed, for instance,
in Fagin et al. (1990). We provide a sound and weakly complete deductive system for the logic,
given a Horn-clause equational specification of the algebraic base and a finite axiomatization for
the domain restrictions. We also show that the satisfiability problem for the logic is decidable,
under the assumption that its algebraic basis is given by means of a convergent rewriting system
and, additionally, that the axiomatization of domain restrictions enjoys a suitable subterm prop-
erty. We do this by providing a satisfiability algorithm for DEQPRL by means of a polynomial
reduction to the Satisfiability Modulo Theories with respect to the theory of quantifier-free linear
arithmetic over the integers and reals (QF_LIRA), whose correctness we prove. As a consequence,
the validity problem for the logic is also decidable under the same hypothesis. Under the assump-
tion that the rewriting system that defines the equational basis underlying the logic is also subterm
convergent, we also show that the resulting satisfiability problem is in NP, and thus the validity
problem is in coNP. DEQPRL is used to verify and estimate the probability of the existence of
offline guessing attacks to cryptographic protocols.

The paper is outlined as follows: in Section 2 we recall several useful notions of universal alge-
bra and fix some notation on equational reasoning and domain restrictions; in Section 3 we define
our logic, its syntax, and semantics, and provide a suitable deductive system, whose soundness and
(weak) completeness we prove, assuming that we are given a clausal specification of the algebraic
basis and a finite axiomatization for domain restrictions; Section 4 is dedicated to showing, by
reduction to QF_LIRA, that satisfiability and validity in our logic are decidable whenever the equa-
tional basis is given by means of a convergent rewriting system and the axiomatization for domain
restrictions enjoys a suitable property; in Section 5 we explore meaningful examples, including an
estimation of the probability of offline guessing attacks to simple security protocols; finally, in
Section 6, we assess our contributions and discuss future work. Some details of the proofs of our
results are given in the Appendix. More details can be found in Mordido (2017).

2. Preliminaries
In this section we present the technical setting necessary to develop our logic. We begin by recall-
ing some notions of universal algebra and then focus on the details of the semantic structures
underlying our logic.

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

874 A Mordido and C Caleiro

2.1 Terms and equations
Let us consider F= {Fn}n∈N anN-indexed family of countable sets Fn of function symbols of arity
n. Given a set of generators G, we define the set of terms over G, TF(G), to be the carrier of the
free F-algebra TF(G) with generators in G. Throughout the text we drop the subscript F when it is
clear from context. The set of subterms of a term t ∈ T(G) is defined as usual and will be denoted
by subtrm(t). Given sets G1,G2, a substitution is a function σ :G1 → T(G2) that can be easily
extended to the set of terms over G1, σ : T(G1)→ T(G2).

Fix a countable set of variables X and dub algebraic terms the elements of T(X). We denote
the set of variables occurring in t ∈ T(X) by vars(t). Given a F-algebra A with carrier set A, an
assignment is a function π : X →A, that is extended as usual to the set of algebraic terms, �·�π

A
:

T(X)→A. The set of all assignments is denoted by AX .
We use t1 ≈ t2 to represent an equation between terms t1, t2 ∈ T(G). The set of all equations

overG is denoted by Eq(G). A Horn clause overG is an expression of the form (t1 ≈ t′1 , . . . , tk ≈
t′k ⇒ t ≈ t′), with k≥ 0 and t1,. . . , tk,t′1,. . . , t′k ∈ T(G). A Horn clause is simply an equation when
k= 0.We omit the enclosing parentheses when no ambiguities arise. The interpretation of a Horn
clause in an algebra A with respect to π ∈AX is defined by A, π � (t1 ≈ t′1, . . . , tk ≈ t′k ⇒ t ≈ t′)
if whenever �ti�πA = �t′i�πA for each 1≤ i≤ k then �t�π

A
= �t′�π

A
. An algebraA satisfies a Horn clause

if it is satisfied byA along with each π ∈AX . More generally, a Horn clause is satisfied in a class of
algebras A if it is satisfied in every A ∈A. Given a finite set of Horn clauses �, the clausal theory
of �, Th(�), is the least set of clauses containing � that is stable under reflexivity, symmetry, tran-
sitivity, and congruence and under application of substitutions. An equational theory is simply a
clausal theory where � is composed by equations.

We are particularly interested in equational theories generated by convergent rewriting
systems. A rewriting system R is a finite set of rewrite rules l→ r, where l, r ∈ T(X) and
vars(r)⊆ vars(l). Given a rewriting system R and a set of generators G, the rewriting relation
→R ⊆ T(G)× T(G) on T(G) is the smallest relation such that:

– if (l→ r) ∈ R and σ : X → T(G) is a substitution then lσ →R rσ ,
– if f ∈ Fn, t1, . . . , tn, t′i ∈ T(G) and there exists i ∈ {1, . . . , n} such that ti →R t′i then
f (t1, . . . , ti, . . . , tn)→R f (t1, . . . , t′i , . . . , tn).

We denote by →∗
R the reflexive and transitive closure of →R. R is confluent if, given t ∈

T(G), t →∗
R t′ and t →∗

R t′′ implies that there exists t∗ ∈ T(G) such that t′ →∗
R t∗ and t′′ →∗

R t∗.
R is terminating if there exists no infinite rewriting sequence. R is convergent if it is confluent
and terminating. If a rewriting system is convergent then any t ∈ T(G) has a unique normal form
(see Baader and Nipkow (1999)), i.e., there exists a term t↓ ∈ T(G) such that t →∗

R t↓ and t↓ is
irreducible. The equational theory generated by a convergent rewriting system R is the relation
≈R ⊆ T(G)× T(G) such that t1 ≈R t2 if and only if t1↓ = t2↓, also said to be a convergent equa-
tional theory, and is known to always be decidable (see Baader and Nipkow (1999)). An equational
theory is said to be subterm convergent if each rule of the underlying rewriting system rewrites to
a strict subterm.

Example 2.1. The sum (xor) of single bits can be characterized considering a signature Fxor
with three function symbols: zero ∈ Fxor0 , suc ∈ Fxor1 , ⊕ ∈ Fxor2 , and the equational theory Th(�xor)
where �xor = {zero⊕ x≈ x, suc(x)⊕ y≈ x⊕ suc(y), suc(suc(x))≈ x}. Obviously, Z2 with the
usual interpretations for zero, successor and sum modulo 2 satisfies �xor. Furthermore, it
must be clear that the rewriting system obtained by giving to each of the equations a left-
to-right orientation is convergent. However, it is not subterm convergent due to the second
equation.

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

Mathematical Structures in Computer Science 875

2.2 Domain restrictions
Let D denote a finite set of domain names. We use t ∈D (resp., t �∈D) to represent the fact that a
term t ∈ T(G) belongs (resp., does not belong) to a domain D ∈D. We dub the expression t ∈D
(resp., t �∈D) a positive (resp., negative) domain restriction. Further, we use DRes(G) to denote the
set of all positive domain restrictions over G. A domain clause is an expression of the form (t1 ∈
D1, . . . , tk1 ∈Dk1 ⇒ t′1 ∈ D′

1, . . . , t
′
k2 ∈ D′

k2), where the right-hand side is a non-empty sequence
of (positive or negative) domain restrictions, i.e., k2 > 0 and ∈ ∈ {∈, �∈}. When t′1 = . . .= t′k2 = t
and t1, . . . , tk1 ∈ subtrm(t), we say that the domain clause satisfies the subterm property. Again,
we omit the enclosing parentheses when no ambiguities arise.

We define an algebraic domain interpretation as a pair (A, IA), whereA is an F-algebra and IA :
D → 2A fixes an interpretation of domain names as subsets of A. Given an assignment π ∈AX ,
the interpretation of domain clauses is defined, as expected, by: (A, IA), π � (t1 ∈D1, . . . , tk1 ∈
Dk1 ⇒ t′1 ∈ D′

1, . . . , t
′
k2 ∈ D′

k2) if whenever �ti�πA ∈ IA(Di) for each 1≤ i≤ k1 then �t′j�πA ∈ IA(D′
j)

for some 1≤ j≤ k2. An algebraic domain interpretation (A, IA) satisfies a domain clause if it is
satisfied by (A, IA) along with each π ∈AX . Moreover, a domain statement is satisfied in a class of
algebraic domain interpretations I if it is satisfied by each (A, IA) ∈ I .

Example 2.2. Let us extend Example 2.1 by introducing a couple of domain names, Dxor=
{even, odd}, which are intended to obey some domain clauses:

�xor= {zero ∈ even, (x∈ even⇒ suc(x)∈ odd), (x∈ odd⇒ suc(x)∈ even), (x∈ odd⇒ x �∈ even)}.
Note that each domain clause in �xor satisfies the subterm property, as the behavior of terms is
conditioned by restrictions on their subterms.

3. The Logic
In this section we introduce the syntax and semantics of our logic. Then, we define a deductive
system for the logic, building upon given clausal specifications of the intended class of algebraic
domain interpretations. We conclude by showing soundness and completeness of the deductive
system.

3.1 Syntax
The logic DEQPRL relies on fixing a signature F, a set of variables X, and a finite set D of domain
names. We also introduce a countable set of names N, distinct from algebraic variables. We dub
elements of T(N) as nominal terms, and let names(t) stand for the set of names that occur in
t ∈ T(N). Whenever names(t)=Ø, the nominal term t is said to be a nameless term.

The local language of the logic, designed to express equational constraints and domain
restrictions, consists of the set Loc of local formulas defined by the following grammar:

Loc :: = Eq(N) | DRes(N) | ¬Loc | Loc∧ Loc.
Additionally, we want to express global properties of local formulas, either by quantification or

by extracting probabilities. For the purpose, we need a term language Term consisting of linear
probabilistic terms with rational coefficients defined by the grammar:

Term :: = Q · Pr(Loc)+ · · · +Q · Pr(Loc),
which we use to define the set Prob of probabilistic statements as follows:

Prob :: = Term≥Q.

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

876 A Mordido and C Caleiro

Finally, the language of the logic consists of the following set Glob of global formulas:

Glob :: = ∀Loc | Prob | ¬Glob | Glob∧ Glob.
Both our local and global languages are to be interpreted classically: the former over an equa-

tional base with domain restrictions, and the later over local formulas instead of propositional
variables. We abbreviate ¬(t1 ≈ t2) by t1 �≈ t2, ¬(t ∈D) by t �∈D for t, t1, t2 ∈ T(N), D ∈D, and
also use the usual abbreviations: ψ1 ∨ψ2 abbr. ¬(¬ψ1 ∧ ¬ψ2), ψ1 →ψ2 abbr. ¬ψ1 ∨ψ2, ψ1 ↔
ψ2 abbr. (ψ1 →ψ2)∧ (ψ2 →ψ1), where either ψ1,ψ2 ∈ Loc or ψ1,ψ2 ∈ Glob; linear probabilis-
tic terms have the common abbreviations saying that q · (q1 · Pr(ϕ1)+ · · · + q� · Pr(ϕ�)) abbr.
(q ··· q1) · Pr(ϕ1)+ · · · + (q ··· q�) · Pr(ϕ�), −q ·w abbr. (−−− q) ·w, w1 +w2 abbr. q1 · Pr(ϕ1)+ · · · +
q� · Pr(ϕ�)+ q′

1 · Pr(ϕ′
1)+ · · · + q′

� · Pr(ϕ′
�), whenever w1 is of the form q1 · Pr(ϕ1)+ · · · + q� ·

Pr(ϕ�) and w2 is of the form q′
1 · Pr(ϕ′

1)+ · · · + q′
� · Pr(ϕ′

�); probabilistic formulas result from the
usual abbreviations w1 ≥w2 + q abbr. w1 −w2 ≥ q, w< q abbr. ¬(w≥ q), w≤ q abbr. −w≥ −q,
w> q abbr.−w<−q,w= q abbr.w≤ q∧w≥ q, q1 ≤w≤ q2 abbr.w≥ q1 ∧w≤ q2, where �≥ 1,
ϕ1, . . . , ϕ� ∈ Loc, q, q1, q2, . . . , q� ∈Q,w,w1,w2 ∈ Term. We introduce � for local true abbrevi-
ating ϕ ∨ ¬ϕ for some ϕ ∈ Loc and local false ⊥ representing ¬�. We abuse notation and denote
the global true, ∀�, and global false, ∀⊥, also by � and ⊥.

A literal is a global formula in ∀Loc∪ ¬∀Loc∪ Prob∪¬Prob. We say that a global formula
is in disjunctive normal form (DNF) if it is a disjunction of one or more conjunctions of literals;
it is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals. The lan-
guage of the logic allows us to make qualitative and quantitative assertions over local formulas.
The universal quantification of a local formula expresses the validity of the local formula in all
possible situations, whereas a probabilistic statement measures the probability of satisfying local
formula(s). Boolean combinations are allowed in both local and global layers. For instance, the
formula (Pr(ϕ)≤ 2 · Pr(ψ ∧ ¬ϕ))∧ (∀¬ψ → ∀¬ϕ) should be read as: the probability of ϕ does
not exceed twice the probability of ψ ∧ ¬ϕ and, either ψ holds in some situation or else ϕ never
holds. Note that, contrarily to the discussion carried out by Van Eijck and Schwarzentruber (2014),
∀ϕ implies but is not intended to be equivalent to Pr(ϕ)= 1.

Example 3.1. Let us go back to Example 2.2. Given a name n ∈N, we want to be able to show
that a statement like Pr(n ∈ even)= Pr(suc(n) ∈ odd)∧ ∀(zero �≈ suc(zero)) is a theorem of the
logic whose algebraic basis is axiomatized by �xor and whose domain restrictions are given
by�xor.

We extend the notion of subterm to global formulas in a standard way and abuse nota-
tion by denoting subtrm()=⋃

ψ∈	 subtrm(ψ), for 	 ⊆ Glob. Similarly, we generalize the
notion of names occurring in a term to local and global formulas. The set of subformulas of
either a local or a global formula ψ is defined in the usual way and is denoted by subform(ψ).
As usual, subform()=⋃

ψ∈	 subform(ψ). Given a nominal term t0 ∈ T(N), a set of names
ñ= {n1, . . . , nk} ⊆N such that names(t0)⊆ ñ and t̃ = {t1, . . . , tk} ⊆ T(N), [t0]ñt̃ is the nominal
term obtained by replacing each occurrence of ni by ti, i ∈ {1, . . . , k}, i.e., [t0]ñt̃ = σ (t0) where σ is
a substitution such that σ (ni)= ti for each i. This notion is easily extended to local formulas.

3.2 Semantics
Names can be thought of as being associated to values that are not made explicit, and which
are possibly sampled according to some probability distribution. We call outcome to each pos-
sible concrete assignment of values to names. For this purpose, given an F-algebra A with carrier
set A, we define an outcome as a function ρ : N →A. The set of all outcomes is denoted by AN .
The interpretation of terms �·�ρ

A
: TF(N)→A is defined as usual. Given an algebraic domain

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

Mathematical Structures in Computer Science 877

interpretation (A, IA), the satisfaction relation for local formulas, �loc, is defined inductively as
follows:

– (A, IA), ρ �loc t1 ≈ t2 iff �t1�ρA = �t2�ρA,
– (A, IA), ρ �loc t ∈D iff �t�ρ

A
∈ IA(D),

– (A, IA), ρ �loc ¬ϕ iff (A, IA), ρ ��loc ϕ,
– (A, IA), ρ �loc ϕ1 ∧ ϕ2 iff (A, IA), ρ �loc ϕ1, and (A, IA), ρ �loc ϕ2.

In order to interpret global formulas we need to fix an intended set of possible outcomes for
names and to endow it with a probability space, which is instrumental for evaluating probabilistic
statements.

Definition 3.1. An F-structure is a tuple (A, IA, P) where (A, IA) is an algebraic domain
interpretation, and P= (S,A ,μ) is a probability space composed by:

– a non-empty set S⊆AN of possible outcomes,
– a σ -algebra A containing the sets of outcomes satisfying each local formula,

{Sϕ | ϕ ∈ Loc} ⊆ A , with Sϕ = {ρ ∈ S | (A, IA), ρ �loc ϕ},
– a probability measure μ over A .

Given an F-structure (A, IA, P) with P= (S,A ,μ), the satisfaction relation for global formulas,
�, is defined inductively as follows:

– (A, IA, P)� ∀ϕ iff (A, IA), ρ �loc ϕ for every ρ ∈ S,
– (A, IA, P)� q1 · Pr(ϕ1)+ · · · + ql · Pr(ϕl)≥ q iff q1 ·μ(Sϕ1)+ · · · + ql ·μ(Sϕl)≥ q ,
– (A, IA, P)�¬δ iff (A, IA, P) �� δ,
– (A, IA, P)� δ1 ∧ δ2 iff (A, IA, P)� δ1 and (A, I, P)� δ2.

As usual, given�⊆ Glob we write (A, IA, P)�� if (A, IA, P)� δ for each δ ∈�.
Our logic is parameterized by a choice of intended algebraic domain interpretations.

Definition 3.2. Given a class I of algebraic domain interpretations, the semantic consequence
relation of our logic, |=I ⊆ 2Glob × Glob, is such that � |=I δ whenever, for every F-structure
(A, IA, P) with (A, IA) ∈ I , if (A, IA, P)�� then (A, IA, P)� δ.

Example 3.2. Independence cannot in general be expressed in our logic, as its language only
allows for linear combinations of probabilistic terms. This could be achieved, however, without
spoiling too much the nice properties of the logic, by considering coefficients taken from real
closed fields, not necessarily from Q, in the lines of Fagin et al. (1990) and Mateus et al. (2005).
However, it would result in a double exponential complexity (Shoenfield 2010), which we would
like to avoid. Even so, we can highlight some situations where one can characterize, reason about,
or at least approximate the probabilistic behavior of independent formulas.

Verification of the independence of events is easily modeled within our logic: given an
F-structure (A, IA, P), ϕ,ψ ∈ Loc are independent if we can find α, β ∈Q such that β �= 0 and
(A, IA, P)� Pr(ϕ ∧ψ)= α ∧ Pr(ψ)= β ∧ Pr(ϕ)= α

β
. More importantly, we can draw some

conclusions on the estimation of probabilities by knowing about the independence of some for-
mulas. If ϕ and ψ are independent, we can model the expected probabilistic behavior of both
events with a finite set of properties, defined within the logic: for fixed and appropriately chosen
n,m ∈N, we can introduce n ·m conditions:

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

878 A Mordido and C Caleiro

Indϕ,ψi,j : Pr(ϕ)= 1
i

∧ Pr(ψ)= 1
j

→ Pr(ϕ ∧ψ)= 1
i

· 1
j
, for i∈ {1,. . . , n}, j∈ {1,. . . , m}.

As an application, we analyze the simpler version of one-time pad encryption scheme which
consists of encrypting a secret bit by summing to it an uniformly generated key bit.

Inspired in Examples 2.1 and 2.2, consider the signature Fxor and denote by I(�xor,�xor) the
class of algebraic domain interpretations satisfying the axiomatizations �xor and �xor. Consider
a bit s, which will be kept secret as result of its encryption with a key bit k. The described
properties on the estimation of probabilities for the conjunction of independent events enable
us to semantically infer that, under the hypothesis that k is uniformly generated and that bits
s and k are independent, Hyp= {Pr(k≈ zero)= 1

2 , Pr(k≈ suc(zero))= 1
2 , Ind

s,k
2,2, ∀(s≈ zero∨

s≈ suc(zero)), ∀(k≈ zero∨ k≈ suc(zero))}, s⊕ k has uniform distribution:

Hyp |=I(�xor ,�xor)

(
Pr(s⊕ k≈ zero)= 1

2
∧ Pr(s⊕ k≈ suc(zero))= 1

2

)
.

Note that we could generalize properties Indϕ,ψi,j estimating the probability for the conjunction
of independent event by squeezing its value. For a fixed n ∈N, q1, . . . , qn ∈Q such that q1 < · · ·<
qn = 1, and independent events ϕ,ψ ∈ Loc,

Ĩndi1j1i2j2 : (qi1 ≤ Pr(ϕ)≤ qi2 ∧ qj1 ≤ Pr(ψ)≤ qj2)→ qi1 · qj1 ≤ Pr(ϕ ∧ψ)≤ qi2 · qj2 ,
for i1, i2, j1, j2 ∈ {1, . . . , n}, would model the estimation of bounds of the probabilities for the
conjunction of independent events given bounds for the individual probabilities.

3.3 Deductive system
In order to obtain a sound and complete deductive system for our logic, we require that the
class I of intended interpretations is such that its algebras are axiomatized by a set � of Horn
clauses and the corresponding interpretations for domain names are axiomatized by a finite set
� of domain clauses of algebraic terms. We say that � and � are compatible if I(�,�) = {(A, IA) |
A� � and (A, IA)��} �=Ø. Whenever � and� are not compatible, the set of models is empty
and the logic becomes trivial. The interesting cases are, obviously, the ones where the equational
theory and the set of domain restrictions are compatible.

The deductive system H(�,�) consists of a number of axioms and a single inference rule C4,
modus ponens, as shown in Figure 1. The system combines the different dimensions of this logic:
axioms Eq1--Eq4 incorporate standard equational reasoning, namely reflexivity, symmetry, tran-
sitivity, and congruence; EqC1–EqC4 and C1–C4 incorporate classical reasoning for the local and
global layers (just note that locally, modus ponens becomes axiom EqC4); N1–N4 characterize the
relationship between the local and global layers across the universal quantifier; DEq represents
syntactically the expected relation between equations and domain restrictions; I1–I6 incorporate
properties of inequalities between rational numbers; P1–P4 represent the standard properties of
probabilities; axioms E(�) incorporate the clausal specification �, whereas axioms D(�) charac-
terize the constraints for domains given by �. We define, as usual, a deducibility relation �F

(�,�).
We drop the superscript F whenever it is clear from context.

Basic arithmetic properties, such as 0 · Pr(ϕ)= 0 or q1 · Pr(ϕ)+ q2 · Pr(ϕ)= (q1 + q2) · Pr(ϕ),
are deducible inH(�,�), as well as some expected properties of the probabilistic operator, namely
∀ϕ→ Pr(ϕ)= 1 or ∀(ϕ1 ↔ ϕ2)→ Pr(ϕ1)= Pr(ϕ2). The logic is an extension of classical logic at
both the local and global layers. Namely, it is easy to see that the deduction metatheorem holds.
Moreover, we can write any local or global formula in DNF. The behavior of implication across
the universal quantifier can be deduced and takes the form of theorem:

N �(�,�) ∀(ϕ1 → ϕ2)→ (∀ϕ1 → ∀ϕ2).

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

Mathematical Structures in Computer Science 879

Figure 1. The deductive systemH(�,�).

Example 3.3. A standard example of an equational theory used in information security for for-
malizing (part of) the capabilities of a so-called Dolev-Yao attacker (see, for instance, Baudet
(2005), Abadi and Cortier (2006), and Abadi and Cortier (2005)) consists in taking a signature FDY
with {·}·, {·}−1· ∈ FDY2 representing symmetric encryption and decryption of a message with a key,
{| · |}·, {| · |}−1· ∈ FDY2 representing asymmetric encryption of a message with a public key or decryp-
tion with a private key, pub(·), prv(·) ∈ FDY1 representing public and private keys for a principal,
(·, ·) ∈ FDY2 representing message pairing, and π1, π2 ∈ FDY1 representing projections. The equa-
tional properties of these operations can be axiomatized by the subterm convergent equational
theory:

�DY =
{{{x1}x2}−1

x2 ≈ x1, {|{|x1|}pub(x2)|}−1
prv(x2) ≈ x1, π1(x1, x2)≈ x1, π2(x1, x2)≈ x2

}
.

Considering a suitable set of domain names, for instance we may take

DDY = {sym_key, pub_key, prv_key, principals, plaintxt, ciphertxt, conc},
we can also impose some usual domain restrictions:

�DY = (k ∈ sym_key, t∈plaintxt⇒{t}k∈ciphertxt),(k ∈ sym_key, t∈ciphertxt⇒{t}−1
k ∈plaintxt),

(n ∈ principals⇒ pub(n) ∈ pub_key), (n ∈ principals⇒ prv(n) ∈ prv_key),
(t∈plaintxt, k ∈pub_key⇒{|t|}k∈ ciphertxt),(t∈ciphertxt, k∈prv_key⇒{|t|}−1

k ∈ plaintxt),
(t ∈ plaintxt, t′ ∈ plaintxt⇒ (t, t′) ∈ conc), (t ∈ conc⇒ t ∈ plaintxt),
(t ∈ conc⇒ π1(t) ∈ plaintxt), (t ∈ conc⇒ π2(t) ∈ plaintxt)}.

The first domain restriction, for instance, is intended to mean that the encryption of a plaintext
with a symmetric key should always lead to a ciphertext. As a result, we can deduce from our

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

880 A Mordido and C Caleiro

logic (see the proof in the Appendix) a bound for the probability of an attack to the symmetric
scheme:

Pr(k≈ k∗)= q · Pr(k∗ ∈ sym_key)�(�DY,�DY) ∀(k∗ ∈ sym_key)→ Pr({{m}k}−1
k∗ ≈m)≥ q,

asserting that even assuming that a guess k∗ to the secret key k is indeed a symmetric key, guessing
its concrete value is not simpler than decrypting a message encrypted with k. We can also deduce
conditions to rule out the possibility of an attack, like

∀(k ∈ sym_key∧m ∈ plaintxt)�(�DY,�DY) ∀({{m}k}−1
k∗ �∈ plaintxt→ k �≈ k∗),

which states that whenever an attempt to guess the secret key k leads to a message outside the
scope of plaintexts, the value of k has certainly not been guessed correctly.

3.4 Soundness and completeness
We now show that H(�,�) is a sound and weakly complete proof system for the logic based on
the class I(�,�) of algebraic domain interpretations. In contrast to Mordido and Caleiro (2015),
the introduction of probabilistic terms over the rationals carries the expected cost of losing the
strong version of completeness (see, for instance, Fagin et al., 1990; Mateus et al., 2005). Clearly,
our semantic consequence is not compact as we have that

{
w≤ 1

n | n ∈N
} |=(�,�) w≤ 0, but

� �|=(�,�) w≤ 0 for any finite set�⊂ {
w≤ 1

n | n ∈N
}
, which implies that our finitary deductive

systemH(�,�) cannot aim at strong completeness.

Theorem 3.1. H(�,�) is sound, that is, if��(�,�) δ then� |=(�,�) δ.

We omit the proof, as it is straightforward to check soundness of each axiom and inference rule
against our semantics. The proof of completeness can be found in the Appendix.

Theorem 3.2. H(�,�) is weakly complete, that is, if |=(�,�) δ then �(�,�) δ.

Proof. As usual, the proof of completeness is followed by contrareciprocal and consists in finding
a model for the negation of a formula. The proof combines several known techniques, namely in
the context of equational logics, first-order logic, and probabilistic logics. All these components
interact in a non-trivial way and should be taken carefully.

The construction of the F-structure starts with the completion of the set of formulas to sat-
isfy with witnesses for negated global formulas through a well-known Henkin construction.
We slightly change this construction and take this opportunity to introduce nameless terms
that should represent all the non-negative global formulas to satisfy. Once taken its maximal
consistent extension, a quotient is made in the set of nameless terms over the extended signa-
ture that collapses congruence classes of terms that should be equal in all possible outcomes.
A domain interpretation is then taken accordingly to the aforementioned maximal consistent
set. Afterwards, each negated global formula in the maximal consistent set leads to an out-
come, assigning to each name the equivalence class of the appropriate constant. The set of
all outcomes should not be empty due to the conjugation of the reflexivity axiom Eq1 with
axiom N2.

A probability space is then defined in the lines of Fagin et al. (1990) choosing carefully a set of
atoms of interest and using the result of soundness and completeness for the axioms of inequality
to define a probability distribution over those atoms.

The verification that we have effectively found a model for the initial formula follows easily
from the construction. Details of the proof can be found in the Appendix.

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

Mathematical Structures in Computer Science 881

4. Decidability and complexity
In general, our logic cannot be expected to be decidable, as equational theories can easily be unde-
cidable (Baader and Nipkow 1999). We show, however, that our logic is decidable if we require
the base equational theory to be convergent and additionally the underlying domain clauses to
have the subterm property. With this purpose, our setup is, from now on, that � is a convergent
equational theory and� is a set of domain clauses with the subterm property.

4.1 Satisfiability
We devote this subsection to the analysis of the satisfiability problem for DEQPRL (SAT-DEqPrL).
The SAT-DEqPrL problem consists in deciding the existence of a model for a global formula. As we
often observe in classical propositional logic, we start by analyzing the satisfiability problem for
DEQPRL in which the input formula is required to be in CNF, we call it CNFSAT-DEqPrL problem.
We provide a reduction of CNFSAT-DEqPrL to SatisfiabilityModulo Theories (SMT) (Nieuwenhuis
et al. 2006) and end up using a Tseitin-like transformation to analyze SAT-DEqPrL.
Moving to the propositional context: To describe an algorithm that reduces SAT-DEqPrL
to SMT, we translate local formulas to the propositional context. For that, let us consider a
set of propositional symbols corresponding to equations between nominal terms Eq(N)p ={
pt1≈t2 | t1, t2 ∈ T(N)

}
and a set of propositional symbols for domain restrictions DRes(N)p =

{pt∈D | t ∈ T(N), D ∈D}, and then define the translation of an arbitrary local formula ϕ ∈ Loc to
a propositional formula propϕ inductively, by:

– if ϕ is of the form t1 ≈ t2, propϕ is precisely pt1≈t2 ;
– if ϕ is of the form t ∈D then propϕ is pt∈D;
– if ϕ is of the form ¬ϕ1 then propϕ is ¬propϕ1 ;
– if ϕ is of the form ϕ1 ∧ ϕ2 then propϕ is propϕ1 ∧ propϕ2 .

We also extend this propositional notation to probabilistic formulas: given a probabilistic for-
mula δ of the form q1 · Pr(ϕ1)+ · · · + q� · Pr(ϕ�) � q with � ∈ {≤,≥,<,>}, propδ represents the
probabilistic propositional formula q1 · Pr(propϕ1)+ · · · + q� · Pr(propϕ�) � q.

Furthermore, we must import the algebraic requirements underlying the equational rea-
soning in the presence of domain restrictions to the propositional context. For this, assume
that we want to test the satisfiability of δ ∈ Glob and consider the set of relevant nomi-
nal terms for δ, RelTδ = subtrm({δ} ∪�≈∈)∪ {t↓| t ∈ subtrm({δ} ∪�≈∈)} , where �≈∈ ={σ (t)≈
σ (t′) | (t → t′) ∈ R, σ ∈ subtrm(δ)X} ∪ {σ (t) ∈ D | (t ∈ D)∈ RHS, σ∈subtrm(δ)X} and RHS=
{t ∈ D′

1 | (t1 ∈D1, . . . , tk1 ∈Dk1 ⇒ t ∈ D′
1 . . . , t ∈ D′

k2) ∈�}. RelTδ incorporates the subterms
of δ, their normal forms with respect to the convergent rewriting system R underlying �, and the
equational theory and domain clauses instantiated on the subterms.

We achieve a sufficiently broad scope by defining the propositional symbols of interest as those
that represent either equations between terms in RelTδ or domain restrictions for such terms,
which are gathered in the set Bδ = BEq ∪ BDRes, where BEq = {

pt1≈t2 | t1, t2 ∈ RelTδ} and BDRes ={
pt∈D | t ∈ RelTδ , D ∈D}. Both equational statements and domain restrictions must obey some
relations to be imposed on their representatives. These restrictions are established in �δ , defined
as follows:
�δ = {pt≈t↓ | t ∈ RelTδ} ∪ {pt1≈t2 → pt2≈t1 | t1, t2 ∈ RelTδ} ∪ {(pt1≈t2 ∧ pt2≈t3)→ pt1≈t3 | t1, t2, t3 ∈ RelTδ}∪
{(pt1≈t′1 ∧ . . .∧ ptn≈t′n)→ pf (t1,...,tn)↓≈ f (t′1,...,t′n)↓ | t1, t′1, . . . , tn, t′n, f (t1, . . . , tn) ↓, f (t′1, . . . , t′n) ↓∈ RelTδ}∪
{(pt1≈t2 ∧ pt1∈D)→ pt2∈D | t1, t2 ∈ RelTδ , D ∈D} ∪{∧k1

i=1 pσ (ti)↓∈Di
→∨k2

j=1 pσ (t)↓ ∈ D′
j
| σ ∈ (RelTδ)X , (t1 ∈D1, . . . , tk1 ∈Dk1 ⇒ t ∈ D′

1, . . . , t ∈ D′
k2) ∈�

}
.

(1)

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

882 A Mordido and C Caleiro

We should emphasize that, since subtrm(δ) has linear size on the length of δ and the equational
theory is convergent, RelTδ is well defined and has polynomial size on the length of δ. Denoting∣∣RelTδ∣∣= k and |D| = z, �δ has at most k+ k2 + k3 + k2a+2 + k2 · z + λ(ktmax · zdmax) elements,
where a is the maximum arity of the function symbols occurring in RelTδ , |�| = λ, and
tmax, dmax are the maximum number of terms and the maximum number of domain names
occurring in a constraint in�. Sometimes we drop the superscript δ, provided that it is clear from
context.

The subterm property provides control over the set �δ , as long as it ensures that the domain
restrictions over a term in RelT is only conditioned by domain restrictions over terms certainly
in RelT. Thus, elements in �δ are the necessary to reason about the domain restrictions that
influence δ.

CNFSAT-DEqPrL problem: The CNFSAT-DEqPrL problem consists in deciding the existence of
a model for a global formula δ ∈ Glob given in CNF. We analyze the CNFSAT-DEqPrL problem
inspired on the developments for GenPSAT presented in Caleiro et al. (2017b) and explore a poly-
nomial reduction to Satisfiability Modulo Theories with respect to the theory of quantifier-free
linear arithmetic over the integers and reals (QF_LIRA) (Becker et al. 2007).

Assume that we are given a global formula δ ∈ Glob given in CNF. Since each con-
junct of δ is a disjunction of literals in ∀Loc∪ ¬∀Loc∪ Prob∪ ¬Prob, we can rewrite it as:∧m

j=1

(
∀ψ j

1 ∨ . . .∨ ∀ψ j
nj ∨ ¬∀ϕ j

1 ∨ . . .∨ ¬∀ϕ j
kj ∨ ξ

j
1 ∨ . . .∨ ξ jsj

)
, where, for each r ∈ {1, . . . , sj},

the probabilistic literal ξ jr is assumed to take the following form: q(r, j,1) · Pr(ϕ(r, j,1))+ · · · +
q(r, j,�jr) · Pr(ϕ(r, j,� jr)) �

j
r q(r, j), with �

j
r ∈ {≥,<}.

To address the need of witnesses for existential literals we need, at least, as many copies of Bδ as
the number of existential formulas¬∀Loc occurring in δ. In its description, δ counts with∑m

j=1 kj
literals of ¬∀Loc, so the final set of propositional symbols should contain all the required copies:⋃m

j′=1
⋃kj′
�′=1{p[j

′,�′]|p∈Bδ}. But, as we know, the probabilistic feature envisages a probability dis-
tribution over the set of valuations. In this sense, we should not limit our valuations to strictly
represent witnesses for existential literals. Hence, we further need to consider an extra copy of Bδ .

Satisfying an element of the form ∀ϕ imposes that ϕ must be verified in all possible outcome,
whereas satisfying a formula as ¬∀ϕ requires that at least one possible outcome satisfies ¬ϕ.
Therefore, our reduction to the propositional context must carry this sensitivity. In this way, the
satisfiability of those literals is tested using several labeled copies of propositional variables (one
copy for each literal of the form ¬∀Loc plus the original copy), as if they had embedded several
valuations. The labels are extended from the propositional variables to the propositional formulas
as expected.

Prompted by the inclusion of SAT in PSAT (Finger and De Bona 2011), GenPSAT (Caleiro et al.
2017b), and GGenPSAT (Caleiro et al. 2017a), the satisfiability of propositional formulas (repre-
senting literals in ∀Loc) is tested by assigning them probability 1. Accordingly, and inspired on
the GenPSAT normal forms (see Caleiro et al. (2017b)), we realize that the probabilistic (proposi-
tional) formulas to be tested should be atomic. For this purpose, we shall replace the propositional
formulas occurring inside probabilistic (propositional) formulas by ghost propositional symbols.
The existential literals are not supposed to influence probabilities (they have their own witnesses),
so we discard them for a moment. Let us collect in SLoc all the appropriate local formulas,
suggested by δ,SLoc=⋃m

j=1

({
ψ

j
1, . . . ,ψ

j
nj

}
∪⋃sj

r=1

{
ϕ(r, j,1), . . . , ϕ(r, j,� jr)

})
, and in G the cor-

responding propositional symbols: G=⋃m
j=1

({
p
ψ

j
1
, . . . , p

ψ
j
nj

}
∪⋃sj

r=1

{
pϕ(r,j,1) , . . . , pϕ(r,j,� jr)

})
.

Furthermore, for each ψ ∈SLoc, let the [0, 1]-variable αψ represent the probability of ψ .

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

Mathematical Structures in Computer Science 883

As we have already remarked, in order to obtain a correct translation into the propositional
context, we should impose the requirements collected in �δ (1). For this purpose, all the consid-
ered copies of Bδ must verify those restrictions (with probability 1). And so, we should keep a
special propositional ghost symbol for this purpose, pφ , and a variable to represent its probability,
αφ .

All these things considered, let B̃ = Bδ ∪⋃m
j′=1

⋃kj′
�′=1{p[j

′,�′] | p ∈ Bδ} ∪G∪ {pφ} represent
the set of propositional symbols for our problem and denote by M the number of elements of
G∪ {pφ},M ≤∑m

j=1

(
nj +∑sj

r=1 �
j
r
)

+ 1. For ease of notation, let ν : SLoc∪ {φ} → {1, . . . ,M}
represent a bijection from the SLoc coupled with the symbol φ to the set {1, . . . ,M} such that
ν(φ)=M. The inverse bijection ν−1 is such that ν−1({1, . . . ,M})=SLoc∪ {φ}.

Let H = [hij] denote a (still unknown) matrix of size M × (M + 1) whose columns repre-
sent the valuations over B̃ evaluated on each propositional (ghost) symbol of G∪ {pφ}, that
is, hik = vk

(
pν−1(i)

)
for each 1≤ i≤M and 1≤ k≤M + 1. The (M + 1)-vector π = [πk] repre-

sents a probability distribution over {v1, . . . , vM+1}. As we already mentioned, αψ represents the
probability of each ψ ∈SLoc and αφ represents the probability of�δ .

To model all the possible valuations {v1, . . . , vM+1}, we consider M + 1 copies of B̃ : ⋃M+1
k=1

{(k)p | p ∈ B̃}. The idea is to test the satisfiability of δ through the assertion:

(prob)
∧m

j=1

(∨nj
s=1

(
α
ψ

j
s
=1
)

∨∨kj
�=1

(∨M+1
k=1

(k)prop[j,�]¬ϕ j
�

)
∨∨sj

r=1

(∑�
j
r
s=1 q(r, j,s)αϕ(r, j,s)�

j
r q(r, j)

))
,

subject to the additional assertions:

(prop_pos)
∧M+1

k=1

(
(k)p

ψ
j
s
↔
(∧m

j′=1
∧kj′
�′=1

(k)prop[j
′,�′]
ψ

j
s

∧ (k)prop
ψ

j
s

))
, for each ψ j

s ∈SLoc;

(prop_prob)
∧M+1

k=1

(
(k)pϕ(r,j,s) ↔ (k)propϕ(r,j,s)

)
, for each ϕ(r,j,s) ∈SLoc;

(prop_phi)
∧M+1

k=1

(
(k)pφ ↔∧

φ∈�δ
(∧m

j′=1
∧kj′
�′=1

(k)φ[j
′,�′] ∧ (k)φ

))
;

(prob_phi) αφ = 1;

(val1)
(∑M+1

k=1 bik = αν−1(i)

)
, for each i ∈ {1, . . . ,M};

(val2)
((
0≤ bik ≤ hik

)∧ (hik − 1+ πk ≤ bik ≤ πk)
)
, for i ∈ {1, . . . ,M} and k ∈ {1, . . . ,M + 1};

(cons)
(
hik = 1↔ (k)pν−1(i)

)
, for each i ∈ {1, . . . ,M} and k ∈ {1, . . . ,M + 1};

(sums1)
(∑M+1

i=1 πk = 1
)
.

So far we have introduced O(M +M × (M + 1)) assertions, each of polynomial size on the
length of δ, over a polynomial number of real, binary, and propositional variables. It is easy to see
that the presented translation to QF_LIRA is polynomial.

We test the satisfiability of δ by translating it into aQF_LIRA problem and then solving the latter
appropriately. The procedure is presented in Algorithm 1. The procedure consists in initializing
an empty QF_LIRA problem and then using the following auxiliary procedures: assert introduces
an assertion into the QF_LIRA problem; lira_solver returns Sat or Unsat depending on whether
the problem is satisfiable or not. When the resulting QF_LIRA problem is satisfiable, we conclude
that δ is also satisfiable.

For the sake of illustration, we now use Algorithm 1 to decide whether a global formula is
satisfiable or not.

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

884 A Mordido and C Caleiro

Algorithm 1 CNFSAT-DEqPrL solver based on SMT−QF_LIRA

1: procedure CNFSATDEQPRL

2: input: CNF formula δ:
m∧
j=1

(
∀ψ j

1 ∨ . . .∨ ∀ψ j
nj ∨ ¬∀ϕ j

1 ∨ . . .∨ ¬∀ϕ j
kj ∨ ξ

j
1 ∨ . . .∨ ξ jsj

)
3: output: Sat or Unsat depending on whether δ is satisfiable or not

4: assume:M :=
m∑
j=1

(
nj +

sj∑
r=1

�
j
r

)
+ 1

5: ν :SLoc∪ {φ} → {1, . . . ,M} is a bijection
6: declare: prop. variables:

M+1⋃
k=1

(
(k)Bδ∪

m⋃
j′=1

kj′⋃
�′=1

{(k)p[j′,�′] | p ∈ Bδ} ∪ (k)G∪ {(k)pφ}
)

7: binary variables: hik, for i ∈ {1, . . . ,M}, k ∈ {1, . . . ,M + 1}
8: [0, 1]-variables: αν−1(i), πk, bik, for i ∈ {1, . . . ,M}, k ∈ {1, . . . ,M + 1}
9: for j= 1 tom do

10: assert

(
M+1∧
k=1

nj∧
s=1

(
(k)p

ψ
j
s
↔
(

m∧
j′=1

kj′∧
�′=1

(k)prop[j
′,�′]
ψ

j
s

∧ (k)prop
ψ

j
s

)))
� (prop_pos)

11: assert

⎛⎝M+1∧
k=1

sj∧
r=1

�
j
r∧

s=1

(
(k)pϕ(r,j,s) ↔ (k)propϕ(r,j,s)

)⎞⎠ � (prop_prob)

12: for i= 1 toM do

13: assert

(
M+1∑
k=1

bik = αν−1(i)

)
� (val1)

14: for k= 1 toM + 1 do
15: assert

(
(0≤ bik ≤ hik)∧ (hik − 1+ πk ≤ bik ≤ πk)

) � (val2)
16: assert

(
hik = 1↔ (k)pν−1(i)

)
� (cons)

17: assert

⎛⎝m∧
j=1

⎛⎝nj∨
s=1

(
α
ψ

j
s
=1
)
∨

kj∨
�=1

(
M+1∨
k=1

(k)prop[j,�]¬ϕ j
�

)
∨

sj∨
r=1

⎛⎝�
j
r∑

s=1
q(r,j,s)αϕ(r,j,s)�

j
r q(r,j)

⎞⎠⎞⎠⎞⎠ � (prob)

18: assert

(
M+1∧
k=1

(
(k)pφ ↔ ∧

φ∈�δ

(
m∧

j′=1

kj′∧
�′=1

(k)φ[j
′,�′] ∧ (k)φ

)))
� (prop_phi)

19: assert
(
αφ = 1

) � (prob_phi)

20: assert
(M+1∑

k=1
πk = 1

)
� (sums1)

21: return lira_solver() � return Sat if the assertions are satisfiable, Unsat otherwise

Example 4.1. Recall Example 3.1 and consider the signature Fxor, the equational theory �xor, and
the axiomatization�xor. Let us test the satisfiability of the CNF global formula:

Pr(n≈ zero)≤ 2
3

· Pr(n ∈ even)∧ ∀(n ∈ even)∧
(

¬Pr(n≈ zero)≤ 2
3

∨ ¬∀suc(n) ∈ odd
)
,

with n ∈N. We start by noting that RelTδ = {n, zero, suc(n)} and defining �δ . Note also that
SLoc={n≈ zero, n ∈ even}, and consider the bijection ν : SLoc∪{φ} → {1, 2, 3} such that
ν(n≈ zero)= 1, ν(n ∈ even)= 2, ν(φ)= 3.

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

Mathematical Structures in Computer Science 885

For the given formula, the assertion (prob) reads like(
αn≈zero ≤ 2

3
· αn∈even

)
∧ (αn∈even = 1)∧

(
αn≈zero >

2
3

∨
4∨

k=1

(k)prop[3,1]¬suc(n)∈odd

)
,

which together with the remaining assertions carefully described in Algorithm 1 is unsatisfiable.
To check that, assume that it would have a solution (denoted by x∗ for each variable x) and let us
derive a contradiction.

Begin noting that by (val1), bν−1(n∈even),k ranges in the interval [0, πk] for each k ∈
{1, 2, 3}. Once α∗

n∈even = 1, then every bν−1(n∈even),k should coincide with πk and, by (val2),
h∗
ν−1(n∈even),k = 1 for every k ∈ {1, 2, 3}. Then, by (cons), (k)pn∈even holds. But, by (prop_pos)

this means that for each k, (k)prop[3,1]n∈even ∧ (k)propn∈even also holds. Observing that (n ∈ even→
suc(n) ∈ odd) ∈�δ , it follows that for each k, (k)prop[3,1]suc(n)∈ odd ∧ (k)propsuc(n)∈ odd holds. Then,
we have that (k)prop[3,1]¬suc(n)∈ odd does not hold for every k. On the other hand, since α∗

n≈zero ≤ 2
3 ,

there is no way for the last conjunct to hold and we conclude that the formula is unsatisfiable.

Now that we checked how to apply the procedure, let us state its correctness (see a sketch of
the proof in the Appendix and the details in Mordido (2017)).

Lemma 4.1. If � is a convergent equational theory and � is a set of domain clauses with the
subterm property, a global formula δ ∈ Glob in CNF is satisfiable iff Algorithm 1 returns Sat.

Tseitin-like transformation on DEqPrL: So far, we have described an algorithm to decide the
satisfiability of a global formula in CNF. However, transforming a global formula into CNF
eventually leads to an explosion in the length of the formula. Luckily, we have a Tseitin-like
transformation for DEQPRL, which provides a method to transform any global formula into an
equisatisfiable CNF formula with linear size on the length of the original formula, and allows us
to take advantage of the CNFSAT-DEqPrL solver.

The idea is to introduce additional atoms ∀(nδ′1 ≈ nδ′2) for every non-atomic subformula δ′ of
δ, ensure that ∀(nδ′1 ≈ nδ′2)↔ δ′ and, in the end, additionally ensure that the former formula is
satisfied by imposing ∀(nδ1 ≈ nδ2). In this sense, given a global formula δ ∈ Glob, we consider the set
of all subformulas of δ that are not atoms, subform(δ) \ (∀Loc∪ Prob), and fix a pair of new (and
distinct) names for each of them. To ease notation, we denote by GA(δ′) the atom corresponding
to the subformula δ′ ∈ (subform(δ) \ (∀Loc∪ Prob)). Furthermore, we abuse notation and also
denote an atom δ′ ∈ (subform(δ)∩ (∀Loc∪ Prob)) by GA(δ′). In short,

GA(δ′)=
{
δ′ if δ′ ∈ (∀Loc∪ Prob)
∀(nδ′1 ≈ nδ′2) otherwise

For each subformula δ′ ∈ (subform(δ) \ (∀Loc∪ Prob)), we define the additional conjuncts
tc(δ′) representing the equivalence GA(δ′)↔ δ′ in CNF according to the structure of δ′:

tc(¬ψ) = (GA(¬ψ)∨ GA(ψ))∧ (¬GA(¬ψ)∨ ¬GA(ψ));
tc(ψ1∧ψ2) = (¬GA(ψ1∧ψ2)∨GA(ψ1))∧(¬GA(ψ1∧ψ2)∨ GA(ψ2))∧ (GA(ψ1∧ψ2)

∨ ¬GA(ψ1)∨ ¬GA(ψ2));
tc(ψ1 ∨ψ2) = (GA(ψ1∨ψ2)∨¬GA(ψ1))∧(GA(ψ1∨ψ2)∨¬ GA(ψ2))∧(¬GA(ψ1∨ψ2)

∨GA(ψ1)∨ GA(ψ2)).

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

886 A Mordido and C Caleiro

We define the Tseitin-like transformation on DEQPRL simply as:

tt(δ)= GA(δ)∧
∧

δ′∈(subform(δ)\(∀Loc∪Prob))
tc(δ′).

Notice that the obtained CNF formula has linear size on the length of δ, since subform(δ) has
linear size on the length of δ and the transformation tc(·) increments the length of the formula
only by a constant. As a corollary of the previous construction we have the following Lemma.

Lemma 4.2. Given δ ∈ Glob, there exists an equisatisfiable formula δ′ ∈ Glob in CNF whose
length is linear on the length of δ.

SAT-DEqPrL problem: In general, we are looking for a procedure to decide SAT-DEqPrL.
Fortunately, the Tseitin-like transformation for DEQPRL and the CNFSAT-DEqPrL solver will
greatly ease our task. Given a global formula δ ∈ Glob, we seek out an equisatisfiable formula
δ′ in CNF and then use the CNFSAT-DEqPrL solver to decide about the existence of a model for δ′
(and for δ).

Theorem 4.1. If � is a convergent equational theory and � is a set of domain clauses with the
subterm property, then the SAT-DEqPrL problem is decidable.

Proof. Given δ ∈ Glob, we use the Tseitin-like transformation for DEQPRL to convert δ into
an equisatisfiable formula tt(δ) in CNF. Then, we run the CNFSAT-DEqPrL solver presented in
Algorithm 1 on tt(δ). If CNFSAT-DEqPrL returns Sat then tt(δ) has a model, and so δ has a model;
otherwise δ will be unsatisfiable.

4.2 Validity
The decidability of the logic follows as an immediate corollary of the satisfiability result.

Theorem 4.2. If � is a convergent equational theory and � is a set of domain clauses with the
subterm property, then the logic is decidable.

Proof. Since the deduction metatheorem holds, given a finite set�⊆ Glob and ϕ ∈ Glob, proving
��(�,�)ϕ is equivalent to proving �(�,�)((∧ψ∈� ψ)→ ϕ), so we proceed by checking the valid-
ity problem. Given δ ∈ Glob, we decide whether �(�,�)δ or ��(�,�)δ by testing the satisfiability of
¬δ: if ¬δ is satisfiable, since the logic is sound, we conclude that ��(�,�) δ; if ¬δ is not satisfiable,
we use completeness to conclude that �(�,�) δ.

4.3 Complexity
The satisfiability result highlights a way of deciding SAT-DEqPrL by reduction to a QF_LIRA
solver under the assumption that � is a convergent equational theory and � is a set of domain
clauses with the subterm property. We will now analyze complexity of the procedures previously
obtained.

As we already observed, the CNFSAT-DEqPrL solver presented in Algorithm 1 exhibits a poly-
nomial reduction from CNFSAT-DEqPrL to QF_LIRA. The complexity result for the satisfiability
problem CNFSAT-DEqPrL is parametric and also depends on the complexity of determining nor-
mal forms for terms with respect to the equational specification of the algebraic basis, which are
fundamental to obtain the set of relevant terms RelTδ . The complexity of CNFSAT-DEqPrL is the
same as for QF_LIRA as long as the complexity of computing normal forms with respect to � (dub
it the �↓-problem) is in P.

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

Mathematical Structures in Computer Science 887

Corollary 4.1. Assuming that � is a convergent equational theory whose �↓-problem is in P
and � is a set of domain clauses with the subterm property, then the satisfiability problem
CNFSAT-DEqPrL is in NP and the validity problem for DNF formulas in DEQPRL is in coNP.

Note that when the rewriting system underlying the equational theory� is subterm convergent,
the complexity class of the �↓-problem is in P. We should also remark that SAT can obviously be
modeled in DEQPRL, by assigning an atom ∀(n1 ≈ n2) composed by two fresh names n1, n2 to
each propositional symbol to be considered.

Corollary 4.2. If� is a subterm theory and� is a set of domain clauses with the subterm property,
then CNFSAT-DEqPrL is NP-complete.

The complexity of the satisfiability problem for the logic is now immediate from the complexity
of CNFSAT-DEqPrL and by Lemma 4.2.

Corollary 4.3. Assuming that � is a convergent equational theory whose �↓-problem is in P and
� is a set of domain clauses with the subterm property, then the satisfiability problem SAT-DEqPrL
is in NP and the validity problem for DEQPRL is in coNP.

Corollary 4.4. If the equational theory of � is generated by a subterm convergent rewriting sys-
tem and� is a set of domain clauses with the subterm property, then the SAT-DEqPrL problem is
NP-complete.

5. Examples
Now we model some information security examples in DEQPRL and observe how important
are the implementation details on the estimation of probabilities of the existence of attacks to
cryptographic protocols.

5.1 Offline guessing attacks with some cryptanalysis
Now we focus on the analysis of offline guessing attacks to cryptographic protocols (Baudet
2005) in the context of DEQPRL. Actually, we may focus in a wider and more expressive for-
mulation where the attacker, besides all the algebraic knowledge he has about the protocol
and cryptographic primitives, is also endowed with some cryptanalytic capabilities. To analyze
offline guessing one assumes that the attacker observed messages named m1, . . . ,mk which were
built as t1, . . . , tk ∈ T(N), but the attacker cannot know the concrete values of the random and
secret names used to build them. Still, he can try to mount an attack by guessing some secrets
s1, . . . , sn ∈N used by the parties executing the protocol. The attack is successful if the attacker
can distinguish whether his guesses s∗1, . . . , s∗n ∈N are correct or not.

Definition 5.1. Let m1, . . . ,mk ∈ T(N) represent the messages exchanged by the parties exe-
cuting a given cryptographic protocol, � denote the equational specification of the underlying
algebraic basis, and � collect the domain restrictions on terms. The protocol is susceptible to
an offline guessing attack using cryptanalysis if there exists a recipe ϕ ∈ Loc, with subtrm(ϕ)⊆
T({m1, . . . ,mk, s∗1, . . . , s∗n}) such that:

∀(m1 ≈ t1 ∧ · · · ∧mk ≈ tk) ��(�,�) ∀ϕ
and

∀(m1 ≈ t1 ∧ · · · ∧mk ≈ tk) �(�,�) ∀(s∗1 ≈ s1 ∧ · · · ∧ s∗n ≈ sn → ϕ).

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

888 A Mordido and C Caleiro

Note that the recipe is a formula involving equations and domain restrictions and is con-
structed exclusively frommessages observed by the attacker and from guesses for the secret values.
The recipe should not be derivable in general, but should be valid under the assumption that the
attacker correctly guessed the secrets, proving to constitute a reliable formula for the attacker to
check whether he actually guessed the secrets.

This task is undecidable in general as the recipe may be arbitrarily complex, but for subterm
convergent rewriting systems the problem is decidable, as only a finite number of “dangerous”
recipes need to be tested (Abadi and Cortier 2005, 2006; Baudet 2005).

The analysis of the existence of offline guessing attacks is even more interesting when probabil-
ities come into play, as the attacker will be able to narrow the set of possible secrets. In these lines,
under appropriate probabilistic conditions and applying axiom P3, one should be able to estimate
the probability of offline guessing attacks in DEQPRL.

Example 5.1. As an application, consider a protocol adapted from Corin and Etalle (2004), where
a, b, na, pab ∈N:

1. a→ b : (a, na),
2. b→ a : {na}pab .

In the first step, some party named a sends a message to another party named b in order to initiate
some communication session. The message is a pair containing a’s name and a random value
(nonce) named na, that a generated freshly, and which is intended to distinguish this request from
other, similar, past or future, requests. Upon reception of the first message, b responds by ciphering
na with a secret password pab shared with a. When receiving the second message, a can decrypt it
and recognize b’s response to his request to initiate a session.

In this case, it is simple to observe that the secret shared password pab is vulnerable to an offline
guessing attack. Suppose that the attacker observes the execution of the protocol by parties a and
b, and got hold of the two exchangedmessagesm1 andm2. He can nowmanipulate thesemessages,
using his guess p∗

ab of pab, and come up with the recipe {m2}−1
p∗
ab

≈ π2(m1). Indeed, only under the
correct guess we can prove that the decryption ofm2 with p∗

ab coincides with the second projection
ofm1, that is, na. We can use our logic and, in particular, axioms E(�DY) that encode the equations
in �DY to check that, indeed,

∀(m1 ≈ (a, na)∧m2 ≈ {na}pab) ��(�DY,�DY) ∀({m2}−1
p∗
ab

≈ π2(m1)) and

∀(m1 ≈ (a, na)∧m2 ≈ {na}pab)�(�DY,�DY) ∀(p∗
ab ≈ pab → {m2}−1

p∗
ab

≈ π2(m1)).

The existence of an offline guessing attack for this protocol led to an improvement of the
exchanged messages by concatenating a confounder c with the nonce and encrypting with the
public key pub(b) afterwards, giving rise to Gong’s protocol (Gong et al., 1993):

1. a→ b : {|(na, c)|}pub(b),
2. b→ a : {na}pab .

Gong’s protocol was proved to be secure against offline guessing (Corin and Etalle 2004; Gong
et al. 1993), in the sense that the probability of an attack is negligible. We will observe that such
security highly depends on the practical implementation of the protocol. This is one of the great
achievements that we obtain with DEQPRL: we are able to cover some implementation details
formally within the logic and conclude how do they compromise security.

Let us extend the set of domain names D =DDY ∪ {conf} and, further, assume that the con-
founder c is sampled uniformly from a set with M elements, and that the set of symmetric keys

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

Mathematical Structures in Computer Science 889

fromwhich pab is uniformly chosen hasN elements. The estimation of the probability of an offline
guessing attack on the independent names pab and c, with guesses p∗

ab and c∗, is given by:

Hyp�(�DY,�DY) Pr(pab ≈ p∗
ab ∧ c≈ c∗)≤ Pr

({|({m2}−1
p∗
ab
, c∗)|}pub(b) ≈m1

)
,

where the set of hypothesis consists of the uniform probabilities and independence of p∗
ab and c∗,

of a record of the exchanged messages, and of some cryptanalytic properties,

Hyp= {∀(c∗ ∈ conf)→ Pr(c≈ c∗)= 1
M

, ∀(p∗
ab ∈ sym_key)→ Pr(pab ≈ p∗

ab)=
1
N
, Ind

p∗
ab,c

∗
N,M ,

∀(c∗ ∈ conf), ∀(p∗
ab ∈ sym_key), ∀(m1 ≈ {|(na, c)|}pub(b) ∧ m2 ≈ {na}pab)} .

According to the independence property for p∗
ab and c∗, the probability of guessing c and pab,

and therefore the probability of success of an offline guessing attack is given by

Hyp�(�DY,�DY)
1

N ·M ≤ Pr
({|({m2}−1

p∗
ab
, c∗)|}pub(b) ≈m1

)
.

Often, symmetric keys are defined as being weak keys, meaning that they are chosen from small
sample spaces. In this sense,N is usually small. On the contrary, the commonly called unguessable
values are believed to be chosen from very big sets. However, in the practical implementation of
protocols it does not always happen, and we can model it in our logic. Notice that if M is also a
small number, the probability of an attack is not negligible, as it is minimized by the non-negligible
value 1

N·M .

5.2 On the implementation details
The reduced range of values taken by some critical parameters in the concrete implementation of
cryptographic protocols can seriously compromise their security. Recently (see Adrian et al., 2015)
it was shown that some modern implementations of Diffie–Hellman key exchange are vulnerable
to attacks from adversaries with reasonable resources.

A Diffie–Hellman key exchange consists of a preliminary agreement of a large prime p and a
generator g by agents a and b, then both parties generate random integers xa and xb. Once all the
values are fixed, a sends the exponentiation of g with xa modulo p to b, and b sends the expo-
nentiation of g with its private key xb modulo p to a. At the end of the protocol, a and b are
sharing the secret (gxa)xbmod p = (gxb)xamod p. Computing discrete logarithms remains the
best known cryptanalytic attack to the security of Diffie–Hellman. In general, discrete log com-
putations for arbitrary primes are known to take enough time to ensure that any session expires
before the intruder carries out an attack, but Logjam (Adrian et al. 2015) presents a technique that
uses number field sieve and allows one to compute the discrete log of primes in a specified 512-bit
group in about 1 min by means of a precomputation of the first three steps of number field sieve
for that specific group. In fact, this vulnerability was already known since 1992 (Beurdouche et al.
2015), but was applied by Logjam (Adrian et al. 2015) to downgrade a TLS connection to use 512-
bit Diffie–Hellman export-grade cryptography, through a man-in-the-middle network attacker.
Let us analyze formally, within DEQPRL, how would a cryptanalytic attack through the discrete
log compromise the security of Diffie–Hellman.

Example 5.2. Consider a Diffie–Hellman key exchange protocol:

1. a→ b : gxa mod p,
2. b→ a : gxb mod p.

Let us assume the attacker possesses enough computational resources to manage a precompu-
tation of the first steps of number field sieve for a chosen group of 512-bit prime. Recall that the
discrete logs in that group are then computed in a feasible amount of time. So, we can consider, in

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

890 A Mordido and C Caleiro

our signature, a function symbol representing the discrete log for each of those primes. Consider
the signature FDH containing: DLOG(·)(·, ·) ∈ FDH3 representing an oracle for the discrete log of the
subscript argument; (·)(·) ∈ FDH2 representing exponentiation; (·) mod (·) ∈ FDH2 representing the
remainder of the division of the first by the second argument. In the context of Diffie–Hellman key
exchange, the equational properties of these operations are given by �DH = {((xx1)x2 mod x3)≈
((xx2)x1 mod x3)}. Now let us fix some domains, representing the chosen group of 512-bit primes
for the implementation, the set of generators, the set of private keys, and the set of ciphertexts:
DDH = {512_prime, gen, prv_key, ciphertxt}. We axiomatize the domain restrictions simply
as�DH = {(x ∈ prv_key, g ∈ gen, p ∈ 512_prime⇒ (gx mod p) ∈ ciphertxt)}.

The probability of existence of a cryptanalytic attack using discrete log can be expressed
in DEQPRL as HypDH �(�DH,�DH) Pr(DLOGp(g,m1) ≈ xa)≥ Pr(p ∈ 512_prime), where HypDH =
{∀(m1 ≈ gxamod p∧m2 ≈ gxbmod p) , ∀(p ∈ 512_prime→DLOGp(x1, xx21 mod p)≈ x2)}, mean-
ing that the probability of an offline guessing attack is bounded below by the probability of the
intruder’s smart choice for the group to which he develops the precomputation actually fall within
the choice of the implementer. Obviously, the attacker would not waste resources precomputing
discrete logarithms unlikely to be used. There are groups of 512-bit primes known to be much
popular than others, so the probability of the intruder’s smart choice be within one of the imple-
menter’s choice and can be significantly large, thereby influencing the probability of the existence
of an attack. This formalization should be seen as a simple illustration of how the cryptanalytic
attacks can be modeled within DEQPRL.

6. Conclusion and future work
We combined aspects from classical, equational, and probabilistic reasoning to construct a logic
suited for the qualitative and quantitative analysis of equational constraints and domain restric-
tions over a set of outcomes. The design of the logic was aimed at formalizing the kind of reasoning
carried out in security protocol analysis provided an attacker with cryptanalytic capabilities.
Parameterized by suitable properties of the underlying algebraic base and domain restrictions,
we have obtained a sound and weakly complete deductive system for our logic. We found a poly-
nomial reduction from CNFSAT-DEqPrL to QF_LIRA, provided that the algebraic basis is given
by means of a convergent rewriting system and, additionally, that the axiomatization of domain
restrictions enjoys a suitable subterm property. The complexity result followed naturally from
the previous constructions. The decidability result also took advantage of the way in which the
strategy was conducted. Lastly, we used the logic to verify and estimate the probability of attacks
to cryptographic protocols in the presence of an attacker with an informed way of cryptanalysis,
reducing the gap between symbolic and computational models (Baudet 2005; Abadi and Cortier
2006, 2005; Conchinha et al. 2010, 2013). These results enabled the implementation of a prototype
tool for the satisfiability problem of DEQPRL that can be found in Caleiro et al. (2016) but is out
of the scope of this paper – for more details see Mordido (2017).

Even though our decidability results cover a very interesting range of examples, it would be
interesting to explore their extension in order to handle decidable equational theories in general,
that is, not necessarily defined by means of convergent rewriting systems (Dershowitz et al. 1988).

References
Abadi, M. and Cortier, V. (2005). Deciding knowledge in security protocols under (many

more) equational theories. In: Proceedings of the 18th IEEE Computer Security Foundations
Workshop (CSFW’05), IEEE, 62–76.

Abadi, M. and Cortier, V. (2006). Deciding knowledge in security protocols under equational
theories. Theoretical Computer Science 367 (1) 2–32.

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

Mathematical Structures in Computer Science 891

Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J. A., Heninger, N.,
Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wustrow, E., Zanella-Beguelin, S. and
Zimmermann, P. (2015). Imperfect forward secrecy: how Diffie-Hellman fails in practice.
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, ACM, 5–17.

Baader, F. and Nipkow, T. (1999). Term Rewriting and All That, Cambridge University Press.
Baudet, M. (2005). Deciding security of protocols against off-line guessing attacks. In: Proceedings

of 12th ACM Conference on Computer and Communications Security, 16–25, ACM.
Becker, B., Dax, C., Eisinger, J. and Klaedtke, F. (2007). LIRA: handling constraints of linear

arithmetics over the integers and the reals. In: International Conference on Computer Aided
Verification, Lecture Notes in Computer Science, vol. 4590, Springer, 307–310.

Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Pironti, A., Strub,
P. Y. and Zinzindohoue, J. K. (2015). A messy state of the union: taming the composite state
machines of TLS. In: Symposium on Security and Privacy 2015, IEEE, 535–552.

Caleiro, C., Casal, F. and Mordido, A. (2016). DNFSAT-DEqPrL solver. Available online at
https://github.com/fcasal/satdeqprl.git.

Caleiro, C., Casal, F. and Mordido, A. (2017a). Classical generalized probabilistic satisfiability.
Proceedings of the 26th International Joint Conference on Artificial Intelligence, AAAI Press,
908–914.

Caleiro, C., Casal, F. and Mordido, A. (2017b). Generalized probabilistic satisfiability. Electronic
Notes in Theoretical Computer Science 332 39–56.

Conchinha, B., Basin, D. and Caleiro, C. (2010). Efficient decision procedures for message
deducibility and static equivalence. In: Proceedings of 7th International Workshop on Formal
Aspects in Security and Trust, LNCS, vol. 6561, Springer, 34–49.

Conchinha, B., Basin, D. and Caleiro, C. (2013). Symbolic probabilistic analysis of off-line guess-
ing. In: European Symposium on Research in Computer Security, Lecture Notes in Computer
Science, vol. 8134, Springer, 363–380.

Corin, R. J. and Etalle, S. (2004). A simple procedure for finding guessing attacks. Centre for
Telematics and Information Technology, University of Twente.

Cortier, V., Kremer, S. and Warinschi, B. (2011). A survey of symbolic methods in computational
analysis of cryptographic systems. Journal of Automated Reasoning 46 (3–4) 225–259.

Dershowitz, N., Okada, M. and Sivakumar, G. (1988). Canonical conditional rewrite systems.
In: Proceedings of the 9th International Conference on Automated Deduction, Lecture Notes
in Computer Science, vol. 310, Springer, 538–549.

Dolev, D. and Yao, A. (1983). On the security of public key protocols. IEEE Transactions on
Information Theory 29 (2) 198–208.

Fagin, R., Halpern, J. Y. and Megiddo, N. (1990). A logic for reasoning about probabilities.
Information and Computation 87 (1) 78–128.

Finger, M. and De Bona, G. (2011). Probabilistic satisfiability: Logic-based algorithms and phase
transition, IJCAI, 528–533.

Gong, L., Lomas, M. A., Needham, R.M. and Saltzer, J. H. (1993). Protecting poorly chosen secrets
from guessing attacks. Journal on Selected Areas in Communications 11 (5) 648–656.

Henkin, L. (1949). The completeness of the first-order functional calculus. The Journal of Symbolic
Logic 14 (03) 159–166.

Montalto, B. and Caleiro, C. (2009). Modeling and reasoning about an attacker with cryptanalyti-
cal capabilities. Electronic Notes in Theoretical Computer Science 253 (3) 143–165.

Mateus, P., Sernadas, A. and Sernadas, C. (2005). Exogenous semantics approach to enriching
logics. Essays on the Foundations of Mathematics and Logic 1 165–194.

Mordido, A. (2017).A Probabilistic Logic Over Equations and Domain Restrictions. Phd thesis, IST,
Universidade de Lisboa.

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://github.com/fcasal/satdeqprl.git
https://doi.org/10.1017/S096012951800035X

892 A Mordido and C Caleiro

Mordido, A. and Caleiro, C. (2015). An equation-based classical logic. In: Proceedings of the 22nd
International Workshop on Logic, Language, Information, and Computation, Lecture Notes in
Computer Science, vol. 9160, Springer, 38–52.

Nieuwenhuis, R., Oliveras, A. and Tinelli, C. (2006). Solving SAT and SAT modulo theories: from
an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL (T). Journal of the ACM
53 (6) 937–977.

Pearl, J. (1987). Do We Need Higher-Order Probabilities and, If So, What Do They Mean? UCLA,
Computer Science Department.

Shoenfield, J. R. (2010).Mathematical logic, AK Peters/CRC Press.
Van Eijck, J. and Schwarzentruber, F. (2014). Epistemic probability logic simplified. Advances in

Modal Logic 10 158–177.

Appendix. Additional proofs
Consistency is defined in the usual way: �⊆ Glob is consistent if � ��(�,�) δ for some δ ∈ Glob.
Note that a global formula of the form

∨n
i=1 δi is consistent if and only if there exists 1≤ i≤ n

such that δi is consistent.

Proof of Theorem 3.2. As usual, the proof of completeness is followed by contraposition and con-
sists in finding a model for the negation of an unprovable formula. Hence, we assume that ��(�,�) δ
and build an F-structure satisfying ¬δ. The construction combines several known techniques
from equational logic, first-order logic, and probabilistic logic, which interact in a non-trivial way.
We begin by writing the consistent formula ¬δ in DNF as ψ1 ∨ · · · ∨ψm. Then, we choose a
consistent disjunct ψj of the form

ψ1
j ∧ · · · ∧ψnj

j , (A.2)

and define RelF= {ψ1
j , . . . ,ψ

nj
j } ⊆ Glob to be the set of relevant formulas that should be sat-

isfied in the final F-structure. We also add to the signature a new constant cϕ,n for each ϕ ∈
Loc and n ∈N, obtaining a signature F+ = {

F+
n
}
n∈N coinciding with F in all but F+

0 = F0 ∪(⋃
ϕ∈Loc

{
cϕ,n0 | n0 ∈N

})
.

Afterwards, we fix an enumeration for Loc× Loc and further extend the set RelFwith witnesses
for negated global formulas and with suitable certifications for non-negative global formulas,
through the following inductive definition:

W0 = RelF

Wi+1 = Wi ∪
{
¬∀ϕ1i →

(
∀ [¬ϕ1i]ñc̃

ϕ1i
∧
(

∀ϕ2i → ∀[ϕ2i]ñc̃
ϕ1i

))}
for each i ∈N,

where names(ϕ1i)∪ names(ϕ2i)= ñ= {n1, . . . , nk}, c̃ϕ = {cϕ,n1 , . . . , cϕ,nk}.

Lemma A.1. W =⋃
i∈N Wi is consistent (regarding F+).

Proof of Lemma A.1 can be found in Mordido (2017) and follows the same steps as Henkin
construction (Henkin 1949).

We fix a maximal consistent extension � of the set W ⊆ Glob+, whose existence is guaran-
teed by the Lindenbaum’s Lemma. Then we consider the F+-algebra A=TF+(Ø)/≡, where the
congruence relation is given by t1 ≡ t2 if ∀(t1 ≈ t2) ∈�. The relation ≡ is a congruence as conse-
quence of axioms Eq1–Eq4 and theorem N. A domain interpretation is then taken accordingly to
the aforementioned maximal consistent set �, IA(D)= {[t]≡ | ∀(t ∈D) ∈� and t ∈ TF+(Ø)} for
each D ∈D.

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

Mathematical Structures in Computer Science 893

– A satisfies �: by definition of ≡, E(�), C4, N, and recalling that� is a maximal consistent set,
it is easy to check that A� �.

– (A, IA) verifies �: given
(
t1 ∈D1, . . . , tk1 ∈Dk1 → t′1 ∈ D′

1, . . . , t
′
k2 ∈ Dk2

)
∈� and π ∈

AX , notice that π results from applying a substitution σ ∈ TF+(Ø)X and then a quotient
by ≡. Assume that �ti�πA ∈ IA(Di) for each 1≤ i≤ ki, which means that for each 1≤ i≤
ki, [σ (ti)]≡ ∈ IA(Di) or, equivalently, ∀(σ (ti) ∈Di) ∈�. It means that ∀(σ (t1) ∈D1 ∧ · · ·
∧ σ (tk1) ∈Dk1) ∈�, and from E(�) it follows that ∀(σ (t′1) ∈ D′

1 ∨ · · · ∨ σ (t′k2) ∈ D′
k2) ∈

�. But � is maximally consistent with respect to the deductive system H(�,�) and
σ (t′1), . . . , σ (t′k2) are nameless terms, so it follows that exists j ∈ {1, . . . , k2} such that
∀(σ (t′j) ∈ D′

j) ∈�.

We note that each negated global formula in the maximal consistent set, ¬∀ϕ ∈�, leads to an
outcome ρ¬∀ϕ : N →A assigning each name to the equivalence class of the appropriate constant:
ρ¬∀ϕ(n)= [cϕ,n]≡. The set S= {

ρ¬∀ϕ | ¬∀ϕ ∈�} of possible outcomes is not empty since the
conjugation of the reflexivity axiom Eq1 with the axiom that enables the negation to be passed
through the universal quantifier, N2, implies that ¬∀(t �≈ t) ∈�, for each t ∈ T(N).

A probability space is then defined, in the lines of Fagin et al. (1990), and starts by choos-
ing carefully a set of atoms of interest: initially we collect in � all the local formulas occurring
inside probabilistic formulas of RelF, �= ⋃

ψ∈RelF∩(Prob∪¬Prob)
InPr(ψ), where InPr(q1 · Pr(ϕ1)

+ · · · + ql · Pr(ϕl)≥ b)= InPr(¬(q1 · Pr(ϕ1)+ · · · + ql · Pr(ϕl)≥ b))= {ϕ1, . . . , ϕl}, and then use

it to define the suitable atoms�=
{ ∧
γ∈ϒ

γ ∧ ∧
ω∈�\ϒ

¬ω |ϒ ⊆�

}
. We consider a representative

outcome for each element of θ ∈�, whenever it is possible: if Sθ �=Ø, choose ρθ ∈ Sθ and let us
represent the probability assigned to ρθ by xθ ; otherwise, if Sθ =Ø, that is, (A, IA, P)� ∀¬θ , fix
xθ = 0. The accuracy of� immediately implies that

⋃
θ∈�

Sθ = S and Sθ1 ∩ Sθ2 =Ø, for each θ1 �= θ2.

The set� has the crucial local formulas to define the system of inequalities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1xϕ1 + · · · + akxϕk ≥ b, for each a1Pr(ϕ1)+ · · · + akPr(ϕk)≥ b ∈ RelF
a1xϕ1 + · · · + akxϕk < b, for each a1Pr(ϕ1)+ · · · + akPr(ϕk)< b ∈ RelF∑
θ∈� st θ→ϕ

xθ = xϕ , for each ϕ ∈�∑
θ∈�

xθ = 1

xθ = 0, for each θ ∈� such that Sθ =Ø
xθ ≥ 0, for all θ ∈�.

(A.3)

We claim that this system of inequalities has a solution. Indeed, using Fagin et al.’s result of sound-
ness and completeness for the axioms of inequality (see Section 4 of Fagin et al. (1990)), we know
that (A.3) is unsatisfiable if and only if it is inconsistent. But it leads to a contradiction, as we can
find a global formula that represents this system of inequalities within DEQPRL. Let us look at this
in more detail.

To write down a global formula that represents the system (A.3), let us fix an order on elements
of�:�= {ϕ1, . . . , ϕ|�|} . Then, consider the successive application of axiom P2 to deduce that

Pr(ϕ1) = Pr(ϕ1 ∧ ϕ2)+ Pr(ϕ1 ∧ ¬ϕ2)
= Pr(ϕ1 ∧ ϕ2 ∧ ϕ3)+ Pr(ϕ1 ∧ ϕ2 ∧ ¬ϕ3)+ Pr(ϕ1 ∧ ¬ϕ2 ∧ ϕ3)+ Pr(ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ3)
= . . .= ∑

θ∈� st θ→ϕ1

Pr(θ).
(A.4)

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

894 A Mordido and C Caleiro

It means that �(�,�) Pr(ϕ1)= ∑
θ∈� st θ→ϕ1

Pr(θ). We can obtain a similar formula for each ϕ ∈�.
Moreover, since

∨
θ∈�

θ ↔ � and θi ∧ θj ↔ ⊥ for any θi, θj ∈�, θi �= θj, using axioms P2 and P4 we

can deduce that Pr
(∨
θ∈�

θ

)
= ∑
θ∈�

Pr(θ) and it follows that
∑
θ∈�

Pr(θ)= 1. Before finishing, notice

that PAux2 and P2 imply that �(�,�)
∧
θ∈�

(∀(¬θ)→ Pr(θ)= 0).

Axiom P1 and the previous justifications allow us to write (A.2) equivalently as:

ψ1
j ∧ · · · ∧ψnj

j ∧
∧
ϕ∈�

⎛⎜⎝Pr(ϕ)=∑
θ∈�
θ→ϕ

Pr(θ)

⎞⎟⎠∧
(∑
θ∈�

Pr(θ)= 1

)
∧
(∧
θ∈�

∀(¬θ)→ Pr(θ)= 0

)

∧
∧
θ∈�

(Pr(θ)≥ 0). (A.5)

Since we can assign probabilities independently to the different elements in�, (A.5) is satisfiable
if and only if the system of inequalities (A.3) is satisfiable. Under the hypothesis that the system
of inequalities is unsatisfiable, using the results of soundness and completeness for the axioms of
inequality, the system would be inconsistent. But it would mean that we could derive an incon-
sistency from (A.5) using I1–I6, C1–C4, which is a contradiction with the consistency of (A.2).
We conclude that the system (A.3) is satisfiable. Let {x∗

θ }θ∈� be a solution. The solution of (A.3)
is used to define a probability distribution over the atoms and thus over the outcomes satisfying
them. The probability distribution P : S→ [0, 1] is defined as follows:{

P(ρθ) = x∗
θ , for each θ ∈�,

P(ρ) = 0 , for each ρ ∈ S \ {ρθ | θ ∈�} .

A probability space P= (S,A ,μ) is built on top of this probability distribution, considering
the σ -algebra A generated by the set {Sϕ | ϕ ∈ Loc} and the probability measure μ : A → [0, 1]
such that μ(X)= ∑

ρ∈X
P(ρ). Let us verify that μ is a probability measure:

– Given X ∈ A , μ(X)≥ 0 since μ(X)=∑
ρ∈X P(ρ), and the system of inequalities (A.3)

together with the definition of P imply that P(ρ)≥ 0 for each ρ ∈ S.
– We conclude thatμ(S)= 1 by observing that S ∈ A as a result of S= St≈t , and furtherμ(S)=∑
ρ∈S

P(ρ), which leads to the expected measure 1 for the entire set of possible outcomes

by simply recalling the definition of P and writing μ(S)= ∑
ρ∈S

P(ρ)= ∑
ρ∈S\{ρθ |θ∈�}

P(ρ)+∑
θ∈�

P(ρθ)= 0+ ∑
θ∈�

x∗
θ . Since {x∗

θ }θ∈� is a solution for (A.3) we actually have μ(S)=∑
θ∈� x∗

θ = 1.

– Given a countable collection of pairwise disjoint sets {Xi}i∈I ⊆ A , the equality μ
(⋃
i∈I

Xi

)
=∑

i∈I
μ(Xi) holds as a consequence of sets {Xi}i∈I being pairwise disjoint and from the following

equalities:
∑
i∈I
μ(Xi)=∑

i∈I
∑
ρ∈Xi

P(ρ)= ∑
ρ∈⋃

i∈I
Xi

P(ρ)=μ
(⋃

i∈I Xi
)
. Just note that each of the

previous sums has a finite number of non-zero elements.

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X

Mathematical Structures in Computer Science 895

Now that an F-structure (A, IA, P) has emerged; it remains to prove that it actually satisfies all the
relevant formulas RelF. For that purpose, we leave an auxiliary remark whose proof follows easily
by induction on the complexity of ϕ.

Remark 1. Given ¬∀ϕ0 ∈� and a local formula ϕ ∈ Loc with names(ϕ)= ñ,

∀[ϕ]ñc̃ϕ0 ∈� if and only if A, IA � [ϕ]ñc̃ϕ0 .

We conclude the proof verifying that we have indeed a model for RelF. Recall that RelF⊆
∀Loc∪ ¬∀Loc∪ Prob∪ ¬Prob, consider γ ∈ RelF, and let us analyze the four cases:

– If γ is of the form ∀ϕ with names(ϕ)= ñ, we want to prove that for every ρ ∈ S,
(A, IA), ρ �loc ϕ. Given ρ ∈ S, recall that it was motivated by some ¬∀ϕ0 ∈�, say that
ρ = ρ¬∀ϕ0 . Since ∀ϕ ∈ RelF⊆� it follows that ∀[ϕ]ñc̃ϕ0 ∈� by the construction ofW. Using
Remark 1 we conclude that A, IA � [ϕ]ñc̃ϕ0 , which according to definition of ρ¬∀ϕ0 implies
that (A, IA), ρ¬∀ϕ0 �loc ϕ.

– If γ is of the form ¬∀ϕ, with names(¬ϕ)= names(ϕ)= ñ, notice that ρ¬∀ϕ ∈ S. Moreover,
since ¬∀ϕ ∈�, it follows that ∀[¬ϕ]ñc̃ϕ ∈�. Remark 1 implies that A, IA � [¬ϕ]ñc̃ϕ , which by
definition of ρ¬∀ϕ leads to (A, IA), ρ¬∀ϕ �loc ¬ϕ, so (A, IA, P)�¬∀ϕ.

– If γ ∈ Prob is of the form q1 · Pr(ϕ1)+ · · · + ql · Pr(ϕl)≥ b, we have:

(A, IA, P)� q1 · Pr(ϕ1)+ · · · + ql · Pr(ϕl)≥ b
iff q1 ·μ(Sϕ1)+ · · · + ql ·μ(Sϕl)≥ b
iff q1

∑
ρ∈S st

(A,IA), ρ�locϕ1

P(ρ)+ · · · + ql
∑
ρ∈S st

(A,IA), ρ�locϕl

P(ρ)≥ b

iff q1
∑
θ∈� st
θ→ϕ1

P(ρθ)+ · · · + ql
∑
θ∈� st
θ→ϕl

P(ρθ)≥ b

iff q1
∑
θ∈� st
θ→ϕ1

x∗
θ + · · · + ql

∑
θ∈� st
θ→ϕl

x∗
θ ≥ b.

The last inequality is valid since q1 · Pr(ϕ1)+ · · · + ql · Pr(ϕl)≥ b ∈ RelF and {x∗
θ }θ∈� is a

solution for (A.3), hence the first assertion holds as well.
– If γ ∈ ¬Prob, the reasoning is similar.

Hence we have (A, IA, P)�¬δ.
Sketch of the proof of Lemma 4.1. For lack of space, we only summarize the idea underlying the
proof of Lemma 4.1 very briefly. The details can be found in Mordido (2017).

To prove the correctness of Algorithm 1, one should ensure that every model in the equational
context corresponds to a valuation over the wider propositional set of variables B∗, and vice-versa.
In this sense, for the direct implication, we construct several valuations from outcomes in a model
for δ and then unify them in a bigger valuation. The verification that the Algorithm returns Sat is
an immediate consequence of the construction. For the reciprocal implication, we split the bigger
valuation into valuations over B̃, and then over B. Finally, we use an argument similar to the one
used for the proof of completeness to construct the final model for δ.

Cite this article:Mordido A and Caleiro C (2019). Probabilistic logic over equations and domain restrictions.Mathematical
Structures in Computer Science 29, 872–895. https://doi.org/10.1017/S096012951800035X

https://doi.org/10.1017/S096012951800035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951800035X
https://doi.org/10.1017/S096012951800035X

	Probabilistic logic over equations and domain restrictions
	Introduction
	Preliminaries
	Terms and equations
	Domain restrictions

	The Logic
	Syntax
	Semantics
	Deductive system
	Soundness and completeness

	Decidability and complexity
	Satisfiability
	Validity
	Complexity

	Examples
	Offline guessing attacks with some cryptanalysis
	On the implementation details

	Conclusion and future work
	Additional proofs

