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We report and analyse the results of extensive discrete element method simulations of
three-dimensional gravity driven flows of cohesionless granular media over an erodible
bed, the whole being confined between two flat and frictional sidewalls. We focus on the
role of sidewalls by performing simulations for different gap widths (W) between the two
confining sidewalls: from 5 to 30 grain sizes (d). Our results indicate the existence of
two distinct regimes: regime I for flow angles smaller than the critical angle θc ≈ 40◦
and regime II at flow angles larger than θc. Regime I corresponds to dense flows whereas
flows belonging to regime II exhibit a strong variation of the volume fraction through the
depth. Three relevant lengths are identified in the system: W the gap between sidewalls, l
the length characterizing the vertical variation of the volume fraction and h a characteristic
length associated with the vertical variation of the streamwise velocity. Using these lengths
we can rescale the profiles of various flow properties (e.g. streamwise velocity, granular
temperature, particle rotation. . . ). In regime II, in contrast to regime I, l and h have a
similar behaviour. As a consequence, the rescaled profiles in regime II only involve h (or
equivalently l) and W. Other dissimilarities exist between regimes I and II. In particular,
the scaling of the flow rate with h (at fixed W) differs in the two regimes, although they
display a similar scaling with W (at fixed flow angle).

Key words: dry granular material, avalanches

1. Introduction: state of the art

Gravity driven granular flows are important, as they constitute a paradigm for
the modelling of usual flows in industrial applications and geophysical processes.
Significant progress has been made during the last decades in describing these flows.
Nevertheless, a full understanding of their behaviour is far from being attained and their
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study remains an active field of research. The nature of the boundary conditions at the
bottom exerts a strong influence on dry granular flows driven by gravity (Delannay et al.
2007). Most of the published studies are devoted to flows over a bumpy rigid base. Flows
over an erodible base (see figure 1a) are nevertheless important to understand the dynamics
of many dense flows in geophysical contexts such as landslides that move on deposits made
of the same material that composes the flow (see Lemieux & Durian (2000), Khakhar
et al. (2001), Komatsu et al. (2001), Taberlet et al. (2003), Jop, Forterre & Pouliquen
(2005), Richard et al. (2008), Li & Andrade (2020) and references herein). A lateral
boundary can also exert a significant influence on the flow. Recently, several works have
been devoted to the effect of a lateral confinement on the properties of granular flows.
Both experimental and numerical studies (in two- and three-dimensional configurations)
have pointed out that frictional lateral walls alter the flow properties (Azanza, Chevoir
& Moucheront 1999; Taberlet et al. 2003, 2004; Bi et al. 2005, 2006; Courrech du Pont
et al. 2005; Jop et al. 2005; Crassous et al. 2008; Richard et al. 2008; Taberlet, Richard
& Delannay 2008; de Ryck et al. 2010; Holyoake & McElwaine 2012; Brodu, Richard &
Delannay 2013; Artoni & Richard 2015b; Brodu et al. 2015; Yang & Huang 2016; Zhang
et al. 2019; Richard et al. 2020; Zhu, Delannay & Valance 2020). For example, steady and
fully developed flows (SFD flows) have been observed up to large angles of inclination
where accelerated ones are usually expected. These flows can be very different from usual
dense Bagnoldian flows. They can have complex internal structures, including secondary
flows and heterogeneous particle volume fraction. Another interesting feature of laterally
bounded flows over inclines is that, at any inclination angle, there is a critical flow rate
above which the flow occurs on a static heap which forms along the base (Taberlet et al.
2003). The angle of the heap, in a stationary state, is determined by the flow rate, the
internal friction of the flow and its friction with the sidewalls. This transition to surface
flow over the heap also induces strong alteration of the flow properties. Stationary flows
atop this sidewall-stabilized heap (SSH) differ fundamentally from SFD flows on a bumpy
base as they occur over erodible bases. It was shown (Taberlet et al. 2003) that these SSH
are dynamically stabilized by the flow at their surface and that solely sidewall friction
is responsible for their formation. Using a balance of momentum for the ‘flowing layer’
rubbing and sliding on the sidewalls, and assuming that both the solid volume fraction ν
and the effective sidewall friction coefficient of the flowing layer are constant, one can
derive the SSH equation, i.e. an approximate linear scaling law linking the free surface
angle, θ , the height of the flowing layer, h, and the width of the channel, W

tan θ = μb,h + μw,h
h
W
, (1.1)

where μb,h is the effective internal friction coefficient of the flowing layer of depth h on
the heap and μw,h is the effective friction coefficient of the flowing layer on the sidewalls.
At low angle θ , near jamming, the above-mentioned assumptions are well verified and it
is relatively easy to conceive a flowing layer whose height can be measured. For example
Jop et al. (2005) measured the flow thickness h in their experiments, using a method based
on erosion by the flow of a blackened metal blade. The SSH equation agrees with their
experimental results. More surprisingly, it agrees also with experimental results obtained
at much higher values of θ (Taberlet et al. 2003), for which the solid volume fraction
is not constant but varies strongly through the flowing layer to reach negligible values
in the dilute region at the surface (Delannay et al. 2007). It is possible to simulate such
types of flows by means of discrete element method simulations with periodic boundary
conditions along the main-flow direction (see figure 1b) as shown in Taberlet et al. (2008).
These simulations (Richard et al. 2008) reveal a gradual weakening of friction at the
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Figure 1. Sketch of the granular chute flow set-up: a surface flow occurs over a pile and is confined between
two sidewalls separated by a gap W (a). The angle of the flow, θ , increases with the flow rate Q. Typical
three-dimensional snapshot for chute flow: W/d = 20, N = 24 000 (b). Flow is directed down the incline along
the x-axis and its angle is θ = 45◦. The two sidewalls are parallel to the (xz) plane. The axes x, y and z are also
reported and the origin is arbitrary. Sketches of the vertical profiles of the volume fraction ν (c), logarithm of
the streamwise velocity vx (d) and sidewall friction μτ (e) obtained in Richard et al. (2008). The top and the
bottom of the system correspond to z → −∞ and z → +∞, respectively, and z = 0 is defined as the depth
for which the volume fraction is equal to the half of its maximal value. The variation of the volume fraction is
characterized by a length lν which allows us to define four zones from top to bottom: (i) a dilute gaseous zone
(GZ) located between −∞ and −lν where particles have ballistic trajectories and experience rare collisions,
(ii) a flowing zone (FZ) between −lν and lν where ν rapidly increases with depth, (iii) a buffer zone (BZ)
between lν and approximately 2lν and finally (iv), below the buffer layer, a creeping zone (CZ) where ν =
ν0 � 0.6.

sidewalls, thus the assumption of a constant effective friction on the wall is thus also
questionable. Moreover, at high angles, the top of the flow is very dilute, with ballistic
trajectories of the grains. At the bottom of the flow, the transition to rest is smooth. This
makes difficult to define a height of the flowing layer. In Taberlet et al. (2003), the height
of the flowing layer is determined using the quasi-linear velocity profile of the surface
flow, but this definition is somewhat arbitrary. For large free surface angles, Richard et al.
(2008) have shown that the solid volume fraction increases with depth (i.e. from the free
surface to the bottom of the system) with a characteristic length scale lν (see figure 1c),
and that the velocity scales linearly with the same length (see figure 1d).

These numerical simulations also revealed that the sidewall friction, which weakens
with depth above a creeping region, also scales with lν (see figure 1e). In the creeping
region, beneath a critical depth which also scales with lν , the velocity is weak and
decreases exponentially with depth, the solid volume fraction has a constant value ν0 � 0.6
and the sidewall friction is also constant, with a value significantly smaller than in the
flowing zone. Using a balance of momentum for the region above this critical depth, it
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was possible to establish the validity of the SSH equation, using the length l = 2lν as an
effective height of the flow, for large free surface angles (Richard et al. 2008)

tan θ = μb,l + μw,l
l

W
, (1.2)

where the coefficients μb,l and μw,l are associated with the effective friction of the flowing
layer of height l with the creeping zone and the sidewalls, respectively.

Sidewall effects are not limited to small channel widths since they have been
experimentally quantified for SFD flows on top of a static pile in wide channels (up to
600 particle diameters) (Jop et al. 2005). For wide channels, it is more difficult to obtain
flows with large free surface angles, as it would require extremely large flow rates. In Jop
et al. (2005), all the results are obtained for values of θ smaller than 26◦ except for one at
θ = 33◦. In low flow rate conditions, it is possible to give an asymptotic relation for the
velocity V , derived from the μ(I) rheology (Jop et al. 2005)

V√
gd

∝
(

W
d

)3/2 (
h
W

)5/2

, (1.3)

where d is the diameter of the grains, with a good agreement with experimental
measurements. The scaling in h, the height of the flow, is different here from the linear one
obtained in Richard et al. (2008) by numerical simulations at large angles. This suggests
that μ(I) rheology is not valid for granular flows atop a SSH at large angle θ .

The present article is dedicated to a numerical study of these confined SFD flows over
an erodible bed, and more specifically to a better characterization of the scaling laws for
the main characteristics of the flow. The scaling in W has never been studied for large
values of the angle θ . This article is the first of a series. The second one will be dedicated
to the characterization of the stress tensor and of rheology for confined granular flows over
SSH.

The article is organized as follows. We present the simulation scheme in § 2, detailing
the interparticle force laws and the geometry of the studied system. In § 3, we report the
discharge law of our system with varying interaction parameters (friction and restitution
coefficients) and channel width. Section 4 is devoted to the kinetic properties of the studied
granular flows including the behaviour of the volume fraction, velocity and granular
temperature profiles for different channel widths. The transverse properties of the flows
are investigated in § 5. Finally, in § 6 we summarize our findings and conclude.

2. Methodology: the discrete element method

The use of numerical simulations constitutes an interesting alternative to experiments as
they allow access to observables (stress tensors, individual trajectories and velocities. . . )
that cannot be measured easily. Among the available methods, most used is the soft-sphere
discrete element method (DEM). It has been widely used over the past decade to study
granular systems in a wide range of geometries such as flows down inclines (e.g. Silbert
et al. 2001; Richard, McNamara & Tankeo 2012), surface flows (e.g. Taberlet et al. 2004,
2008), shear cells (e.g. Rycroft, Orpe & Kudrolli 2009), rotating drums (e.g. Taberlet et al.
2006a; Taberlet, Richard & John Hinch 2006b; Hill & Zhang 2008; Richard & Taberlet
2008) or silos (e.g. Hirshfeld & Rapaport 2001). Here, each grain is a sphere of radius
Ri, mass mi, moment of inertia Ii, position ri, velocity vi and angular velocity ωi (see
figure 2). The normal forces used are given by the standard spring-dashpot interaction
model F n

ij = knδn
ijnij − γ nvn

ij, where kn is the spring constant, γ n the damping coefficient
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Figure 2. (a) Two-dimensional sketch of two particles i (radius Ri) and j (radius Rj) at contact. The respective
velocities are vi and vj (translational) and ωi and ωj (rotational). The overlap between the two grains is denoted
by δn

ij . (b) Sketch of the contact forces used. The normal force at the contact is modelled as viscoelastic (normal
stiffness kn, normal damping γ n). The tangential force is also modelled as viscoelastic (normal stiffness kn,
normal damping γ n) but the elongation of the tangential spring is bounded to a maximum value which is
chosen according to a Coulomb friction law (characterized by a friction coefficient f ) when slip occurs.

and vn
ij the normal relative velocity. Likewise, we model the tangential force as a linear

elastic and linear dissipative force in the tangential direction F t
ij = −ktδt

ij − γ tvt
ij, where

kt is the tangential spring constant, δt
ij the tangential overlap, γ t the tangential damping

and vt
ij the tangential velocity at the contact point in the case of small overlap vt

ij = vij −
(vijnij)nij − (Riωi + Rjωj)× nij. The tangential overlap is set to zero at the initiation of a
contact and its rate of change is given by the tangential relative velocity. We truncate the
magnitude of δt

ij as necessary to satisfy Coulomb’s law, i.e. |F t
ij| ≤ fg|F n

ij|, where fg is the
grain–grain friction coefficient. Note that we assume that the static friction coefficient is
equal to the dynamic one and that this friction coefficient depends neither on velocity nor
on aging (Bureau, Baumberger & Caroli 2002).

The granular material is an assembly of N dissipative spheres (average diameter d = 2R
and average mass m) submitted to gravity g. A small polydispersity of ±20 % is considered
to prevent crystallization. The following values of the parameters are used: knd/mg =
5.6 × 106, kt = 2kn/7, γ t = 0. The value of γ n is adjusted to obtain the desired value of
the normal restitution coefficient en. All the simulations are carried out with en = 0.88
and fg = 0.5.

The simulation chute (see figure 1b) consists of a three-dimensional cell which can
be inclined relative to the horizontal by an angle θ (angle between the horizontal and
the main-flow direction: x). Its size in the x-direction is set to LX = 25.3d with periodic
boundary conditions in this direction. In the z-direction (i.e. normal to the free surface
of the flow) the size of the cell is set to large values and can be considered as infinite.
Frictional sidewalls are located at positions y = −W/2 and y = W/2. They are treated as
sphere of infinite radius and mass. The restitution coefficient is the same as that used for
the grain–grain interactions. The friction coefficient between grains and sidewall fw is set
to 0.5. The bottom of the cell is made bumpy by pouring under gravity g a large number
of grains into the cell and by gluing those that are in contact with the plane z = 0.

Since the flows occur on a quasi-static pile, it is important to make explicit the
initial conditions which potentially have an important influence on the properties of the
creeping zone. We chose to build our system from an energetic flow which slows down
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progressively until it reaches a steady state. Thus the creeping zone originates from an
accretion process similarly to what is done in Taberlet et al. (2003). Our procedure is
the following. We first set the angle of the system to a large value (θ = 70◦) and the
grains are initially arranged in the simulation cell in an ordered slightly dilute ‘hexagonal
compact packing’. Each component of the grains’ velocity is initially randomly assigned.
The distribution used is uniform between

√
2gR and −√

2gR. This leads, after a short
time (approximately 100

√
d/g), to an accelerated energetic system without signs of the

initial ordered structure which flows over its entire depth. The angle was then decreased
instantaneously to the desired value. After a long transient (several hundreds of

√
d/g),

a SSH (i.e. a SFD flow on a quasi-static layer) is obtained. Note that, the SFD criterion
corresponds to a stabilization of the total kinetic energy within the fluctuations. The kinetic
energy of the creeping zone being very low, this criterion is not sensitive to structural
modifications of the latter zone whose evolution characteristic time is very large with
respect to the inverse of the shear rate of the flowing zone. As mentioned above, due to the
presence of a quasi-static zone, the way the system is built probably has an influence on
the properties of the system. We have checked that other protocols (e.g. use of an initial
horizontal system with frictionless particles to obtain a static initial packing at random
close packing) lead to significantly different results in the creeping zone (fabric, stresses
in particular) but seem to have a moderate influence on the flowing zone.

Our results are given in non-dimensional quantities by defining the following
normalization parameters: distances, times, velocities, forces, elastic constants and
viscoelastic constants are, respectively, measured in units of d,

√
d/g,

√
gd, mg, mg/d

and m
√

g/d.
In the remainder of the paper several quantities will be reported and studied by means

of profiles of kinematic quantities. The variables obtained from the DEM simulations
(e.g. grain velocities) are averaged to obtain continuum quantities. Given a grain quantity
ψp(rp, t) its average 〈ψ〉 over a given spatial region V of volume V is obtained both by
space and time averaging

ρ〈ψ〉 = 1
V

1
Nt

∑
Nt

∑
rp∈V

mpψp. (2.1)

The fluctuations (e.g. granular temperature) are defined by subtracting the effect of the
local gradient of the studied quantity as shown in Glasser & Goldhirsch (2001); Xu, Reeves
& Louge (2004) and Artoni & Richard (2015a). In the remainder of the paper, two types
of profiles are reported in the case of steady (i.e. time independent) and fully developed
(i.e. space independent in the main-flow direction) flows. First, profiles for which the
studied quantity is averaged over the x- and y-directions (e.g. vx(z) for the evolution of the
streamwise velocity vs the vertical position z). They are obtained by averaging it over time
and over space using parallelepiped volumes (height d, width W and length LX) centred
at x = LX/2, y = W/2 and z. Second, profiles averaged only over the x-direction (e.g.
vx( y, z)) are obtained similarly by averaging the studied quantity over time and space
using parallelepiped volumes (height d, width d and length LX) centred at x = LX/2, y
and z.

3. Macroscopic description of the granular flow

In this section we will mainly focus on the output flow rate i.e. a macroscopic property
defined globally at the scale of the system. By contrast, § 4 will be devoted to properties
of the flows at the local scale.
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Figure 3. For a given gap between the sidewalls, a SFD flow over an erodible bed can only be observed above
a given inclination angle. Below the latter, the system can experience an intermittent surface flow or be at rest.
This is illustrated in the phase diagram reported in the parameter space (W/d, θ). The dashed line represents
the angle θ1(W) above which a SFD flow can be achieved.

3.1. Steady fully developed flows and phase diagram
We consider steady flows over an erodible bed, i.e. flows whose properties are independent
of time regardless of the fluctuations. To achieve such a flow, in addition to frictional
sidewalls, a sufficient number of grains has to be used to obtain a flow rate greater than
the critical one reported in Taberlet et al. (2003). At t = 0 the angle θ is instantaneously
decreased from 70◦ to the desired value. After a transient corresponding to a global slow
down of the system, the number of grains flowing out of the cell per unit time, ∂tNout,
reaches a plateau, indicated in the figure by a dashed horizontal line. We have verified that
this plateau corresponds to the occurrence of a SFD flow throughout the simulation cell.
The value of the flow rate obtained at the plateau corresponds to the SFD flow rate. We
have checked that this flow rate does not depend on the number of grains as long as the
latter is large enough to obtain an erodible bed (Richard et al. 2010). In this case, if the
number of grains is increased, the erodible bed becomes thicker but the flow zone and thus
the flow rate do not change. In our simulations the creeping region corresponds to at least
10 grain layers.

Within the control parameters investigated so far (20◦ ≤ θ ≤ 70◦ and 5 ≤ W/d ≤ 30),
we can obtain different regimes. If the angle is large enough, a SFD flow is reached after
a transient, while at low angles the system remains completely jammed, i.e. without flow.
This is illustrated in figure 3, where the phase diagram is reported. In addition, we have
indicated the lower limit of the existence of steady flows: θ1(W). Note also that, in vicinity
of the latter, the temporal evolution of the flow rate may be intermittent, leading to a
significant uncertainty in the determination of θ1. Indeed, an intermittent behaviour may
be observed for a long period of time before the system comes to rest. The study of this
intermittency is outside of the scope of this paper and would require an intensive statistical
analysis, as done in Lemieux & Durian (2000). It is also important to emphasize here that
the presence of flat frictional walls allows for the existence of SFD flows at much higher
angles than those observed for unconfined flows (Silbert et al. 2001). Besides, even at very
steep angles the flow reaches a steady state (Taberlet et al. 2003; Brodu et al. 2013, 2015).
These results point out the crucial importance of sidewalls in the behaviour of granular
flows. Additionally, as already been reported in the literature (Liu, Jaeger & Nagel 1991;
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Figure 4. (a) For any gap between sidewalls W, the flow rate per unit width, Q∗, is found to increase with the
angle of the free surface θ . For a given θ , increasing W leads to an increase of Q∗. (b) The flow rate per unit
width can be rescaled by (W/d)5/2. The evolution of the rescaled flow rate vs tan θ can be fitted by a quadratic
law.

Courrech du Pont et al. 2003; Metayer et al. 2010), one can note that the lower limit angle
θ1 for steady states depends on the lateral width W: the wider the gap, the smaller θ1. This
variation is the most important for W < 20d due to sidewall effects.

3.2. Flow rate Q vs θ and W
The flow rate per unit width, Q, is an important macroscopic quantity characterizing the
ability of the system to flow. It is defined as Q = Δm/(ΔTWρp), where Δm is the mass
flowing out of the cell during the time ΔT and ρp the grain density. We have plotted in
figure 4(a) the dimensionless flow rate per unit width, Q∗ = Q/d

√
gd, vs the tangent of

the angle of inclination θ for different gap widths W.
For a given angle of inclination, the flow rate per unit width Q∗ is an increasing function

of the gap width W as a consequence of the declining influence of the wall friction
(Taberlet et al. 2003; Jop et al. 2005). For a given gap width, a one-to-one relation, which
increases monotonically, exists between the flow rate and the angle. It is a consequence of
sidewall friction and the increase of θ with Q∗ is more pronounced for low values of W
and is expected to be very weak for very large channels (Jop et al. 2005). Our results are
compatible with experimental ones (Khakhar et al. 2001; Courrech du Pont et al. 2003;
Taberlet et al. 2003; Jop et al. 2005; Metayer et al. 2010) that report an increase of the
angle of the flow with the flow rate. One can note again that the lower limit angle θ1 below
which the flow stops is a decreasing function of the gap width (see § 3.1). The numerical
evolution of Q∗ with W is compatible with a W5/2-scaling (figure 4b) consistent with
that obtained by Jop et al. (2005) for much lower angles and larger gap widths. Also, its
evolution with tan θ can be fitted by a parabolic law Q ∝ (tan θ − tan θ1)

2.

4. Kinematic properties of the flow

4.1. Volume fraction profiles and definition of the flowing height
Unidirectional dense granular flows down bumpy inclines are characterized by an almost
constant volume fraction throughout the flow height (Silbert et al. 2001; Bi et al. 2005,
2006; Delannay et al. 2007; Brodu et al. 2013). Figure 5(a) shows vertical profiles of the
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Figure 5. The vertical profiles of the volume fraction for various inclination angles θ and widths W (a) collapse
onto a master curve ν(z) = (ν0/2)[1 + tanh(2z/l)] – dashed line in panel (b). The characteristic length l scales
with W and increases with the angle of inclination θ (c). The dashed line represents the best linear fit for all
the data. At low angle a slight deviation from the linear relation is found (inset of (c)). The angle for which this
deviation is visible is close to θc = 40◦ and l/W ≈ 1. For this reason, the linear fit reported is done for angles
above θ = 40◦.

volume fraction, ν, averaged across sidewalls for various inclination angles (30◦ ≤ θ ≤
60◦) and lateral widths (5d ≤ W ≤ 30d). Contrary to dense flows sheared over the whole
depth (hereafter referred to as fully mobilized flows) an erodible bed forms at the bottom
of the system and, consequently, the volume fraction is, in most cases, far from being
constant and varies from 0 to approximately 0.6. Only for low flow angles (e.g. θ = 30◦
for W/d = 30) do the volume fraction profiles tend toward a step function that is a constant
volume fraction. Remarkably, the vertical profiles of the volume fraction, ν, for different
inclinations and widths collapse onto a single curve (see figure 5b) which can be fitted by
the following equation (Richard et al. 2008):

ν(z) = ν0

2

[
1 + tanh

(
2z
l

)]
, (4.1)

with the origin such that ν = ν0/2 at z = 0. The characteristic length of variation of the
volume fraction l depends on both the gap width and flow angle and, in most cases, it
is greater than the grain size. It should also be pointed out that the validity of (4.1) is
questionable at low values of the characteristic length l due to the possible intermittency
of the flow. The length l scales with W and increases with inclination and (1.2) can be
rewritten as

l
W

= 1
μw,l

(tan θ − μb,l). (4.2)

We have verified this equation for W/d = 5, 10, 20 and 30 and obtained μb,l = 0.32 and
μw,l = 0.43 (see figure 5c). Note that the characteristic length l used here is twice the
length lν used by Richard et al. (2008).

The variation of l/W with tan θ deviates from an affine law for θ < θc ≈ 40◦; note that
θc is the angle for which l/W ≈ 1. As will be shown below, θc corresponds to the boundary
between a dense flow regime (regime I) and a regime for which a strong variation of the
volume fraction is observed within the flow (regime II). It is not easy to say whether
the value of θc depends on W. There is likely a dependency, but it seems rather weak,
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Figure 6. (a) Variations of the number of contacts, Nc, and of the volume fraction ν with the flow depth.
(b) The gap between sidewalls is W = 10d and the angle of the flow θ = 50◦. The grain–grain and grain–wall
friction coefficients are both equal to 0.5. The variation of Nc vs ν displays a universal behaviour with a kink
corresponding to ν ≈ 0.54 and Nc ≈ 0.06 (b).

with a small increase of θc (only a few degrees) when W decreases. A similar but more
pronounced effect was observed for θ1 (see figure 3).

4.2. Contact number
Another interesting property of a granular flow is the average number of contacts per
grain, Nc. We have illustrated its variation throughout the flow and its link with the
volume fraction in figures 6(a) and 6(b), respectively. As expected, it increases with
increasing depth from zero in the gaseous zone to Nc ∼ 4 within the creeping zone, which
corresponds to the number of contacts obtained for an iso-static packing, i.e. a packing
for which all the contacts are perfectly frictional. We have explained in § 2 that the initial
state of the system might influence the reached steady state. The protocol used in the
present work indeed leads to relatively loose (and fragile Berzi, Jenkins & Richard 2019)
systems but others might possibly lead to denser systems and thus to a number of contacts
larger than 4 in the creeping zone. It should be pointed out that these quantities (Nc and ν)
vary with the same length scale l but they are shifted vertically: in the example reported
in figure 6 the number of contacts reaches the half of its maximal value at z/d ≈ 22
(depth for which ν tends toward 0.6) whereas ν = ν0/2 at z/d = 0 (depth for which Nc
is below 0.1). Thus, in the flowing zone (z ∈ [−l/2, l/2]), the flow is mainly collisional.
When we plot the number of contacts as a function of the volume fraction, two different
exponential regimes can be clearly identified: one for ν � 0.53 for which the average
number of contacts is very small (below 0.1) and the other one for ν � 0.53 where the
average number of contacts increases rapidly with ν. As Nc and ν vary over the same
length scale l, the relationship between these quantities is independent of θ and W: the
regime change corresponds to the transition between the buffer zone and the flowing zone
which occurs at z = l/2, i.e. at ν(z = l/2) = ν0/2[1 + tanh(1)] ≈ 0.528. Note also that
this curve could depend on the grain stiffness kn used to model the normal force between
grains (see § 2). It has indeed been shown that this quantity plays an important role on
the number of contacts within granular flows, which increases with decreasing stiffness
(Ji & Shen 2008; Vescovi & Luding 2016; Vescovi, Berzi & di Prisco 2018). The volume
fraction can also be influenced by the grain stiffness (Vescovi & Luding 2016) especially in
dense zones for which the overlap between contacting grains might have a non-negligible
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Figure 7. Velocity (blue open circles) and volume fraction profiles (grey line) and its fit by (4.1) (black dashed
line) for W/d = 10 and θ = 53◦. The height of the flow h is the distance between z = −l/2 (orange dashed
vertical line, position corresponding approximately to Vmax) and the depth at which the tangent to the linear
part of the velocity profile (dashed red line) intersects the z axis.

volume. A full study of the effect of grain stiffness on our results is outside the scope of
the paper. Yet, to position our study with respect to that of Vescovi & Luding (2016) we
have estimated the dimensionless parameter K∗ = kn/ρpd3γ̇ , ρp being the grain density.
Since γ̇ varies within our system, so does K∗. Yet the order of magnitude of its lowest
value is 106. For such a value, Vescovi & Luding (2016) have found an effect of the grains’
stiffness on the volume fraction only if the latter exceed 0.625, which is never the case in
our simulations.

4.3. Velocity profiles
The vertical profiles of the streamwise velocity are reported in figure 8(a) for various gaps
W between the sidewalls and various flow angles θ . As expected, the two latter parameters
have a strong influence: the velocities are found to increase with increasing angle and/or
gap. Interestingly, at large angles, the velocity profiles display an inflection point close to
z/d = 0, around which the profile is reasonably linear. In the vicinity of the free surface,
two cases are observed: either a strict maximum or a plateau. For a given W we observe
the plateau at low angles. When the angle is larger than a given value (which decreases
strongly with increasing W) a strict maximum is observed. In the remainder of the paper,
depending on the case, we will call Vmax the velocity of the strict maximum or of the
plateau.

Following Richard et al. (2008), we rescale the velocities and the vertical positions
respectively by

√
gW(l/d) and l (figure 8c). The scaling holds for angles larger than θc

(regime II). Interestingly, the maximum velocity Vmax, which corresponds approximately
to V(z = −l/2), is found to scale always (in regime I as in regime II) with the characteristic
velocity

√
gW(l/d) (figure 8b) which, consequently, can be considered as a characteristic

velocity of the system. Figure 8(c) also points out that l is not the right characteristic
length for the variation of velocity with depth in regime I. We have thus to introduce a new
characteristic length. Taberlet et al. (2003) defined – somewhat arbitrarily – the flow height
as twice distance between z = 0 (i.e. the position of the inflexion point) and the depth at
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Figure 8. (a) Vertical profiles of the particle velocity in the main flow direction for various inclination angles
θ and widths W. (b) The maximal velocity (estimated by vx(z = l/2)) scales with the characteristic velocity√

gW(l/d). (c) Flows in regime II collapse onto a single curve when rescaling the velocity by
√

gWl/d and the
depth by l or by h (inset of (c)). (d) In regime II, the characteristic length l determined by fitting the volume
fraction profiles is close to h, the length determined through the velocity profile. In regime I, below θc ≈ 40◦
important relative differences are observed (c).

which the tangent to the linear part of the velocity profile intersects the vertical axis (z
axis). Taking into account the fact that the velocity profile is not symmetric according to
z = 0 in regime I (see also figure 12) and the characteristic behaviour of Vmax, we define
here the flow height h as the distance between −l/2 (position corresponding approximately
to Vmax) and the depth at which the tangent to the linear part of the velocity profile
intersects the z axis (see figure 7). Rescaling the depth by h (inset of figure 8c), leads
to profiles in regime I which depend weakly on the inclination angle θ , as predicted by
the μ(I) rheology (Jop et al. 2005), and are not on the master curve of regime II which is
independent of θ .

Note that the flow obtained for W/d = 10 and θ = 40◦ clearly belongs to regime II. In
contrast, that obtained for W/d = 5 and θ = 40◦ seems to belong to the end of regime I,
it corresponds probably to a transition between regimes I and II. This suggests a slight
dependence of the boundary between the two regimes (and thus of the angle θc) on the gap
between the sidewalls.

As mentioned before, a peak in the velocity profile is observed for large angles and it
should be pointed out that the scaling does not hold post-peak (i.e. for z lower than the
peak’s position). This is the case, for instance, for (θ = 60◦, W/d = 10) and for (θ =
45◦,W/d = 20). At the top of the flow, we observe that grains are mainly submitted to
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Figure 9. (a) The tangent of the angle of the flow depends linearly on the ratio h/W, where W is the gap
between the sidewalls and h the depth of the flow determined by fitting the velocity profile (see text). (b) The
dimensionless flow rate per unit width Q∗ scales with (W/d)5/2 at any angle. Its dependence with h/W is more
complex: it is compatible with a (h/W)7/2 scaling for angles below θc ≈ 40◦ (regime I) and a (h/W)2 scaling
above (regime II). (c) Similarly, the maximal value of the velocity Vmax scales with (W/d)3/2 at any angle
and with (h/W)5/2 (θ < θc, regime I) and h/W (θ > θc, regime II). (d) The difference of scaling for the two
regimes can also be confirmed by plotting Vmaxd/(W

√
gW) vs Q∗/(W/d)5/2: the former quantity scales with

the latter to the power 5/7 and 1/2 respectively for θ < θc and θ > θc.

collisions with sidewalls due to the very low volume fraction. The latter being immobile,
the corresponding grains are more strongly slowed down than the grains located in the bulk
which collide mainly with grains that move in the main flow direction. Also the grains
located at the top of the flow slow down the grains located directly below them that, in
return, also slow down the grains located below them. This global slow down ceases when
the probability for a grain to collide with sidewalls is not significant. Thus, the behaviour
of the granular flow in the vicinity of its top is complex and strongly influenced by the gap
between sidewalls.

Figure 8(d) compares the two characteristic lengths of the flow: the characteristic length
of the velocity profile h, and the characteristic length of the volume fraction profile l.
At large angles, in regime II, h/W and l/W look identical. In regime I, below θc ≈ 40◦,
h/W becomes clearly larger than l/W, but the two lengths remain correlated. Thus, in
regime I, l does not correspond anymore to the flowing friction height. Since h
characterizes the friction height for both regime I and regime II, we have reported in
figure 9(a) the evolution of the tangent of the flow angle vs the ratio h/W. The SSH
equation (1.1) is rather well verified. In regime I, the values of l/W and h/W are
significantly different. Consequently, that ofμb,h is different from that ofμb,l (respectively
0.22 and 0.32) and that of μw,h from that of μw,l (respectively 0.51 and 0.43).

Interestingly, when l/W → 0, h/W → (h/W)min > 0. For a given W there is thus a
finite minimum value of h: hmin(W), and this minimum value increases proportionally
to W: hmin(W) = W(h/W)min. Note that the limit l/W → 0 corresponds in our case to
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unconfined geometries (W → +∞), for which SSH flows have never been observed.
The equation hmin(W) = W(h/W)min is consistent with the latter observation since W →
∞ leads to hmin → ∞. In other words, in unconfined geometries, SSH flows are only
observed for infinitely high systems. When l/W → 0, the SSH equations (1.1) and (1.2)
lead to the relation:μb,l = μb,h + μb,w(h/W)min, from which we obtain (h/W)min = 0.33.

It should be pointed out that tan θ1 > μb,l > μb,h. All these quantities are probably
close to each other when W → ∞. Note that θ1 is obtained directly from simulations in
which the system transits from a dynamical state to a static one, whereas the two others
are obtained from fits of numerical data obtained from the simulation of dynamical states.
In the literature, μb,h is classically assumed to be gap width independent (Liu et al. 1991;
Boltenhagen 1999; Courrech du Pont et al. 2003; Metayer et al. 2010). Yet, thanks to our
extensive simulations, which provide results for wide ranges of both gap widths and flow
angles, a small but systematic increase of μb,h with W is found. In contrast, the angle θ1
decreases with increasing W (see the phase diagram reported in figure 3). This difference
points out that these two quantities do not quantify the same physical mechanisms.

Following Jop et al. (2005) we have studied the scaling of both Q∗ (figure 9b) and
Vmax (figure 9c) vs the gap W between the sidewalls and the height h of the flowing
layer. In agreement with Jop et al. (2005), the dimensionless flow rate and the maximum
velocity respectively scale with (W/d)5/2 and (W/d)3/2 whatever the angle of the flow.
Yet, their dependence with h/W confirms the existence of two regimes. At low angles, in
regime I, in agreement with the results reported by Jop et al. (2005), Q∗ and Vmax/

√
gd

scale respectively as (h/W)7/2 and (h/W)5/2. For larger angles, in regime II, Q∗ and Vmax
scale as (h/W)2 and h/W, respectively (Richard et al. 2008). We have seen before that
Vmax/

√
gd scales as l/W in regime I as in regime II, this shows that h/W scales as (l/W)2/5

in regime I, and thus, Q∗ scales as (l/W)7/5. The difference of scaling for the two regimes
can also be confirmed without using h or l, for example, by plotting Vmaxd/(W

√
gW) vs

Q∗/(W/d)5/2 (see figure 9d). In agreement, with previous results, we indeed recover the
existence of different scaling exponents for the two regimes, i.e. Vmaxd/(W

√
gW) scales

with [Q∗/(W/d)5/2]5/7 in regime I and with [Q∗/(W/d)5/2]1/2 in regime II. The values of
the latter exponents are consistent with the scaling laws obtained for Vmax and Q∗ vs h/W.

The velocity profiles are not linear both in the creeping and the dilute zones.
Consequently the strain rate γ̇ = ∂vx/∂z depends on z. Yet, the velocity profiles have
a nearly linear part in the vicinity of z ≈ 0, region which corresponds to a change of
concavity for the shape of the profiles. In the remainder of the paper, we will estimate the
strain rate at the depth for which the concavity of the vertical velocity profile changes (i.e.
at the depth z for which the strain rate is maximal corresponding to z/d ≈ 0 for θ > θc).
Figure 10(a) shows the evolution of the strain rate with the angle of the flow and for several
cell widths W/d. For any value of W/d, the strain rate is found to increase with the flow
angle. For θ > θc ≈ 40◦ the increase weakens and the slope of γ̇ vs tan θ decreases with
decreasing W/d, illustrating once more the existence of the two regimes. When plotting
γ̇ dh/

√
gWl vs tan θ a reasonable collapse is obtained (figure 10b). In the creeping zone,

there is experimental evidence (Komatsu et al. 2001; Crassous et al. 2008; Richard et al.
2008; Martínez et al. 2016) that the mean velocity of the grains decays exponentially with
depth and the characteristic decay length is approximately equal to the particle size. The
dependence of this length with the flow rate (and thus the angle of the flow) and the
gap width remains unclear despite some experimental attempts (Richard et al. 2008). Our
numerical simulations indeed capture the exponential decay of the grain velocity in the
creeping zone (figure 11) over several decades. We found that the characteristic length of
the decay, λ, which is of the order of a grain size, depends on both the gap width and
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√
gWl/d and the depth by h leads to a collapse of the velocity profiles
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length h (c).

the inclination angle. It should be pointed out that our range of flow rates is much more
important than those used in the literature (Komatsu et al. 2001; Crassous et al. 2008).
Combining volume fraction measurements by γ -ray adsorption and imagery, Richard et al.
(2008) have shown that both the height of the flowing zone (i.e. in our case h) and the
characteristic length λ are linearly correlated. Our simulations capture this linear relation
for both regimes and the slope obtained (≈6) is close to that reported in Richard et al.
(2008).

4.4. Flux densities
Another quantity of interest is the flux density defined as the product of the volume fraction
and the streamwise velocity: φ(z) = ν(z)vx(z). It quantifies the number of grains crossing
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Figure 12. (a) In regime II, the flux densities are maximum at z ≈ 0. (b) For the same regime, the vertical
profiles of the flux densities collapse on a single curve if the velocity and the depth are respectively scaled by√

gWl/d and h.

a unit area whose normal is along the streamwise direction. This quantity is widely used
in the context of aquatic and aeolian sediment transport but much less commonly in the
physics of granular media.

Figure 12(a), which depicts the vertical profiles of this quantity, shows that in regime II,
the flux densities are almost symmetric with respect to z/d = 0 i.e. ν = ν0/2, where they
are maximum. Consequently, contributions to the flow rate of the low density (ν < ν0/2)
and of the high density region (ν > ν0/2) are similar, the former being more rapid than
the latter. We have seen that the characteristic lengths for the variation of the volume
fraction (l) and the velocity (h) are close to each other in regime II. Consequently,
the flux density being the product of the volume fraction by the velocity, h (or
equivalently l) is the relevant length to describe the variation of this quantity in regime II
(figure 12b).

We can approximate, in the vicinity of z = 0, the volume fraction profile by ν(z) ≈
ν0/2[1 + 2z/l] and the velocity by vx(z)/(

√
gWl/d) ≈ κ(1 − z/h) with κ = γ̇ d/

√
gW ≈

0.4 (where γ is calculated at z = 0). Note that the value of κ is consistent with
the values of γ̇ d/

√
gW reported in figure 10(b). Using the two latter expressions

and the approximation h ≈ l in regime II allows us to approximate the flux density
φ(z)/(ν0

√
gWl/d) by the parabola ν0κ(1 − 2z2/h2) in the vicinity of z = 0. This

parabola-shaped profile is characteristic of heap flows at large angles. Note that the
contribution of the flowing layer (z ∈ [−l/2, l/2]) to the global flux is the most important.
The contribution of the other zones is, however, far from negligible (≈1/3 of the global
flux).

For angles below θc, the velocity profile is not symmetric with respect to z/d =
0, and the length h characterizing the height of the flowing layer is larger than
the length l characterizing the variation of the packing fraction with depth. The
maximum of the flux density is shifted towards higher volume fractions. The volume
fraction variation is indeed more localized close to z/d = 0 and tends toward a step
function. We thus recover the behaviour observed for SFD dense flows on a bumpy
bottom (Silbert et al. 2001; Bi et al. 2005, 2006) for which the volume fraction is
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Figure 13. (a) Vertical profiles of rotation velocity in the y direction for various inclination angles θ and widths
W. The dashed lines correspond to vorticity −0.5∂vx/∂z. (b) The scaling with dh/(l

√
gW) holds for regime II.

almost constant and, consequently, the flux density is maximum when the velocity is
maximum.

4.5. Rotation
We have also studied the rotation of the grains within the flow which is a quantity of
interest since, in confined systems, geometrical frustration of rotation consequence of
geometrical constraints is frequent. This frustration of rotation has an important influence
on the organization of the particles’ rotations and thus on the rheology of the system
(Yang & Huang 2016). The mean angular velocity ωy (i.e. normal to the sidewalls)
profiles are reported in figure 13(a). They are counted positive in the counter-clockwise
direction. Kinetic theories (Jenkins & Richman 1985; Lun & Savage 1987) assume that
the mean angular velocity can be approximated by the rotation rate across the flow depth:
ωy ≈ −0.5∂vx/∂z = 0.5γ̇ . In our system, this assumption is valid from the creeping zone
up to z/d ≈ 0, i.e. for z/d > 0 and a volume fraction above ν0/2. In contrast, the agreement
between the two quantities is poorer for z/d < 0, i.e. for dilute flows. This discrepancy,
which seems to be independent of θ and W, can be explained by the fact that, for z/d > 0,
the average number of contacts per grain is almost zero (see § 4.2). The probability of
collision with the sidewalls becomes more significant as z decreases. Consequently, their
velocity distributions are not classical anymore and the relation between γ̇ and ∂vx/∂z
does not hold for these grains. Due to the correspondence between ωy and γ̇ , it is natural
to represent the vertical profile of ωy by scaling the latter quantity by

√
gWl/hd and z by

h (see figure 13b). As expected, the regimes I and II are recovered due to the link between
γ̇ and ωy.

4.6. Temperature profile
The velocity fluctuations are characterized by the granular temperature, which is
defined by T = (Txx + Tyy + Tzz)/3, where Tij = 〈vivj〉 − 〈vi〉〈vj〉, with i, j = {x, y, z}.
The granular temperature is a measure of the agitation of the grains. One of the main
applications of the concept of granular temperature is the derivation of kinetic and
hydrodynamic theories for granular systems. It is thus an important quantity that deserves
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Figure 14. (a) For a given channel width (here W = 5d) the vertical profiles of fluctuations of the particle
velocity increase with θ the angle of the flow. The vertical profiles plotted for various widths and angles can
be rescaled using l as a length scale and h as a depth scale similarly to what is observed for the velocities (c).
A zoom corresponding to low granular temperatures is reported in the inset of (c).

to be studied. Figure 14(a) reports the vertical profile of the granular temperature for
several angles of inclination and W/d = 5. The granular temperature is found to increase
from the creeping zone (which behaves like a heat sink) to the flowing region. More
details on the temperature can be found in § 5.4 where its properties along the transverse
direction are reported. Note that the temperature profiles reported here are highly different
from those obtained for SFD flows on a bumpy bottom, which behaves like a heat source
(Silbert et al. 2001). Consequently, in the latter case, the granular temperature is maximum
in the vicinity of the bumpy bottom (Silbert et al. 2001; Louge 2003). It should be
pointed out that the quantities Txx, Tyy and Tzz behave similarly to T (i.e. they increase
from the creeping region to the free surface). Note that Tyy ≈ Tzz and that Txx is always
larger than Tzz and Tyy (Txx/Tyy ≈ 1 in the creeping region, ≈3 in the flowing zone and
up to 10 close to the free surface). Similarly to what has been observed in the case
of thestreamwise velocity profile vx(z), the temperature profiles can be rescaled using
gWl2/d2 as a temperature scale, and h as a depth scale (figure 14c).

The kinetic theory for fast flows (Haff 1986) assumes that fluctuations should depend
on local relative motion and, consequently, predicts Txx ∝ γ̇ χ with χ = 2. This prediction
has been experimentally verified for dilute and rapid chute flows (Azanza et al. 1999). Yet
this scaling is no longer valid in the case of denser and slower flows where an exponent
χ close to 1 has been reported (Losert et al. 2000; Mueth 2003), a signature of non-local
effects (Jenkins 2007; Kamrin & Henann 2015). In a geometry quite similar to ours, Zhang
et al. (2019) have recently reported a relation T ∝ γ̇ χ with χ ≈ 1.57 in the creeping
zone. Similarly, Artoni & Richard (2015b) also reported data consistent with χ ≈ 3/2
for confined shear flows subjected to a constant pressure, which are quite similar to the
flows studied in the present work. In the case of surface flows in a rotating cylinder (Orpe
& Khakhar 2007), which are steady but not fully developed, the exponent χ increases with
the rotational speed of the cylinder from χ = 1 to χ = 2. Figure 15 shows the variation of
Txx with the strain rate. The reported relation between the latter quantities is consistent with
a power law Txx ∝ γ̇ χ but with χ varying between χ ≈ 1 (in the bottom of the creeping
zone) and χ ≈ 2 (in the buffer and the flowing zones). In agreement with the literature
(Artoni & Richard 2015b; Zhang et al. 2019), if the whole curve (with the exception of the
part corresponding to the gaseous zone) is fitted by a power law, an exponent χ close to 1.5
is found. Remarkably, the variation range of χ is independent of both the inclination angle
θ and the gap between the sidewalls W. This result is in agreement with that obtained
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Figure 15. Variation of the dimensionless temperature Txxd/gWl2 with the strain rate γ̇ hd/
√

gWl in the
flowing layers. The dashed black line shows that the relationship can be approximated by a power law of
exponent χ = 1 at the bottom the creeping region and by χ = 2 in the buffer and the flowing zones. The whole
curve (excepting the part corresponding to the gaseous zone) can be fitted in a satisfactory way by a power law
of exponent χ = 1.5 (not shown).

in the case of flows in rotating drums (Orpe & Khakhar 2007) for which we also have
Txx ∝ γ̇ χ with χ ∈ [1, 2].

5. Kinematic properties in the transverse direction

As mentioned in § 2, the vertical profiles are averaged over y, (i.e. along the transverse
direction) as classically done in the literature. Yet, due to the presence of sidewalls this
averaging may hide the flow behaviour in the vicinity of the sidewalls. They indeed modify
the local arrangement of grains near their location and the dissipation in their vicinity is
also different from that in the bulk of the flow. For this reason, we will report below the
transverse evolution of the following quantities: volume fraction, velocity, vorticity and
granular temperature.

5.1. Volume fraction
Since the middle of the preceding century (Brown & Hawksley 1946; Verman & Banerjee
1946), it has been well known that the presence of sidewalls influences the volume fraction
of static granular materials in their vicinity (see Camenen, Descantes & Richard (2012)
and references therein). More precisely, they lead to a reduction in volume fraction due to
the wall-induced structure which extends within the packing. This result can be understood
with a simple description incorporating two regions: (a) an effective boundary layer (which
extends from each sidewall to a given length Δν) and (b) a bulk-like region. The latter
region is assumed to have a volume fraction equal to that of an infinite system whereas the
volume fraction of the former region is lower.

In our system, a lower volume fraction in the vicinity of the sidewalls is still expected.
The creeping zone is not far from being static, the geometrical constraint induced by the
latter remains important. In the flowing zone, as will be shown in § 5.4, the transverse
profile of the temperature implies a depletion of grains in the vicinity of the sidewalls. We
use a description similar to the static modelling with an effective boundary layer of size
(Δν) depending on the depth within the packing.
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Figure 16. Effect of the sidewalls on the volume fraction profiles for θ = 45◦. At any depth within the flow
for θ = 45◦, and for any value of W, the volume fraction is smaller in the vicinity of the sidewalls with respect
to that measured in the centre of the cell ((a) and (b) for respectively W/d = 10 and W/d = 20). The effect
of the walls is visible on the transverse volume fraction profiles especially in the flow region ((c) and (d) for
respectively W/d = 10 and W/d = 20). The solid lines correspond to data averaged over a length of 0.1d
and the dashed lines correspond to the same data filtered by a Savitzky–Golay filter (window length 4d and
polynomial degree 3). The volume fraction can be considered as uniform only for large W/d and far from the
sidewalls.

We have reported in figure 16 the transverse volume fraction profiles for two flow
depths, one in the flowing region (z/d = 0) and the other one in the creeping zone,
for a flow angle equal to 45◦ with W = 10d (figure 16c) and W = 20d (figure 16d).
The solid lines correspond to data averaged over a length of 0.1d. They clearly reveal
the layering induced by the flat walls. It is especially important in the creeping zone,
but does not disappear completely in the flowing zone. To get free from the fluctuations
induced by this layering, we filtered the data to produce smoothed volume fraction profiles
corresponding to the dashed lines of the figure. The presence of sidewalls clearly leads to
a decrease of the values of the smoothed volume fraction in their vicinity. This effect is
stronger in the flowing zone that in the creeping zone. It should be pointed out that even
a small modification of the volume fraction has important consequences for the global
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macroscopic behaviour of a granular system. In the creeping zone, the value of Δν seems
independent of W and is of the order of 3 or 4d. For W = 10d the volume fraction in the
flowing region (z/d = 0) is strongly influenced by the sidewalls: it increases continuously
from the sidewalls to the centre of the cell. In contrast, for W = 20d, also for z/d = 0, a
plateau of volume fraction seems to be reached between y = −W/4 and y = W/4.

We have reported in figure 16(a,b) the vertical profiles of the smoothed volume fraction
in the middle of the cell and at the sidewalls for the same configurations. As expected, the
volume fraction is always smaller in the vicinity of the sidewalls. This also confirms that
this effect is stronger in the flowing zone.

It should be pointed out that, for W = 20d and θ = 45◦, around z/d = −10, an
unexpected increase of the volume fraction (a bump) is observed in the centre of the cell
in the vicinity of the free surface. This is due to the formation of dense clusters of a few
grains. The exact characterization of these clusters is beyond the scope of the present
paper.

5.2. Velocity profiles
Bumpy sidewalls are generally considered as non-sliding boundaries (Jop, Forterre &
Pouliquen 2006) with a vanishing velocity at the sidewalls. Here, the sidewalls are flat,
the granular material is expected to have an average velocity that is not negligible at their
contact. We have reported in figure 17(a,b) the vertical profiles at sidewalls and in the
centre of the simulation cell for θ = 45◦ > θc, with W = 10d and W = 20d, respectively.
As expected, an important longitudinal velocity at the sidewalls is observed. We call it
the sliding velocity and we denote it as vs(z) at depth z. Our simulations show that the
transverse profiles of velocity are similar in regimes I and II. The nature of the regime
has an effect on the evolution of the sliding velocity with the angle, but the behaviour of
the reduced velocity at a given depth z, defined as (vx( y, z)− vs(z))/(vx,max(z)− vs(z)),
where vmax(z) is the maximum value of vx( y, z) at depth z, independent of the regime.

Transverse profiles of reduced velocity are reported in figure 17(c,d). They are found to
broaden (i) from the creeping region to the flow region and (ii) with W/d (see figure 17c,d).
These results highlight the three-dimensional structure of the flows observed in our system.

The transverse velocity profiles can be fitted in a convenient way by vx( y, z) =
vmax(z)− B[1 − cosh( y/Δvx)] with B = [vmax(z)− vs(z)]/[1 − cosh(W/2Δvx)]. In the
latter expression, Δvx is the length characterizing the influence of the sidewalls (Courrech
du Pont et al. 2003; Zhang et al. 2019). We have determined vs and Δvx by fitting the
transverse profiles of the velocities averaged between the depths −l/2 and l/2. The ratio
vs/vmax is found to always increase with the flow angle (figure 18), but it increases much
more moderately in regime II than in regime I. Interestingly, the effect of W on this ratio
is weak. This seems to indicate that a boundary condition on the rescaled sliding velocity,
vs/vmax, can be expressed, in a first approximation, as a function of θ .

Interestingly, the characteristic length Δvx is much greater than W/2 for W = 5d,
indicating that the sidewalls influence the flow across the total width of the channel
and, consequently, its determination is imprecise. For W = 20d and W = 30d, the
characteristic length is smaller than W/2 (inset of figure 18) indicating that the effect
of the sidewalls is limited to a portion of the channel. The inset also shows that Δvx/W
increases with θ and decreases with W. However, at a given θ , Δvx increases with W (not
shown) confirming that, in agreement with Jop et al. (2005), the effect of the sidewalls
is significant even at large gap width. The case W = 10d is intermediate between the
two latter configurations. In any cases, the effect of the sidewalls cannot be neglected.
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Figure 17. Effect of sidewalls on the velocity profiles for a flow angle equal to 45◦ i.e. greater that θc, the
angle corresponding to the transition between regime I and regime II. For small gap width ((a) W/d = 10) the
difference between the vertical velocity profiles at sidewalls and in the centre of the simulation cell is small
and increases with increasing W ((b) W/d = 20). The influence of the sidewalls on the transverse profile of
the reduced velocity at a given depth z (i.e. (vx − vs)/(vx,max − vs) where vx,max and vs are respectively the
maximum velocity and the sliding velocity at the aforementioned depth) is weak but increases from the flowing
zone to the creeping one. This variation with depth also increases with increasing W (c,d).

The value of Δvx seems to be of the same order as Δν , the size of the boundary layer
determined from the volume fraction profiles, in the flowing zone.

5.3. Rotation
The component of the rotation velocity normal to the bottom (i.e. ωz) is also of interest
since it is potentially strongly influenced by the presence of the flat but frictional sidewalls
(Yang & Huang 2016). In figure 19, we have reported the transverse variations of ωz at
different flow depths. For the sake of clarity, we have reported in the inset of this figure the
volume fraction and the number of contact profiles and indicate on them the latter depths.
Like all the other quantities reported in this paper, this quantity has been space and time
averaged (see the end of § 2). In the vicinity of the sidewalls and in the creeping zone,
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Figure 19. Profiles of vertical rotation velocity rescaled by 2vs/d vs y for an angle θ = 40◦ and for several
vertical positions. The gap between the sidewalls is W/d = 10. For the sake of clarity, the inset reports the
aforementioned vertical positions (dashed lines) on the vertical profiles of the number of contacts, Nc and of
the volume fraction, ν.

the rotation velocity ωz is close to 2vs/d. This indicates that, at these depths, the grains
located in the vicinity of the sidewalls mainly roll without sliding at the contact with the
sidewall. The influence of the sidewalls decreases in the flow zone, indicating that the
propensity of the grains for sliding at contact increases. The correlations of the rotations
along the transverse direction are complex. Counter-rotations (anti-correlated rotations)
are observed close to the sidewalls (see figure 19). The number of involved layers increases
with the depth within the flow. It should be pointed out that the observed behaviour is
somewhat similar to that of a system with frustrated rotations (Radjai, Brendel & Roux
1996; Khidas et al. 2000).
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Figure 20. Transverse temperature profiles for θ = 45◦, W/d = 10 (a) and θ = 45◦, W/d = 20 (b) in the
centre of the simulation cell and at the sidewalls. The corresponding transverse temperature profiles are
respectively reported in (c,d). The absolute difference between the vertical profiles of temperature at the centre
and at the sidewalls is weak in the case of small gap width (a), yet the transverse relative variations are not
negligible (c). The vertical dashed lines reported in (a,b) correspond to z/d = l. In the case of large gap width,
the transverse variations of the granular temperature are important, as shown by the vertical profiles at the
sidewalls and at the centre (b) as well as on the transverse profiles (d). Interestingly, depending on the flow
zone (flowing or creeping) the sidewalls behave like a source or a sink of granular temperature (c,d).

5.4. Granular temperature
At the centre and at the sidewalls the temperature is found to increase from the creeping
zone to the free surface, the differences between the two profiles being more important for
larger gaps W. Note that for W/d = 20 a decrease of granular temperature is observed at
z/d ≈ −10. This location corresponds to the kink observed on the volume fraction profile
(see figure 16). As mentioned in § 5.1 it corresponds to the formation of clusters of grains.
The transverse profile of the granular temperature is very informative. Outside the creeping
zone, this quantity is greatest at the sidewalls and lowest in the centre. In contrast, in
the creeping zone, the granular temperature gradually rises from its minimal value at the
sidewalls to a maximum value at the centre of the cell. Note that similar results have been
observed in a confined shear cell (Artoni et al. 2018; Richard et al. 2020). These results
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have important consequences. Depending on the vertical position, sidewalls could be either
a granular heat source (in the flowing zone) or a sink (in the creeping zone). This points
out the difficulty in stipulating a sidewall boundary condition on the granular temperature
for theories aiming to capture the properties of granular flows involving both creeping and
flowing zones. Note that, in the flowing zone, the observed high temperature induces an
important pressure and a low volume fraction (see § 5.1).

A comparison between figures 20 and 17 suggests that the length of influence of the
sidewalls on the granular temperature is weaker than that on the velocity. To illustrate
this, we can compare the transverse profile of the temperature and the velocity for W/d =
20 and θ = 45◦ (i.e. figures 20d and 17d, respectively). For both quantities, a plateau is
observed at the centre of the cell, yet that observed for the temperature is significantly
larger than that of the velocity. In this case, the length characterizing the effect of the
sidewalls on the granular temperature, estimated by the distance between a sidewall and
the beginning of the plateau, is approximately equal to the half of that measured on the
streamwise velocity profile.

6. Conclusion

We have investigated confined granular flows over an erodible bed by means of DEM. We
have studied the kinematic properties of the steady and fully developed regime. In contrast
to the flow regimes explored experimentally by Jop et al. (2005), who actually limit their
investigation to shallow inclination angles (typically between 20 and 30◦), we explored
flow regimes up to much larger inclination angles, between approximately 25 and 70◦. To
obtain these steep inclinations, we investigated flow configurations with a small gap W
between the sidewalls (W/d = 5, 10, 20 and 30).

We have characterized in detail the vertical and transverse profiles of the particle
volume fraction, particle velocity, particle flux density, particle rotation speed and granular
temperature as functions of the inclination θ and the gap width W. This analysis reveals
the existence of two distinct regimes at low and large angles of inclination, regimes I
and II, respectively. The transition has been found to occur at a critical inclination angle
θc ≈ 40◦. Importantly, two different length scales have been identified: the flow height h
characterizing the decay of the streamwise velocity profile and the characteristic length l
characterizing the decay of the particle volume fraction profile. These two lengths coincide
in regime II but differ in regime I, where (h/W) ∝ (l/W)2/5. Taking into account the fact
that the experimental results are relative to the length scale h, we choose to use h to express
the scaling with depth.

In addition to these two length scales, a unique characteristic velocity scale, Vc =
(l/W)

√
gd, was uncovered. The maximum velocity Vmax scales with this characteristic

velocity Vc both in regimes I and II. Interestingly, the vertical profiles of the velocity and
temperature, when rescaled by Vc and V2

c , respectively, fall onto a master curve when
plotted as a function of the rescaled depth (z/h). We obtain two different distinct master
curves according to the flow regime. Transverse profiles also reveal that the effect of the
sidewall extend over a significant part of the width of the chute flow in the range of gap
widths investigated so far (5d < W < 30d). For W = 5d, the influence of the sidewall
affects the whole width.

We confirm the robustness of the relationship between the rescaled flow height h/W and
the inclination angle, previously established in Taberlet et al. (2003) and Richard et al.
(2008)

h
W

= tan θ − μb,h

μw,h
, (6.1)
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Dimensionless quantities
γ̇√
g/d

Vmax√
gd

Q∗

d
√

gd
Q∗/d

√
gd

(W/d)5
l

W

Regime I: θ < θc Experiments,
simulation
and model

(
W
d

)1/2 (
h
W

)3/2 (
W
d

)3/2 (
h
W

)5/2 (
W
d

)5/2 (
h
W

)7/2 (
Vmax/

√
gd

(W/d)3/2

)7/5 (
h
W

)5/2

Regime II: θ > θc Simulations
(

W
d

)1/2 (
W
d

)3/2 (
h
W

) (
W
d

)5/2 (
h
W

)2 (
Vmax/

√
gd

(W/d)3/2

)2 (
h
W

)

Table 1. Summary of the scaling obtained numerically for γ̇ , Vmax and Q respectively. We also recall the
results obtained by Jop et al. (2005) at small angles derived from theμ(I) rheology and checked experimentally.
Note that the second to last column of the table indicates the scaling between Q∗ and Vmax and the last one the
scaling of l/W with respect to h/W according to the flow regime.

where μb,h and μw,h were interpreted as effective friction coefficients. This relationship
holds whatever the flow angle and the gap width. A detailed discussion of the
establishment and interpretation of this relationship was outside of the scope of the present
article. This will be one of the goals of the second article of the series.

Another salient feature is revealed by the simulations. We were able to extract scaling
laws for γ̇ , Vmax and Q that are found to depend on the dimensionless length scales h/W
and W/d. These scalings support the existence of the two distinct regimes at flow angles
smaller and greater than θc ≈ 40◦ (see table 1). More precisely, in regime II, for a given
rescaled flow height h/W (that is for a given inclination), we find the same scalings with
respect to W as those derived by Jop et al. (2005): γ̇ ∝ W1/2, Vmax ∝ W3/2 and Q ∝ W5/2.
In contrast, for a given gap width W, the scalings with respect to h obtained in regime II
differ from those from Jop et al. (2005). We obtain γ̇ ∝ C, where C is a constant, Vmax ∝ h
and Q ∝ h2 whereas Jop et al. (2005) get γ̇ ∝ h3/2, Vmax ∝ h5/2 and Q ∝ h7/2. These
contrasting behaviours are not surprising since flows at small and large inclination angles
differ in nature. In the small angle regime investigated by Jop et al. (2005), that is regime
I, the flowing layer remains dense and can be well described by the μ(I) rheology while,
in the large angle regime, we observe a strong variation of the volume fraction from the
bottom to the top of the flowing layer. This difference is confirmed by the fact that the
relationship between h and l differs in regimes I and II, as emphasized previously.

An important future task would be to complement the numerical investigations with
experiments to confirm the scaling laws in regime II. We are currently conducting
experiments using a chute flow which was designed to allow for large flow rates. We hope
to report soon on these experimental results.
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