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The Weihe River in central China is the largest tributary of the Yellow River and contains a well-
developed strath terrace system. A new chronology for the past 1.11 Ma for a spectacular flight of
strath terraces along the upper Weihe River near Longxi is defined based on field investigations of loess
epaleosol sequences and magnetostratigraphy. All the strath terraces are strikingly similar, having
several meters of paleosols that have developed directly on top of fluvial deposits located on the terrace
treads. This suggests that the abandonment of each strath terrace by river incision occurred during the
transition from glacial to interglacial climates. The average fluvial incision rates during 1.11e0.71 Ma and
since 0.13 Ma are 0.35 and 0.32 m/ka, respectively. These incision rates are considerably higher than the
average incision rate of 0.16 m/km for the intervening period between 0.71 and 0.13 Ma. Over all our
results suggest that cyclic Quaternary climate change has been the main driving factor for strath terrace
formation with enhanced episodic uplift.

© 2016 University of Washington. Published by Elsevier Inc. All rights reserved.
Introduction

River terraces are common landforms composed of alluvial de-
posits that occur along the flanks of river valleys in a wide range of
climatic and tectonic settings (Bridgland and Westaway, 2008;
Pazzaglia, 2013). River downcutting into former active channels
and floodplains results in river terrace formation. Aggradation and
degradation occur when rivers depart from conditions of equilib-
rium, which can result in river terraces formation (Bull, 1990).
Strath terraces that form when rivers incise into bedrock capping
the rock with thin deposits of alluvium are of particular note
(Pazzaglia, 2013). Terraces can be used as a geodetic marker to infer
climatic, tectonic and other environmental changes that alter the
erosional capacity and sediment load of a river when numerically
dated (Schumm, 1977; Bull, 1990; Merritts et al., 1994). Yet under-
standing and quantifying terrace formation, abandonment and any
subsequent preservation, remains one of long-standing challenges
in geomorphology (Gilbert, 1877; Howard, 1959; Schumm, 1977;
ed by Elsevier Inc. All rights reser
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Bull, 1990; Bridgland, 2000; Vandenberghe, 2008, 2015; Finnegan
and Dietrich, 2011).

In their classic work, Penck and Brückner (1909) concluded that
river terraces in the European Alpine foreland correlated with
glacial moraines in the Alps. Moreover, in unglaciated regions,
terrace formation can be triggered by changes in precipitation,
vegetation cover and sediment load during glacialeinterglacial
climate oscillations (Huntington, 1907). The traditional view of a
one-to-one correlation between fluvial activity and climate change
has been pervasive for many decades (Büdel, 1977; Starkel, 2003).
This view was promoted by Zeuner (1935), who suggested that
terrace formation in the lower reaches of rivers is driven by fluc-
tuating sea levels, whereas in areas remote from the sea, climate
change produces a contrasting effect, with aggradation during
glacial and incision during interglacial climates. Process-related
thinking has suggested that sea-level fluctuations significantly
affect shelf area but have little effect on drainage basins (Schumm,
1993; Koss et al., 1994). There is now a general consensus that long-
time scale flights of river terraces relate to regional uplift and cli-
matic fluctuations (Antoine et al., 2000; Starkel, 2003; Cordier et al.,
2006; Bridgland and Westaway, 2008, 2014; Vandenberghe, 2008,
2015). Moreover, Vandenberghe (1995, 2008, 2015) suggested a
non-linear model whereby river incision generally occurs during
ved.
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times of climatic instability. Abundant geological evidence and
numerical models confirm this view (Bridgland and Allen, 1996;
Antoine et al., 2000; Mol et al., 2000; Cordier et al., 2006;
Vandenberghe et al., 2011).

The northeastern region of the Tibetan Plateau formed as a
distant response to the Indian-Eurasian collision zone (Fig. 1a) and
is a transitional zone in terms of its lithospheric structure, topog-
raphy and climate (Li et al., 2014). The Yellow River and its large
Figure 1. (a) Location of the Longxi Basin in central China. The small black rectangle highlig
cross-valley profile (see Fig. 2).
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tributaries, such as the Daxiahe, Taohe, Huangshui and Weihe
rivers, originate in this region (Fig. 1a). Most previous work in this
region has focused on the history of punctuated Quaternary uplift,
proposing that uplift occurred: 1) from 3.6 to 1.5 Ma, named the
Qingzang Movement, which resulted in massive molasse deposits
around the Tibetan Plateau's margin and the synchronous occur-
rence of faulted basins within the Tibetan Plateau (Li, 1991; Li et al.,
2014, 2015); 2) from 1.2 to 0.6 Ma, named the Kunhuang
hts the study area. (b) Weihe River terraces in the Longxi Basin. Line AeA' defines the
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Movement, during which the Yellow River entered the Tibetan
Plateau by cutting through the Jishi Gorge (Li, 1991), and the Kunlun
Pass area was uplifted to >3000 m above sea level (asl) (Cui et al.,
1998); and 3) at ~0.15 Ma, named the Gonghe Movement, which
is represented by the unconformity into the folded fluvial sedi-
ments of the Gonghe Formation, and rapid downcutting of the
Yellow River into the Gonghe Formation to form the Longyang
Gorge (Li, 1991).

The northeastern Tibetan Plateau has attracted considerable
interest in recent decades because it provides one of the most
complete terrestrial records of Quaternary environmental and cli-
matic change (Li et al., 1997; Lu et al., 2004; Sun, 2005;
Vandenberghe et al., 2011; Wang et al., 2014, 2015). Nevertheless,
the nature of the change in climate or rock-uplift that initiated the
incision of the rivers in this region remains controversial. According
to Lu et al. (2004) and Sun (2005), river terraces in this region
reflect elements of the systems attendant on the IndianeEurasian
tectonic collision, in which terraces define episodes of an acceler-
ated northward movement of India towards Asia during the Late
Cenozoic. However, the effects of uplift cannot be fully separated
from incisions caused by climate change (Li et al., 1997). Climate
change driven by variations in Earth's orbital geometry is the major
factor that modulates fluvial systems in central China (Porter et al.,
1992). Our previous studies have shown that fluvial aggradation
occurred during glacial times while river incision between suc-
cessive terraces took place during the transition from glacial to
interglacial times (Pan et al., 2003, 2009). In contrast,
Vandenberghe et al. (2011) suggested that the Huangshui River
incised slightly during the transition from glacial to interglacial
times, while the main incision took place during the next inter-
glacialeglacial transitions. Further studies have shown that terrace
abandonment could have occurred during both coldetoewarm and
warmetoecold climatic transitions (Wang et al., 2014, 2015).

In this paper, we examine the Early to Late Pleistocene strath
terrace record along the upper Weihe River within the Longxi Basin,
and discuss the responses of the river system to climatic variations
and tectonicmovements during the Quaternary. Strath terraces in this
region form in Neogene bedrock, that is beveled and capped by thin
alluvium and loess. The ages of the basal units of the capping loess are
used to represent the time when rivers incised into the strath terrace.
Figure 2. Schematic cross-section of the alluvial terrace sequences along the Weihe River v
assigning ages to alluvial fills. The location is shown in Fig. 1b.
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Coupled with detailed magnetostratigraphic studies, grain-size anal-
ysis and paleosol investigations at multiple localities, allow us to
reconstruction the nature of the terrace formation.
River terraces along the Weihe River in the Longxi Basin

The Weihe River, which is the largest tributary of the Yellow
River, rises in the western Qinling Mountains (Fig. 1). The main
stream of the Weihe is 818 km in length, and has a drainage area of
1,348,000 km2. The upper reaches of the main stream are 430 km
long, and drain an area of 30,660 km2, including the western
portion of the semiarid Chinese Loess Plateau, and the Qinling and
Liupanshanmountain ranges (Fig.1a). The elevation decreases from
over 2500 m asl in the headwaters of the Weihe River to 600 m asl
at Baoji, where the river cuts through the mountains and flows into
the Guanzhong Basin. The climate of the Weihe catchment is of
continental monsoon type. Mean annual precipitation varies be-
tween 400 and 600 mm, and ~70% of the rainfall occurs in the form
of rainstorms between June and September. The Weihe River is
recharged by rainfall, and its inter-annual runoff varies
considerably.

The study area focused primarily on the Longxi Basin, which is
located at the junction of the Tibetan Plateau, the Chinese Loess
Plateau and the Qinling Mountains (Fig. 1). The Longxi Basin
developed on the northern side of the north frontal fault zone of the
western Qinling Mountains. Thick layers (hundreds of meters) of
Cenozoic sequences were deposited from the Oligocene to the Late
Miocene, influenced by the northward over-thrust of the fault zone,
which depressed the Longxi Basin and thus accommodated any
deposition (Z.C. Wang et al., 2006). The deposition in the Longxi
Basin underwent strong tectonic deformation that has petered out
in successive stages since the Late Miocene. Thick (>250 m) layers
of Quaternary loess cap landforms at different elevations in the
Longxi Basin. Previous geomorphic studies in the region have
revealed a series of step-like planation surfaces and seven river
terraces (Gao et al., 2008). More recently, we identified three strath
terraces located above terrace T7 and below the step-like planation
surfaces, which we call T8eT10 in descending order from lowest to
highest (Figs. 1b and 2).
alley, showing the superjacent loess/paleosol stratigraphy that constitutes the basis for
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Methods

We conducted field observations to identify the position of each
of the three strath terraces, the thickness of capping gravels,
overbank deposits and overlying loess, and the number, character
and distribution of paleosols within the loess. Strath and gravel
elevations were surveyed using a differential GPS system, and un-
certainties were estimated to be <5 cm. Basal gravel layers are 282,
246 and 221 m above the modern river level and are covered by
~110, 115 and 100 m of loess, respectively (Fig. 2 and Table 1).

The chronology of the Chinese loess and paleosol units has been
established by astronomical tuning, and constrained by use of a
revised paleomagnetic polarity timescale (e.g., the bottom age of S1
is 130 ka; Ding et al., 2002; Lisiecki and Raymo, 2005). Therefore,
the sedimentary sequence can be used as a dating tool in much the
same way that marine oxygen isotope records can be used to pro-
vide a continuous chronological framework of climate and associ-
ated changes (Bridgland, 2000; N�ador et al., 2003; Maddy et al.,
2012). The ages of the strath terraces were estimated by corre-
lating the loessepaleosol successions on terraces of unknown ages
with those of the southern and central Chinese Loess Plateau. This
provided an estimate to within a Marine Isotope Stage (MIS) of
±10e40 ka. This approach has proven especially useful in assessing
the ages of river terraces in the Chinese Loess Plateau, and in the
correlation of these terraces with those along the Yellow (Li et al.,
1997; Pan et al., 2009), Huangshui (Vandenberghe et al., 2011)
and Weihe (Sun, 2005; Gao et al., 2008) rivers. When numeric ages
are provided, strath terraces can be used as a geodetic marker to
infer tectonic and climatic processing rates. On the basis of strath
terrace heights and ages, the measured rates of river incision into
bedrock are commonly interpreted as proxies for rates of rock uplift
(Maddy, 1997) and indices of the strength of climatic forcing of
erosion over time (Porter et al., 1992). The incision rate was
measured from the height of one terrace to the next.

We used paleomagnetism and paleosol stratigraphy to establish
the chronology of terraces T10, T9 and T8. In awell-exposed natural
outcrop, oriented 1000 cm3 cubic blocks of loess were collected,
with geographic north marked on the top surface. In the laboratory,
each bar was cut into 8 cm3 cubic samples using an electric saw.
Treatment and testing of samples were conducted in the Paleo-
magnetic Laboratory of the Key Laboratory of Western China's
Environmental Systems (Ministry of Education). All of the samples
were measured on 2G-755 cryogenic magnetometers in
magnetically-shielded conditions, and were progressively demag-
netized to 550 or 580�C. Magnetizations were effectively removed
at 250e300�C, such that characteristic remanence directions could
be clearly identifiable at temperatures >300�C.

We analyzed the grain-size characteristics of the basal units and
loessepaleosol samples of the capping aeolian stratigraphy of
Table 1
Characteristics of the Weihe River terraces near Longxi.

Terrace Terrace seat (m)* Thickness of
gravel layer (m)

Thickness
of fluvial silt (m)

T1 1.5 3e4
T2 23 3 6
T3 30 2 6
T4 52 10 6
T5 126 2 2e3
T6 142 5 4
T7 197 5 3
T8 221 2e3 1
T9 246 6e7 0.5
T10 282 8e9 2

* Terrace seat is the elevation (in meters) of the bedrock surface in a terrace.

rg/10.1016/j.yqres.2016.08.004 Published online by Cambridge University Press
terraces T10, T9 and T8 to help characterize loessepaleosol suc-
cessions in the field (Fig. 3). Samples for particle size analysis were
collected at 5 cm intervals. The particle size was measured using a
U.K. Mastersizer 2000 laser particle sizer in the Key Laboratory of
Western China's Environmental Systems (Ministry of Education)
following the methods proposed by Ding et al. (2002) and Prins
et al. (2007).

Timing of terrace formation

Grain-size analysis shows that the loess and paleosol samples
can be clearly separated into the >16 mm and clay fractions. Further,
the samples from the bases of the loess profiles are mostly located
in the same zones as the paleosol samples (Fig. 3). Using field
investigation results and grain-size analysis, we were able to
establish the loessepaleosol stratigraphy of the loess sequences on
the three terraces.

Age of terrace T10

Only the lower 25 m of the section was sampled for grain-size
analysis due to the development of artificial agricultural terraces,
which has disturbed the upper portion of the section. Five paleosol
units were identified based on field observation and grain-size
analysis (Fig. 4). Approximately 83 paleomagnetic sites (249 sub-
samples) were sampled at intervals of 0.5 m in the lower portion of
Section T10 (0e5 m), and at intervals of 1 m in the upper portion
(5e79 m). The magnetostratigraphic results show that the Section
T10 contains three normal polarity zones (N1eN3) and three
reversed polarity zones (R1eR3; Fig. 4). N1 spans the upper 53.5 m
of the sequence; we interpreted the N1/R1 transition as repre-
senting the BrunheseMatuyama (B/M) boundary dated at ~780 ka
(Cande and Kent, 1995). Previous magneto-pedostratigraphic
studies of the Chinese Loess Plateau have demonstrated that the
B/M boundary appears within loess L8 (Liu, 1985; Zhu et al., 1998),
and, therefore, we assigned the paleosol unit directly below the B/
M boundary to S8. Based on pedostratigraphy, the lower four
paleosol units are probably S9eS12. Previous studies have
demonstrated that the post-Jaramillo subchron (Kamikatsura and
Santa Rosa) and Jaramillo subchron appear typically in intervals
within loess L9 and intervals between S10 and S12, respectively
(X.S. Wang et al., 2006; Liu et al., 2010). Combining the
loessepaleosol stratigraphy with the geomagnetic stratigraphy we
obtained, we found that levels corresponded to intervals within L9
for N2, and from S10 to S12 for N3. We, therefore, correlated N2
with the post-Jaramillo subchron (Kamikatsura and Santa Rosa),
and N3with the Jaramillo subchron (0.99e1.07Ma). The lowermost
paleosol S12, corresponding toMIS 33 (Ding et al., 2002), developed
at ~1.11 Ma (Lisiecki and Raymo, 2005). We would argue that this
Thickness
of loess (m)

Oldest aeolian
stratigraphic unit

MIS Age of incision (ka)

1.5e2 S0 1 14
9 Sm 3 57
30 S1 5 130
58.5 S4 11 424
33.5 S6 17 712
79 S7 19 790
104.5 S8 21 866
100 S10 29 1031
115 S11 31 1081
110 S12 33 1114
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Figure 3. Grain-size properties of overlying aeolian loess deposits identified in this
study. The yellow squares and red circles indicate loess and paleosol samples,
respectively. Samples taken from the bases of the aeolian loess profiles of terraces T10
(green five-point stars), T9 (black rhombuses) and T8 (blue triangles) are plotted in the
photograph. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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age represents the best estimate of terrace abandonment, given
that this paleosol lies directly atop fluvial silt, with no intervening
loess.
Age of terrace T8

Only the lower 20 m of the Section T8 was sampled because the
upper portion of the section was heavily disturbed by farming ac-
tivity. Five paleosol units within the lower 10 m of the section were
identified on the basis of field observations and grain-size analysis
(Fig. 4). Approximately 60 paleomagnetic sites (180 subsamples)
were sampled at intervals of 0.25 m in the lower portion of the
section (0e11 m), and at intervals of 0.5 m in the upper portion
(11e19 m). Three normal polarity zones (N1eN3) and two reversed
zones (R1eR2) were evident in Section T8 (Fig. 4). As mentioned
Figure 4. Stratigraphy, grain size, declination, inclination and observed polarity patterns f
Terraces T7 and T6 are modified from Gao et al. (2008).
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above, the N1/R1 transition in loess L8 represents the B/M
boundary (~780 ka; Cande and Kent, 1995). Therefore, we assigned
the paleosol unit at ~5 m above the fluvial silts to S8, and the
lowermost paleosol unit to S10. Based on previous studies, we
correlated N2 with the post-Jaramillo subchron (Kamikatsura and
Santa Rosa), and N3 with the upper Jaramillo subchron. The
lowermost paleosol S10, corresponding to MIS 29 (Ding et al.,
2002), developed at 1.03 Ma, allowing us to argue that terrace T8
was formed at ~1.03 Ma (Lisiecki and Raymo, 2005).
Age of terrace T9

The fluvial deposits of Terrace T9 were overlain by ~115 m of
loess. Calcium cementation was evident within the lower 20 m of
the section, which was influenced by the groundwater (Fig. 5).
Paleo-gullies were evident in the lower portion of the section
(12e20 m) (Fig. 5b). These buried gullies are ubiquitous features of
the landscape in the loess regions of central China (Porter and An,
2005). These disturbances might be responsible for the problem-
atic magnetostratigraphic results recorded within this section. Our
magnetostratigraphic results show that the reverse stratigraphy
contains only one normal polarity zone (N1), except for two
reversed samples found at 20 m above the fluvial silts. We deduced
that the lowermost paleosol is probably S11, corresponding to MIS
31, based on the geomorphic relations between terraces T10, T9 and
T8, field identification of the loess stratigraphy, and grain-size data
(Ding et al., 2002). Thus, we estimated that terrace T9 was aban-
doned at ~1.08 Ma (Lisiecki and Raymo, 2005).
Discussion

A strath terrace surface can be either the top surface of the filled
alluvial deposits, or a scour surface formed during lateral channel
migration. The terrace forms when the river attains a temporary
equilibrium profile and is followed by renewed downcutting.
Increasing discharge, or decreasing sediment supply, or a higher
channel slope enhances downcutting (Maddy et al., 2012). The
changing discharge and sediment supply are generally triggered by
climatic fluctuations, while higher channel slopes can be attributed
or the loess sequences of terraces T10, T8, T7 and T6. Md denotes median grain size.

https://doi.org/10.1016/j.yqres.2016.08.004


Figure 5. (a) Views of Terrace T9, showing the loess sequences, gravels and springs. (b) Paleo-gully deposits with cross bedding. (c) Lower portion of the T9 Section. The loess and
paleosol units, and the overbank sediments, can be identified.
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to tectonic uplift and/or base level lowering. Because our study area
is located some 2000 km from the nearest coastline, our terraces
cannot possibly be influenced by sea-level fluctuations. In this
context, we focused on the impact of climate change and tectonic
uplift on terrace formation in this area.
Climate change and strath terrace formation

The Weihe River has incised some 300 m into the Longxi Basin,
and formed ten strath terraces over the past 1.11 Ma. The formation
of six strath terraces (T10eT5) during the mid-Pleistocene transi-
tion is approximately consistent with the ~40 ka orbital cycle (with
only S9 missing). Similarly, the frequency of the formation of three
terraces (T3eT1) during the past 0.13 Ma is entirely consistent with
the formation of one terrace per orbital cycle. The frequency of
terrace formation appears to match the orbital-driven climate cycle
reflected in the LR04 stacked d18O marine record (Fig. 6; Lisiecki
and Raymo, 2005). However, not every climatic cycle has a corre-
sponding terrace in our study area. Notable ‘missing’ strath terraces
are evident for the glacialeinterglacials that include L10eS9,
L6eS5, L4eS3 and L3eS2 (Fig. 6). Terraces of these ages might exist
in this or other basins, but have not yet been identified or studied.
The missing strath terraces in the Longxi Basin might be a conse-
quence of poor preservation, as they might have been destroyed by
later fluvial activities.

The loessepaleosol stratigraphy of the terraces is strikingly
similar in the way in which the basal paleosol on each terrace is
typically developed directly above alluvial silts and sands (Figs. 2
and 3). The deposition of loess during glacial periods and forma-
tion of paleosols in warmer interglacial periods, on orbital time
scale, has long been known (Liu and Ding, 1998). Our terrace
rg/10.1016/j.yqres.2016.08.004 Published online by Cambridge University Press
sequences correspond with the orbitally-driven climatic changes
which govern fluvial aggradationeincision activity. In this case,
fluvial aggradation commonly occurred during glacial periods,
whereas stream incision may have occurred during the transitions
from glacial to interglacial climates. In general, fluvial behavior is
related to climatically-induced changes in vegetation cover and
catchment hydrology, which in turn affect the magnitude and fre-
quency of discharge events and the rate of sediment supply (Leigh,
2008; Kasse et al., 2010).

Our study suggests that terrace abandonment largely coincided
with the transitions from glacial to interglacial climates. This view
is supported by previous studies conducted near the margins of the
northeastern Tibetan Plateau (Li et al., 1997; Owen et al., 2006; Gao
et al., 2008; Pan et al., 2009). However, Sun (2005) suggested that
the lowermost units of the aeolian capping sediments for terraces
in the Fenwei Graben are loess. In addition, some studies of the
Huangshui River have shown that both loess and paleosols can be
identified in the basal units of the aeolian profile, and that the
Huangshui terraces were most probably formed during both
warmetoecold and coldetoewarm climatic transitions
(Vandenberghe et al., 2011; Wang et al., 2014, 2015). In either case,
we can reasonably argue that the general sequence of terrace de-
posits reflect climatic forcing, although the exact timing needs
further investigation.
Temporal variations in rock uplift and terrace development

The collision of the Indian and Eurasian continental plates led to
the tectonic uplift of Tibet and caused a series of large-scale strike-
slip faults along the northern and northeastern margins of Tibet
(Tapponnier et al., 2001; Li et al., 2014). The southeast-trending

https://doi.org/10.1016/j.yqres.2016.08.004


Figure 6. Correlation of the incision of river terraces in the Longxi, Lanzhou and Linxia basins compared to the global marine oxygen isotope climate record (Lisiecki and Raymo,
2005) and the paleosol development in the loess covering the terraces. The red, blue and green lines illustrate the incision rates of the Weihe, Yellow and Daxiahe rivers. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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sinistral fault, the West Qinling Fault along the Qinling Mountains,
and Quaternary faulting in and around this area, all show that this
region remains tectonically active (Peltzer et al., 1985; Kirby et al.,
2007). In addition, crustal loading and unloading resulting indi-
rectly from Quaternary climatic forcing might drive tectonic uplift
(Westaway, 2002; Westaway et al., 2003). These crustal de-
formations create regionally elevated terrain that provides the
potential energy for river incision, although tectonic uplift and any
isostatic rebound are notoriously difficult to quantify (Molnar and
England, 1990).

By comparing adjacent terrace ages and their elevation (Fig. 6),
the amount of river incision can be inferred over a given time in-
terval. The incisioneaggradation cycles of the sequences of the
Weihe River show large variances in their incision rates. From 1.11
to 0.71 Ma, a significant downcutting of the riverbed occurred; the
average incision rate during this time was ~0.35 m/ka. A second
episode of strong downcutting was initiated at 0.13 Ma (the for-
mation of terrace T3), with an average incision rate of >0.32 m/ka.
However, the rate of downcutting appears to have slowed to a fairly
constant level of ~0.16 m/ka between 0.71 and 0.13 Ma. In the
neighboring Lanzhou Basin, this change, involving two increases in
the rate of incision, is recorded in the terrace sequences of the
Yellow River, where defined by loessepaleosol stratigraphy,
paleomagnetism and luminescence dating (Pan et al., 2009). We
calculate average incision rates of 0.08 m/ka for the period between
1.2 and 0.8 Ma, and 0.35 m/ka for the period after 0.13 Ma. Between
0.8 and 0.13 Ma, the incision rate decreased to 0.03 m/ka. In the
Linxia Basin, incision rates for the Daxiahe River also show that
river incision has not been constant throughout the Quaternary.
From 1.66 to 1.4 Ma, a significant downcutting occurred, with an
incision rate of 1 m/ka (Li et al., 1997). Thereafter, the incision rate
oi.org/10.1016/j.yqres.2016.08.004 Published online by Cambridge University Press
slowed to a fairly constant level of ~0.11 m/ka. A second episode of
strong downcutting was initiated at 0.12 Ma, with an incision rate
of 0.75 m/ka (Li et al., 1997).

Although river incision rates cannot be used directly to evaluate
regional uplift (Finnegan et al., 2014), we can roughly estimate the
tendency of regional uplift to affect incision rates on the assump-
tion that the terrace gradients are similar to that of the contem-
porary river, i.e., each terrace represents a quasi-equilibrium profile
adjusted to the regional uplift (Maddy, 1997). In such an active
tectonic region, the two enhanced downcutting periods experi-
enced by theWeihe River, during ~1.1e0.71Ma, and from0.13Ma to
the present, might be attributed to the accelerated uplift of the
western Qinling Mountains during these periods, coinciding with
the Kunhuang and Gonghemovements (Li et al., 2015), respectively.
In addition, the ages of these Weihe river terraces also correlate
with periods of accelerated northward movement of the Indian
Plate towards the Eurasian Plate, providing some dating constraints
on the Tibetan Plateau's episodic uplift during the Quaternary.

Conclusions

Ten strath terraces were mapped along the Weihe River within
the Longxi Basin, and are composed of basal channel gravels and
alluvial silts, and are overlain by thick loessepaleosol deposits.
Stratigraphic loessepaleosol studies of the aeolian deposits on the
top of the ten terraces (T10eT1) indicate that the basal layers of
these loess deposits are S12, S11, S10, S8, S7, S6, S4, S1, Sm and S0,
and correspond to MIS 33 (T10), 31 (T9), 29 (T8), 21 (T7), 19 (T6), 17
(T5), 11 (T4), 5 (T3), 3 (T2), and 1 (T1). This record indicates that the
fluvial aggradation and incision in the upper Weihe River can be
linked to climate change, with fluvial aggradation commonly
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occurred during glacial times, whereas river incision occurred
during the transition from glacial to interglacial times.

Tectonic deformation provides additional forcing that amplifies
elevational contrasts along the length of theWeihe River helping to
drive long-term fluvial incision. Two enhanced downcutting pe-
riods are evident between ~1.1 and 0.71 Ma, and 0.13 Ma and the
present day, possibly a consequence of accelerated uplift of the
western Qinling Mountains.
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