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Active particles often swim in confined environments. The transport mechanisms,
especially the global one as reflected by the Taylor dispersion model, are of great practical
interest to various applications. For the active dispersion process in confined flows,
previous analytical studies focused on the long-time asymptotic values of dispersion
characteristics. Only several numerical studies preliminarily investigated the temporal
evolution. Extending recent studies of Jiang & Chen (J. Fluid Mech., vol. 877,
2019, pp. 1–34; vol. 899, 2020, A18), this work makes a semi-analytical attempt to
investigate the transient process. The temporal evolution of the local distribution in the
confined-section–orientation space, drift, dispersivity and skewness, is explored based
on moments of distributions. We introduce the biorthogonal expansion method for
solutions because the classic integral transform method for passive transport problems
is not applicable due to the self-propulsion effect. Two types of boundary condition,
the reflective condition and the Robin condition for wall accumulation, are imposed
respectively. A detailed study on spherical and ellipsoidal swimmers dispersing in a
plane Poiseuille flow demonstrates the influences of the swimming, shear flow, initial
condition, wall accumulation and particle shape on the transient dispersion process. The
swimming-induced diffusion makes the local distribution reach its equilibrium state faster
than that of passive particles. Although the wall accumulation significantly affects the
evolution of the local distribution and the drift, the time scale to reach the Taylor regime
is not obviously changed. The shear-induced alignment of ellipsoidal particles can enlarge
the dispersivity but impacts slightly on the drift and the skewness.
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W. Jiang and G. Chen

1. Introduction

Active particles, e.g. micromotors and motile micro-organisms, can harvest energy from
the environment for self-propulsion, known as active Brownian motion (Schweitzer 2003;
Romanczuk et al. 2012), which is fundamentally different from the pure translational
Brownian motion of passive particles without swimming ability. The transport mechanism
of active particles is significant for various biological, environmental and chemical
applications, such as algae cultivation (Posten 2009; Acién et al. 2017), remedies for
harmful algal blooms (Durham & Stocker 2012; Liu et al. 2012), bioreactors for biofuels
(Chisti 2007; Bees & Croze 2014) and cargo transport (Yasa et al. 2018; Xiao, Wei & Wang
2019).

Active particles often swim in confined environments, e.g. synthetic microswimmers
in a micro-channel, or bacteria in the digestive tract. Complicated interactions of active
particles with physical boundaries play a key role in the transport process and result
in rich phenomena, such as wall scattering (Drescher et al. 2011; Kantsler et al. 2013),
circular trajectories (Berg & Turner 1990; Lauga et al. 2006), shear-induced trapping
(Rusconi, Guasto & Stocker 2014) and rheotaxis (Uspal et al. 2015; Brosseau et al. 2019;
Mathijssen et al. 2019). As one of the most well-known phenomena, micro-organisms such
as spermatozoa and Escherichia coli are found to accumulate near the surfaces of confined
domains (Rothschild 1963; Berke et al. 2008). To explain this accumulation feature, many
theoretical models have been proposed, such as the far-field and near-field hydrodynamic
models (Berke et al. 2008; Li & Tang 2009; Spagnolie & Lauga 2012; Sipos et al. 2015)
and steric models considering inter-molecular forces like the van der Waals force (Li, Tam
& Tang 2008; Costanzo et al. 2012; Chilukuri, Collins & Underhill 2015; Contino et al.
2015). Besides, many researchers have imposed a mathematically simple Robin boundary
condition (the third type) for the probability density function (p.d.f.) of active particles in
the position–orientation space (Enculescu & Stark 2011; Elgeti & Gompper 2013; Ezhilan
& Saintillan 2015; Alonso-Matilla, Chakrabarti & Saintillan 2019; Jiang & Chen 2019a;
Berlyand et al. 2020; Peng & Brady 2020). Using this no-penetration condition for the
probability flux at the boundaries, the wall accumulation phenomenon can be readily
realised in numerical simulations (Bearon & Hazel 2015; Ezhilan & Saintillan 2015; Nili
et al. 2017).

Because of the complex behaviours of active particles at the microscale, the transport
characteristics at the macroscale have attracted practical attention. From a microscopic
viewpoint, a high-dimensional Smoluchowski equation can be used to describe the
transport process of swimmers in the position–orientation space, i.e. the phase space
(Doi & Edwards 1988). The computational expense of such a microscopic model is
potentially huge, even for some special applications (Zeng & Pedley 2018). To characterise
the effective transport process only in the position space (at the macroscale), simple
macro-transport models have been proposed, by homogenising the fast- and small-scale
swimming processes. The well-known model, the P–K model, proposed by Pedley &
Kessler (1990, 1992), uses a Fokker–Planck equation for the local p.d.f. of the swimming
direction at each point in the position space and the active drift vector and the active
translational dispersivity tensor are calculated based on the local p.d.f. associated with
a correlation time coefficient. Another known model, called the GTD model, uses the
generalised Taylor dispersion theory (Frankel & Brenner 1989; Hill & Bees 2002; Hill
& Pedley 2005; Bearon, Hazel & Thorn 2011) to calculate the translational dispersivity
tensor and gives some corrections for the P–K model for flows with strong shear rates.
Although these two models are widely applied in current studies (Croze, Bearon & Bees
2017; Fung, Bearon & Hwang 2020), they are only valid when the swimming scale is much
smaller than the length scale of the confined environments (Bearon et al. 2011).
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Transient dispersion process of active particles

Furthermore, for active particles dispersing in confined flows, such as the common
Poiseuille flow and Couette flow, the one-dimensional (1-D) macro-transport process
in the longitudinal direction is of particular interest. The pioneering work by Bees &
Croze (2010) introduced the P–K model for highly concentrated suspensions of gyrotactic
swimmers in a vertical downwelling pipe flow. They derived the overall drift and
dispersivity in the longitudinal direction based on the moment method by Aris (1956).
In addition to the P–K model, Bearon, Bees & Croze (2012) and Croze et al. (2013, 2017)
applied the GTD model and gave more accurate results for the drift and dispersivity.
However, these results may fail when the separate-length-scale requirement of the P–K
model and GTD model is not satisfied, e.g. when the length scale of the confined section
is comparable to that of the swimming, or the boundary effect cannot be neglected (Bearon
et al. 2011). Recently, Jiang & Chen (2019a, 2020) constructed a more integrated average
approach also based on the GTD theory and analytically derived the overall drift and
dispersivity for very dilute suspensions. This method gets rid of the separate-length-scale
requirement of the P–K and GTD models, and thus is adaptable for wide applications.
Jiang & Chen (2019a) also considered the influence of wall accumulation on the dispersion
process by introducing the Robin boundary condition for the p.d.f. (Elgeti & Gompper
2013; Bearon & Hazel 2015; Ezhilan & Saintillan 2015). Peng & Brady (2020) analysed
the accumulation effect on the upstream swimming (drift) based on an orientation-moment
expansion method (Saintillan & Shelley 2013) and performed comparisons with the result
by Brownian dynamics simulation.

The above studies on the dispersion process of active particles in confined flows
mainly focused on the long-time asymptotic characteristics. However, little analytical
work has been done to address the transient process. In fact, for active particles in
unbounded position space, e.g. particles swim freely in a two-dimensional (2-D) confined
thin film or a three-dimensional (3-D) space, abundant studies have investigated the
transient diffusion process before the long-time diffusion limit (Howse et al. 2007; ten
Hagen, van Teeffelen & Löwen 2011a; ten Hagen, Wittkowski & Löwen 2011b; Zheng
et al. 2013; Sandoval et al. 2014; Apaza & Sandoval 2020). Three basis stages are
found in the temporal evolution of the mean squared displacement (MSD) of active
particles with rotational-diffusion motions: diffusive at the short time scale (MSD ∼ t,
t is the time), ballistic during the intermediate time scales (MSD ∼ t2) and finally
again diffusive at the long time scale (MSD ∼ t) but with an enhanced dispersivity
(Bechinger et al. 2016). Because of the simplicity of the transport problem in a free
space, the MSD of active particles can be theoretically derived, even for the case with
a simple shear background flow (ten Hagen et al. 2011b; Sandoval et al. 2014). This
anomalous diffusion (super-diffusion or sub-diffusion) process can be further analysed
using non-Gaussian statistics, such as skewness and kurtosis (ten Hagen et al. 2011a;
Zheng et al. 2013).

However, for confined flows, the boundaries tremendously increase the complexity of
the transport problem of active particles, especially considering complicated swimming
behaviours near boundaries such as the wall accumulation effect. To the best of
our knowledge, only a few numerical studies, mainly using the Brownian dynamics
simulation method, have addressed the transient active dispersion process in confined
flows. Croze et al. (2013) investigated the dispersion of swimming algae in laminar and
turbulent channel flows. The temporal evolution of the drift, effective diffusivity and
skewness was calculated statistically. Chilukuri et al. (2015) also calculate these dispersion
characteristics using a simplified interaction model (Chilukuri, Collins & Underhill 2014)
considering the influence of hydrodynamic interactions for wall accumulation. Apaza
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& Sandoval (2016) focused on the hydrodynamic effects on the transient scale of the
MSD. Other studies (Ghosh et al. 2013; Ao et al. 2014; Yariv & Schnitzer 2014; Sandoval
& Dagdug 2014; Makhnovskii 2019) have experimentally and numerically investigated
the transient active dispersion process in a corrugated channel without background
flow, considering the application of sorting particles by their self-propelled speeds.
Additionally, it is of considerable interest to systematically compare the transient active
dispersion process with the classic dispersion of passive particles (Lighthill 1966; Foister
& van de Ven 1980; Latini & Bernoff 2001; Camassa, Lin & McLaughlin 2010; Vedel,
Hovad & Bruus 2014; Taghizadeh, Valdés-Parada & Wood 2020), to capture the difference
in approaching the Taylor dispersion regime (Chatwin 1970; Wu & Chen 2014; Li et al.
2018).

This work is to make a semi-analytical attempt to investigate the transient dispersion
process of active particles in confined flows. Based on the GTD theory used in our
previous studies (Jiang & Chen 2019a), we introduce the biorthogonal expansion method
(Brezinski 1991) to calculate the temporal evolution of moments of the cross-sectional
mean concentration distribution, and then the basic dispersion characteristics, such as
the local distribution in the confined-section–orientation space, the drift, dispersivity and
skewness, can be obtained and analysed in the initial transient stage. The biorthogonal
expansion method is often used to study the rheology of suspensions of particles (Strand,
Kim & Karrila 1987; Nambiar et al. 2019). As an extension of the classic integral transform
method with orthogonal bases for passive transport problems, the biorthogonal expansion
method can solve the difficulty caused by the effect of the self-propulsion for the active
transport problems. The auxiliary eigenvalue problem for the moments of distributions
is solved by the Galerkin method with function series constructed for specific boundary
conditions. The typical reflective boundary condition (Bearon et al. 2011; Ezhilan &
Saintillan 2015) often used in numerical studies ideally assuming elastic collisions between
the wall and the particles (Volpe, Gigan & Volpe 2014; Bechinger et al. 2016) is imposed.
To account for the wall accumulation phenomenon, we also consider the Robin boundary
condition (Enculescu & Stark 2011; Ezhilan & Saintillan 2015).

The rest of this paper is structured as follows. For the active transport problem
formulated in § 2, we introduce the definition of moments of the p.d.f. and the dispersion
characteristics in § 3. The corresponding governing equations are solved using the
biorthogonal expansion method. In § 4, a detailed study on the transient active dispersion
process in a plane Poiseuille flow is demonstrated. We focus on the influences of
the swimming, shear flow, initial condition, boundary effect (wall accumulation) and
particle shape on the transient dispersion process. Finally, § 5 gives some concluding
remarks.

2. Formulation of transport problem

2.1. Governing equations
As depicted in figure 1, we consider a very dilute suspension of active particles in a 2-D
channel flow. For instance, Chlamydomonas algae swimming in a quasi-2-D microfluidic
channel or magnetic particles forced to swim in a plane by a strong magnetic field. If the
volume fraction is low (e.g. concentration much less than 1 × 106 cells cm−3 for algae with
diameters less than 10 μm), the cell–cell and cell–fluid interactions can be neglected (Bees
2020). Particles are idealised as points. The transport equation in the position–orientation
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Figure 1. Sketch of a dilute suspension of active particles in a plane Poiseuille flow.

space (phase space) (Doi & Edwards 1988) can be adopted as

∂P
∂t

+ [
Pef u( y) + Pes cos θ

] ∂P
∂x

+ Pes sin θ
∂P
∂y

+ ∂

∂θ
[Ω( y, θ)P]

= Dt
∂2P
∂x2 + Dt

∂2P
∂y2 + ∂2P

∂θ2 , (2.1)

where t is the time, x and y are the position coordinates, θ is the angle between the
swimming direction p of the particle and the longitudinal unit vector and P(x, y, θ, t) is
the p.d.f.

Following Jiang & Chen (2019a), we have used the following dimensionless variables
and parameters (the superscript ∗ denotes dimensional variables) as

t = t∗D∗
r , x = x∗

W∗ − Pef t, y = y∗

W∗ , u = u∗

u∗
m

− 1,

Ω = Ω∗

D∗
r
, Pes = V∗

s

D∗
r W∗ , Pef = u∗

m

D∗
r W∗ , Dt = D∗

t

D∗
r (W∗)2 ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

where D∗
r is the rotational-diffusion coefficient, W∗ is the channel width, u( y) is the

velocity profile, u∗
m is the mean flow speed

u∗
m � 1

W∗

∫ W∗

0
u∗( y∗) dy∗, (2.3)

Ω is the rate of change of θ (angular velocity), V∗
s is the swimming speed of the active

particle, Pes is the corresponding swimming Péclet number, Pef is the flow Péclet number
and Dt is the ratio of the translational diffusivity to the rotational diffusivity. We assume
that the translational diffusivity is isotropic. Note that the dimensionless velocity profile
is the deviation from the mean flow speed because we have transformed the frame of
reference to that moving with the mean flow speed.

Due to the rotational and straining motion of the fluid, the rate of change of swimming
direction for an ellipsoidal particle is given by Jeffery’s equation (Jeffery 1922; Leal &
Hinch 1972; Pedley & Kessler 1992; Lauga 2020) as

Ω( y, θ) = Pef

2
du
dy

[−1 + α0 cos(2θ)], (2.4)

where α0 is the shape factor of the particle, with α0 = 0 for a spherical particle and α0 = 1
for an infinitely thin rod-like particle.
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2.2. Boundary conditions and initial condition
For the solid boundaries, we consider two different types of condition. First, the reflective
condition assumes that collisions between particles and solid boundaries are perfectly
elastic (Bearon et al. 2011; Volpe et al. 2014; Jiang & Chen 2019a, 2020), Thus, it requires
that both the incident swimming probability flux and the incident translational-diffusion
probability flux through the walls are balanced by their corresponding reflective fluxes.
Namely,

P(x, y, θ, t) = P(x, y, −θ, t), at y = 0, 1,

∂P
∂y

(x, y, θ, t) = −∂P
∂y

(x, y, −θ, t), at y = 0, 1,

⎫⎬
⎭ (2.5)

ensuring the conservation of particles in the phase space.
Second, we consider the equally typical Robin condition (Enculescu & Stark 2011;

Ezhilan & Saintillan 2015; Jiang & Chen 2019a) to account for the wall accumulation
phenomenon of some kinds of active particles, e.g. sperm cells and E. coli (Rothschild
1963; Berke et al. 2008). For each swimming direction, there is no penetration of the
probability flux through the walls. Namely,

Dt
∂P
∂y

= Pes sin θP at y = 0, 1, (2.6)

which is a third-type boundary condition. To balance the incident swimming flux, the
wall-normal translational-diffusion flux must be negative, which leads to the accumulation
of particles swimming towards a wall (Ezhilan & Saintillan 2015). Note that this
mechanism for wall accumulation does not consider the complicated hydrodynamic and
steric interactions between particles and walls (Lauga & Powers 2009; Bechinger et al.
2016).

In the orientation space, periodic boundary conditions are imposed:

P|θ=−π = P|θ=π,

∂P
∂θ

∣∣∣∣
θ=−π

= ∂P
∂θ

∣∣∣∣
θ=π

.

⎫⎪⎬
⎪⎭ (2.7)

For the initial condition, we consider particles instantaneously released at a
cross-section of the channel swimming in random directions with an arbitrary transverse
concentration distribution C( y), i.e.

P|t=0 = 1
2π

δ(x)C( y), (2.8)

where δ is the Dirac delta function. There is no doubt that the initial condition will
greatly impact the transient dispersion process of active particles but does not influence
the long-time asymptotic behaviour.

3. Solutions of transient dispersion characteristics

The dispersion process of active particles in the longitudinal direction is of particular
interest because the longitudinal scale is much larger than the transverse scale for a
unidirectional confined flow. Taking the longitudinal coordinate variable x as the global
space variable, and the confined section variables y and θ as the local space variables,
previous studies (Jiang & Chen 2019a, 2020) have applied the generalised Taylor
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dispersion theory (Brenner 1982; Brenner & Edwards 1993) to analyse the long-time
asymptotic values of dispersion characteristics, such as the local distribution, the drift
and dispersivity.

In this work, we focus on the temporal evolution of these basic dispersion characteristics.
We first introduce the definition of the moments of p.d.f. and their governing equations.
Then, we use the biorthogonal expansion method (Strand et al. 1987; Brezinski 1991)
to solve the moments. The auxiliary eigenvalue problem for the moments is solved by
the Galerkin method with confined-section–orientation function series constructed for the
reflective boundary condition and the Robin condition (Jiang & Chen 2019a) respectively.

3.1. Definitions of moments and dispersion characteristics
The dispersion characteristics are derived from the moments of the probability distribution
of particles. First, the moments of p.d.f. are conventionally defined as (Aris 1956; Brenner
& Edwards 1993)

Pn( y, θ, t) �
∫ ∞

−∞
xnP(x, y, θ, t) dx, n = 0, 1, . . . , (3.1)

which are also called the local moments. We assume the moments always exist on the basis
of physical reasoning. Note that the zeroth-order moment, P0, is the marginal p.d.f. of y
and θ , and thus can be viewed as the local distribution of active particles in the y–θ plane
of the phase space (Ezhilan & Saintillan 2015; Jiang & Chen 2019a).

Second, we introduce the global moments, i.e. the moments of the cross-sectional mean
concentration distribution P̄,

Mn(t) �
∫ ∞

−∞
xnP̄ dx = Pn( y, θ, t) n = 0, 1, . . . , (3.2)

and

P̄(x, t) �
∫ 1

0

∫ π

−π

P(x, y, θ, t) dθ dy. (3.3)

We use the bar to denote the integration over the y–θ cross-section. Due to the conservation
of particles, we have M0 = 1.

The basic dispersion characteristics, i.e. the drift Ud and dispersivity DT , are related to
the first- and second-order global moments,

Ud(t) � dμx

dt
= dM1

dt
, (3.4)

DT(t) � 1
2

dσ 2

dt
= 1

2
dM2

dt
− M1

dM1

dt
, (3.5)

where μx and σ are the expected value (mean displacement) and the standard deviation
(MSD), respectively,

μx � M1

M0
= M1, σ 2 � M2

M0
− M2

1

M2
0

= M2 − M2
1 . (3.6a,b)

Their long-time asymptotic values correspond to the coefficients used in the famous Taylor
dispersion model (Taylor 1953, 1954). To some extent, their temporal evolution can outline
the longitudinal transport process in the transient stage before the Taylor dispersion regime
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(Gill & Sankarasubramanian 1970; Chatwin 1970; Latini & Bernoff 2001; Wu & Chen
2014; Yang et al. 2020; Guan et al. 2021).

Apart from the above basic dispersion characteristics, one can also introduce the
skewness of the p.d.f., to capture the asymmetry of distribution, especially in the initial
stage after particle release (Chatwin 1970; Wang & Chen 2017; Jiang & Chen 2019b). The
skewness γ1 is defined by the third-order cumulant κ3 of the distribution as

γ1 � κ3

σ 3 , κ3 � M3

M0
− 3

M2M1

M2
0

+ 2
M3

1

M3
0

= M3 − 3M2M1 + 2M3
1 . (3.7a,b)

3.2. Solutions of moments: biorthogonal expansion

3.2.1. Governing equation of moments
To obtain the transient dispersion characteristics, we solve the moments first. According to
the definition of moments (3.1) and the governing equation of the p.d.f. (2.1) (Aris 1956),
we have

∂Pn

∂t
+ LPn = n(n − 1)DtPn−2 + n

[
Pef u( y) + Pes cos θ

]
Pn−1, n = 0, 1, . . . , (3.8)

where

L(·) � Pes sin θ
∂

∂y
(·) + ∂

∂θ

[
Ω( y, θ)(·) − ∂

∂θ
(·)

]
− Dt

∂2

∂y2 (·) (3.9)

is an operator corresponding to the transport equation in the y–θ cross-section. Here,
P−1 = P−2 = 0 are introduced to write the governing equation for all the moments in
the same form.

The boundary conditions of Pn (n = 0, 1, . . .) are in the same form as those of P.
Namely, for the reflective condition (2.5),

Pn( y, θ, t) = Pn( y, −θ, t), at y = 0, 1,

∂Pn

∂y
( y, θ, t) = −∂Pn

∂y
( y, −θ, t), at y = 0, 1.

⎫⎬
⎭ (3.10)

For the Robin condition (2.6),

Dt
∂Pn

∂y
= Pes sin θPn at y = 0, 1. (3.11)

In the orientation space,
Pn|θ=−π = Pn|θ=π,

∂Pn

∂θ

∣∣∣∣
θ=−π

= ∂Pn

∂θ

∣∣∣∣
θ=π

.

⎫⎪⎬
⎪⎭ (3.12)

The initial conditions according to (2.8) are

P0|t=0 = 1
2π

C( y), (3.13)

Pn|t=0 = 0, n = 1, 2, . . . . (3.14)

We can also obtain the governing equation for the global moments. Note that according
to the integration by parts formula, we have

LPn = 0, n = 0, 1, . . . , (3.15)
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under both the reflective condition (3.10) and the Robin condition (2.6). Therefore,

dMn

dt
= n(n − 1)DtMn−2 + n

(
Pef u + Pes cos θ

)
Pn−1, n = 1, 2 . . . . (3.16)

In particular,

Ud = (
Pef u + Pes cos θ

)
P0, (3.17)

namely, the local-distribution-weighted average of the longitudinal velocity component.

3.2.2. Biorthogonal expansion
Note that the form of moment equation (3.8) is similar to that of the case of passive
particles. Previous studies used the method of separation of variables or the integral
transform method (Barton 1983; Jiang & Chen 2019b) to derive a series expansion for the
solutions. An auxiliary Sturm–Liouville problem was solved first to obtain the function
basis for the expansion.

However, for the present case of active particles, the local operator L (3.9) associated
with the boundary conditions can be non-self-adjoint and these two previous methods
are not feasible. Instead, we use the biorthogonal expansion method (an extension of the
integral transform method) (Strand et al. 1987; Brezinski 1991; Nambiar et al. 2019) to
obtain series expansions for the local moments and the Galerkin method to solve the
associated eigenvalue problem.

First, the auxiliary eigenvalue problem for the moment equation (3.8) is

Lfi = λi fi, (3.18)

where λi is the eigenvalue (i = 1, 2, . . . ,) and fi is the associated eigenfunction satisfying
all the boundary conditions of Pn. For λ1 = 0, f1 corresponds to the long-time asymptotic
solution of P0, which was discussed in our previous paper (Jiang & Chen 2019a).

It is difficult to find the explicit expression of the solution of the associated eigenfunction
fi, due to the complexity of L (3.9). We use the Galerkin method to approximately solve
λi and fi. Suppose we have found a basis with functions satisfying the required boundary
conditions. Detailed expressions of the bases for the reflective condition and the Robin
condition are later shown in § 3.2.3. Now, with such a basis, denoted by {ei}∞i=1, we can
expand the eigenfunction fi as

fi =
∞∑

j=1

φijej, (3.19)

where φij is the coefficient of the expansion. For the local operator L, we can also express
the corresponding bilinear form A(·, ·) with the basis. The elements of the corresponding
matrix (denoted by A) are

Aij = A(ei, ej) = 〈ei,Lej〉, i = 1, 2, . . . , j = 1, 2, . . . , (3.20)

where 〈·, ·〉 denotes the associated inner product, shown later in § 3.2.3 for different
boundary conditions. In matrix form, the weak formulation of the auxiliary eigenvalue
problem (3.18) can be written as

Aφi = λiφi, (3.21)

where φi = (
φi1, φi2, · · ·)T is the vector of the coefficients of fi. Truncating the series

(3.19) to some degree gives a Galerkin solution for the eigenfunction fi.
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Note that λi is the eigenvalue of the matrix A and φi is the corresponding eigenvector.
Therefore, solving the eigenvalue problem of A can give asymptotic solutions of the
eigenvalues and eigenfunctions of (3.18). In fact, the set of solutions { fi}∞i=1 can also form
a basis for the function space satisfying the boundary conditions of the moments Pn.

With the eigenvalue λi and eigenfunction fi solved, one can easily follow the work of
Barton (1983) and expand the local moments as

Pn( y, θ, t) =
∞∑

i=1

pni(t)e−λitfi( y, θ), n = 0, 1, . . . , (3.22)

where pni is the expansion coefficients. Using the method of separation of variables (or
the integral transform), Barton (1983) derived the general expressions for the expansion
coefficients pni (for n up to three) with the elements of the bilinear form defined using the
velocity profile and the initial condition. See § 3 in his paper.

However, for the present case, the local operator L (3.9) associated with the
boundary conditions can be non-self-adjoint due to the swimming (Pes cos θ ) and the
angular velocity of active particles. In fact, the matrix A of the local operator can
be non-symmetric, resulting in complex eigenvalues and eigenvectors. Thus the set of
functions { fi}∞i=1 can be non-orthogonal, i.e. the inner product 〈 fi, fj〉 /= 0 for i /= j. The
orthogonality relation fails when applying the integral transform method to obtain pni.

Instead of using the orthogonality relation, one can find another set of functions which
bears a so-called biorthogonality relation with { fi}∞i=1. According to the biorthogonal
expansion method (Strand et al. 1987; Brezinski 1991), these dual basis functions, denoted
by { f �

i }∞i=1 (a superscript � denotes the dual counterpart), are the eigenfunctions of the
adjoint operator of L (denoted L�). The eigenvalue of f �

i corresponds to that of fi, i.e. λi.
Therefore, after normalisation, we have the biorthogonality relation

〈 f �
i , fj〉 = δij, (3.23)

where δ is the Kronecker delta.
We can also use the Galerkin method with the base {ei}∞i=1 to solve f �

i . Let A� denote the
corresponding matrix of L�. Note that A� is the transpose of A. Then we have

A�φ�
i = λiφ

�
i , (3.24)

where φ�
i is the coefficient vector of the solution for f �

i . Performing the series expansion
using the same basis as (3.19), we have

f �
i =

∞∑
i=1

φ�
ijej (3.25)

and φ�
i = (

φ�
i1, φ�

i2, . . .
)T. Note that the eigenvalues of A� are the same as those of A

(Strand et al. 1987). In fact, { f �
i }∞i=1 also forms a basis.

With the biorthogonal family { fi}∞i=1 and { f �
i }∞i=1, one can continue to use the

expressions obtained by Barton (1983) for the expansion coefficients of moments in
(3.22), just by replacing the orthogonality relation with the biorthogonal one. Detailed
expressions in current notation are presented in Appendix A.

Once we obtain the time-dependent solutions of the moments, the corresponding
dispersion characteristics, i.e. the drift Ud, dispersivity DT and skewness γ1 can be
calculated according to their definitions (3.4), (3.5) and (3.7a,b) without difficulties. The
last problem is to find the basis functions {ei}∞i=1 satisfying the boundary conditions of
moments.
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Transient dispersion process of active particles

3.2.3. Basis functions for different boundary conditions
First, we discuss the case with the reflective condition (3.10). A reflective basis can be
constructed using the method of separation of variables for the Laplace operator for the
transport equation of active particles in a tube (Jiang & Chen 2020). Similarly, for the
2-D channel, a much simpler reflective basis can also be found for the Laplace operator,
which is self-adjoint with respect to the reflective condition. The basis {ei}∞i=1 used in the
Galerkin method for (3.19) can be comprised of

1√
2π

,
1√
π

cos(mθ),
1√
π

cos(nπy),

√
2
π

cos(nπy) cos(mθ),

√
2
π

sin(nπy) sin(mθ),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.26a–d)

where n = 1, 2, . . . and m = 1, 2, . . . A detailed derivation can be found in appendix B of
Wang et al. (2021). The corresponding inner product is just the L2 inner product, i.e.

〈 f , g〉 �
∫ 1

0

∫ π

−π

f ( y, θ)g( y, θ) dθ dy, (3.27)

where f and g are functions that belong to the reflective basis.
Second, for the Robin condition (3.11), the construction of a basis {ei}∞i=1 in much more

complicated, due to the swimming term with the coefficient Pes sin θ . Following Jiang &
Chen (2019a), a decomposition form for the moments is applied before using the method
of separation of variables

Pn( y, θ) = Pa( y, θ)Gn( y, θ), n = 0, 1, . . . , (3.28)

where

Pa( y, θ) = exp
[

Pes

Dt

(
y − 1

2

)
sin θ

]
(3.29)

satisfies the Robin condition (3.11), and Gn( y, θ) is a modified moment satisfying a
governing equation similar to (3.8). A detailed discussion can be found in § 5 of Jiang
& Chen (2019a). Note that the solid boundary condition is then changed from the Robin
condition (3.11) to a Neumann condition (the second-type boundary condition),

∂Gn

∂y

∣∣∣∣
y=0,1

= 0, n = 0, 1, . . . . (3.30)

In the orientation space, Gn satisfies the same periodic condition as (3.12). Using the
method of separation of variables of the Laplace operator for Gn, the basis for the Robin
condition can be constructed as

Pa√
2π

,
Pa√
π

cos(mθ),
Pa√
π

sin(mθ),
Pa√
π

cos(nπy),

√
2
π

Pa cos(nπy) cos(mθ),

√
2
π

Pa cos(nπy) sin(mθ).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.31a–d)

The corresponding inner product is defined with a weight function as

〈 f , g〉 �
∫ 1

0

∫ π

−π

1
P2

a( y, θ)
f ( y, θ)g( y, θ) dθ dy, (3.32)

where f and g are functions that belong to the Robin basis.
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Reflective

condition 

Robin conditionBoundary

condition

Use the Robin basis (3.31)

and inner product (3.32) 

Use the reflective basis (3.26)

and inner product (3.27) 

Solve (3.18) by Galerkin method.

Obtain eigenvalue λi, eigenfunction fi and fi
∗

Determine parameters and

initial condition 

Solve (3.8) of moment Pn
by biorthogonal expansion

Obtain global moment Mn
by mean operation (3.2)

Obtain drift Ud, dispersivity DT and skewness

γ1 by definitions (3.4), (3.5) and (3.7)

Figure 2. Flowchart of the solution procedure.

3.2.4. Summary of solution procedure
A flowchart of the solution procedure is presented in figure 2. In the calculation of
truncated { fi}N

i=1 and { f �
i }N

i=1 by the Galerkin method, we collect terms with n � 20 and
m � 10 to solve the eigenvalue problem (3.21), for both the reflective basis (3.26a–d)
and the Robin basis (3.31a–d). The total numbers of basis functions are 431 and 441
respectively. Note that for large Pes under the Robin condition, more terms are needed
to optimise the precision because of the highly concentrated boundary layer of swimmers
(Ezhilan & Saintillan 2015). For large Pef , the strong alignment of elongated swimmers
in the shear flow also requires more basis functions (Ezhilan & Saintillan 2015; Jiang &
Chen 2019a). In fact, with extreme parameters, one should perform an asymptotic analysis
before applying the Galerkin method.

For the biorthogonal expansion of moments (3.22), we truncate the series with an
upper bound of summation N = 40 to reduce the truncation error of the series expansion
in the initial stage of the transport process, especially for the case of a point-source
release. The terms are sorted by the real part of the complex eigenvalue because
higher-order terms decay much more rapidly. The result by the biorthogonal expansion
is verified with the numerical result by Brownian dynamics simulation, as shown in
Appendix B. We solve the first four moments. The related dispersion characteristics,
i.e. the drift Ud (3.4), dispersivity DT (3.5) and skewness γ1 (3.7a,b), are obtained
accordingly.

927 A11-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

74
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.747


Transient dispersion process of active particles

4. Results

To compare the transient dispersion process of active particles with that of passive ones,
we consider the case of active particles dispersing in a common plane Poiseuille flow.
The dimensionless velocity profile is u( y) = 6y(1 − y) − 1. Previous studies (Jiang &
Chen 2019a; Wang et al. 2021) already discussed the long-time asymptotic values of
the local distribution, drift and dispersivity. Here, we analyse the temporal evolution of
these characteristics, as well as the skewness. Our result corresponds to the previous result
by Jiang & Chen (2019a) in the long-time asymptotic stage. We focus on the influences
of the swimming, shear flow, initial condition, boundary effect (wall accumulation) and
particle shape on the transient dispersion process. In the following studied cases, we
fix the translation diffusion coefficient Dt = 1/6 based on the data of previous studies
(Ezhilan & Saintillan 2015; Nili et al. 2017; Jiang & Chen 2019a). We mainly discuss
spherical particles (α0 = 0) for simplicity, while the shear-induced alignment of ellipsoidal
particles is considered in § 4.5. Additionally, a comparison with the numerical result by
the Brownian dynamics simulation is presented in Appendix B.

4.1. Influence of swimming
To analyse the swimming effect on the transient dispersion process, we consider spherical
particles with different swimming abilities. Namely, the swimming Péclet numbers Pes
are different and Pes = 0 corresponds to the case of passive particles. To highlight the
influence of swimming, there is no background shear flow (with the flow Péclet number
Pef = 0) and only the reflective boundary condition (3.10) is considered. Particles are
released instantaneously at the middle of the cross-section of the channel, thus C( y) in the
initial condition (2.8) is δ( y − 0.5).

4.1.1. Local distribution: zeroth-order moment
As shown in figure 3, to depict the temporal evolution of the local distribution, P0 at
3 small sample times (t ∈ {0.1, 0.3, 0.5}) is plotted. As expected, the local transport
process of active particles is greatly different from that of passive particles. Without
swimming, passive particles perform pure translational Brownian motions, while the
rotational diffusion of the ‘swimming’ direction takes no effect due to the uniform initial
distribution of the swimming direction. As shown in figure 3(a–c), the distribution for
θ is uniform, while in the transverse direction, the distribution become more and more
uniform as particles spread out gradually; P0 is symmetric with respect to the centreline
of the channel due to the point-source release at y = 0.5.

For the active particles, the local transport process is a combination of the swimming
motion and translational diffusion. As shown in figure 3(d–o), the swimming of particles
leads to a sinusoidal variation of the distribution in the Oyθ plane. Here, P0 is not
symmetric with respect to the centreline, but with respect to the point ( y = 0.5, θ = 0),
also as a result of the point-source release in a uniform swimming direction distribution.
After the release, most particles swim towards walls, resulting in a depletion of distribution
in the middle of the channel during the transient transport process, as shown in
figure 3(k,n) for particles with large swimming speeds. Meanwhile, the rotational diffusion
of the swimming direction leads to the swimming-induced diffusion process and makes the
distribution of θ uniform again. Moreover, in figure 3(m,n), the reflection of the swimming
probability flux at the channel walls is observed, as a result of the elastic collisions
described by the reflective boundary condition (2.5). Particles that swim towards the wall
(e.g. −π < θ < 0 at y = 0) are reflected back to the bulk in the reversed direction (−θ ).
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Figure 3. Density plot of transient local distributions P0( y, θ, t) of spherical particles with different
swimming abilities. The swimming Péclet number: (a–c) Pes = 0; (d–f ) Pes = 0.1; (g–i) Pes = 0.5; ( j–l)
Pes = 1; (m–o) Pes = 2. Sample times: (a,d,g,j,m) t = 0.1; (b,e,h,k,n) t = 0.3; (c, f,i,l,o) t = 0.5. In all cases,
Pef = 0 and the reflective boundary condition is used. Particles are released at y = 0.5.

Both the local distributions of active and passive particles become uniform in the whole
local space as time increases. Even when t = 0.5, as shown in figure 3(c, f,i,l,o), the
distributions are very uniform. The results at larger times, not shown here, have nearly
no difference between each other. In fact, in the long-time limit, the local distribution of
spherical particles is exactly uniform (Jiang & Chen 2019a). Obviously, the distribution of
particles with stronger swimming ability will reach the uniform equilibrium faster, due to
the swimming-induced diffusion effect.

The swimming-induced diffusion effect on the local transport process can be
demonstrated more clearly by the transverse distribution, defined as

Ct( y, t) �
∫ π

−π

P0( y, θ, t) dθ. (4.1)
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Figure 4. Transverse distributions Ct( y, t) of spherical particles with different swimming abilities. Sample
times: (a) t = 0.1; (b) t = 0.3; (c) t = 0.5. In all cases, Pef = 0 and the reflective boundary condition is used.
Particles are released at y = 0.5.

As shown in figure 4, the larger Pes, the smaller the concentration gradient. At t = 0.5,
shown in figure 4(c), the transverse distributions of cases with Pes = 1 and 2 are nearly
uniform, while the distributions of cases with Pes < 1 still have small fluctuations. As
time continues to increase (not shown here), all the curves overlap each other and
become absolutely uniform (Jiang & Chen 2019a). The transverse distribution of faster
swimmers reaches the uniform equilibrium state much more quickly, as a result of the
swimming-induced diffusion. For Pes = 2, during the transport process, it is clearly
observed that the initial high concentration distribution in the middle of the channel
decreases fast, resulting in a depletion by the strong swimming effect, as shown in
figure 4(b). The transport process in other cases is dominated by the comparable effects of
the swimming-induced diffusion and translational diffusion.

4.1.2. Dispersivity
Next, we discuss the transient dispersion characteristics related to the moments with
order larger than zero. Note that we do not consider any background flow in this section.
Therefore, the p.d.f. of particles is symmetric with respect to the y-axis, where the particles
are initially released. Both the drift and the skewness are zero because of this symmetry
property. We only discuss the temporal evolution of the dispersivity.

As shown in figure 5, for active particles, the dispersivity increases monotonically
with time. While for passive particles, the dispersivity remains the same as the
translational-diffusion coefficient, because they only perform pure translational Brownian
motions. In the initial stage of the dispersion process, the dispersivity of active particles,
especially those with strong swimming ability (e.g. Pes = 2), is quite small. It then
increases rapidly and finally reaches a stable value, i.e. the Taylor dispersivity. Obviously,
the larger Pes, the larger the dispersivity. The difference between dispersivities with
different Pes is gradually enlarged during the transient dispersion process.

Note that, without shear flow, the active dispersivity is only comprised of
the swimming-induced diffusion (temporal) and the translational diffusion (time
independent). Actually, in the longitudinal direction, the evolution of the active
dispersivity is similar to that of the effective diffusion tensor (the time derivative of the
mean squared displacement) in unbounded space (ten Hagen et al. 2011a). There exists an
anomalous dispersion stage before the Taylor dispersion regime (Wu et al. 2019). Note that
when Pes is large, the swimming-induced diffusion is the main factor of the dispersivity.
In the initial stage (t < 0.5) after the point-source release, the swimming of particles with
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Figure 5. Temporal evolution of the dispersivity DT (t) of spherical particles with different swimming
abilities under the reflective condition without background flow (Pef = 0). Particles are released at y = 0.5.

rotational Brownian motions makes the local distribution uniform in the cross-section,
as shown in figure 3( j,m,k,n). Namely, particles can swim randomly at different transverse
positions. The swimming-induced dispersivity in the longitudinal direction is continuously
enhanced, which leads to a super-diffusion process. The enhancement of dispersivity is
stopped when the longitudinal length scale of the swimmer cloud is much larger than both
the transverse length scale of the cross-section and the correlation length for a Brownian
swimmer. The local distribution in the cross-section and the orientation space is nearly
uniform at each longitudinal position, thus the dispersivity finally reaches its maximum
value.

4.2. Influence of shear flow
We have discussed the swimming effect on the transient dispersion process. Now we focus
on the influence of the shear flow and the combined effect of the shear-induced dispersivity
and the swimming-induced diffusion. To compare with the cases without background flow
in § 4.1, we analyse five cases with different Pef but a fixed Pes = 1. In the same way,
results of spherical particles at three small sample times are plotted to demonstrate the
transient process, and only the reflective boundary condition (3.10) is considered. Particles
are released instantaneously at y = 0.5.

4.2.1. Local distribution: zeroth-order moment
In the initial stage soon after the point-source release, as shown in figure 6(a,d,g,j,m) with
t = 0.1, the local distributions of swimmers in the plane Poiseuille flow with different
Pef are similar. The parallel flow carries the swimmers downstream quickly, but does not
change their transverse positions. Therefore, the swimming diffusion effect is dominant in
making the local distribution uniform. Note that the shear flow can rotate the swimming
direction of the particle, which is similar to the rotational Brownian motion, and thus it
can also weaken the swimming diffusion effect. However, in the middle of the channel,
the vorticity of the flow is zero. Therefore, the vorticity-induced rotation is very weak
until particles spread over the cross-section of the channel.

As time increases, unlike the no-flow case discussed in § 4.1, swimmers in a plane
Poiseuille flow will temporally accumulate at the point ( y = 0.5, θ = π) in the local
space, as shown in figure 6(b,e,h,k,n) with t = 0.3. Namely, particles mainly swim
upstream and near the middle of the channel. This phenomenon can be explained using
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Figure 6. Density plot of transient local distributions P0( y, θ, t) of spherical particles in flows with different
flow rates. The flow Péclet number: (a–c) Pef = 0.1; (d–f ) Pef = 1; (g–i) Pef = 2; ( j–l) Pef = 4; (m–o)
Pef = 5. Sample times: (a,d,g,j,m) t = 0.1; (b,e,h,k,n) t = 0.3; (c, f,i,l,o) t = 0.5. In all cases, Pes = 1 and
the reflective boundary condition is used. Particles are released at y = 0.5.

the dynamical systems theory. As discussed in previous studies (Zöttl & Stark 2012, 2013;
Jiang & Chen 2019a), the transverse swimming velocity and the angular velocity can be
viewed as a local velocity field in the local space. For the spherical particles in the plane
Poiseuille flow, ( y = 0.5, θ = π) is a centre (critical point), where particles perform the
swing motion around the centreline of the channel (Zöttl & Stark 2012) and closed orbits
in the local space are formed. When the shear is strong, as shown in figure 6(k,n) with
Pef ∈ {4, 5}, this temporary accumulation is so intense that the local distribution forms a
clear circular spot at ( y = 0.5, θ = π) (also at ( y = 0.5, θ = −π) due to the periodicity).

At larger times, the local distribution approaches the uniform distribution, the same
as that without background flow discussed in § 4.1. This is also true for any case
with a unidirectional flow. The long-time asymptotic local distribution of spherical
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Figure 7. Transverse distributions Ct( y, t) of spherical particles in flows with different flow rates. Sample
times: (a) t = 0.1; (b) t = 0.3; (c) t = 0.5. ‘Passive’ denotes the case of passive particles (Pes = 0). Other
cases are of active particles with Pes = 1. In all cases, the reflective boundary condition is used. Particles are
released at y = 0.5.

swimmers under reflective boundary condition is a uniform distribution (Jiang & Chen
2019a). The critical point ( y = 0.5, θ = −π) is only a centre, not a stable node. Thus,
the accumulation at ( y = 0.5, θ = −π) dissipates gradually and the local distribution
becomes more and more uniform, as shown in figure 6(c, f,i,l,o) with t = 0.5. There is
no doubt that, with stronger shear, the approach to the homogeneous equilibrium state will
be much slower.

The approach to the uniform distribution in the local space can be demonstrated more
clearly with the transverse distribution, defined in (4.1). Comparing figure 7(b) with the
case without background flow in figure 4, there is no concentration depletion in the
middle of the channel. Instead, the concentration at y = 0.5 is the highest, mainly due
to the point-source release at the centreline of the channel. Note that the vorticity-induced
centre-point accumulation in the transverse direction is not strong. The concentration of
the active case with Pef = 5 is higher than those with smaller Pef , but is lower than the
passive case with the same Pef . When t = 0.5 as shown in figure 7(c), the transverse
distribution of swimmers in a low flow rate flow (small Pef ) is nearly uniform. However,
when Pef is large enough, e.g. Pef = 4, 5, there are still observable variations of the
transverse distribution from the uniform distribution. The attenuation of the accumulation
is slow and the homogeneous equilibrium state will be reached at larger times (not shown
here).

4.2.2. Drift
Next, we analyse the transient dispersion characteristics. First, we discuss the drift, i.e.
the time derivative of the first-order mean concentration moment. Note that we have
transformed the reference to that moving with the mean flow, as in (2.2). Thus, the drift
discussed here is the average of the longitudinal component of the velocity of particles
above the mean flow.

Unlike the case without background flow, the drift of swimmers in a plane Poiseuille
flow is not zero in the transient stage, as shown in figure 8(a). In fact, the drift is not small
and is positive when the flow rate (represented by Pef ) is large, especially in the initial
stage soon after the point-source release in the middle of the channel, where the flow
velocity is the largest in the cross-section and thus is larger than the mean flow rate. Then
the drift decreases very fast as time increases, for both the active and passive cases. As
shown in figure 8(a), all the curves fall to around zero before t = 0.5. With a larger Pef ,
the initial drift is larger, and thus the decrease rate of the drift is faster.
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Figure 8. Temporal evolution of dispersion characteristics of spherical particles in flows with different flow
rates. (a) The drift Ud(t), (b) the dispersivity DT (t) and (c) the skewness γ1(t). ‘Passive’ denotes the case of
passive particles (Pes = 0). Other cases are of active particles with Pes = 1. In all cases, the reflective boundary
condition is used. Particles are released at y = 0.5.

There are two main factors for the sharp drop of the drift: the advection and the
swimming. First, the spread of particles from the highest-flow-velocity region (in the
middle of the channel) to the low-flow-velocity region can reduce the advection velocity
of the particles, for both the active and passive cases. Second, due to the swing motion
of swimmers in the middle of the channel (centre-point accumulation as shown in
figure 6k,n), particles mainly swim in the opposite direction to the flow (upstream θ =
±π). Thus, the corresponding contribution to the drift is negative. The drift of the active
case with Pef = 5 is smaller than that of the passive case. When the swimming effect
is dominant (when Pef is small), the overall drift can even be reduced to below zero, as
shown by the curves with Pef ∈ {0.1, 1} in figure 8(a). While the drift curves with larger
Pef (e.g. Pef = 4) will remain positive during the whole transient stage.

After the sharp drop, the overall drift slightly increases with time, for all the curves
of active particles in figure 8(a). Because the local distribution becomes more and more
uniform as time increases, as shown in figure 6, the reduction of drift by the upstream
swimming is weakened. At larger times (t > 1), all the drift curves approach zero. Because
the long-time asymptotic local distribution is uniform, the corresponding overall drift by
(3.16) is

lim
t→∞ Ud = lim

t→∞
(
Pef u + Pes cos θ

)
P0 = (

Pef u + Pes cos θ
) = 0, (4.2)

as discussed by our previous study (Jiang & Chen 2019a). The mass centre of the swimmer
cloud finally moves with the mean flow rate. However, there are great differences among
the approach-to-zero process of the drift with different Pef . For small Pef = 1, 2, Ud
increases to zero directly from the lowest negative value caused by the sharp drop.
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For larger Pef = 4, 5, Ud increases slowly for a while to some positive values, and finally
decreases to zero. The curve with Pef = 4 shows a fluctuation across the zero value, while
the drift with Pef = 5 remains positive, as a result of the complex combined reduction
effect of the advection and the swimming.

4.2.3. Dispersivity
Next, we discuss the temporal evolution of dispersivity. In § 4.1.2, the dispersivity is only
composed of the swimming-induced diffusion and the translational diffusion. Adding the
effect of the shear flow makes the evolution of the dispersivity much more complicated.
The overall dispersivity is not a simple superposition of the shear-enhanced dispersivity
and the swimming-induced diffusion. In fact, the shear effect and the swimming effect can
inhibit each other! To analyse the overall dispersivity, one should bear in mind the question
of which effect is dominant.

When Pef is small, the swimming-induced diffusion is dominant in the dispersion
process. As shown in figure 8(b), the curves with Pef = 0.1, 1, 2 are similar to that
without background flow in figure 5: the overall dispersivity increases monotonically with
time. In the initial stage (t < 0.5), the dispersivities with larger Pef = 1, 2 are larger
and increase faster than that with Pef = 0.1. Because the transverse distribution becomes
more uniform due to the swimming, as shown in figure 7, the shear-enhanced dispersivity
becomes stronger as the particles spread from the low shear-rate region (the middle of
the channel) to the high shear-rate regions. The distribution of the swimming direction
is still highly non-uniform, and thus the increase of the swimming-induced dispersivity
is slow. However, at large times (t > 1), the increases of the dispersivities with larger
Pef = 1, 2 become smaller. More importantly, the long-time asymptotic values, i.e. the
Taylor dispersivities, are much smaller than that with Pef = 0.1 (Jiang & Chen 2019a).
Note that, at large times, the swimming-induced diffusion gradually exerts its influence
and regains the dominance in the dispersion process, as the whole local distribution
becomes much more uniform. The shear-enhanced rotation of the swimming direction can
weaken the swimming-induced diffusion, as discussed in § 4.2.1. Therefore, with larger
Pef = 1, 2, the Taylor dispersivities dominated by the swimming-induced diffusion are
smaller.

For large Pef , as shown by the curves with Pef = 4, 5 in figure 8(b), the evolution of the
dispersivity is more complex and does not monotonically increase with time. Although
Pef is large, the swimming effect is still dominant in the initial stage (t < 0.5) after the
point-source release because the shear rate near the release position is low. The dispersivity
of the active particles is larger than that of the passive ones, as shown by the curves with
Pef = 5. As the suspension cloud spreads across the cross-section of the channel, the
shear-induced dispersivity becomes more and more important. There is a very rapid rise of
the dispersivity in the initial transient stage, which is similar to the case with low Pef . It is
followed by an obvious but small reduction of the dispersivity, as a result of the inhibition
by the swimming-induced diffusion. Note that, in the case of passive particles, in the
shear-dominant dispersion regime, increasing the translational diffusion will decrease the
Taylor dispersivity (see (41) in the work of Aris 1956). Similarly, the swimming-induced
diffusion can also suppress the shear dispersion (Bearon et al. 2011; Jiang & Chen 2020).
Finally, the dispersivity increases with time again and reaches the equilibrium state. For
Pef = 4, the long-time asymptotic value is smaller than the maximum value and that of
the case without flow, as a result of the mutual inhibition of the shear dispersion and
the swimming-induced diffusion. For Pef = 5, the shear dispersion achieves absolute
dominance: the finial value exceeds that without flow which is only composed of the
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swimming-induced diffusion and translational diffusion. However, it is still smaller than
that of the passive particles as a result of the inhibition. See also § 4 in the work of Wang
et al. (2021) and Appendix C.

4.2.4. Skewness
Finally, we discuss the skewness caused by the shear flow. As shown in figure 8(c),
the temporal evolution of skewness is much more complicated than those of the drift
and dispersivity. Similar to the case of passive particles (Aris 1956; Aminian et al.
2016), the skewness is negative in the initial transient stage, as a result of the dominant
advection effect by the plane Poiseuille flow. When Pef is small (e.g. Pef = 0.1, 1), the
swimming-induced diffusion effect is stronger than the advection effect. The skewness is
small and negative in the initial stage, and then becomes positive as time increases. Note
that the skewness under the pure swimming-induced diffusion is zero, as discussed in
§ 4.1.2. Thus, the positive skewness is due to the combined effect of the swimming-induced
diffusion and the advection, more specifically, by the vorticity-induced rotation of the
swimming directions of particles. For a plane Poiseuille flow, the vorticity-induced
rotation is strong near the wall where the shear rate is large. Therefore, the cloud
of particles in the middle of the channel travelling downstream disperses faster than
that near the walls travelling upstream (relative to the mean flow rate), due to the
swimming-induced diffusion. The downstream part of the mean distribution is more
uniform in the longitudinal direction, which results in the positiveness of the skewness.

For the cases with large Pef (e.g. � 2), the advection effect is dominant. The
negativeness of the skewness is obviously observed and the temporal variation of skewness
is large at small times, which is similar to the passive case. The skewness first decreases
as time increases (0.1 < t < 0.5), due to the advection effect. Then it greatly increases,
because of the comprehensive combined effect of the swimming-induced diffusion and
the advection.

Finally, at large times, the skewness gradually approaches zero, for all the cases
in figure 8(c). This means that the asymmetry of the mean concentration distribution
disappears and indicates that the distribution becomes Gaussian. The approach to zero
(or to the Taylor dispersion regime) is very slow. Even when the dispersivity reaches its
equilibrium value (approximately t > 5), there is still a small varying skewness of the
mean concentration distribution.

4.3. Influence of initial condition
In the above discussion, the initial condition is a point-source release at y = 0.5
with C( y) = δ( y − 0.5). To demonstrate the influence of the initial condition, here,
we consider three additional initial conditions: a point-source release at y = 0.75, a
point-source release at y = 1, and a line-source release with C( y) = 1. Other parameters
are fixed: Pes = 1, Pef = 2. The reflective boundary condition is used.

4.3.1. Local distribution: zeroth-order moment
Figure 9 demonstrates the transient local distributions of the cases with the point-source
releases at y = 0.75 and y = 1. There is no doubt that the initial condition can greatly
affect the early stage of the transport process. Particles mainly stay in the lower half of the
channel, which is strongly related to the release position. Due to the off-centre release, P0
is no longer symmetric with respect to ( y = 0.5, θ = 0) as in figure 6(g–i). After being
released near the top wall y = 1, particles that swim towards the top wall (0 < θ < π)
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Figure 9. Density plot of transient local distributions P0( y, θ, t) of spherical particles with different initial
conditions: (a–c) C( y) = δ( y − 0.75); (d–f ) C( y) = δ( y − 1). Sample times: (a,d) t = 0.1; (b,e) t = 0.3; (c, f )
t = 0.5. In all cases, Pes = 1, Pef = 2, and the reflective boundary condition is used.
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Figure 10. Transverse distributions Ct( y, t) of spherical particles with different initial conditions. Here, y0 is
the release position of a point source with C( y) = δ( y − y0), while ‘Line source’ denotes the line-source
release with C( y) = 1. Sample times: (a) t = 0.1; (b) t = 0.3; (c) t = 0.5. In all cases, Pes = 1 and the
reflective boundary condition is used.

are soon reflected back, while particles that swim with direction 0 < θ < π take more
time to reach the bottom y = 0. Therefore, the non-uniformity is larger than that of the
centre-release case in figure 6(g–i).

The non-uniformity of P0 can be demonstrated more clearly by the transverse
distribution Ct, as shown in figure 10. We have added the curves of the centre-release
case and the line-source case. Obviously, the peak of the transverse distribution is strongly
affected by the released position, especially in figure 10(a). Note that P0 of the line-source
case is a constant in the local space under the reflective boundary condition (Jiang & Chen
2019a). Thus P0 is also always in its equilibrium state although the dispersion process
is still developing. Due to the off-centre release, Ct of point-source cases released at
y = 0.75 and y = 1 is no longer symmetric with respect to the centreline of the channel.
As shown in figure 10(a), Ct of the centre-release case is nearly uniform while those of the
off-centre-release cases are still far from the equilibrium. As time increases, all of them
will reach the same uniform state, ‘forgetting’ the information of the initial condition.
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Figure 11. Temporal evolution of dispersion characteristics of spherical particles with different initial
conditions. (a) The drift Ud(t), (b) the dispersivity DT (t) and (c) the skewness γ1(t). Here, y0 is the transverse
position for a point-source release with C( y) = δ( y − y0), while ‘Line source’ denotes the line-source release
with C( y) = 1. In all cases, Pes = 1 and the reflective boundary condition is used.

4.3.2. Drift
Next, we discuss the dispersion characteristics with different initial conditions. As shown
in figure 11(a), the initial condition can greatly affect the drift, especially in the very early
stage of the transport process. First, for the line-source case, the drift is exactly zero, due
to the time-independent uniform local distribution as discussed above. Second, for the
point-source case, it is obvious that the drift is strongly related to the release position.
The flow speed at the release position determines the initial value of the drift. Note that we
have transformed the reference to that moving with the mean flow. Thus, in the early stage,
the drift of the centre-release case (y0 = 0.5) is positive while that of the wall-release
case (y0 = 1) is negative. More notably, the temporal evolution curve of the drift of the
wall-release case is nearly the inversion of the curve of the centre-release case. For the
off-centre-release case with y0 = 0.75, the drift is nearly zero during the whole dispersion
process because of the small initial drift (flow speed relative to the mean u(0.75) = 0.125).
As time increases, the drift approaches zero for all the cases, as discussed by Jiang & Chen
(2019b).

4.3.3. Dispersivity
As shown in figure 11(b), the initial condition has a slight impact on the dispersivity,
unlike the transverse distribution and the drift discussed above. Only small variations
of DT are observed in the early stage of the transport process. Note that the release
position can affect the shear-enhanced diffusion and the swimming-induced diffusion (by
the vorticity-induced rotation), but has no effect on the translational diffusion. In the very
early stage, the translational diffusion and the swimming-induced diffusion are dominant.
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But with Pes = 1, the swimming-induced diffusion is not strong. Therefore, the difference
among the considered cases is small. The dispersivity of the line-source case is the largest
because the shear-induced dispersivity is strong due to the non-uniformity of the velocity
distribution over the whole cross-section. The shear rate at the centreline is zero, thus the
dispersivity of the centre-release case is the smallest. Although the shear rate at the wall is
the largest, the development of the dispersion process is strongly confined by the wall. So
DT of the wall-release case is smaller than that of the case released at y0 = 0.75. At large
times, DT of all cases reaches the same equilibrium state. The transient time scales are
nearly the same because the initial longitudinal length scales of these cases are infinitely
small (instantaneously release with δ(x) in the initial condition (2.8)).

4.3.4. Skewness
Similar to the dispersivity, the skewness is slightly affected by the initial condition, as
shown in figure 11(c). All of the considered cases have small values of skewness in the
very early stage of the transport process, but the initial condition can change the sign
of the skewness. Note that when Pef = 2, the advection effect is dominant, as discussed
in § 4.2.4 for the shear flow. Therefore, the release position can affect the shear-induced
asymmetry of the concentration distribution. For the off-centre-release case with y0 =
0.75, the skewness is positive in the very early stage, while the skewness of the other three
cases is negative. As time increases, the skewness will change its sign, as a result of the
swimming-induced diffusion and the advection. The reason is similar to that discussed in
§ 4.2.4. At large times, the skewness of all the cases approaches zero.

4.4. Influence of boundaries: wall accumulation
The above-discussed cases are under the reflective boundary condition (3.10). Now we
turn to the Robin condition (3.11) to consider the influence of wall accumulation on the
transient dispersion process of spherical particles. To demonstrate the combined effect of
wall accumulation with the shear flow and the swimming-induced diffusion, we choose six
cases, with Pef ∈ {0.1, 2, 5} and Pes ∈ {0.1, 1}. The same three sample times are chosen
to compare with the results without accumulation.

4.4.1. Local distribution: zeroth-order moment
As shown in figure 12, there are fundamental differences between the local distribution
under the Robin condition and that in figure 6 under the reflective condition. At the very
initial stage after the point-source release, the local distributions are similar under these
two types of condition, mainly depending on the swimming ability (Pes). As swimmers
reach the wall, they gradually form an obvious and sustained accumulation among the
incoming angle range (e.g. −π < θ < 0 at the wall y = 0). Under the Robin condition
(3.11), there is no penetration of particles through the walls in the phase space, for
each swimming angle. Therefore, particles can only change their swimming direction
by rotational diffusion. The incoming swimming probability flux is balanced by the
translational flux with a negative wall-normal concentration gradient, as clearly shown in
figure 12(e,k) at t = 0.3 with Pes = 1. Meanwhile, for the outgoing swimming angle (0 <

θ < π), the value of the distribution is very small and a positive wall-normal concentration
gradient is established at the walls. Taken together, particles mainly swim towards the
walls and thus accumulate at the walls. At larger times, the local distribution with wall
accumulation by the incoming flux of particles remains and does not become uniform
as that under the reflective condition (Ezhilan & Saintillan 2015; Jiang & Chen 2019a).
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Figure 12. Density plot of transient local distributions P0( y, θ, t) of spherical particles under the Robin
condition. The Péclet numbers: (a–c) Pes = 0.1, Pef = 0.1; (d–f ) Pes = 1, Pef = 0.1; (g–i) Pes = 0.1, Pef =
2; ( j–l) Pes = 1, Pef = 2; (m–o) Pes = 0.1, Pef = 5; (p–r) Pes = 1, Pef = 5. Sample times: (a,d,g,j,m,p)
t = 0.1; (b,e,h,k,n,q) t = 0.3; (c, f,i,l,o,r) t = 0.5.

Namely, the equilibrium state of the local transport under the Robin condition is not
homogeneous. The wall accumulation process can be demonstrated more clearly using
the transverse distribution, as defined in (4.1) and shown in figure 13.

Comparing the local distribution with different Pes and Pef in figures 12 and 13, the
wall accumulation is enhanced by a stronger swimming ability but is suppressed by the
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Figure 13. Transverse distributions Ct( y, t) of spherical particles under the Robin condition. Sample times:
(a) t = 0.1; (b) t = 0.3; (c) t = 0.5.

shear flow. When Pes = 1, the accumulation strength and the incoming-angle-preferred
orientation distribution are completely distinct from those with Pes = 0.1. The stronger the
incoming swimming probability flux, the larger the wall-normal concentration gradient,
and thus the stronger the wall accumulation. As for the influence of the shear flow,
when Pef is large enough and the vorticity-induced rotation is strong, as shown in
figure 12(q,r) and figure 13(c), the wall accumulation is greatly weakened and even
disappears. Additionally, the incoming-angle-preferred distribution of θ remains but is
nearly confined to only the half of the range, e.g. −π < θ < −π/2 at the wall y = 0. As
discussed in § 4.2.1 and previous studies (Zöttl & Stark 2012; Jiang & Chen 2019a), the
vorticity-induced swing motions of particles around the centreline of the channel lead
to the centre-point accumulation in the local space, which compensates the centreline
depletion by the Robin condition. Furthermore, particles mainly swim upstream (parallel
to the streamline). Thus, the incoming flux is weakened, reducing the strength of the wall
accumulation.

4.4.2. Drift
Next, we discuss the dispersion characteristics under the Robin condition. First, for the
drift shown in figure 14(a), there is a sharp drop in the very initial stage, similar to
the result shown in figure 8(a) under the reflective condition. The advection and the
swimming are the two key factors for the drift drop, as discussed in § 4.2.2. For the
current case, the accumulation is the third main contributor. Near the walls, the flow speed
relative to the mean flow rate is negative. Thus, the growing accumulation of particles
at the walls drives them to move upstream, which can greatly decrease the drift, the
local-distribution-weighted average of the longitudinal component of velocity, as shown
in (3.17). At large times, the wall-accumulation-reduced drift even becomes negative,
which is fundamentally different from the case under the reflective boundary condition.
The reason is that the equilibrium state of the local distribution under the Robin condition
is not homogenous, as discussed in our previous study (Jiang & Chen 2019a).

As shown in figure 14(a), the initial value of the drift is highly related to Pef , which
indicates that the advection effect is dominant for the drift in the very initial stage. The
decrease of the drift can be non-monotonic, especially when both Pef and Pes are large.
For example, the drift curves with Pes = 1, Pef = 1 and Pes = 1, Pef = 5 rise slightly
after the rapid drop, which is similar to the case under the reflective boundary condition,
as discussed in § 4.2.2. The long-time asymptotic mainly depends on Pes because the
swimming ability mainly determines the strength of the wall accumulation, as discussed
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Figure 14. Temporal evolution of dispersion characteristics of spherical particles under the Robin condition.
(a) The drift Ud(t), (b) the dispersivity DT (t) and (c) the skewness γ1(t).

in § 4.2.1. With small Pes = 0.1, the wall accumulation is weak, thus the equilibrium drift
is nearly zero for all the cases with different Pef . With Pes = 1, the equilibrium drift is
negative and far from zero due to the strong wall accumulation.

4.4.3. Dispersivity
Now we turn to the temporal evolution of the dispersivity. As shown in figure 14(b), there
is an overall upward trend of the dispersivity, from a small initial value to the larger Taylor
dispersivity, which is similar to the case under the reflective boundary condition discussed
in § 4.2.3. In the very initial stage, the wall accumulation is not fully formed because
most particles are still far away from the walls after the point-source release, as discussed
in § 4.4.1. Therefore, the increase of the dispersivity is the combined result of the shear
dispersion, swimming-induced diffusion and translational diffusion.

As particles spread toward the walls, the wall accumulation exerts its influence,
especially for the cases with large values of both Pes and Pef . Comparing the curve
with Pes = 1 and Pef = 2 in figure 14(b) with that in figure 8(b) under the reflective
condition, the accumulation makes the dispersivity decrease earlier (around t = 0.5) and
more considerably. The dispersivity also experiences a slight rise after the drop, but finally
approaches a smaller equilibrium value. As discussed in our previous study (Jiang & Chen
2019a), the wall accumulation can suppress the dispersion process in the plane Poiseuille
flow, for both the swimming and advection effects. In the accumulation layer, particles
mainly swim towards the wall, and thus the swimming-induced diffusion is weakened.
On the other hand, particles accumulate near the low-flow-speed regions, and thus the
advection effect by the relative velocity difference in the cloud of particles is also reduced.
For the curve with Pes = 1 and Pef = 5, the combined effect of the shear dispersion and
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Figure 15. Temporal evolution of the relative percentage difference rD(t) of dispersivity for spherical particles
under different boundary conditions. ‘Robin’ denotes the Robin condition, and ‘Reflective’ denotes the
reflective condition. In all cases, the swimming Péclet number Pes = 1.

the wall accumulation is much more complex. The curve shows strong fluctuations in the
transient stage (e.g. 0.3 < t < 1). Note that the whole dispersion process is dominated
by the advection effect. The strength of the wall accumulation is weakened, as discussed
in § 4.4.1, thus the suppression of the dispersivity is very weak in the Taylor dispersion
regime at large times.

It is of great interest to investigate whether the wall accumulation can slow down
or accelerate the approach process to the Taylor dispersion regime, compared with the
no-accumulation result under the reflective condition in § 4.2.3. To estimate the time
scale before entering the Taylor dispersion regime, we introduce the relative percentage
difference of dispersivity

rD(t) � DT(t) − D∞
T

D∞
T

× 100 %, (4.3)

where D∞
T � limt→∞ DT(t) is the Taylor dispersivity. A zero rD indicates that the Taylor

regime is reached.
As shown in figure 15, comparing the results under the Robin condition and the

reflective condition, the wall accumulation slightly influences the time scale for the Taylor
regime. When Pef is small (e.g. Pef = 0.1), the curves of rD are nearly the same and
the Taylor regime is reached when t ≈ 5, although the local distributions under these two
boundary conditions are fundamentally different, as shown in figure 6(c) and figure 12( f ).
Note that, when the flow rate is small, the swimming-induced diffusion is dominant in
the dispersion process. The difference between the Robin condition and the reflective
condition is whether to change the direction of the transverse motion after a particle hits
a wall, as discussed in Appendix B. However, the direction of the longitudinal motion
remains unchanged under both conditions. Therefore, the overall longitudinal dispersion
process is similar under these two conditions. When Pef is larger (e.g. Pef = 2), although
the temporal variations of rD are quite different under these two boundary conditions, they
approach zero nearly at the same time (t < 5). Only when Pef is very large (e.g. Pef = 5),
can the wall accumulation, to some extent, hinder the dispersion process: there is still a
small fluctuation of dispersivity under the Robin condition when the dispersivity under the
reflective condition is nearly steady.
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4.4.4. Skewness
Finally, we discuss the temporal evolution of the skewness. Overall, the wall
accumulation can enhance the skewness for both the dispersion regimes dominated by
the swimming-induced diffusion and the advection. First, in the initial stage, the evolution
of the skewness is similar to that under the reflective boundary condition. Comparing
figure 14(c) with figure 8(c), the skewness is negative, due to the advection effect. It first
decreases and then increases as time increases. When Pef is small, the swimming-induced
diffusion effect is dominant in the dispersion process. The negative skewness rises and
becomes positive at larger times, because of the strong vorticity-induced rotation of the
swimming directions of particles near the walls, as discussed in § 4.2.4 for the reflective
boundary condition. Therefore, under the Robin condition, the wall accumulation makes
the positive skewness larger. Much more particles concentrate near the walls and disperse
slower than those near the centreline of the channel. When Pef is large and the advection
effect is dominant in the dispersion process, the absolute value of the skewness under
the Robin condition is larger than that under the reflective condition. This is because the
shear-enhanced dispersivity is larger near the walls where the shear rate is larger for the
plane Poiseuille flow. The wall accumulation can thus strengthen the advection effect. At
large times, the skewness gradually approaches zero for all the cases, which is similar to
that under the reflective condition, although the decay process under the Robin condition
is slower.

4.5. Influence of particle shape: shear-induced alignment
The above discussion considers only the spherical particles. Now we focus on the general
case of ellipsoidal particles. Unlike spherical particles, ellipsoidal particles (with shape
factor α0 > 0) experience not only the rotation induced by the vorticity of the fluid but
also the alignment induced by the strain motion of the fluid (Ezhilan & Saintillan 2015),
as shown by Jeffery’s equation (2.4) for the angular velocity. For infinitely thin rod-like
particles (with α0 = 1), the shear-induced alignment makes them swim parallel to the
streamlines, also called streamwise alignment (rheotaxis) (Pedley & Kessler 1992). The
steady values of the local distribution, drift and dispersivity for the case of α0 = 1 have
been discussed in our previous study (Jiang & Chen 2019a). To demonstrate the effect of
shear-induced alignment on the transient state and compare it with the above-discussed
cases, we choose four cases of ellipsoidal particles with α0 ∈ {0.5, 1} under the Robin
condition and reflective boundary condition. Other parameters are fixed: Pes = 1, and
Pef = 2. The current temporal result corresponds to our previous result (Jiang & Chen
2019a) in the long-time asymptotic limit.

4.5.1. Local distribution: zeroth-order moment
As shown in figure 16, the shear-induced alignment of ellipsoidal particles significantly
affects the distribution of the swimming direction during the transient dispersion process.
First, for the Robin condition, it has been shown in figure 12( j,k,l) for spherical particles
that the vorticity-induced rotation confines the incoming-angle-preferred distribution to
nearly only the half of the range: particles mainly swim upstream near the walls (θ = ±π).
The strain-induced alignment further enhances the upstream-preferred angle distribution.
Additionally, some ellipsoidal particles near the walls can swim downstream, which is not
observed in the spherical case.

Second, for the reflective condition, the vorticity-induced tendency to upstream
swimming of spherical particles in the middle of the channel after the release is weakened
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Figure 16. Density plot of transient local distributions P0( y, θ, t) of ellipsoidal particles under the Robin and
reflective conditions: (a–c) α0 = 0.5, Robin condition; (d–f ) α0 = 1; Robin condition; (g–i) α0 = 0.5, Robin
condition; ( j–l) α0 = 1, reflective condition. Sample times: (a,d,g,j) t = 0.1; (b,e,h,k) t = 0.3; (c, f,i,l) t = 0.5.
In all cases, Pes = 1, Pef = 2.

for ellipsoidal particles. Comparing figure 16(g–l) with figure 6(g–i), ellipsoidal particles
near the walls mainly swim upstream, the same as those under the Robin condition. While
in the middle of the channel, some particles swim downstream, due to the shear-induced
alignment effect, which is different from the spherical particles.

The shear-induced alignment of ellipsoidal particles can significantly change the
distribution of θ . However, it impacts slightly on the transverse concentration distribution.
As shown in figure 17, there are only small differences between the transverse distributions
with different shape factors under the same boundary condition. The curves mainly depend
on the type of boundary condition for the considered cases with Pef = 2. The cloud
of particles has reached the near-wall region by swimming before the shear-induced
alignment exerts its full influence.

4.5.2. Drift
We now discuss the temporal evolution of the drift, dispersivity and the skewness for
ellipsoidal particles. First, as shown in figure 18(a), the effect of the shear-induced
alignment on the drift is not large. In the very initial stage after the point-source release in
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Figure 17. Transverse distributions Ct( y, t) of ellipsoidal particles under the Robin and reflective conditions.
Sample times: (a) t = 0.1; (b) t = 0.3; (c) t = 0.5. In all cases, Pes = 1, Pef = 2.

the middle of the channel, the drift is positive due to the advection effect. The evolution
of the drift of ellipsoidal particles with different shape factors is nearly the same as that
of spherical particles. At large times, under the reflective condition, the drift of ellipsoidal
particles diminishes with time, similar to that of spherical particles. Because the transverse
distribution is nearly uniform, as shown in figure 17, the advection results in a small
drift. The swimming effect is nearly balanced between the preferred directions of the
shear-induced alignment. However, under the Robin conditions, the drift curves deviate
from each other at large times. As discussed in § 4.4.2, the wall accumulation leads to a
negative drift for spherical particles in the plane Poiseuille flow. For ellipsoidal particles,
the shear-induced alignment further enhances the upstream swimming near the walls. The
stronger the rheotaxis (larger α0), the smaller the drift.

4.5.3. Dispersivity
Next, for the dispersivity, as shown in figure 18(b), the shear-induced alignment can
enhance the dispersion process of ellipsoidal particles, especially at large times, for
both the reflective boundary condition and the Robin condition. First, for the reflective
condition, the dispersivity increases monotonically with time, similar to the spherical
case in § 4.2.3. The shear-induced alignment makes the swimming direction of ellipsoidal
particles tilt to the streamlines. Thus the swimming-induced longitudinal dispersivity
is larger. Note that, because the slight impact of the shear-induced alignment on
the transverse concentration distribution, the advection-enhanced dispersivity is almost
unaffected by the alignment. Second, for the Robin condition, the wall accumulation
can suppress the dispersion process, as discussed in § 4.4.3 for spherical particles,
thus resulting in a drop of the dispersivity as time increases. The swimming-induced
longitudinal dispersivity of ellipsoidal particles is also enhanced by the alignment,
compensating some of the decreases.

4.5.4. Skewness
Finally, we discuss the skewness. Similar to the drift, the shear-induced alignment of
ellipsoidal particles has a slight impact on the temporal evolution of the skewness, as
shown in figure 18(c). In the very initial stage, the skewness of ellipsoidal particles is
negative due to the advection, the same as that of spherical particles. Under the reflective
condition, the differences between the skewness curves are small, for the same reasons as
for the drift: the advection effects with different α0 are comparable in nearly uniform
transverse distributions, and the swimming effects are nearly balanced between the
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Figure 18. Temporal evolution of dispersion characteristics of ellipsoidal particles under the Robin and
reflective conditions. (a) The drift Ud(t), (b) the dispersivity DT (t) and (c) the skewness γ1(t). In all cases,
Pes = 1, Pef = 2.

preferred directions. Under the Robin condition, the reduction of the swimming-induced
diffusion by the strong vorticity-induced rotation near the walls makes the skewness
positive, similar to that of spherical particles discussed in § 4.4.4. The shear-induced
alignment ellipsoidal particles can enhance the swimming-induced diffusion in both the
near-wall region and the middle of the channel. The overall effect enlarges the skewness.
Namely, the cloud of particles swimming downstream disperses faster.

5. Concluding remarks

For the transient dispersion process of active particles in confined flows, this work
makes a semi-analytical attempt to investigate the temporal evolution of the dispersion
characteristics, including the local distribution in the confined-section–orientation space,
the drift, dispersivity and skewness. To solve the moments of the p.d.f., the classic
integral transform method for passive transport problems is not applicable due to the
self-propulsion effect. We introduce the biorthogonal expansion method to overcome this
difficulty. The auxiliary eigenvalue problem in the local space is solved by the Galerkin
method using function series constructed for the reflective boundary condition and the
Robin condition for the wall accumulation phenomenon respectively.

The detailed study on spherical and ellipsoidal swimmers dispersing in a plane
Poiseuille flow clearly demonstrates the influences of the swimming, shear flow, initial
condition, wall accumulation and particle shape on the transient dispersion process. After
the point-source release at the centreline of the channel without background flow, the
local distribution of active particles in the confined-section–orientation space becomes
uniform faster than that of passive particles, as a result of the swimming-induced diffusion.
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With background flow, in the middle of the channel, the vorticity-induced rotation
drives spherical particles to swim upstream and to perform swing motions. There
is no doubt that the release position can greatly affect the transverse concentration
distribution. Under the Robin condition, the wall accumulation is gradually formed
as particles spread toward the walls. If imposing strong shear flow, the accumulation
will diminish and the incoming-angle-preferred distribution near the walls will tilt
upstream. The shear-induced alignment of ellipsoidal particles further enhances the
upstream-preferred angle distribution near walls but impacts slightly on the transverse
concentration distribution.

For the basic dispersion characteristics, the temporal evolution is complicated under
the influences of the swimming, advection, initial condition and wall accumulation.
Without advection, the drift and the skewness are zero due to the symmetry. The temporal
dispersivity is similar to that in unbounded space, with an anomalous transient stage by
the swimming-induced diffusion. If imposing the plane Poiseuille flow, the advection will
lead to a large positive drift and negative skewness in the very initial stage, which are also
greatly affected by the initial condition. The skewness can become positive at large times
if the dispersion process is dominated by the swimming-induced diffusion. For the overall
dispersivity, it is not a simple superposition of the shear-enhanced dispersivity and the
swimming-induced diffusion. The wall accumulation can hinder the dispersion process
by reducing both the shear-enhanced dispersivity and the swimming-induced diffusion.
However, the accumulation slightly influences the time scale for the Taylor regime. The
shear-induced alignment of ellipsoidal particles can enlarge the dispersivity but impacts
slightly on the drift and the skewness.

It is interesting to extend the current analysis to various situations. First, this work
only considers particles restricted in a 2-D channel flow, e.g. Chlamydomonas algae
swimming in a quasi-2-D microfluidic channel (Kantsler et al. 2013; Contino et al. 2015;
Ostapenko et al. 2018). The 2-D configuration is often a simplification of the 3-D case
in reality, already capturing many aspects of the swimming dynamics (Zöttl & Stark
2012, 2013). Only the component of the swimming direction projected onto the plane
is considered. The particles can be tracked more easily in such a restricted compartment.
However, the transport process of swimmers in a 3-D channel is much more complex.
Due to the development of 3-D tracking techniques, e.g. digital holographic microscopy
(Su, Xue & Ozcan 2012; Bianchi, Saglimbeni & Di Leonardo 2017) and multi-view
microscope (Buchner et al. 2021), more and more experimental studies have analysed
the 3-D trajectories. Swimmers, e.g. Heterosigma akashiwo (Bearon 2013), may undergo
helical trajectories. Not only the polar angle between the swimming direction and the
longitudinal direction but also the azimuthal angle should be considered the governing
equation (2.1). Besides, we only consider the plane Poiseuille flow. For the quasi-2-D
channel with a large ratio of width to depth (Hele-Shaw channel), the velocity distribution
is more uniform (across the width of the channel) than the parabolic profile (Chen et al.
2017). One can apply the analytical solution of the velocity profile in a 3-D channel (Shah
& London 1978). Much more effort is needed to analyse the dispersion characteristics of
swimmers in a 3-D channel, which is desirable for future work.

Second, this work has only considered very dilute suspensions. Future studies on dense
suspensions should include particle–particle and particle–fluid interactions. The temporal
evolution of the local distribution plays a key role in the analyses of the rheological
property (Takatori & Brady 2017; Saintillan 2018; Nambiar et al. 2019; Morris 2020),
self-organisation phenomenon, (Vicsek & Zafeiris 2012; Lushi, Wioland & Goldstein
2014; Lushi, Goldstein & Shelley 2018) and hydrodynamic instabilities (Pedley & Kessler
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1992; Hwang & Pedley 2014; Bees 2020). Moreover, besides the self-propulsion effect,
taxes of active particles, such as gravitaxis (for gravity), chemotaxis (for chemical
gradients) and phototaxis (for light) (Pedley & Kessler 1992; Bees & Croze 2014;
Goldstein 2015), probably have a great impact on the transient dispersion process.

Additionally, this work only considers a simple type of active particles, whose
swimming speed is fixed and the swimming direction undergoes a rotational-diffusion
process. The dispersion process of particles with other swimming mechanisms, e.g. the
run-and-tumble dynamics of E. coli, is of great interest (Berg 1993; Elgeti & Gompper
2015; Vennamneni, Nambiar & Subramanian 2020). Nevertheless, the influence of
particles’ swimming behaviour near boundaries is also a fundamental issue. This work
only considers two simple types of boundary condition, the reflective condition and
Robin condition, both of which have imposed ideal assumptions. For swimmers without
an obvious wall accumulation phenomenon, e.g. some artificial particles, the reflective
condition is preferred in the transport model, whose equilibrium concentration distribution
is uniform. For the case with highly concentrated boundary layers, the Robin condition is
often used (Enculescu & Stark 2011; Elgeti & Gompper 2013; Ezhilan & Saintillan 2015),
but it does not account for the hydrodynamic particle–wall interactions. In experiments,
the observed behaviour at boundaries can be much more complicated (Bianchi et al. 2017;
Lushi, Kantsler & Goldstein 2017), e.g. particles sliding along the surface (Sipos et al.
2015), scattering off (Volpe et al. 2011; Kantsler et al. 2013; Contino et al. 2015) and the
steric repulsion effect (Dehkharghani et al. 2019; Makarchuk et al. 2019). Further work
can consider these complex particle–wall interactions and develop appropriate boundary
conditions (Fu, Perthame & Tang 2021) for the continuum transport model.
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Appendix A. Expressions of moments by biorthogonal expansion

With the eigenvalues {λi}∞i=1, the biorthogonal family { fi}N
i=1 and { f �

i }N
i=1 and the

associated inner product 〈·, ·〉, one can use the expressions obtained by Barton (1983)
for the solution of the moment equation (3.22). Note that Barton (1983) wrote the
solutions in a general form with undermined eigenvalues and eigenfunctions. Therefore,
we just need to substitute the corresponding eigenvalues and eigenfunctions for a different
boundary condition into their expressions, and replace the orthogonality relation with the
biorthogonal one. For short, here we just give expressions for the first three moments in
current notation.

The zero-order moment (Barton 1983, (3.5b))

P0 =
N∑

i=1

aie−λitfi, (A1)

where the coefficient related to the initial condition

ai = 〈 f �
i ( y, θ),

1
2π

C( y)〉, i = 1, 2, . . . (A2)
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The first-order moment (Barton 1983, (3.13))

P1 =
N∑

i=1

aiBi,ite−λitfi +
N∑

i,j=1
j /= i

ajBi,j(e−λjt − e−λit)

λi − λj
fi, (A3)

where the coefficient related to the velocity profile

Bi,j = 〈 f �
i ( y, θ), [Pef u( y) + Pes cos θ ] fj( y, θ)〉, i, j = 1, 2, . . . (A4)

The second-order moment

P2 =
N∑

i=1

aiB2
i,it

2e−λitfi +
N∑

i=1

2aiDtte−λitfi

+
N∑

i,j,k=1
k /= j∧k /= i

2akBj,kBi,j(e−λkt − e−λit)

(λk − λi)(λk − λj)
fi +

N∑
i,j=1
i /= j

2aiBj,iBi,jte−λit

λj − λi
fi

+
N∑

i,j,k=1
k /= j∧j /= i

2akBj,kBi,j(e−λjt − e−λit)

(λk − λj)(λi − λj)
fi +

N∑
i,k=1
k /= i

2akBi,kBi,ite−λit

λk − λi
fi

+
N∑

i,j=1
j /= i

2ajBj,jBi,j[e−λit − e−λjt + (λi − λj)te−λjt]
(λj − λi)2 fi. (A5)

Appendix B. Comparison with Brownian dynamics simulation

To verify the solution of the moments by the biorthogonal expansion method, we perform
a Brownian dynamics simulation, which is widely used in numerical studies (Croze et al.
2013; Chilukuri et al. 2015; Apaza & Sandoval 2016; Guo, Jiang & Chen 2020; Wu et al.
2021). Attention should be paid to the treatment of the reflective and Robin boundary
conditions.

According to the dimensionless governing equation (2.1), the corresponding stochastic
differential equations for the coordinates of a swimmer (x(t), y(t), θ(t)) are

dx
dt

= Pef u( y) + Pes cos θ + √
2Dt

dWx

dt
,

dy
dt

= Pes sin θ + √
2Dt

dWy

dt
,

dθ

dt
= Ω( y, θ) + √

2Dr
dWθ

dt
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(B1)

where Wx(t), Wy(t) and Wθ (t) are independent standard Brownian motions. We simply
apply a forward Euler scheme with time step �t for discretisation. The nth step
coordinates of the swimmer are denoted as (xn, yn, θn). For the typical reflective boundary

927 A11-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

74
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.747


W. Jiang and G. Chen

0.1 1.0

1.00

5.00

0.50
MSD

0.05

0.10
Biorthogonal; Reflective

Biorthogonal; Robin

Numerical; Reflective

Numerical; Robin

10.0

10.00

0.5

t
Figure 19. Comparisons between the temporal evolution of MSD of spherical particles by the biorthogonal
expansion and Brownian dynamics simulation under different boundary conditions. ‘Robin’ denotes the Robin
condition, and ‘Reflective’ denotes the reflective condition. In all cases, Pes = 1, Pef = 2.
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Figure 20. Taylor dispersivity of spherical particles with different swimming abilities in a plane Poiseuille
flow. For passive particles, Pes = 0. In all cases, the reflective boundary condition is used and Pef = 5.

condition (2.5), if the swimmer exceeds the boundaries, then

yn → 2 − yn, θn → −θn, for yn > 1,

yn → −yn, θn → −θn, for yn < 0,

}
(B2)

where → means assignment. This treatment is common in Brownian dynamics
simulations (Volpe et al. 2014; Bechinger et al. 2016). For the Robin condition to account

927 A11-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

74
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.747


Transient dispersion process of active particles

for the wall accumulation of swimmers,

yn → 2 − yn, θn → θn, for yn > 1,

yn → −yn, θn → θn, for yn > 1.

}
(B3)

Note that the swimming direction is not reversed as for the reflective condition after the
collision with a wall. In fact, the Robin condition, or the no-penetration condition for
the probability flux, can be viewed as a ‘reflective’ condition for the boundaries in the
phase space with θ treated as an extra position coordinate. Another similar treatment puts
swimmers that exceed a wall back exactly at the wall, which is called a potential-free
algorithm (Heyes & Melrose 1993; Duzgun & Selinger 2018; Peng & Brady 2020).

In the simulation, we use a small time step �t = 10−3 to capture the transient transport
process. Swimmers are initially put at y0 = 0.5 with θ0 uniformly distributed in the
interval [−π, π). 105 trajectories are simulated for each case. As shown in figure 19, the
semi-analytical result of the MSD of spherical swimmers by the biorthogonal expansion is
in agreement with the numerical result by the Brownian dynamics simulation under both
types of boundary condition.

Appendix C. Taylor dispersivity of particles with different swimming abilities

Figure 20 shows the Taylor dispersivity of active particles with different Pes. Note that
Pef = 5 is large, thus when Pes is small, the shear-induced dispersivity by advection is
dominant. The Taylor dispersivity of active particles decreases as Pes increases from zero
(the case of passive particles), because the shear effect and the swimming effect can inhibit
each other. However, when Pes is large, the swimming-induced diffusion is dominant.
Thus, the Taylor dispersivity increases with Pes.
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