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We study steady streaming in a channel between two parallel permeable walls induced by

oscillating (in time) injection/suction of a viscous fluid at the walls. We obtain an asymptotic

expansion of the solution of the Navier–Stokes equations in the limit when the amplitude of

normal displacements of fluid particles near the walls is much smaller than both the width of

the channel and the thickness of the Stokes layer. It is shown that the steady part of the flow

in this problem is much stronger than the steady flow produced by vibrations of impermeable

boundaries. Another interesting feature of this problem is that the direction of the steady flow

is opposite to what one would expect if the flow was produced by vibrations of impermeable

walls.

Key words: Boundary-layer theory; Steady streaming; Asymptotic methods; Oscillating vis-

cous flows; Navier-Stokes equations

1 Introduction

It is well known that an oscillating (in time) body force or vibrations of the boundary of

a domain occupied by a viscous fluid can produce not only an oscillating flow but also a

(relatively) weak steady flow, which is usually called steady streaming (see [8, 11, 12]). In

this paper, we present a theory of steady streaming in a channel with fixed but permeable

walls produced by the given velocity at the walls which is oscillating in time with angular

frequency ω. The basic parameters of the problem are the inverse Strouhal number ε2

and the Reynolds number R, defined by

ε2 =
1

St
=
V ∗

0

ωd
, R =

V ∗
0 d

ν
, (1.1)

where V ∗
0 is the amplitude of the oscillating velocity at the walls, d is the distance between

the walls and ν is the kinematic viscosity of the fluid. Parameter ε2 measures the ratio of

the amplitude a = V ∗
0 /ω of the displacements of fluid particles in an oscillating velocity

field with amplitude V ∗
0 to the distance between the walls, i.e. ε2 = a/d. If δ =

√
ν/ω

is the thickness of the oscillatory boundary layer (the Stokes layer) near the wall, then

the Reynolds number R can be written as R = ad/δ2. Another dimensionless parameter

which is widely used in literature is the ‘streaming Reynolds number’, Rs = V ∗2
0 /ων. In

terms of parameters R and ε, Rs = ε2R. We are interested in the asymptotic behaviour

of solutions of the Navier–Stokes equations in the limit ε � 1 and R ∼ 1. This means
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that the amplitude of displacements of fluid particles is much smaller than the thickness

of the Stokes layer. Indeed, R ∼ 1 implies that a/δ ∼ δ/d ∼ ε. Also note that this limit

corresponds to small Rs (Rs ∼ ε2 � 1).

It is also worth mentioning that, in many papers on peristaltic pumping, a different

definition of the Reynolds number is used. For example, in [2, 3] Reynolds number R̃ is

defined as R̃ = cd/ν, where c is the wave speed of the peristaltic wave that travels along

the channel. The relation between R and R̃ is given by R̃ = (L/2πd)R/ε2, where L is the

wavelength of the peristaltic wave. Evidently, R̃ � R when L/2πd ∼ 1 and ε � 1, so that

flows at R ∼ 1 in our approach correspond to high Reynolds number flows in [2, 3]. The

definition of the Reynolds number accepted in the present paper is more general and is

based on the physical velocity of the fluid at the walls rather than on the wave speed

which is not related to the actual velocity of the fluid.

Early studies of the steady streaming in a channel induced by vibrations of the walls

had been focused on the problem of peristaltic pumping in channels and pipes under the

assumption of low Reynolds numbers (R � 1) and small amplitude-to-wavelength ratio

(see, e.g. [2, 7, 17]). In recent years, there had been considerable renewed interest in the

problem motivated by possible applications of steady streaming to micro-mixing [1,14,18]

and to drag reduction in channel flows [3]. In all asymptotic theories of steady streaming

produced by vibrating impermeable boundaries, the magnitude of steady velocity is O(ε2)

for ε � 1. This is true not only for R ∼ 1 but also for R � 1 and R � 1. The aim of

the present study is to show that if the boundary is permeable, then the steady part of

the velocity is O(ε) for small ε, i.e. asymptotically much bigger than in the case of an

impermeable boundary.

To construct an asymptotic expansion, we use the Vishik–Lyusternik method rather

than the method of matched asymptotic expansions (see, e.g. [10, 15]). Although there is

certain similarity between these two techniques, they are different. In both methods, at

each order of the expansion, the approximation consists of two terms. In the method of

matched asymptotic expansions, the approximation is split into an inner (boundary layer)

and outer (exterior flow) parts which are computed independently and then matched

in an intermediate region (not too far and not too close to the boundary) where both

parts are assumed to give a valid approximation to the solution. In the Vishik–Lyusternik

method, the approximation at each order consists of a term associated with a regular

expansion and a ‘corrector’ term which is non-zero only within a thin boundary layer and

which gives a correction to the regular term, so that their sum satisfies required boundary

conditions. In a present paper, the use of the Vishik–Lyusternik method allows us to

construct a uniformly valid asymptotic expansion up to any order in the small parameter

ε. Some recent application of this method in fluid dynamics can be found in [4–6,13, 16].

The reason we employ the Vishik–Lyusternik method rather than the method of matched

asymptotic expansions is that it is better suited for our problem and allows us to tackle the

problem directly. Although it is also possible to construct an asymptotic solution using the

latter method, it cannot be applied to our problem directly. It would require a reduction

of the original problem to a problem with zero normal velocity at the walls. Although this

can be done (and in many ways), it would make the solution less transparent physically.

The outline of the paper is as follows. In Section 2, we formulate the mathematical

problem. In Section 3, the asymptotic expansion of the solution is described. In Section 4,
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we consider simple examples in which the leading-order asymptotic solution can be

obtained analytically. Finally, conclusions are presented in Section 5.

2 Formulation of the problem

We consider a two-dimensional viscous incompressible flow in an infinite channel of width

d. The walls of the channel are permeable for the fluid, and the flow is produced by a given

velocity at the walls which is assumed to be periodic along the channel with period L∗ and

oscillating in time with angular frequency ω. We will use the following non-dimensional

quantities:

τ = ωt∗, x =
x∗

d
, v =

v∗

V ∗
0

, p =
p∗

ρdωV ∗
0

.

Here t∗ is the time; x∗ = (x∗, y∗); x∗ and y∗ are Cartesian coordinates, the x∗-axis being

parallel to the channel; v∗ = (u∗, v∗) is the velocity of the fluid; p∗ is the pressure; ρ is the

density; V ∗
0 is the maximum of the given velocity at the walls over all x∗ and t∗. In these

variables, the Navier–Stokes equations take the form

vτ + ε2(v · ∇)v = −∇p+
ε2

R
∇2v, ∇ · v = 0, (2.1)

where the dimensionless parameters ε2 and R are defined by equation (1.1). Equations

(2.1) are to be solved subject to the boundary conditions

v
∣∣
y=0

= Va(x, τ, ε), v
∣∣
y=1

= Vb(x, τ, ε). (2.2)

Here Va = (Ua, V a) and Vb = (Ub, V b) are given functions which are 2π-periodic in τ and

have zero mean value:

V̄a ≡ 1

2π

2π∫
0

Va(x, τ, ε) dτ = 0, V̄b ≡ 1

2π

2π∫
0

Vb(x, τ, ε) dτ = 0. (2.3)

They are also assumed to be periodic in x with period L = L∗/d and satisfy the condition

L∫
0

Va(x, τ, ε) dx =

L∫
0

Vb(x, τ, ε) dx (2.4)

which follows from incompressibility of the fluid. In what follows, we are interested in the

asymptotic behaviour of periodic (both in τ and x) solutions of equations (2.1) and (2.2)

in the limit ε → 0 and R = O(1). We assume that Va,b(x, τ, ε) can be written as

Va,b(x, τ, ε) = Va,b
0 (x, τ) + εVa,b

1 (x, τ) + ε2Va,b
2 (x, τ) + · · · (2.5)

We seek a solution of (2.1) and (2.2) in the form

u = ur + ua + ub, v = vr + ε va + ε vb, p = pr + pa + pb. (2.6)
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Here ur , vr and pr are functions of x, y, τ and ε; ua, va, and pa depend on x, τ, ε and

the boundary layer variable ξ = y/ε; ub, vb and pb depend on x, τ, ε and the boundary

layer variable η = (1 − y)/ε. Functions ur , vr and pr represent a regular expansion of the

solution in power series in ε (an outer solution), and (ua, va, pa) and (ub, vb, pb) correspond

to boundary layer corrections to this regular expansion (inner solutions). Note that the

vertical component of the velocity in the boundary layers is assumed to be proportional

to ε. This is done just for convenience (this is the standard scaling in the boundary layer

theory and, with this scaling, the continuity equation remains unchanged). If we had

assumed the same scaling for both components of the velocity, i.e. v = vr + va + vb rather

than (2.6), we would arrive at the same asymptotic expansion (although the intermediate

equations would be slightly different).

In what follows, we assume that the boundary layer parts of the expansion rapidly

decay outside thin boundary layers:

ua, va, pa = o(ξ−s) as ξ → ∞ and ub, vb, pb = o(η−s) as η → ∞ (2.7)

for every s > 0. This means that the boundary layer part of the solution decays faster

than any power of ξ (or η) as ξ (or η) goes to infinity. This assumption will be verified

a posteriori.

3 Asymptotic expansion

In this section, we will describe the procedure of constructing the asymptotic expansion.

We begin with the boundary conditions.

3.1 Boundary conditions

To obtain boundary conditions for ur and ua at the bottom wall, we insert (2.6) into the

first condition (2.2) and ignore ub and vb because, according to (2.7), these are supposed

to be small everywhere except a thin boundary layer near y = 1. This yields

ur
∣∣
y=0

+ ua
∣∣
ξ=0

= Ua, vr
∣∣
y=0

+ ε va
∣∣
ξ=0

= Va. (3.1)

Similarly, at the upper wall we have

ur
∣∣
y=1

+ ub
∣∣
η=0

= Ub, vr
∣∣
y=1

+ ε vb
∣∣
η=0

= Vb. (3.2)

Further, we assume that the regular and boundary layer parts of the solution can be

presented in the form of power series in ε:

vr = vr0 + ε vr1 + · · · , pr = pr0 + ε pr1 + · · · , (3.3)

ua = ua0 + ε ua1 + · · · , va = va0 + ε va1 + · · · , pa = pa0 + ε pa1 + · · · , (3.4)

ub = ub0 + ε ub1 + · · · , vb = vb0 + ε vb1 + · · · , pb = pb0 + ε pb1 + · · · (3.5)
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Now we substitute (2.6), (3.3)–(3.5) into (3.1) and (3.2) and collect terms of equal powers

in ε. This leads to the following boundary conditions:

ur0
∣∣
y=0

+ ua0
∣∣
ξ=0

= Ua
0 , vr0

∣∣
y=0

= Va
0 , (3.6)

urk
∣∣
y=0

+ uak
∣∣
ξ=0

= Ua
k , vrk

∣∣
y=0

+ vak−1

∣∣
ξ=0

= Va
k (3.7)

ur0
∣∣
y=1

+ ub0
∣∣
η=0

= Ub
0 , vr0

∣∣
y=1

= Vb
0 , (3.8)

urk
∣∣
y=1

+ ubk
∣∣
η=0

= Ub
k , vrk

∣∣
y=1

+ vbk−1

∣∣
η=0

= Vb
k (3.9)

for k � 1.

In view of (2.7), we also require that for every s > 0 and for each k = 0, 1, . . .,

uak, v
a
k , p

a
k = o(ξ−s) as ξ → ∞ and ubk, v

b
k , p

b
k = o(η−s) as η → ∞. (3.10)

3.2 Regular part of the expansion

On substituting (3.3) into equation (2.1), we find that the successive approximations vrk
and prk satisfy the equations:

∂τ v
r
k = −∇prk + Fk, ∇ · vrk = 0, (3.11)

where F0 ≡ 0, F1 ≡ 0 and

Fk = −
k−2∑
l=0

(vrl · ∇)vrk−2−l +
1

R
∇2vrk−2 (3.12)

for k � 2. In what follows, we will use the following notation: For any 2π-periodic f(τ),

f(τ) = f̄ + f̃(τ), f̄ =
1

2π

2π∫
0

f(τ) dτ, (3.13)

where f̄ is the mean value of f(τ) and, by definition, f̃(τ) = f(τ) − f̄ is the oscillatory part

of f that has zero mean value.

In the leading order (k = 0), equation (3.11) reduces to

∂τ v
r
0 = −∇pr0, ∇ · vr0 = 0. (3.14)

The general solution of (3.14), which is periodic in τ, can be written as

vr0 = v̄r0 + ṽr0, ṽr0 = ∇φ0, (3.15)

where φ0 has zero mean value and is the solution of the boundary value problem

∇2φ0 = 0, ∂y φ0

∣∣
y=0

= Va
0 , ∂y φ0

∣∣
y=1

= Vb
0 , φ0(x+ L, y) = φ0(x, y). (3.16)

Equations (3.16) guarantee that the leading-order boundary conditions for normal velocity
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are satisfied. However, the conditions for the tangent component of the velocity cannot

be satisfied at this stage. They will be satisfied later when the boundary layer part of the

expansion is taken into account.

To find the leading-order averaged velocity v̄r0, we need to consider the equation for vr2
(the first equation (3.11) for k = 2). It can be written as

∂τv
r
2 + (vr0 · ∇)vr0 = −∇pr2 +

1

R
∇2vr0. (3.17)

Averaging this equation and the incompressibility condition for vr0 and using the fact that

ṽr0 is irrotational, we obtain

(v̄r0 · ∇)v̄r0 = −∇Π0 +
1

R
∇2v̄r0, ∇ · v̄r0 = 0, (3.18)

where Π0 = p̄r2 + |∇φ0|2/2. Equations (3.18) represent the time-independent Navier–Stokes

equations. It will be shown later that, in the leading order, the boundary layers are purely

oscillatory, i.e. ūa0 = 0, v̄a0 = 0, ūb0 = 0 and v̄b0 = 0. Keeping this in mind, we average

boundary conditions (3.6) and (3.8). This leads to the zero boundary conditions for v̄r0:

v̄r0
∣∣
y=0

= v̄r0
∣∣
y=1

= 0. (3.19)

The only solution of (3.18) that is periodic in x and satisfies (3.19) is zero solution:

v̄r0 ≡ 0. (3.20)

This means that there is no steady streaming in the leading order of the expansion.

Consider now the first-order equations. Equations (3.11) for k = 1 have the same form

as equation (3.14), and the general solution can be written as

vr1 = v̄r1 + ṽr1, ṽr1 = ∇φ1, (3.21)

where φ1 has zero mean value and is the solution of the boundary value problem

∇2φ1 = 0, φ1(x+ L, y) = φ1(x, y),

∂y φ1

∣∣
y=0

= Va
1 − ṽr0

∣∣
y=0
, ∂y φ1

∣∣
y=1

= Vb
1 − ṽr0

∣∣
y=1

. (3.22)

Boundary conditions for ∂y φ1 ensure that the oscillatory part of vr1 satisfies the boundary

conditions (3.7) and (3.9) for k = 1. Again, boundary conditions for ur1 will be satisfied

later when the boundary layers are taken into account.

To obtain equations for the averaged velocity v̄r1(x), we average the incompressibility

condition for v̄r1 and the equation for vr3 (the first equation (3.11) for k = 3) and then take

account of equation (3.20) and the fact that ṽr0 and ṽr1 are both irrotational. This yields

0 = −∇Π1 +
1

R
∇2v̄r1, ∇ · v̄r1 = 0, (3.23)

where Π1 = p̄r3 + (∇φ0 · ∇φ1). Thus, the first-order averaged outer flow is described by the

Stokes equations.
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Boundary conditions for v̄r1 are obtained by averaging boundary conditions (3.7) and

(3.9) for k = 1:

ūr1
∣∣
y=0

= −ūa1
∣∣
ξ=0
, v̄r1

∣∣
y=0

= 0, (3.24)

ūr1
∣∣
y=1

= −ūb1
∣∣
η=0
, v̄r1

∣∣
y=1

= 0. (3.25)

Here we have used the fact that V̄a,b
1 = 0 and our assumption (which will be verified later)

that v̄a,b0 = 0. Thus, the first-order averaged flow can be determined by solving the Stokes

equations (3.23) subject to boundary conditions (3.24) and (3.25), provided that ūa1 and ūb1
are known.

The regular expansion described above can continue to give us equations and boundary

conditions up to any order in ε, but we will restrict out attention only to the first two

terms of the expansion.

3.3 Boundary layers

To derive boundary layer equations near the bottom wall (y = 0), we ignore ub, vb and

pb because they are supposed to be small everywhere except a thin boundary layer near

y = 1, and assume that

u = ur0 + ua0 + ε(ur1 + ua1) + · · · , v = vr0 + ε(vr1 + va0) + · · · , p = pr0 + pa0 + ε(pr1 + pa1) + · · ·

We substitute these into equation (2.1) and take into account that urk , v
r
k and prk satisfy

(3.11). Then we make the change of variables y = ε ξ in urk , v
r
k and prk , expand every

function of ε ξ in Taylor’s series at ε = 0 and, finally, collect terms of the equal powers in

ε. As a result, we obtain

∂τ u
a
k + ∂x p

a
k − 1

R
∂2
ξ u

a
k = Fak , ∂ξ p

a
k = Gak, ∂x u

a
k + ∂ξ v

a
k = 0 (3.26)

for k = 0, 1, . . . In equation (3.26), functions Fak and Gak depend on vr0, . . . , v
r
k−1, u

a
0, . . . , u

a
k−1,

va0 , . . . , v
a
k−1. For k = 0, 1, these are given by

Fa0 = 0, Fa1 = −Va
0 (x, τ) ∂ξ u

a
0, Ga0 = 0, Ga1 = 0. (3.27)

A similar procedure leads to the equations of the boundary layer near the upper wall:

∂τ u
b
k + ∂x p

b
k − 1

R
∂2
η u

b
2 = Fbk , ∂η p

b
k = −Gbk, ∂x u

b
k − ∂η v

b
k = 0 (3.28)

for k = 0, 1, . . . . Functions Fbk and Gbk for k = 0, 1 are given by

Fb0 = 0, Fb1 = Vb
0 (x, τ) ∂η u

b
0, Gb0 = 0, Gb1 = 0. (3.29)
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3.3.1 Leading-order equations

Boundary layer at y = 0: In the leading order (k = 0), equation (3.26) simplify to

∂τ u
a
0 + ∂x p

a
0 − 1

R
∂2
ξ u

a
0 = 0, ∂ξ p

a
0 = 0, ∂x u

a
0 + ∂ξ v

a
0 = 0.

The second equation and the condition of decay at infinity (in variable ξ) for pa0 imply

that pa0 ≡ 0. Hence, the first equation reduces to the heat equation

∂τ u
a
0 =

1

R
∂2
ξ u

a
0. (3.30)

Boundary condition for ua0 at ξ = 0 follows from (3.6) and is given by

ua0
∣∣
ξ=0

= Ua
0 − ur0

∣∣
y=0

= Ua
0 − ∂x φ0

∣∣
y=0

. (3.31)

We note in passing that for simple harmonic oscillations, when Va and Vb in equation

(2.2) can be written as

Va(x, τ, ε) = Re
(
V̂a(x, ε)eiτ

)
, Va(x, τ, ε) = Re

(
V̂a(x, ε)eiτ

)
,

the boundary condition (3.31) can be presented in the form

ua0
∣∣
ξ=0

= Re(ĥ(x) eiτ)

for a suitable function ĥ(x). In this case, the periodic (in τ) solution of equation (3.30)

that satisfies (3.31) and the condition of decay at infinity is given by the simple formula

ua0 = Re(ĥ(x) eiτ−
√
R/2 (1+i)ξ).

Let us show that ūa0 ≡ 0. Averaging equation (3.30), we find that ∂2
ξ ū

a
0 = 0. The only

solution of this equation that satisfies the decay condition at infinity and the boundary

condition ūa0|ξ=0 = 0 (which follows from (3.31) and the fact that Ūa
0 = 0 and φ̄0 = 0) is

zero solution. Thus, in the leading order the boundary layer at y = 0 is purely oscillatory:

ūa0 ≡ 0. This partly justifies our earlier assumption.

Integration of the incompressibility condition in variable ξ gives us the normal velocity

va0:

va0(x, ξ, τ) = ∂x

∞∫
ξ

ua0(x, ξ
′, τ) dξ′. (3.32)

Here the constant of integration is chosen so as to guarantee that va0 → 0 as ξ → ∞. Note

that equation (3.32) together with the fact that ūa0 ≡ 0 implies that v̄a0 ≡ 0.

Boundary layer at y = 1: Exactly the same arguments as above lead to the problem

∂τ u
b
0 =

1

R
∂2
η u

b
0, (3.33)

ub0
∣∣
η=0

= Ub
0 − ∂x φ0

∣∣
y=1
, ub0 → 0 as η → ∞. (3.34)
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Again, it follows from (3.33) and (3.34) that ūb0 ≡ 0, and this justifies our assumption that,

in the leading order, the boundary layers are purely oscillatory. The normal velocity vb0 is

given by

vb0(x, η, τ) = −∂x

∞∫
η

ub0(x, η
′, τ) dη′. (3.35)

Equation (3.35) implies that v̄b0 ≡ 0. Now u
a,b
0 and va,b0 are known, and the oscillatory part

of the first-order outer flow can be found by solving problem (3.22).

3.3.2 First-order equations

Boundary layer at y = 0: Consider now equation (3.26) for k = 1. Again, the condition of

decay at infinity for pa1 and the second equation (3.26) imply that pa1 ≡ 0. Hence, we have

∂τ u
a
1 =

1

R
∂2
ξ u

a
1 − Va

0 (x, τ) ∂ξ u
a
0. (3.36)

Averaging this equation, we find that ∂2
ξ ū

a
1 = R Va

0 (x, τ) ∂ξ u
a
0. Integration in ξ yields

ūa1 = −R
∞∫
ξ

V a
0 (x, τ)ua0(x, ξ

′, τ) dξ′. (3.37)

Here the constants of integration are chosen so as to satisfy the condition of decay at

infinity. The oscillatory part of ua1 as well as both averaged and oscillatory parts of va1 can

also be found but are not needed in what follows.

Boundary layer at y = 1: A similar analysis leads to

ūb1 = R

∞∫
η

V b
0 (x, τ)ub0(x, η

′, τ) dη′. (3.38)

Now we know both ūa1 and ūb1, so that these can be inserted into the boundary conditions

(3.24) and (3.25). Then the first-order averaged outer flow can be determined by solving

the Stokes problems (3.23)–(3.25).

3.4 Steady streaming

In the leading order, the steady streaming is described by the first non-zero term in the

expansion for the averaged flow. The averaged velocity field has the form

ū = ε
(
ūr1 + ūa1 + ūb1

)
+ O(ε2), v̄ = ε v̄r1 + O(ε2),

where boundary layer contributions ūa1 and ūb1 are given by equations (3.37) and (3.38)

and v̄r1 is the solution of the Stokes equations that satisfies boundary conditions (3.24)

and (3.25). If we introduce the stream function for the averaged flow ψ̄ defined by the
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standard relations ū = ψ̄y and v̄ = −ψ̄x, then the corresponding expansion of ψ̄ will have

the form

ψ̄ = ε ψ̄r1 + O(ε2),

where ψ̄r1 is the stream function for v̄r1 = (ūr1, v̄
r
1). Note that boundary layer terms do

not appear in the leading order of the expansion for ψ̄. This is because to get the O(ε)

boundary layer velocity one needs the O(ε2) stream function.

The fact that the steady streaming is described by quantities that are linear in ε is in

sharp contrast with the asymptotic theories of steady streaming produced by transverse

vibrations of the solid impermeable walls where it is an effect of second order in ε. To

clarify this point, let us discuss it in more detail.

First, we note that the case of vibrating impermeable walls is also covered by the

present theory. The only difference from what has already been discussed comes from the

boundary conditions, which now take the form:

v
∣∣
y=ε2f(x,τ)

= fτ(x, τ) ey, v
∣∣
y=1+ε2g(x,τ)

= gτ(x, τ) ey. (3.39)

Here y = ε2f(x, τ) and y = 1 + ε2g(x, τ) represent vibrating walls, f and g are given

functions which are periodic in both τ and x with periods 2π and L respectively. Assuming

that ε is small, we expand the left sides of (3.39) in Taylor’s series about y = 0 and y = 1:

v
∣∣
y=0

+ ε2f(x, τ) ∂y v
∣∣
y=0

+ O(ε4) = fτ(x, τ) ey, (3.40)

v
∣∣
y=1

+ ε2g(x, τ) ∂y v
∣∣
y=1

+ O(ε4) = gτ(x, τ) ey. (3.41)

Now, according to (2.6), (3.3)–(3.5), near the bottom wall, we have

u = ur0 + ua0 + ε
(
ur1 + ua1

)
+ O(ε2), v = vr0 + ε

(
vr1 + va0

)
+ O(ε2).

Substituting these in equation (3.40) and collecting the terms of equal powers in ε, we

obtain the following conditions:

ur0
∣∣
y=0

+ ua0
∣∣
ξ=0

= 0, vr0
∣∣
y=0

= fτ, (3.42)

ur1
∣∣
y=0

+ ua1
∣∣
ξ=0

+ f ∂ξ u
a
0

∣∣
ξ=0

= 0, vr1
∣∣
y=0

+ va0
∣∣
ξ=0

= 0 etc. (3.43)

Note the presence of a term involving ∂ξ u
a
0 in equation (3.43). It comes from the second

term on the left side of (3.40) after we take into account that ∂y u
a
0 = ε−1 ∂ξ u

a
0. Similarly,

near the upper wall,

u = ur0 + ub0 + ε
(
ur1 + ub1

)
+ O(ε2), v = vr0 + ε

(
vr1 + vb0

)
+ O(ε2).

Substitution of these in equation (3.41) yields

ur0
∣∣
y=1

+ ub0
∣∣
η=0

= 0, vr0
∣∣
y=1

= gτ, (3.44)

ur1
∣∣
y=1

+ ub1
∣∣
η=0

− g ∂η u
b
0

∣∣
η=0

= 0, vr1
∣∣
y=1

+ vb0
∣∣
η=0

= 0 etc. (3.45)
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Evidently, (3.42)–(3.45) are similar to (3.6)–(3.9). Moreover, if we define functions Ua,b
0 ,

V
a,b
0 , Ua,b

1 and Va,b
1 as

U
a,b
0 = 0, V a

0 = fτ, V b
0 = gτ, V

a,b
1 = 0,

Ua
1 = −f ∂ξ u

a
0

∣∣
ξ=0
, Ub

1 = g ∂η u
b
0

∣∣
η=0
, (3.46)

then (3.42)–(3.45) can be written in exactly the same form as boundary conditions (3.6)–

(3.9) for k = 0, 1. There are, however, two differences: First, Ua
1 and Ub

1 are not given

functions but depend on ua0 and ub0, and second, Ūa
1 and Ūb

1 may be non-zero functions.

Now our aim is to find boundary conditions for the first-order averaged outer flow

(governed by the Stokes equations (3.23)). Consider first boundary conditions at y = 0.

Averaging equation (3.43), we obtain

ūr1
∣∣
y=0

= − ūa1
∣∣
ξ=0

− f(x, τ) ∂ξ u
a
0

∣∣
ξ=0
, (3.47)

v̄r1
∣∣
y=0

= 0. (3.48)

It follows from equations (3.37) and (3.46) that

ūa1
∣∣
ξ=0

= −R
∞∫

0

∂τ f(x, τ) u
a
0(x, ξ, τ) dξ = R

∞∫
0

f(x, τ) ∂τ u
a
0(x, ξ, τ) dξ

=

∞∫
0

f(x, τ) ∂2
ξ u

a
0(x, ξ, τ) dξ = −f(x, τ) ∂ξ u

a
0(x, ξ, τ)

∣∣
ξ=0

. (3.49)

Here we used the facts that A′(τ)B(τ) = −A(τ)B′(τ) for any periodic A(τ) and B(τ) and

that ua0(x, ξ, τ) satisfies the heat equation (3.30). On substituting (3.49) into (3.47), we find

that

ūr1
∣∣
y=0

= 0. (3.50)

Thus, in spite of the presence of a non-zero averaged boundary layer near the bottom

wall in the first order of the expansion, the boundary conditions at the bottom wall for

the outer flow are such that both components of the averaged velocity must be zero. A

similar analysis of the boundary conditions at the upper wall lead to the same conclusion:

Both components of the averaged velocity must also be zero at the upper wall. Since the

only solution of the Stokes equations (3.23) subject to zero boundary conditions is zero

solution, we conclude that, in the problem with vibrating impermeable walls, there is no

steady streaming in the first order in ε, which is consistent with all earlier studies of this

problem.

It had been understood long ago (see, e.g. [9]) that, in oscillatory flows, the averaged

Lagrangian velocity (the velocity of fluid particles) may be different from the averaged

Eulerian velocity. This difference is usually referred to as the Stokes drift. So far we

have discussed only the Eulerian velocity. However, it is the velocity of fluid particles

that is observed in experiments and is responsible for mass transport in oscillating flows.

Therefore, our study would be incomplete if we did not discuss the Stokes drift. It turns

out that, in our problem, the Stokes drift is the effect of higher order and does not appear
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in the first order in ε. Therefore, up to terms of the first order in ε, the averaged Eulerian

velocity coincides with the averaged Lagrangian velocity. This is shown in Appendix A.

4 Examples

Below we consider a few simple examples in which the velocity at the walls oscillates

harmonically in time. Before presenting these examples, let us discuss general properties

of the equations that describe steady streaming (equations (3.23)–(3.25), (3.37) and (3.38)).

It follows from (3.37) and (3.38) that if Va
0 = 0 and Vb

0 = 0, then ūa1 = 0 and ūb1 = 0, so

that the first-order boundary layers are purely oscillatory. This means that the boundary

conditions for ūr1, given by (3.24) and (3.25), become zero conditions and therefore there is

no steady streaming in the first order in ε. In this case, steady streaming appears in higher

order approximations (for a half space this problem had been treated in [16]).

Even if Va
0 and Vb

0 are non-zero, this does not guarantee the appearance of steady

streaming (in the first order in ε). To show this, we first observe that the leading-order

outer oscillatory flow is uniquely determined by Va
0 and Vb

0 and does not use Ua
0 and Ub

0 .

Now, let us write Ua
0 and Ub

0 in the form

Ua
0 = ∂xφ0

∣∣
y=0

+ Qa(x, τ), Ub
0 = ∂xφ0

∣∣
y=1

+ Qb(x, τ)

for some given functions Qa(x, τ) and Qb(x, τ). Then, it follows from (3.31) and (3.34) that

ua0 and ub0 are completely determined by Qa and Qb and do not depend on Va
0 and Vb

0 .

Therefore, if Qa and Qb were such that

ūa1
∣∣
ξ=0

= −R
∞∫

0

Va
0 (x, τ)ua0(x, ξ

′, τ) dξ′ = 0, ūb1
∣∣
η=0

= R

∞∫
0

Vb
0 (x, τ)ub0(x, η

′, τ) dη′ = 0,

then there would be no steady streaming. The simplest choice of Qa and Qb that ensures

the absence of steady streaming is Qa(x, τ) ≡ 0 and Qb(x, τ) ≡ 0. Thus, given Va
0 (x, τ) and

Vb
0 (x, τ), it is always possible to choose Ua

0 (x, τ) and Ub
0 (x, τ) such that there is no steady

streaming in the first order in ε.

It is also true that, for a wide class of functions Ua
0 (x, τ) and Ub

0 (x, τ), there is steady

streaming in the first order in ε. Below we present three examples which show the existence

of steady streaming in the first order in ε.

4.1 Example 1: Standing waves

Let Va = cos kx cos τ ey and Vb = αVa, where k = 2π/L and α = ±1. This choice

corresponds to standing waves of injection/suction applied at the boundaries of the

channel (α = 1 if the waves are in phase, and α = −1 if they have opposite phase). After

substitution of Va and Vb in the general formulae of Section 3, we find that

ūr1
∣∣
y=0

= ūr1
∣∣
y=1

= −
√
R
A(k)

4
√

2
sin(2kx), A(k) ≡ cosh(k) − α

sinh(k)
. (4.1)
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Figure 1. (Colour online) The streamlines ψ̄r1 = const for standing waves for R = 1 and α = 1:

(a) L = 1; (b) L = 5.

Solving the Stokes equations (3.23) with boundary conditions (3.24) and (3.25), we obtain

ψ̄r1 = −
√
R

4
√

2

A(k)

sinh(2k) − 2k
{(y − 1) sinh(2ky) + y sinh[2k(1 − y)]} sin(2kx). (4.2)

Typical streamlines are shown in Figure 1. It is clear from (4.2) that the flow picture is

the same for α = 1 and –1, the only difference is in the magnitude of the flow. The latter

is determined by A(k). For α = 1, A is an increasing function, A(k) ∼ k for k � 1 and

A(k) → 1 as k → ∞. For α = −1, A is a decreasing function, A(k) ∼ 1/k for k � 1

and A(k) → 1 as k → ∞. So, for all k > 0, the magnitude of the steady streaming for

α = −1 is greater than for α = 1. Thus, the steady streaming is stronger when standing

waves of injection/suction applied at the walls have opposite phase. Also, in this case the

magnitude of the steady streaming increases with the wavelength of the waves.

4.2 Example 2: Waves travelling in the same direction

Now, let the velocity at both walls be purely normal and have the form of waves travelling

in the direction of the x-axis: Va = cos(kx − τ) ey and Vb = αVa, where k and α are the

same as in Example 1. Boundary conditions (3.24) and (3.25) take the form

ūr1
∣∣
y=0

= ūr1
∣∣
y=1

= −
√
R
A(k)

2
√

2
, (4.3)
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where A(k) is given by (4.1). The Stokes equations (3.23) subject to (3.24) and (3.25)

lead to the constant solution1: ūr1 = −
√
R A(k)/2

√
2, v̄r1 = 0. Thus, the waves travelling

in the same direction produce a constant mean flow whose direction is opposite to the

direction in which the waves advance. This is a surprising result which is in sharp contrast

with the steady streaming produced by vibrating impermeable walls in the form of waves

travelling in the same direction (peristaltic pumping) where the induced flow is in the

direction in which the waves travel. This result agrees with numerical simulations reported

earlier in [3]. The magnitude of the mean flow is determined by A(k). Properties of A(k)

imply that the most efficient way to generate the mean unidirectional flow is to apply

injection/suction in the form of waves travelling in the same direction and having opposite

phase.

4.3 Example 3: Waves travelling in the opposite directions

Now, let the normal velocity at the walls has the form of waves travelling in opposite

directions: Va = cos(kx− τ) ey and Vb = α cos(kx+ τ) ey, where k and α are the same as

in Examples 1 and 2. Boundary conditions for ūr1 reduce to

ūr1
∣∣
y=0

= −
√
R

2
√

2

B−(k, x)

sinh(k)
, ūr1

∣∣
y=1

=

√
R

2
√

2

B+(k, x)

sinh(k)
, (4.4)

where B± = cosh(k) + α[cos(2kx) ± sin(2kx)]. The corresponding solution of the Stokes

equations is given by

ψ̄r1 = −
√
R

2
√

2

[
cosh(k)

sinh(k)
y(1 − y) + D− y sinh[2k(1 − y)] + D+(1 − y) sinh(2ky)

]
, (4.5)

where

D±(k, x) =
α

sinh(k)

[
cos(2kx)

sinh(2k) + 2k
± sin(2kx)

sinh(2k) − 2k

]
.

In the short wave limit (k → ∞),

ψ̄r1 = −
√
R

2
√

2
y(1 − y) + O(e−k),

and the averaged flow is well approximated by the plane parallel flow with linear velocity

profile. For long waves (k → 0),

ψ̄r1 =

√
R

2
√

2

1

k
y(1 − y) [1 + α cos(2kx) − α(1 − 2y) sin(2kx)] + O(k),

and the averaged flow is non-parallel. For moderate k, it is a superposition of a shear flow

with a linear velocity profile and a periodic array of vortices (‘cat’s eyes’) in the middle of

the channel. When the wave length increases, these vortices grow and eventually fill the

1 The Stokes equations (3.23) also admit solutions with a non-zero pressure gradient ∇Π1 = c0ex
(c0 = const), which are not considered here, because this would be equivalent to a modification of

our problem, allowing the presence of a weak O(ε3) pressure gradient.
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Figure 2. (Colour online) The streamlines ψ̄r1 = const for waves travelling in opposite directions

for R = 1 and α = 1: (a) L = 3; (b) L = 25.

whole channel, and at the same time smaller vortices of opposite sign appear near the

walls. Typical streamlines of the flow (4.5) for α = 1 are shown in Figure 2. In the case of

α = −1, the flow picture is the same except that it is shifted along x-axis by L/4 (this can

be deduced directly from (4.5)).

5 Conclusions

We have considered incompressible flows in a channel between two parallel permeable

walls and constructed an asymptotic expansion of solutions of the Navier–Stokes equations

in the limit when the amplitude of displacements of fluid particles near the walls is much

smaller than both the width of the channel and the thickness of the Stokes layer. The

asymptotic procedure is based on the Vishik–Lyusternik method and can be used to

construct as many terms of the expansion as necessary. In the leading order, the averaged

flow is described by the stationary Stokes equations subject to the boundary conditions

that are determined by the boundary layers near the walls. The key difference between the

present expansion and the asymptotic theories of steady streaming induced by vibrating

impermeable boundaries is that, in our study, the magnitude of the averaged velocity

is O(ε), which is much bigger than O(ε2) averaged velocity in the case of impermeable

walls. Another important difference is that the direction of the steady part of the flow is

opposite to the direction one would expect if the normal vibrations of impermeable walls

were used to generate it.
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The general formulae have been applied to three particular examples of steady streaming

induced by blowing/suction at the walls in the form of standing and travelling plane waves.

In the case of standing waves, the averaged flow has the form of a double array of vortices

(see Figure 1). For short waves the vortices are concentrated near the walls, while long

waves produce vortices that fill the entire channel.

If the normal velocity at the walls have the form of plane harmonic waves which travel

in the same direction, the induced steady flow is a constant unidirectional flow whose

direction is opposite to the direction in which the waves travel. This is different from

the case of the steady streaming generated by vibrations of impermeable walls where the

induced flow has the same direction as the travelling wave. As far as we are aware, this

was first observed in numerical simulations in [3].

If the normal velocities at the walls have the form of plane waves travelling in opposite

directions, the averaged flow is a superposition of a shear flow with a linear velocity

profile and a periodic array of vortices (‘cat’s eyes’) in the middle of the channel. When

the wavelength is small, the vortices are weak. Their intensity and size monotonically

grow with the wavelength and eventually they fill the entire gap between the walls.

There are many open problems in this area. In particular, it is not quite clear how

the present theory can be extended to the case of Rs ∼ 1. Although the problem does

not involve a moving boundary, which, in general, simplifies things, there is a technical

difficulty of a different sort. It is related to the leading-order boundary layer equations

for Rs ∼ 1 which are difficult to solve analytically.2 This is a subject of a continuing

investigation.
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Appendix A

Below we show that, in the present problem, the averaged Largangian and Eulerian

velocities coincide up to the terms of first order in ε. The motion of fluid particles is

governed by the ordinary differential equation

dx

dτ
= ε2v(x, τ, ε), (A 1)

which should be solved subject to initial condition x = B0. The velocity field v(x, τ, ε) is

the solution of the Navier–Stokes equations, which is 2π-periodic in τ and has a non-zero

average. We have already computed first two terms in the uniformly valid asymptotic

expansion of v(x, τ, ε). Now we are interested in constructing an asymptotic expansion of

the solution of (A 1) for small ε. Since the steady streaming appears in the first order in ε,

this fact and equation (A 1) suggest that there is a slow drift of fluid particles over times

of order ε3τ. Therefore, we introduce the slow time t = ε3τ and assume that x = x(τ, t, ε).

2 Note that in the case of vibrating impermeable walls and Rs ∼ 1, the same equations (but with

different boundary conditions) can be solved analytically [5].
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This assumption results in the equation

∂τ x + ε3∂t x = ε2v(x, τ, ε).

In what follows, we restrict our analysis to the outer flow and ignore the boundary

layers because (i) we are interested mostly in the flow away from the walls, and (ii) this

considerably simplifies the analysis. We have

∂τ x + ε3∂t x = ε2
[
ṽr0(x, τ) + ε

(
v̄r1(x) + ṽr1(x, τ)

)]
+ O(ε2). (A 2)

Assuming that

x = x0 + εx1 + · · · ,
we substitute this into (A 2) and expand ṽr0(x0 + εx1 + · · · , τ), v̄r1(x0 + εx1 + · · ·) and

ṽr1(x0 + εx1 + · · · , τ) in Taylor’s series at x0. As a result, we obtain the sequence of

equations

∂τ x0 = 0, ∂τ x1 = 0, (A 3)

∂τ x2 = ṽr0(x0, τ), (A 4)

∂τ x3 + ∂t x0 = (x1 · ∇) ṽr0(x0, τ) + v̄r1(x0) + ṽr1(x0, τ) etc. (A 5)

Equations (A 3) imply that x0(t, τ) = x̄0(t) and x1(t, τ) = x̄1(t). We do not need to solve

equation (A 4) since x2 does not appear there. Finally, averaging equation (A 5), we find

that

∂t x̄0 = v̄r1(x̄0). (A 6)

Thus, the Lagrangian velocity (the right side of equation (A 6)) coincides with the Eulerian

velocity, v̄r1(x̄0).

If we continued the expansion, we would find that there is a non-zero Stokes drift

velocity in the next approximation given by

vs(x̄0) = (w(x̄0(t), τ) · ∇)ṽr1(x̄0(t), τ),

where, by definition, w is the unique function such that ∂τ w(x̄0(t), τ) = ṽr1(x̄0(t), τ) and

w̄ = 0. The last formula represents the standard expression for the Stokes drift velocity

(see, e.g. [9]).
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