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Abstract Let U be the unipotent radical of a Borel subgroup of a connected reductive algebraic group G,
which is defined over an algebraically closed field k. In this paper, we extend work by Goodwin and Röhrle
concerning the commuting variety of Lie(U) for char(k) = 0 to fields whose characteristic is good for G.
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Introduction

Let G be a connected reductive algebraic group, defined over an algebraically closed field
k. Given a Borel subgroup B ⊆ G with unipotent radical U , in this paper we investigate
two closely related varieties associated with the Lie algebra u := Lie(U): the commuting
variety C2(u), given by

C2(u) := {(x, y) ∈ u×u; [x, y] = 0}

and the variety

A(2, u) := {a ∈ Gr2(u); [a, a] = (0)},
of two-dimensional abelian subalgebras of u, which is a closed subset of the Grassmannian
Gr2(u) of 2-planes of u.

For char(k) = 0, the authors proved in [6] that C2(u) is equidimensional if and only if
the adjoint action of B on u affords only finitely many orbits. Being built on methods
developed in [14, § 2] for char(k) = 0, their arguments do not seem to readily generalize
to fields of positive characteristic. In fact, most of Premet’s paper [14] is devoted to the
technically more involved case pertaining to fields of positive characteristic.

The purpose of this note is to extend the main result of [6] by employing techniques
that work in good characteristics. For arbitrary G, this comprises the case char(k) = 0 as
well as char(k)≥7. Letting Z(G) and mod(B; u) denote the centre of G and the modality
of B on u, respectively, our main result reads as follows.
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Theorem. Suppose that char(k) is good for G. Then

dim C2(u) = dimB − dim Z(G) + mod(B; u).

Moreover, C2(u) is equidimensional if and only if B acts on u with finitely many orbits.

If mod(B; u) = 0, then, by a theorem of Hille–Röhrle [7], the almost simple components
of the derived group (G,G) of G are of type (An)n≤4 or B2. As in [6,14], the irreducible
components are parametrized by the so-called distinguished orbits.

Our interest in C2(u) derives from recent work [2] on the variety E(2, u) of two-
dimensional elementary abelian p-subalgebras of u, which coincides with A(2, u) whenever
char(k)≥h(G), the Coxeter number of G.

Corollary. Suppose that char(k) is good for a reductive group G of semisimple rank
rkss(G)≥2. Then the following statements hold:

(1) dim A(2, u) = dim B − dim Z(G) + mod(B; u) − 4;

(2) A(2, u) is equidimensional if and only if mod(B; u) = 0;

(3) A(2, u) is irreducible if and only if every component of (G,G) has type A1 or A2.

For the reader’s convenience, we begin by collecting a number of subsidiary results in the
first two sections, some of which are variants of results in the literature. Throughout this
paper, all vector spaces over k are assumed to be finite dimensional.

1. Preliminaries

Let g be a finite-dimensional Lie algebra over k, and let Aut(g) be its automorphism
group. The commuting variety C2(g) is a conical closed subset of g×g. Given a variety
X, we denote by Irr(X) the set of irreducible components of X. Thus, each C ∈ Irr(C2(g))
is a conical closed subset of the affine space g×g.

Recall that the group GL2(k) acts on the affine space g×g via(
α β
γ δ

)
. (x, y) := (αx + βy, γx + δy),

with C2(g) being a GL2(k)-stable subset. In particular, the group k× := k�{0} acts on
C2(g) via

α.(x, y) :=
(

1 0
0 α

)
. (x, y) = (x, αy).

We denote the two surjective projection maps by

pri : C2(g) −→ g i ∈ {1, 2}.
Given x ∈ g, we let Cg(x) be the centralizer of x in g. Since

pr−1
1 (x) = {x}×Cg(x)
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Commuting varieties for nilpotent radicals 561

for all x ∈ g, the surjection pr1 : C2(g) −→ g is a linear fibration (C2(g),pr1) with total
space C2(g) and base space g. For any (not necessarily closed) subvariety X ⊆ g, we
denote by C2(g)|X the subfibration given by pr1 : pr−1

1 (X) −→ X.

Lemma 1.1. Let X ⊆ g be a subvariety. Suppose that C ⊆ C2(g)|X is a k×-stable,
closed subset. Then pr1(C) is a closed subset of X.

Proof. We consider the morphism

ι : X −→ C2(g)|X ; x �→ (x, 0).

Given x ∈ pr1(C), we find y ∈ g such that (x, y) ∈ C. By assumption, the map

f : k −→ C2(g)|X ; α �→ (x, αy)

is a morphism such that f(k×) ⊆ C. Hence

(x, 0) = f(0) ∈ f(k×) ⊆ f(k×) ⊆ C,

so that x ∈ ι−1(C). As a result, pr1(C) = ι−1(C) is closed in X. �

Lemma 1.2. Let C ∈ Irr(C2(g)). Then the following statements hold:

(1) GL2(k).C = C;

(2) The set pri(C) is closed.

Proof. (1) This well-known fact follows from GL2(k) being connected.
(2) As C is GL2(k)-stable, Lemma 1.1 ensures that pr1(C) is closed. By the same token,

the map (x, y) �→ (y, x) stabilizes C, so that pr2(C) is closed as well. �

We next compute the dimension of C2(g) in terms of a certain invariant, which will be
seen to coincide with the modality of certain group actions in our cases of interest.

Given n ∈ N0, lower semicontinuity of ranks ensures that

g(n) := {x ∈ g; rk(adx) = n}
is a (possibly empty) locally closed subspace of g. We put N0(g) := {n ∈ N0; g(n) �= ∅}
and define

mod(g) := max
n∈N0(g)

dim g(n) − n.

Our next result elaborates on [6, (2.1)].

Proposition 1.3. The following statements hold.

(1) Let n ∈ N0(g).
(a) (C2(g)|g(n) ,pr1) is a vector bundle of rank dimk g − n over g(n). In particular,

the morphism pr1 : C2(g)|g(n) −→ g(n) is open;

(b) if X ∈ Irr(g(n)), then pr−1
1 (X) ⊆ C2(g) is irreducible of dimension dim X +

dimk g − n.
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(2) We have dim C2(g) = dimk g + mod(g).

(3) If C ∈ Irr(C2(g)), then

dim C = dim pr1(C) + dimk g − nC ,

where nC := max{n ∈ N0; g(n) ∩ pr1(C) �= ∅}.

(4) Let X ∈ Irr(g(n)) be such that pr−1
1 (X) ∈ Irr(C2(g)). Then we have

Cg(x) ⊆ X ⊆ g(n) ⊆
⊔

m≤n

g(m) for all x ∈ X.

(5) If n ∈ N0 is such that mod(g) = dim g(n) − n, then pr−1
1 (X) ∈ Irr(C2(g)) for every

X ∈ Irr(g(n)) such that dim X = dim g(n).

Proof. (1a) If V,W are k-vector spaces and Homk(V,W )(n) := {f ∈ Homk(V,W );
rk(f) = n}, then the map

Homk(V,W )(n) −→ Grdimk V −n(V ); f �→ ker f

is a morphism. Consequently,

Cg : g(n) −→ Grdimk g−n(g); x �→ Cg(x)

is a morphism as well and general theory implies that

ECg := {(x, y) ∈ g(n)×g; y ∈ Cg(x)}

is a vector bundle of rank dimk g − n over g(n), which coincides with C2(g)|g(n) , see
[15, (VI.1.2)].

(1b) Given an irreducible component X ∈ Irr(g(n)), we consider the subbundle
C2(g)|X = C2(g) ∩ (X×g) together with its surjection pr1 : C2(g)|X −→ X.

Let C ∈ Irr(C2(g)|X) be an irreducible component. Since C2(g)|X is k×-stable, so is C.
In view of Lemma 1.1, we conclude that pr1(C) is closed in X. It now follows from
[3, (1.5)] that the variety pr−1

1 (X) is irreducible. Hence its closure enjoys the same
property. Consequently,

pr1 : pr−1
1 (X) −→ X

is a dominant morphism of irreducible affine varieties such that dim pr−1
1 (x) =

dimk ker(ad x) = dimk g − n for every x ∈ X. Since X is locally closed, it is an open
subset of X. The fibre dimension theorem thus yields

dim pr−1
1 (X) = dimX + dimk g − n = dim X + dimk g − n,

as desired.

https://doi.org/10.1017/S0013091518000640 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000640


Commuting varieties for nilpotent radicals 563

(2) We have

(∗) C2(g) =
⋃

n∈N0(g)

⋃
X∈Irr(g(n))

pr−1
1 (X),

whence

dim C2(g) = max
n∈N0(g)

max
X∈Irr(g(n))

dim X + dimk g − n = max
n∈N0(g)

dim g(n)

+ dimk g − n = dimk g + mod(g),

as asserted.
(3) In view of (1b) and (∗), there are nC ∈ N0 and XC ∈ Irr(g(nC)) such that

C = pr−1
1 (XC).

Since pr1 is surjective, we have XC = pr1(pr−1
1 (XC)). Consequently, pr1(C) =

pr1(pr−1
1 (XC)) ⊆ XC , while XC ⊆ pr1(C) in conjunction with Lemma 1.1 yields XC ⊆

pr1(C). Thus, lower semicontinuity of the rank function yields

pr1(C) ⊆ g(nC) ⊆
⊔

n≤nC

g(n),

so that max{n ∈ N0; pr1(C) ∩ g(n) �= ∅} ≤ nC . On the other hand, ∅ �= XC ⊆ pr1(C) ∩
g(nC) implies nC ≤ max{n ∈ N0; pr1(C) ∩ g(n) �= ∅}. Hence we have equality and (1b)
yields

dim C = dim XC + dimk g − nC = dim XC + dimk g − nC

= dim pr1(C) + dimk g − nC ,

as desired.
(4) Let x ∈ X. Then we have {x}×Cg(x) = pr−1

1 (x) ⊆ pr−1
1 (X). By assumption, the

latter set is GL2(k)-stable, so that in particular Cg(x)×{x} ⊆ pr−1
1 (X). It follows that

Cg(x) ⊆ X ∀x ∈ X.

Since X ⊆ g(n) ⊆
⊔

m≤n g(m), our assertion follows.
(5) This follows from (1b) and (2). �

Corollary 1.4. The following statements hold.

(1) The subset pr−1
1 (g(max N0(g))) is an irreducible component of C2(g) of dimension

2 dimk g − max N0(g).

(2) Suppose that C2(g) is equidimensional. Then we have mod(g) = dimk g −
max N0(g).

(3) Suppose that C2(g) is irreducible. Then we have dim g(n) − n = mod(g) if and only
if n = max N0(g).
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Proof. (1) Let n0 := max N0(g). By lower semicontinuity of the function x �→
rk(ad x), g(n0) is an open, and hence irreducible and dense, subset of g.
Hence pr−1

1 (g(n0)) is open in C2(g), and Proposition 1.3 shows that C(n0) :=

pr−1
1 (g(n0)) is irreducible of dimension dim g(n0) + dimk g − n0 = 2dimk g − n0. Let

C ∈ Irr(C2(g)) be such that Cn0 ⊆ C. Then pr−1
1 (g(n0)) is a non-empty open subset

of C, so that Cn0 = C ∈ Irr(C2(g)).

(2) This follows directly from (1) and Proposition 1.3(2).

(3) Suppose that n ∈ N0(g) is such that mod(g) = dim g(n) − n. Let X ∈ Irr(g(n))
be an irreducible component such that dim X = dim g(n). Thanks to Proposi-

tion 1.3(5), CX := pr−1
1 (X) is an irreducible component of C2(g), so that CX =

C2(g). Consequently,

g = pr1(C2(g)) = pr1(CX) ⊆ X ⊆
⋃

m≤n

g(m),

so that max N0(g) ≤ n. Hence we have equality. �

In general, the value of mod(g) is hard to compute. For certain Lie algebras of algebraic
groups and for those having suitable filtrations, the situation is somewhat better.

Example. Let char(k) = p ≥ 5 and consider the p-dimensional Witt algebra W (1) :=
Derk(k[X]/(Xp)), see [18, (IV.2)] for more details. This simple Lie algebra affords a
canonical descending filtration

W (1) = W (1)−1 ⊇ W (1)0 ⊇ · · · ⊇ W (1)p−2 ⊇ (0),

where dimk W (1)i = p − 1 − i. By way of illustration, we shall verify the following
statements.

(1) The variety C2(W (1)) has dimension p + 1 and is not equidimensional, with

Irr(C2(W (1))) =
{

pr−1
1 (W (1)(�));

p + 1
2

≤�≤ p − 1
}

.

(2) Let b := W (1)0. The variety C2(b) has pure dimension p, with

Irr(C2(b)) =
{

pr−1
1 (b(�));

p − 1
2

≤�≤p − 2
}

.

(3) (cf. [20, (4.3)]) Let u := W (1)1. The variety C2(u) has pure dimension p, with

Irr(C2(u)) =
{

pr−1
1 (u(�));

p − 3
2

≤� ≤ p − 4
}

.

https://doi.org/10.1017/S0013091518000640 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000640


Commuting varieties for nilpotent radicals 565

(4) (cf. [20, (3.6)]) Let N := {x ∈ W (1); (ad x)p = 0} be the p-nilpotent cone of W (1).
The variety C2(N) := C2(W (1)) ∩ (N×N) has pure dimension p, with

Irr(C2(N)) =
{

pr−1
1 (W (1)(�)); � ∈

{
p + 1

2
, . . . , p − 2

}}
∪ {pr−1

1 (W (1)(p−1) ∩ N)}.

Proof. (1) Let x ∈ W (1)�{0} and consider the Jordan–Chevalley–Seligman
decomposition x = xs + xn, with xs semisimple, xn p-nilpotent and [xs, xn] = 0 (cf. [18,
(II.3.5)]). Since every maximal torus t ⊆ W (1) is one-dimensional and self-centralizing,
the assumption xs �= 0 entails xn ∈ CW (1)(xs) = kxs, so that xn = 0. As a result, every
x ∈ W (1)�{0} is either p-nilpotent or semisimple, and [20, (2.3)] implies

ker(ad x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W (1)p−1−i, x ∈ W (1)i�W (1)i+1,
p − 1

2
≤ i ≤ p − 2

kx⊕W (1)p−1−i, x ∈ W (1)i�W (1)i+1, 1 ≤ i ≤ p − 3
2

kx, x ∈ W (1)�W (1)1.

This in turn yields

W (1)(�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W (1)p−��W (1)p−�+1, 2 ≤ � ≤ p − 1
2

W (1)(p−3)/2�W (1)(p+1)/2, � =
p + 1

2

W (1)p−�−1�W (1)p−�,
p + 3

2
≤ � ≤p − 2

W (1)�W (1)1, � = p − 1
{0}, � = 0
∅ else.

We thus have mod(W (1)) = 1, so that dimC2(W (1)) = p + 1. Moreover, each of the
varieties W (1)(�) is irreducible, with W (1)(�) = W (1)p−� for 2 ≤ � ≤ (p − 1)/2. Proposi-

tion 1.3(4) in conjunction with the above now shows that pr−1
1 (W (1)(�)) �∈ Irr(C2(W (1)))

for 2 ≤ � ≤ (p − 1)/2. Consequently,

(∗) C2(W (1)) =
⋃

((p+1)/2)≤�≤p−1

pr−1
1 (W (1)(�)).

According to Corollary 1.4,

pr−1
1 (W (1)(p−1)) =

⋃
x∈W (1)�W (1)1

{x}×kx ⊆ {(x, y) ∈ C2(W (1)); dimk kx + ky ≤ 1}

is an irreducible component of dimension p + 1. Let � ∈ {((p + 1)/2), . . . , p − 2}. Given
x ∈ W (1)(�), it thus follows that

{x}×CW (1)(x) ⊆ pr−1
1 (W (1)(�)) while {x}×CW (1)(x) �⊆ pr−1

1 (W (1)(p−1)),
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whence
pr−1

1 (W (1)(�)) �⊆ pr−1
1 (W (1)(p−1)).

Thanks to Proposition 1.3(3) we have

dim pr−1
1 (W (1)(�)) = dimk W (1)p−�−1 + dimk W (1) − � = p,

so that there are no containments among the irreducible sets
(pr−1

1 (W (1)(�)))((p+1)/2)≤�≤p−2. As a result, (∗) is the decomposition of C2(W (1)) into
its irreducible components.

(2) We now consider the ‘Borel subalgebra’ b := W (1)0 of dimension p − 1. Writing
W (1) = ke−1⊕b with CW (1)(e−1) = ke−1, we have (ad x)(W (1)) = k[x, e−1]⊕(ad x)(b)
for all x ∈ b, whence b(�) = W (1)(�+1) for 1 ≤ � ≤ p − 3, while b(p−2) = b�W (1)1.
Consequently,

dim b(�) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�, 1 ≤ � ≤ p − 3
2

,

� + 1,
p − 1

2
≤ � ≤ p − 2,

0, � = 0,

−1 else,

where we put dim ∅ = −1. Thus, mod(b) = 1 and dimC2(b) = p. The arguments above
show that pr−1

1 (b(�)) �∈ Irr(C2(b)), whenever 1 ≤ � ≤ ((p − 3)/2). In view of the irre-

ducibility of b(�), Proposition 1.3(5) shows that pr−1
1 (b(�)) is an irreducible component of

dimension p for � ∈ {((p − 1)/2), . . . , p − 2}.
(3) We next consider u := W (1)1 and observe that u(�) = b(�+1) ∩ u for 0 ≤ � ≤ p − 3.

Consequently,

dim u(�) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

� + 1, 0 ≤ � ≤ p − 5
2

,

� + 2,
p − 3

2
≤ � ≤p − 4,

−1 else,

so that mod(u) = 2 and dimC2(u) = p. The remaining assertions follow as in (2).
(4) In view of [20, (2.3)], we have Cg(x) ⊆ N for all x ∈ N�{0}. This implies

C2(N) =
⋃

2≤�≤p−1

pr−1
1 (W (1)(�) ∩ N) =

⋃
2≤�≤p−2

pr−1
1 (W (1)(�)) ∪ pr−1

1 (W (1)(p−1) ∩ N).

By the arguments above, we have pr−1
1 (W (1)(�)) ⊆

⋃
((p+1)/2)≤n≤p−2 pr−1

1 (W (1)(n)) for
� ∈ {1, . . . , ((p − 1)/2)}, so that

C2(N) =
⋃

((p+1)/2)≤�≤p−2

pr−1
1 (W (1)(�)) ∪ (pr−1

1 (W (1)(p−1) ∩ N).

By work of Premet [13], the variety N is irreducible of dimension dimN = p − 1. It follows
that the dense open subset W (1)(p−1) ∩ N is irreducible as well. Lemma 1.1 implies that

https://doi.org/10.1017/S0013091518000640 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000640


Commuting varieties for nilpotent radicals 567

pr1(C) is closed in W (1)(p−1) ∩ N for every C ∈ Irr(C2(N)|W (1)(p−1)∩N). Using [3, (1.5)],
we conclude that the variety

pr−1
1 (W (1)(p−1) ∩ N) = C2(N)|W (1)(p−1)∩N

is irreducible of dimension p. �

Remarks.

(1) In [11, (Theorem 5)], P. Levy has shown that commuting varieties of Lie algebras
of reductive algebraic groups are irreducible, provided the characteristic of k is good
for g. For p = 3, we have W (1) ∼= sl(2), so that C2(W (1)) is in fact irreducible. Our
example above shows that commuting varieties of Lie algebras, all whose maximal
tori are self-centralizing, may not even be equidimensional. In contrast to W (1),
the Borel subalgebra b ⊆ W (1), whose maximal tori are also self-centralizing, is an
algebraic Lie algebra.

(2) A consecutive application of (4) and [2, (2.5.1), (2.5.2)] implies that the variety
E(2,W (1)) of two-dimensional elementary abelian subalgebras of W (1) has pure
dimension p − 4 as well as | Irr(E(2,W (1)))| = (p − 3)/2.

2. Algebraic Lie algebras

Let g = Lie(G) be the Lie algebra of a connected algebraic group G. The adjoint
representation

Ad : G −→ Aut(g)

induces an action
g.(x, y) := (Ad(g)(x),Ad(g)(y))

of G on the commuting variety C2(g) such that the surjections

pri : C2(g) −→ g

are G-equivariant. In the sequel, we will often write g.x := Ad(g)(x) for g ∈ G and x ∈ g.
Let T ⊆ G be a maximal torus with character group X(T ),

g = gT ⊕
⊕

α∈RT

gα

be the root space decomposition of g relative to T . Here RT ⊆ X(T )�{0} is the set of
roots of G relative to T , while gT := {x ∈ g; t.x = x ∀t ∈ T} denotes the subalgebra of
points of g that are fixed by T . Given x = x0 +

∑
α∈RT

xα ∈ g, we let

supp(x) := {α ∈ RT ; xα �= 0}
be the support of x. For any subset S ⊆ X(T ), we denote by ZS the subgroup of X(T )
generated by S. The group ZRT is the called the root lattice of G relative to T .

If H ⊆ G is a closed subgroup and x ∈ g, then CH(x) := {h ∈ H; h.x = x} is the
centralizer of x in H.
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2.1. Centralizers, supports and components

Lemma 2.1.1. Let T ⊆ G be a maximal torus, x ∈ g. Then we have

dim CT (x) = dimT − rk(Z supp(x)).

Proof. Writing

x =
∑

α∈RT ∪{0}
xα,

we see that CT (x) =
⋂

α∈supp(x) ker α =
⋂

α∈Z supp(x) ker α. Since T is a torus, its coor-
dinate ring k[T ] is the group algebra kX(T ) of X(T ) ⊆ k[T ]×. By the above, the
centralizer CT (x) coincides with the zero locus Z({α − 1; α ∈ Z supp(x)}). Thus, let-
ting (kZ supp(x))† denote the augmentation ideal of kZ supp(x), we obtain the ensuing
equalities of Krull dimensions

dim k[CT (x)] = dim k[T ]/k[T ]{α − 1; α ∈ Z supp(x)}
= dim kX(T )/kX(T )(kZ supp(x))†

= dim k(X(T )/Z supp(x)),

so that [17, (3.2.7)] yields

dim CT (x) = dim k[CT (x)] = rk(X(T )/Z supp(x)) = dimT − rk(Z supp(x)),

as desired. �

Let g := Lie(G) be the Lie algebra of a connected algebraic group G, and let n ⊆ g be
a G-stable subalgebra. Then C2(n) ⊆ C2(g) is a closed, G-stable subset. For x ∈ n, we
define

C(x) := G.({x}×Cn(x)) ⊆ C2(n).

Then C(x) = pr−1
1 (G.x) is a closed irreducible subset of C2(n) such that C(x) = C(g.x)

for all g ∈ G.
It will be convenient to have the following three basic observations at our disposal.

Lemma 2.1.2. Let x, y : k −→ n be morphisms, and let O ⊆ k be a non-empty open
subset such that

(a) [x(α), y(α)] = 0 for all α ∈ k and

(b) x(α) ∈ G.x(1) for all α ∈ O.

Then we have (x(0), y(0)) ∈ C(x(1)).
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Proof. In view of (a), there is a morphism

ϕ : k −→ C2(n); α �→ (x(α), y(α)).

Let α ∈ O. Then (b) provides g ∈ G such that x(α) = g.x(1). Thus,

ϕ(α) = g.(x(1), g−1.y(α)) ∈ C(x(1)) ∀α ∈ O,

so that

(x(0), y(0)) = ϕ(0) ∈ ϕ(O) ⊆ ϕ(O) ⊆ C(x(1)),

as desired. �

Lemma 2.1.3. Let T ⊆ G be a maximal torus, x ∈ n. Suppose that c ∈ n ∩ gα0 (for
some α0 ∈ RT ) is such that

(a) rk(Z supp(x + c))>rk(Z supp(x)) and

(b) k[c, x] = [c, Cn(x)].

Then C(x) ⊆ C(x + c).

Proof. Note that

x + α0(t)c = t.(x + c) ∈ G.(x + c) ∀t ∈ CT (x).

In view of Lemma 2.1.1, condition (a) ensures that dimCT (x + c)◦<dim CT (x)◦, so that
dim im α0(CT (x)◦) = 1. Chevalley’s theorem (cf. [12, (I.§ 8)]) thus provides a dense open
subset O ⊆ k such that O ⊆ α0(CT (x)◦). As a result,

(∗) x + λc ∈ G.(x + c) for all λ ∈ O.

Condition (b) provides a linear form η ∈ Cn(x)∗ such that

[y, c] = η(y)[x, c] ∀y ∈ Cn(x).

Given y ∈ Cn(x), we define morphisms x, y : k −→ n via

x(α) = x + αc and y(α) :=

{
y + η(x)−1η(y)αc, η(x) �=0,

y, η(x) = 0.

In view of (∗), we may apply Lemma 2.1.2 to obtain

(x, y) = (x(0), y(0)) ∈ C(x + c).

As a result, {x}×Cn(x) ⊆ C(x + c), whence C(x) ⊆ C(x + c). �
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Lemma 2.1.4. Given x ∈ n, let v ⊆ n be a G-submodule such that G.x ⊆ v. Then the
following statements hold:

(1) if C(x) ∈ Irr(C2(n)), then Cn(x) ⊆ v;

(2) if Cn(v) �⊆ v, then C(x) �∈ Irr(C2(n)).

Proof. (1) Since the component C(x) is GL2(k)-stable, we have Cn(x)×{x} ⊆ C(x).
Thus,

Cn(x) ⊆ pr1(C(x)) ⊆ G.x ⊆ v.

(2) Let y ∈ Cn(v)�v. Since x ∈ v, we have y ∈ Cn(x)�v, and our assertion follows
from (1). �

2.2. Distinguished elements

Let g = Lie(G) be the Lie algebra of a connected algebraic group G. In the following,
we denote by T (G) the maximal torus of Z(G). Note that T (G) is contained in any
maximal torus T ⊆ G.

An element x ∈ g is distinguished (for G) provided every torus T ⊆ CG(x) is contained
in T (G). If x is distinguished, so is every element of G.x. In that case, we say that G.x
is a distinguished orbit.

Lemma 2.2.1. Let x ∈ g. Then x is distinguished if and only if CT (x)◦ = T (G) for
every maximal torus T ⊆ G.

Proof. Suppose that x is distinguished. If T ⊆ G is a maximal torus, then CT (x)◦ ⊆
CG(x) is a torus, so that CT (x)◦ ⊆ T (G). On the other hand, we have T (G) ⊆ T , whence
T (G) ⊆ CT (x)◦.

For the reverse direction, we let T ′ ⊆ CG(x) be a torus. Then there is a maximal torus
T ⊇ T ′ of G, so that

T ′ ⊆ CT (x)◦ = T (G).

Hence x is distinguished. �

Lemma 2.2.2. Let B ⊆ G be a Borel subgroup with unipotent radical U . We write
b := Lie(B) and u := Lie(U).

(1) If x ∈ b is distinguished for G, then it is distinguished for B.

(2) If O ⊆ g is a distinguished G-orbit, then O ∩ u consists of distinguished elements
for B.

Proof. (1) Since B is a Borel subgroup, [17, (6.2.9)] yields Z(G)◦ = Z(B)◦, whence
T (G) = T (B). Let T ′ ⊆ CB(x) be a torus. Since x is distinguished for G, we obtain
T ′ ⊆ T (G) = T (B), so that x is also distinguished for B.

(2) This follows directly from (1). �
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Lemma 2.2.3. Let G be a connected algebraic group with maximal torus T such that
Z(G) =

⋂
α∈RT

ker α.

(1) If x ∈ g is distinguished, then rk(Z supp(x)) = rk(ZRT ).

(2) If (T ∩ CG(x))◦ is a maximal torus of CG(x) and rk(Z supp(x)) = rk(ZRT ), then x
is distinguished.

Proof. Let x̂ ∈ g be an element such that supp(x̂) = RT . By assumption, we have
Z(G) = CT (x̂), and Lemma 2.1.1 implies that

dim Z(G) = dimT − rk(ZRT ).

By the same token,

dim CT (x) − dim Z(G) = rk(ZRT ) − rk(Z supp(x))

for every x ∈ g.

(1) Let x ∈ g be distinguished. Observing Z(G) ⊆ T , we have Z(G)◦ = CT (x)◦. Hence
rk(ZRT ) = rk(Z supp(x)).

(2) We put T̂ := (T ∩ CG(x))◦. Since T̂ ⊆ CT (x)◦, we obtain T̂ = CT (x)◦. Hence
rk(Z supp(x)) = rk(ZRT ) yields T̂ = Z(G)◦, so that Z(G)◦ is a maximal torus of
CG(x). As a result, the element x is distinguished. �

Recall that the semisimple rank rkss(G) of a reductive group G coincides with the rank
of its derived group (G,G).

Corollary 2.2.4. Let B ⊆ G be a Borel subgroup of a reductive group G, and let
T ⊆ B be a maximal torus. If x ∈ b is distinguished for B, then

rk(Z supp(x)) = rkss(G).

Proof. Let T ⊆ B be a maximal torus. Then T is a maximal torus for G such that
Z(G) =

⋂
α∈RT

ker α, cf. [8, (§ 26, Ex. 4)]. In view of [17, (6.2.9)], we have dimZ(G)◦ =
dim Z(B)◦. Lemma 2.1.1 implies that

dim CT (x) − dim Z(B) = dim CT (x) − dim Z(G) = rk(ZRT ) − rk(Z supp(x))

= rkss(G) − rk(Z supp(x))

for every x ∈ b, cf. [9, (II.1.6)].
Let x ∈ b be distinguished for B. Then Z(B)◦ ⊆ T is a maximal torus of CB(x)

and Z(B)◦ ⊆ CT (x) ⊆ CB(x). Thus, CT (x)◦ = Z(B)◦, and the identity above yields
rk(Z supp(x)) = rkss(G). �

https://doi.org/10.1017/S0013091518000640 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000640


572 R. Farnsteiner

2.3. Modality

Let G be a connected algebraic group acting on an algebraic variety X. Given i ∈ N0,
we put

X[i] := {x ∈ X; dim G.x = i}.
Since X[i] = ∅ whenever i>dim X, the set N0(X) := {i ∈ N0; X[i] �= ∅} is finite.

The set X[i] is locally closed and G-stable. If x ∈ X[i], then G.x is closed in X[i].
Suppose that G acts on X. Then

mod(G;X) := max
i∈N0(X)

dim X[i] − i

is called the modality of G on X.
For ease of reference, we record the following well-known fact.

Lemma 2.3.1. Suppose that the connected algebraic group G acts on X. Then
mod(G;X) = 0 if and only if G acts on X with finitely many orbits. In this case, X[i] has
pure dimension i for every i ∈ N0(X).

Proposition 2.3.2. Let G be a connected algebraic group with Lie algebra g and such
that Lie(CG(x)) = Cg(x) for all x ∈ g. Then we have

dim C2(g) = dimG + mod(G; g).

Proof. Given x ∈ g, the identity Lie(CG(x)) = Cg(x) implies that the differential

g −→ Tx(G.x); y �→ [y, x]

of the orbit map g �→ g.x is surjective, cf. [10, (2.2)]. In particular, rk(adx) = dim G.x,
so that

g(n) = g[n].

Hence mod(g) = mod(G; g), and our assertion follows from Proposition 1.3(2). �

3. Springer isomorphisms

The technical condition of Proposition 2.3.2 automatically holds in the case where
char(k) = 0. In this section, we are concerned with its verification for the unipotent
radicals of Borel subgroups for good characteristics of G. Throughout, we assume that
G is a connected reductive group. Following [10, (2.6)], we say that the characteristic
char(k) is good for G provided char(k) = 0 or the prime p := char(k)>0 is a good prime
for G, see loc. cit. for more details.

Lemma 3.1. Let G be semisimple with almost simple factors G1, . . . , Gn. For i ∈
{1, . . . , n}, we let Bi = Ui�Ti be a Borel subgroup of Gi with unipotent radical Ui and
maximal torus Ti. Then the following statements hold.

(1) B :=B1 · · ·Bn is a Borel subgroup of G with unipotent radical U :=U1 · · ·Un and
maximal torus T :=T1 · · ·Tn.
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(2) The product morphism

μU :
n∏

i=1

Ui −→ U ; (u1, . . . , un) �→ u1 · u2 · · ·un

is an isomorphism of algebraic groups.

Proof. We consider the direct product Ĝ :=
∏n

i=1 Gi along with the multiplication

μG : Ĝ −→ G; (g1, . . . , gn) �→ g1 · g2 · · · gn.

Since (Gi, Gj) = ek for i �= j, it follows that μG is a surjective homomorphism of algebraic
groups, cf. [8, (27.5)].

(1) We put B̂ :=
∏n

i=1 Bi, Û :=
∏n

i=1 Ui and T̂ :=
∏n

i=1 Ti. These three subgroups of
Ĝ are closed and connected. Moreover, they are solvable, unipotent and diagonalizable,
respectively. Direct computation shows that Û is normal in B̂, as well as B̂ = Û �T̂ .

Let H ⊇ B̂ be a connected, closed solvable subgroup of Ĝ. Since the ith projection
pri : Ĝ −→ Gi is a homomorphism of algebraic groups for 1 ≤ i ≤ n, it follows that Hi :=
pri(H) ⊇ Bi is a closed, connected, solvable subgroup of Gi. Hence Hi = Bi, so that

H ⊆
n∏

i=1

Hi = B̂.

As a result, B̂ is a Borel subgroup of Ĝ. In view of [8, (21.3C)], B = μG(B̂) is a Borel
subgroup of G. Similarly, T = μG(T̂ ) is a maximal torus of B. In addition, B = μG(B̂) =
μG(Û �T̂ ) = U ·T . It follows that the unipotent closed normal subgroup U = μG(Û) � B
is the unipotent radical of B.

(2) According to [8, (27.5)], the product morphism

μG : Ĝ −→ G

has a finite kernel. Since Ĝ is connected, it follows that kerμG ⊆ Z(Ĝ), while Ĝ being
semisimple forces Z(Ĝ) to be diagonalizable, cf. [9, (II.1.6)]. As a result, the kernel ker μU

is diagonalizable and unipotent, so that kerμU = {1}. Since μU is surjective, the map μU

is a bijective morphism of algebraic varieties.
Note that Lie(Û) =

⊕n
i=1 Lie(Ui) and that the differential d(μU ) : Lie(Û) −→ Lie(U)

is given by

(x1, . . . , xn) �→
n∑

i=1

xi.

Let i �=j. Since (Ti, Uj) = {1}, we have Ad(ti)|Lie(Uj) = idLie(Uj), ∀ti ∈ Ti. Thus, if
(x1, . . . , xn) ∈ ker d(μU ), then Ad(t)(xi) = xi for all t ∈ T and i ∈ {1, . . . , n}. Using the
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root space decomposition of Lie(U) relative to T , we conclude that xi = 0 for
i ∈ {1, . . . , n}. As a result, the map d(μU ) is injective. Since μU is bijective, we have

dimk Lie(U) = dimk Lie(Û) =
n∑

i=1

dimk Lie(Ui)

so that d(μU ) is an isomorphism. We may now apply [17, (5.3.3)] to conclude that μU is
an isomorphism as well. �

Let B ⊆ G be a Borel subgroup with unipotent radical U � B. A B-equivariant
isomorphism

ϕ : U −→ Lie(U)

will be referred to as a Springer isomorphism for B.
Springer isomorphisms first appeared in [16] in the context of semisimple algebraic

groups, providing a homeomorphism between the unipotent variety of a group and the
nilpotent variety of its Lie algebra. Our next result extends [4, (2.2), (4.2)] to the context
of reductive groups.

Proposition 3.2. Suppose that char(k) is good for G. Let B ⊆ G be a Borel subgroup
with unipotent radical U and put u := Lie(U).

(1) There is a Springer isomorphism ϕ : U −→ u.

(2) We have Lie(CU (x)) = Cu(x) for every x ∈ u.

Proof. (1) We first assume that G is semisimple, so that G = G1 · · ·Gn, where Gi � G
is almost simple. As before, we put Ĝ :=

∏n
i=1 Gi. Then every Borel subgroup of Ĝ is

of the form B̂ =
∏n

i=1 Bi for some Borel subgroups Bi ⊆ Gi. Hence [8, (21.3C)] ensures
that there exist Borel subgroups Bi = Ui�Ti of Gi such that B = B1 · · ·Bn and U =
U1 · · ·Un. We put ui := Lie(Ui). As noted in [4, (2.2)], there are Springer isomorphisms
ϕi : Ui −→ ui for 1 ≤ i ≤ n.

We define B̂ and Û as in the proof of Lemma 3.1 and consider the product morphisms

μB : B̂ −→ B and μU : Û −→ U.

Then Lie(Û) =
⊕n

i=1 ui and

ϕ̂ : Û −→ Lie(Û); (u1, . . . , un) �→ (ϕ1(u1), . . . , ϕn(un))

is a B̂-equivariant isomorphism of varieties. Lemma 3.1 implies that μU : Û −→ U is an
isomorphism of algebraic groups such that

μU (b̂ûb̂−1) = μB(b̂)μU (û)μB(b̂)−1

for all b̂ ∈ B̂ and û ∈ Û . Moreover, the differential

d(μU ) : Lie(Û) −→ u
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is an isomorphism such that

d(μU )(Ad b̂(x)) = Ad(μB(b̂))(d(μU )(x))

for all b̂ ∈ B̂ and x ∈ Lie(Û). Consequently, ϕ := d(μU ) ◦ ϕ̂ ◦ μ−1
U defines an isomorphism

ϕ : U −→ u.

For b = μB(b̂) ∈ B and u ∈ U , we obtain, writing b.x := Ad(b)(x),

ϕ(bub−1) = (d(μU ) ◦ ϕ̂)(b̂μ−1
U (u)b̂−1) = d(μU )(b̂.ϕ̂(μ−1

U (u))) = b.ϕ(u),

as desired.
Now let G be reductive. Then G′ := (G,G) is semisimple, while G = G′ · Z(G)◦, with

Z(G)◦ being a torus. Let B ⊆ G be a Borel subgroup. Since Z(G)◦ ⊆ B, we obtain
B = (B ∩ G′)Z(G)◦, and B being connected implies that B = (B ∩ G′)◦Z(G)◦. Let B′ ⊇
(B ∩ G′)◦ be a Borel subgroup of G′. Then B′Z(G)◦ is a closed, connected, solvable
subgroup of G containing B, whence B = B′Z(G)◦. As a result, B′ ⊆ B ∩ G′, so that
B′ = (B ∩ G′)◦.

Let U be the unipotent radical of B. Since Z(G)◦ � G/G′ is onto, the latter group
is diagonalizable, so that the canonical morphism U −→ G/G′ is trivial. As a result,
U ⊆ G′, whence U ⊆ (B ∩ G′)◦. If U ′ is the unipotent radical of (B ∩ G′)◦, then B =
(B ∩ G′)◦Z(G)◦ implies that U ′ is normal in B, whence U ′ ⊆ U . It follows that U is the
unipotent radical of the Borel subgroup (B ∩ G′)◦ of G′. The first part of the proof now
provides a (B ∩ G′)◦-equivariant isomorphism ϕ : U −→ u. Since Z(G) acts trivially on
both spaces, this map is also B-equivariant.

(2) In view of (1), the arguments of [4, (4.2)] apply. �

4. Commuting varieties of unipotent radicals

Throughout this section, G denotes a connected reductive algebraic group. If B is a Borel
subgroup of G with unipotent radical U , then B acts on u := Lie(U) via the adjoint
representation. Hence B also acts on the commuting variety C2(u), and for every x ∈ u
we consider

C(x) := B.({x}×Cu(x)).

As observed earlier, we have

C(x) = C(b.x) ∀b ∈ B, x ∈ u.

4.1. The dimension formula

Lemma 4.1.1. Let B ⊆ G be a Borel subgroup with unipotent radical U ⊆ B, x ∈
u := Lie(U).

(1) There exists a maximal torus T ⊆ B such that
(a) CB(x)◦ = CU (x)◦�CT (x)◦ and
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(b) C(x) is irreducible of dimension

dim C(x) = dimB − dim CT (x)

whenever char(k) is good for G.

(2) If char(k) is good for G, then we have

dim C(x) = dimB − dim Z(G)

if and only if x is distinguished for B.

Proof. (1a) Let T ′ ⊆ CB(x)◦ be a maximal torus, and let T ⊇ T ′ be a maximal torus
of B. We write B = U �T and recall that U = Bu is the set of unipotent elements of B,
see [17, (6.3.3), (6.3.5)]. Thus, CU (x)◦ = CB(x)◦u = Bu ∩ CB(x)◦ is the unipotent radical
of CB(x)◦.

Since T ′ ⊆ CT (x)◦, while the latter group is a torus of CB(x)◦, it follows that T ′ =
CT (x)◦. General theory (cf. [17, (6.3.3), (6.3.5)]) now yields

CB(x)◦ = CB(x)◦u�T ′ = CU (x)◦�CT (x)◦,

as asserted.
(1b) Since {x}×Cu(x) is irreducible, so is the closure C(x) of its B-saturation. Consider

the dominant morphism

ω : B×Cu(x) −→ C(x); (b, y) �→ (b.x, b.y).

We fix (b0.x, b0.y0) ∈ im ω. Then

ζ : CB(x) −→ ω−1(b0.x, b0.y0); c �→ (b0c, c
−1.y0)

is a morphism with inverse morphism

η : ω−1(b0.x, b0.y0) −→ CB(x); (b, y) �→ b−1
0 b.

As a result, dim ω−1(b0.x, b0.y0) = dimCB(x), and the fibre dimension theorem gives

dim C(x) = dimB + dim Cu(x) − dim CB(x).

In view of Proposition 3.2(2), we have Lie(CU (x)) = Cu(x). Consequently,

dim C(x) = dimB + dim CU (x)◦ − dim CB(x)◦,

and the assertion now follows from (1a).
(2) Suppose that dimC(x) = dim B − dim Z(G). Part (1) provides a maximal torus

T ⊆ B such that dim CT (x) = dim Z(G). This readily implies CT (x)◦ = Z(G)◦, so that
CB(x)◦ = Z(G)◦�CU (x)◦. In particular, Z(G)◦ is the unique maximal torus of CB(x)◦,
so that x is distinguished for B.

Suppose that x is distinguished for B. Let T ⊆ B be a maximal torus such that
CT (x)◦ is a maximal torus of CB(x)◦. It follows that CT (x)◦ = Z(G)◦, whence dim C(x) =
dim B − dim Z(G). �
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Theorem 4.1.2. Suppose that char(k) is good for G. Let B ⊆ G be a Borel subgroup
of G, and let U ⊆ B be its unipotent radical, u := Lie(U). Then we have

dim C2(u) = dimB − dim Z(G) + mod(B; u).

Proof. We first assume that G is almost simple, so that dim Z(G) = 0. Thanks to
[5, Theorem 10], we have

mod(U ; u) = mod(B; u) + rk(G),

so that a consecutive application of Propositions 3.2 and 2.3.2 implies

dim C2(u) = dim U + mod(U ; u) = dimU + rk(G) + mod(B; u) = dim B + mod(B; u).

Next, we assume that G is semisimple with almost simple constituents G1, . . . , Gn,
say. There are Borel subgroups Bi ⊆ Gi of Gi with unipotent radicals Ui such that
B = B1 · · ·Bn and U = U1 · · ·Un. Let u := Lie(U) and ui := Lie(Ui). Lemma 3.1 pro-
vides an isomorphism U ∼= ∏n

i=1 Ui, so that u =
⊕n

i=1 ui. If x =
∑n

i=1 xi ∈ u, then B.x =∏n
i=1 Bi.xi, so that dimB.x =

∑n
i=1 dim Bi.xi. This readily implies

u[j] := {x ∈ u; dim B.x = j} =
⋃

{m∈Nn
0 ;|m|=j}

n∏
i=1

(ui)[mi] ∀j ∈ N0,

where we put |m| :=∑n
i=1 mi for m ∈ N

n
0 . Consequently,

dim u[j] = max

{
n∑

i=1

dim(ui)[mi]; m ∈ N
n
0 , |m| = j

}
∀j ∈ N0.

As a result,

mod(B; u) = max
j≥0

max

{
n∑

i=1

dim(ui)[mi]; m ∈ N
n
0 ; |m| = j

}
− j

= max
j≥0

max

{
n∑

i=1

dim(ui)[mi] − mi; m ∈ N
n
0 ; |m| = j

}

= max
m∈Nn

0

n∑
i=1

(dim(ui)[mi] − mi) =
n∑

i=1

max
mi≥0

(dim(ui)[mi] − mi)

=
n∑

i=1

mod(Bi; ui).

Since C2(u) ∼= ∏n
i=1 C2(ui), we arrive at

dim C2(u) =
n∑

i=1

dim C2(ui) =
n∑

i=1

dim Bi + mod(Bi; ui) = dim B + mod(B; u),

as desired.
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If G is reductive, then G = Z(G)◦G′, with G′ := (G,G) being semisimple and Z(G)◦

being a torus. By the arguments of Proposition 3.2, B′ := (B ∩ G′)◦ is a Borel subgroup
of G′ with unipotent radical U and such that B = B′Z(G)◦ with Z(G) ∩ B′ being finite.
It follows that

B.x = B′.x

for all x ∈ u, and the identities

dim C2(u) = dimB′ + mod(B′; u) = dimB − dim Z(G) + mod(B; u)

verify our claim. �

We denote by Oreg ⊆ g the regular nilpotent G-orbit.

Lemma 4.1.3. Suppose that char(k) is good for G. Given x ∈ Oreg ∩ u, C(x) is an
irreducible component of C2(u) of dimension dim B − dim Z(G).

Proof. By general theory, Oreg ∩ u is an open B-orbit of u, cf. [1, (5.2.3)]. Conse-
quently, Oreg ∩ u(max N0(u)) is a non-empty subset of u. Since u(max N0(u)) is a B-stable
subset of u, it follows that Oreg ∩ u ⊆ u(max N0(u)).

Let x ∈ Oreg ∩ u. Then B.x ⊆ u(max N0(u)) is open in u, so that pr−1
1 (B.x) is open in

C2(u). Corollary 1.4 now shows that pr−1
1 (B.x) is an open subset of the irreducible

component pr−1
1 (u(max N0(g))) of C2(u). Consequently,

C(x) = pr−1
1 (B.x) = pr−1

1 (u(max N0(u)))

is an irreducible component of C2(u). Since the element x is distinguished for G,
Lemma 2.2.2 shows that it is also distinguished for B. We may now apply Lemma 4.1.1
to see that dim C(x) = dimB − dim Z(G). �

Remarks.

(1) The foregoing result in conjunction with Theorem 4.1.2 implies that C2(u) is
equidimensional only if B acts on u with finitely many orbits.

(2) It also follows from the above and Corollary 1.4 that max N0(u) = dimk u − rkss(G).

4.2. Minimal supports

As before, we let G be a connected reductive algebraic group, with Borel subgroup
B = U �T . The corresponding Lie algebras will be denoted g, b and u. Let RT be the
root system of G relative to T , and let Δ := {α1, . . . , αn} ⊆ RT be a set of simple roots.
Given α =

∑n
i=1 miαi ∈ RT , we denote by ht(α) =

∑n
i=1 mi the height of α (relative to
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Δ), and put for x ∈ u�{0}
deg(x) := min{ht(α); α ∈ supp(x)}

as well as
msupp(x) := {α ∈ supp(x); ht(α) = deg(x)}.

Given n ∈ N0, we put
u(≥n) := 〈{x ∈ u; deg(x) ≥ n}〉.

Lemma 4.2.1. Given x ∈ u�{0}, we have deg(b.x) = deg(x) and msupp(b.x) =
msupp(x) for all b ∈ B.

Proof. For u ∈ U we consider the morphism

Φu : U −→ U ; v �→ [u, v],

where [u, v] := uvu−1v−1 denotes the commutator of u and v. According to [17, (4.4.13)],
we have

d(Φu)(x) = u.x − x ∀x ∈ u.

Given a positive root α ∈ R+
T , we consider the root subgroup Uα of U . For u ∈ Uα and

β ∈ R+
T , an application of [17, (8.2.3)] shows that

Φu(Uβ) ⊆
∏

i,j>0

Uiα+jβ .

Let x ∈ u�{0} and put d := deg(x). Since uβ = Lie(Uβ), the foregoing observations in
conjunction with [17, (8.2.1)] yield

Ad(u)(x) ≡ x mod(u(≥d+1)) ∀u ∈ U.

Thus, u(≥n) is a U -submodule of u for all n≥1 such that U acts trivially on u(≥n)/u(≥n+1).
Now write x =

∑
α∈msupp(x) xα + x′, where x′ ∈ u(≥d+1). Given b ∈ B, there are t ∈ T

and u ∈ U such that b = tu. By the above, we obtain

b.x ≡
∑

α∈msupp(x)

α(t)xα mod(u(≥d+1)),

whence deg(b.x) = deg(x) and msupp(b.x) = msupp(x). �

Let O ⊆ u be a B-orbit. In view of Lemma 4.2.1, we may define

msupp(O) := msupp(x) (x ∈ O).

4.3. The case mod(B; u) = 0

The case where B acts on u with finitely many orbits is governed by the theorem of
Hille–Röhrle [7, (1.1)], which takes on the following form in our context.

Proposition 4.3.1. Suppose that char(k) is good for G. Then mod(B; u) = 0 if and
only if every almost simple constituent of (G,G) is of type (An)n≤4 or B2.
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Proof. Returning to the proof of Theorem 4.1.2, we let G1, . . . , Gn be the simple
constituents of (G,G) and pick Borel subgroups Bi of Gi, with unipotent radicals Ui.
Then

B := Z(G)◦B1 · · ·Bn

is a Borel subgroup of G with unipotent radical U := U1 · · ·Un. Setting u := Lie(U) and
ui := Lie(Ui), we have

mod(B; u) =
n∑

i=1

mod(Bi; ui),

so that [7, (1.1)] yields the result. �

Lemma 4.3.2. Suppose that mod(B; u) = 0. If C ∈ Irr(C2(u)), then there is a unique
orbit OC ⊆ pr1(C) such that

(a) OC is dense and open in pr1(C) and

(b) C = C(x) for all x ∈ OC .

Proof. Since the component C is B-stable, so is the closed subset pr1(C) ⊆ u, cf.
Lemma 1.2. By assumption, B thus acts with finitely many orbits on the irreducible vari-
ety pr1(C). Hence there is a B-orbit OC ⊆ pr1(C) such that OC = pr1(C). Consequently,
OC is open in pr1(C). The unicity of OC follows from the irreducibility of pr1(C).

Let x ∈ OC , so that OC = B.x. Then there is y ∈ u such that (x, y) ∈ C. In particular,
y ∈ Cu(x), so that (x, y) ∈ B.({x}×Cu(x)) = pr−1

1 (OC). Thanks to (a), pr−1(OC) is open
in pr−1

1 (pr1(C)). It follows that (B.({x}×Cu(x))) ∩ C is a non-empty open subset of C,
so that

C = (B.({x}×Cu(x))) ∩ C ⊆ C(x).

Since the latter set is irreducible, while C is a component, we have equality. �

Remarks.

(1) The lemma holds more generally for each C ∈ Irr(C2(u)) with mod(B; pr1(C)) = 0.

(2) Suppose that mod(B; u) = 0. In view of Theorem 4.1.2 and Lemma 4.1.1, each
distinguished B-orbit B.x gives rise to an irreducible component C(x) of maximal
dimension.

Suppose that mod(B; u) = 0. Using Lemma 4.3.2, we define

msupp(C) = msupp(OC)

for every C ∈ Irr(C2(u)).

5. Almost simple groups

The purpose of this technical section is the proof of the following result, which extends
[6, § 3] to good characteristics.
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Proposition 5.1. The following statements hold.

(1) If G has type (An)n≤4, then C2(u) is equidimensional and

| Irr(C2(u))| =

⎧⎪⎨
⎪⎩

5, n = 4,

2, n = 3,

1 else.

(2) If char(k) �=2 and G has type B2, then C2(u) is equidimensional and | Irr(C2(u))| = 2.

For G as above, the Borel subgroup B ⊆ G acts on u with finitely many orbits. We let
R ⊆ u be a set of orbit representatives, so that

C2(u) =
⋃

x∈R

C(x)

is a finite union of closed irreducible subsets. We will determine in each case the set
{x ∈ R; C(x) ∈ Irr(C2(u))}. A list of orbit representatives is given in [6, § 3] and we will
follow the notation established there.

5.1. Special linear groups

Let G = SLn+1(k) and g = sln+1(k), where 1 ≤ n ≤ 4. Moreover, B, T, and U denote
the standard subgroups of upper triangular, diagonal and upper unitriangular matrices,
respectively.

For i ≤ j ∈ {1, . . . , n + 1}, we let Ei,j be the (i, j)-elementary matrix, so that

u :=
⊕
i<j

kEi,j

is the Lie algebra of the unipotent radical U of B. We denote the set of simple roots by
Δ := {α1, . . . , αn}. Let i<j ≤ n + 1. Then Ei,j is the root vector corresponding to the
root αi,j :=

∑j−1
�=i α�. We therefore have αi = αi,i+1 for 1 ≤ i≤n, and

R+
T := {αi,j ; 1 ≤ i<j ≤ n + 1}

is the set of roots of u relative to T (the set of positive roots of sln+1(k)).
Recall that

Ei,jEr,s = δj,rEi,s,

as well as

[Ei,j , Er,s] = δj,rEi,s − δs,iEr,j for all i, j, r, s ∈ {1, . . . , n + 1}.
Let α = αi,j be a positive root. Then

Uα := {1 + aEi,j ; a ∈ k}
is the corresponding root subgroup of U , and the formula above implies that

Ad(1 + aEi,j)(x) = (1 + aEi,j)x(1 − aEi,j) = x + a[Ei,j , x]

for all x ∈ u.
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Note that A := {(aij) ∈ Matn+1(k); aij = 0 for i>j} is a subalgebra of the associative
algebra Matn+1(k). We consider the linear map

ζ : A −→ A; Ei,j �→ En+2−j,n+2−i.

Then we have

(a) ζ(ab) = ζ(b)ζ(a) for all a, b ∈ A and

(b) det(ζ(a)) = det(a) for all a ∈ A.

There results a homomorphism

τ : B −→ B; a �→ ζ(a)−1

of algebraic groups such that τ(U) = U . We write b := Lie(B) and put Υ := d(τ)|u. As
ζ is linear, [17, (4.4.12)] implies that

Υ(Ei,j) = −En+2−j,n+2−i, 1 ≤ i<j ≤ n + 1.

Thus, Υ is an automorphism of u of order 2 such that

Υ(uαij
) = uαn+2−j,n+2−i

.

Since Δ is a basis for the root lattice ZR+
T = ZRT , there is an automorphism σ : ZR+

T −→
ZR+

T of order 2 such that

σ(αi) = αn+1−i 1 ≤ i ≤ n.

Thus, σ(R+
T ) = R+

T and

Υ(uα) = uσ(α) ∀α ∈ R+
T .

We denote by (un)n∈N the descending series of the nilpotent Lie algebra u, which is
inductively defined via u1 := u and un+1 := [u, un]. Note that un = u(≥n) for all n≥1.

Lemma 5.1.1. Let C ∈ Irr(C2(u)). Then we have

msupp([Υ×Υ](C)) = σ(msupp(C)).

Proof. We put OC = B.x. In view of Υ = d(τ)|u, we have

Υ(b.x) = τ(b).Υ(x) ∀b ∈ B, x ∈ u.

Consequently,

Υ(OC) = Υ(B.x) = B.Υ(x)

is an open orbit of Υ(pr1(C)) = pr1([Υ×Υ](C)), so that

O[Υ×Υ](C) = Υ(OC).
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Setting d :=deg(x), we have

x ≡
∑

α∈msupp(x)

xα mod u(≥d+1).

Thus,

Υ(x) ≡
∑

α∈msupp(x)

−xσ(α) mod u(≥d+1),

whence

msupp([Υ×Υ](C)) = msupp(Υ(x)) = σ(msupp(x)) = σ(msupp(C)),

as desired. �

Remark. The list of orbit representatives for the case A4 given in [6, (3.4)] contains
some typographical errors, which we correct as follows.

(a) In the form stated loc. cit., the element e3 satisfies rk(Z supp(e3)) = 3, so that it
is not distinguished, see Corollary 2.2.4. We write e3 = 1101010000, so that e3 =
Υ(e7).

(b) In [6, (3.4)], we have e4 = e5. We put e4 := 1101000000 (the element e3 of [6, (3.4)]),
so that e4 = Υ(e8).

Lemma 5.1.2. Let G = SL5(k). Then C2(u) is equidimensional and | Irr(C2(u))| = 5.

Proof. Let C ∈ Irr(C2(u)) be a component and pick x ∈ OC , so that C = C(x), cf.
Lemma 4.3.2. We consider

SC := msupp(C) ∪ msupp([Υ×Υ](C)) = msupp(x) ∪ msupp(Υ(x)).

According to Lemma 5.1.1, SC is a σ-stable subset of R+
T .

We will repeatedly apply Lemma 2.1.4 to B-submodules of u.
(a) We have x �∈ ⋃3

i=1 kEi,i+2⊕u3.
Suppose that x ∈ kEi,i+2⊕u3 for some i ∈ {1, 2, 3}. Since u3 = kE1,4⊕kE2,5⊕kE1,5, we

have [E2,3, u
3] = (0). It thus follows from Lemma 2.1.4 that deg(x) ≤ 2. Consequently,

deg(x) = 2 and |msupp(x)| = 1. If |SC | = 1, then i = 2. Since [E2,3, kE2,4 + u3] = (0), we
may apply Lemma 2.1.4 to v :=kE2,4 + u3 to obtain a contradiction. Alternatively, we
may assume that i = 1. As [E2,4, kE1,3 + u3] = (0), another application of Lemma 2.1.4
rules out this case.

(b) We have deg(x) = 1 and |SC | = 2, 4.
Suppose that deg(x)≥2. In view of (a), we have deg(x) = 2 and |msupp(x)|≥

2. If |msupp(x)| = 2 = |SC |, then msupp(x) = SC is σ-stable, so that msupp(x) =
{α1,3, α3,5}. Thus, B.x ⊆ v := kE1,3⊕kE3,5⊕u3 (see also Lemma 4.2.1). Since E2,4 ∈
Cu(v), Lemma 2.1.4 yields a contradiction. If |msupp(x)|=2 and |SC | = 3, then
msupp(x) ∩ msupp(Υ(x)) contains a fixed point of σ, and we may assume that
msupp(x) = {α1,3, α2,4}. In view of [6, (3.4)], we may assume that x = e48 = E1,3 + E2,4.
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Since B.x ⊆ v := kE1,3⊕kE2,4⊕u3, while E1,2 + E3,4 ∈ Cu(x), Lemma 2.1.4 yields a
contradiction.

We thus assume that |msupp(x)| = 3. Then [6, (3.4)] in conjunction with Lemma 4.2.1
gives x = e47 = E1,3 + E2,4 + E3,5. Since E1,2 + E3,4 ∈ Cu(x), while B.x ⊆ u2, this con-
tradicts Lemma 2.1.4.

Consequently, deg(x) = 1, so that msupp(x) ⊆ Δ. Since σ acts without fixed points on
Δ, every σ-orbit of Δ has two elements. As SC ⊆ Δ is a disjoint union of σ-orbits, we
obtain |SC | = 2, 4.

(c) We have |msupp(x)|≥2.
Alternatively, (b) provides i ∈ {1, . . . , 4} such that B.x ⊆ v := kEi,i+1 + u2. Applying Υ,
if necessary, we may assume that i ∈ {1, 2}.

Suppose that i = 1. Then Lemma 4.2.1 in conjunction with [6, (3.4)] implies that we
have to consider the following cases:

x = e16 = E1,2 + E2,4 + E3,5; x = e17 = E1,2 + E2,4;

x = e18 = E1,2 + E3,5 + E2,5;

x = e19 = E1,2 + E3,5; x = e20 = E1,2 + E2,5; x = e21 = E1,2.

Consequently, E3,4 ∈ Cu(x)�v, which contradicts Lemma 2.1.4.
Suppose that i = 2. Then [6, (3.4)] implies

x = e29 = E2,3 + E3,5 + E1,4; x = e30 = E2,3 + E3,5;

x = e31 = E2,3 + E1,4;

x = e32 = E2,3 + E1,5; x = e33 = E2,3.

Since E4,5 ∈ [Cu(e30) ∩ Cu(e32) ∩ Cu(e33)]�v, Lemma 2.1.4 rules out these possibilities.
In view of E4,5 + E1,3 ∈ Cu(e29)�v, it remains to discuss the case where x = e31.

We consider the morphism

x : k −→ u; α �→ e31 + αE3,5.

Then we have x(α) ∈ B.e29 for all α ∈ k×, while x(0) = e31. Direct computation shows
that

Cu(e31) = kE2,3⊕kE1,3 ⊕kE2,4⊕u3.

For y = aE2,3 + bE1,3 + cE2,4 + z ∈ Cu(e31), where z ∈ u3, we consider the morphism

y : k −→ u; α �→ y + bαE4,5 + aαE3,5.

Since [x(α), y(α)] = 0 for all α ∈ k×, Lemma 2.1.2 yields

(e31, y) = (x(0), y(0)) ∈ C(x(1)) = C(e29).

Consequently, C(e31) ⊆ C(e29). Since C(e29) �∈ Irr(C2(u)), we again arrive at a
contradiction.

(d) We have |SC | = 4.
Suppose that |SC | �=4. Then (b) implies |SC | = 2 and (c) shows that msupp(x) ⊆ Δ is
σ-stable with two elements. Consequently, msupp(x) = {α1, α4} or msupp(x) = {α2, α3}.
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If x = E2,3 + E3,4 + y, where y ∈ u2, then [6, (3.4)] yields x ∈ B.e23 ∪ B.e24, where
e23 := E2,3 + E3,4 + E1,5 and e24 := E2,3 + E3,4. We may invoke Lemma 2.1.3 to see
that C(e24) ⊆ C(e23). It was shown in [6, (3.4)] that C(e23) ⊆ C(e1). Hence C(x) is not a
component, a contradiction.

It follows that msupp(x) = {α1, α4}, so that [6, (3.4)] implies

x ∈ B.e13 ∪ B.e14 ∪ B.e15,

where e15 := E1,2 + E4,5, e14 := e15 + E2,5 and e13 := e15 + E2,4. In view of Cu(e15) ⊆
kE1,2⊕kE4,5⊕u2, we have [Cu(e15), E2,5] ⊆ k[E1,2, E2,5] = k[e15, E2,5]. Lemma 2.1.3 thus
shows that C(e15) ⊆ C(e14). In [6, (3.4)] it is shown that C(e14) ⊆ C(e3). According to
(b), the latter set is not a component, so neither is C(e14).

It remains to dispose of the case x = e13. For (α, β) ∈ k2, we consider the elements

e1(α, β) := E1,2 + αE2,3 + βE3,4 + E4,5 and e13(α, β) := e1(α, β) + E2,4

of u. Let ui,j(t) := 1 + tEi,j ∈ U (t ∈ k), so that ui,j(t).x = x + t[Ei,j , x] for all x ∈ u. We
thus obtain e13(α, β) = u2,3(β−1)u1,2(α−1β−1).e1(α, β) for αβ �= 0. As a result,

e13(α, β) ∈ B.e1 for αβ �= 0,

where e1 = e1(1, 1).
Direct computation shows that

Cu(e13) = ke13⊕kE1,3⊕kE3,5⊕k(E1,4 + E2,5)⊕kE1,5.

Let y = ae13 + bE1,3 + cE3,5 + d(E1,4 + E2,5) + eE1,5 ∈ Cu(e13) be such that b, c �= 0. We
consider the morphisms

x : k −→ u; α �→ e13(α, αcb−1) and y : k −→ u;

α �→ y + αaE2,3 + αacb−1E3,4 + αcE2,4

and observe that

(a) x(α) ∈ B.x(1) for all α ∈ k× and

(b) [x(α), y(α)] = 0 for all α ∈ k.

Thus, Lemma 2.1.2 implies that (e13, y) = (x(0), y(0)) ∈ C(x(1)) = C(e1). Since the set of
those y with bc �= 0 lies dense in Cu(e13), it follows that C(e13) ⊆ C(e1), a contradiction.
This completes the proof of (d).

If msupp(x) = SC , (d) shows that deg(x) = 1 and |msupp(x)| = 4. Hence x is regular
and C(x) = C(e1) is an irreducible component.

If |msupp(x)| = 2, then SC = msupp(x) � σ(msupp(x)) and we only need to consider
the cases

msupp(x) = {α1, α2}; {α1, α3}.
If msupp(x) = {α1, α2}, then Lemma 4.2.1 yields B.x ⊆ v := kE1,2 + kE2,3 + u2, while
[6, (3.4)] implies

x = e5 = E1,2 + E2,3 + E3,5; x = e6 = E1,2 + E2,3.

Consequently, E4,5 ∈ Cu(x)�v, a contradiction.
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If msupp(x) = {α1, α3}, then B.x ⊆ v := kE1,2 + kE3,4+ u2 and [6, (3.4)] implies

x = e9 = E1,2 + E3,4 + E2,4 + E2,5; x = e10 = E1,2 + E3,4 + E2,4;

x = e11 = E1,2 + E3,4 + E2,5; x = e12 = E1,2 + E3,4.

Given (α, β) ∈ k2, we put

x(α, β) = E1,2 + E3,4 + αE2,4 + βE2,5.

Note that
x(α, β) ∈ B.x(1, 1) = B.e9 for α, β �= 0.

We put w := kE3,4⊕k(E1,3 + E2,4)⊕kE3,5⊕kE1,4⊕kE1,5. Direct computation shows
that

Cu(x(α, β)) = k(E1,2 + αE2,4 + βE2,5)⊕w

for all (α, β) ∈ k2. We have ei = x(δi,10, δi,11) for i ∈ {10, 11, 12}. Thus, if y = a(E1,2 +
δi,10E2,4 + δi,11E2,5) + w ∈ Cu(ei), where a ∈ k and w ∈ w, then

y(α, β) = y + (aα − a)δi,10E2,4 +(aβ − a)δi,11E2,5 ∈ Cu(x(α, β)).

Let i ∈ {10, 11, 12}. Then the morphisms

xi : k −→ u; α �→ x(α(δi,11 + δi,12) + δi,10, α(δi,10 + δi,12) + δi,11)

and
yi : k −→ u; α �→ y(α(δi,11 + δi,12) + δi,10, α(δi,10 + δi,12) + δi,11)

fulfil the conditions of Lemma 2.1.2, so that

(ei, y) = (xi(0), yi(0)) ∈ C(xi(1)) = C(e9).

As a result, C(ei) ⊆ C(e9) for 10 ≤ i ≤ 12.
We have dimk im(ad e9)(b) = dimk im(ad e9) + 4, so that Cu(e9) = Cb(e9). Thus,

Proposition 3.2 implies

dim CB(e9) ≤ dimk Cb(e9) = dimk Cu(e9) = dim CU (e9),

so that CB(e9)◦=CU (e9)◦. Consequently, the element e9 is distinguished and C(e9)
is a component. Hence Υ(e9) is also distinguished and [6, (3.4)] in conjunction with
Corollary 2.2.4 implies that C(e25) is also a component.

It remains to consider the case where |msupp(x)| = 3. Then msupp(x) ∩ σ(msupp(x))
is a σ-stable subset of Δ of cardinality 2, so that

msupp(x) ∩ σ(msupp(x)) = {α1, α4}; {α2, α3}.
Suppose that msupp(x) ∩ σ(msupp(x)) = {α1, α4}. Then we may assume that
msupp(x) = {α1, α2, α4}. Thanks to [6, (3.4)], this yields x = e3, e4. The above methods
show that C(e4) ⊆ C(e3), while e3 is a distinguished element. Hence C(e3) and Υ(C(e3)) =
C(e7) are components of C2(u).
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We finally consider msupp(x) ∩ σ(msupp(x)) = {α2, α3} and assume that msupp(x) =
{α1, α2, α3}. By [6, (3.4)], this implies

x = e2 = E1,2 + E2,3 + E3,4.

As C(e2) ⊆ C(e1), this case yields no additional components. It follows that

Irr(C2(u)) = {C(e1),C(e3),C(e7),C(e9),C(e25)},
so that | Irr(C2(u))| = 5. �

Lemma 5.1.3. Let G = SL4(k). Then C2(u) is equidimensional with | Irr(C2(u))| = 2.

Proof. We consider GLn(k) = SLn(k)Z(GLn) along with its standard Borel subgroup
Bn = Un�Tn of upper triangular matrices, where Un and Tn are the group’s unitriangular
and diagonal matrices, respectively. The B-orbits of un :=Lie(Un) coincide with those of
the standard Borel subgroup Bn ∩ SLn(k) of SLn(k).

We consider G′ :=GL5(k) along with its commuting variety C2(u′). In view of
Lemma 5.1.2, we have

Irr(C2(u′)) = {C(e′1),C(e′3),C(e′7),C(e′9),C(e′25)}.
Let A′ and A be the associative algebras of upper triangular (5×5)-matrices and upper
triangular (4×4)-matrices, respectively. Then

π : A′ −→ A; (aij) �→ (aij)1≤i≤j≤4

are homomorphisms of k-algebras. Thus, if we identify G := GL4(k) with a subgroup of
the Levi subgroup of G′, given by Δ4 := {α′

1, α
′
2, α

′
3}, then the restriction

π : B′ −→ B

is a homomorphism of groups such that π|B = idB . It follows that the differential

d(π) : u′ −→ u

of the restriction π|U ′ : U ′ −→ U is split surjective such that

d(π)(b′.x′) = π(b′).d(π)(x′) for all b′ ∈ B′, x′ ∈ u′.

As a result, the morphism

[d(π)×d(π)] : C2(u′) −→ C2(u)

is surjective and such that

[d(π)×d(π)](B′.({x′}×Cu′(x′))) ⊆ B.({d(π)(x′)}×Cu(d(π)(x′))),

whence

[d(π)×d(π)](C(x′)) ⊆ C(d(π)(x′)) for all x′ ∈ u′.
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Consequently,

Irr(C2(u)) ⊆ {C(d(π)(e′1)),C(d(π)(e′3)),C(d(π)(e′7)),C(d(π)(e′9)),C(d(π)(e′25))}.
Thanks to [6, (3.3), (3.4)], we obtain

d(π)(e′1) = e1; d(π)(e′3) ∈ B.e2; d(π)(e′7) = e3; d(π)(e′9) = e3; d(π)(e′25) = e8.

In [6, (3.3)], the authors show that C(e8) ⊆ C(e1). By applying Lemma 2.1.2 to the
morphism

x : k −→ u; α �→ E1,2 + E2,3 + αE3,4

we obtain C(e2) ⊆ C(e1).
Since the element e1 is regular, it is distinguished. As dimk(ad e3)(b) =

dimk(ad e3)(u) + 3 = 5, we obtain, observing Proposition 3.2,

dim CB(e3) ≤ dimk Cb(e3) = dimk Cu(e3) = dim CU (e3),

so that CB(e3)◦ = CU (e3)◦. Hence e3 is distinguished for B, and Irr(C2(u)) =
{C(e1),C(e3)}. �

The same method readily shows the following.

Lemma 5.1.4. Let G = SLn(k), where n = 2, 3. Then C2(u) is irreducible.

5.2. Symplectic groups

The following result disposes of the remaining case.

Lemma 5.2.1. Suppose that char(k) �=2. Let G = Sp(4) be of type B2 = C2. Then
C2(u) is equidimensional with | Irr(C2(u))| = 2.

Proof. Recall that R+
T := {α, β, α + β, α + 2β} is a system of positive roots, where

Δ = {α, β}. Suppose that C(x) is a component. Since [uα, u(≥2)] = (0), Lemma 2.1.4
implies deg(x) = 1.

Suppose that |msupp(x)| = 1. If msupp(x) = {α}, then [6, (3.5)] yields x ∈ B.xα∪
B.(xα + xα+2β), while Lemma 2.1.3 gives C(xα) ⊆ C(xα + xα+2β).

Alternatively, x ∈ B.xβ . Since Cu(xβ) = kxβ⊕kxα+2β , we have [xα, Cu(xβ)] =
k[xα, xβ ], and Lemma 2.1.3 implies C(xβ) ⊆ C(xα + xβ). As a result,

C2(u) = C(xα + xβ) ∪ C(xα + xα+2β).

Since char(k) �=2, the arguments of Lemma 5.1.3 show that these elements are distin-
guished. Consequently, Irr(C2(u)) = {C(xα + xβ),C(xα + xα+2β)}. �

5.3. Proof of Proposition 5.1

Proof. (1) Let us first consider an almost simple group G of type An for n ∈ {1, . . . , 4}.
In view of [9, (II.1.13), (II.1.14)], there is a covering π : SLn+1(k) −→ G. Hence π is
surjective and ker π ⊆ Z(G) is diagonalizable. Let Bn+1 ⊆ SLn+1(k) be a Borel subgroup,
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and let Un+1 � Bn+1 be its unipotent radical with Lie algebra un+1. Then B :=π(Bn+1) is
a Borel subgroup of G with unipotent radical U :=π(Un+1). Since ker π ∩ Un+1 = {1}, it
follows that π|Un+1 is a closed embedding, so that π|Un+1 : Un+1 −→ U is an isomorphism.
Consequently, its differential

d(π) : un+1 −→ u

is an isomorphism of Lie algebras such that

π(b).d(π)(x) = d(π)(b.x) for all x ∈ un+1, b ∈ Bn+1.

Thanks to § 5.1, the variety C2(un+1)∼=C2(u) is equidimensional with | Irr(C2(u))| =
| Irr(C2(un+1))|.

(2) Since Sp(4) is simply connected, we may use the foregoing arguments in conjunction
with Lemma 5.2.1. �

5.4. Irreducibility and equidimensionality of C2(u)

We record the following direct consequence of Proposition 5.1.

Corollary 5.4.1. Let G be connected and reductive such that char(k) is good for G.
Suppose that B ⊆ G is a Borel subgroup with unipotent radical U , whose Lie algebra is
denoted u.

(1) If mod(B; u) = 0, then C2(u) is equidimensional.

(2) C2(u) is irreducible if and only if every almost simple component of (G,G) is of
type A1 or A2.

Proof. Let G1, . . . , Gn be the almost simple components of G. As before, we may write

B = Z(G)◦B1 · · ·Bn,

where Bi ⊆ Gi is a Borel subgroup. Letting Ui be the unipotent radical of Bi and setting
ui := Lie(Ui), we have C2(u) ∼= ∏n

i=1 C2(ui). This shows that

Irr(C2(u)) =

{
n∏

i=1

Ci; Ci ∈ Irr(C2(ui)) 1 ≤ i ≤ n

}
.

(1) The theorem of Hille–Röhrle shows that each Gi is of type (An)n≤4 or B2. Thanks
to Proposition 5.1, each C2(ui) is equidimensional. Hence C2(u) enjoys the same
property.

(2) If C2(u) is irreducible, then so is each C2(ui), and a consecutive application of
Theorem 4.1.2, Lemma 4.1.3, [7, (1.1)] and Proposition 5.1 ensures that each almost
simple group Gi is of type A1 or A2. The reverse direction follows directly from
Proposition 5.1. �
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Remark. Suppose that G is almost simple of type A–D. If p≥h(G) is good for G,
then [19, (1.7), (1.8)] in conjunction with the foregoing result implies that the variety
V (U2) of infinitesimal one-parameter subgroups of the second Frobenius kernel U2 of U
is irreducible if and only if G is of type A1 or A2.

6. The variety A(2, u)

Let u :=Lie(U) be the Lie algebra of the unipotent radical U of a Borel subgroup B of a
connected reductive group G. In this section, we are interested in the projective variety

A(2, u) := {a ∈ Gr2(u); [a, a] = (0)}
of two-dimensional abelian subalgebras of u. Recall that

O2(u) := {(x, y) ∈ C2(u); dimk kx + ky = 2}
is an open, GL2(k)-stable subset of C2(u), while the map

ϕ : O2(u) −→ A(2, u); (x, y) �→ kx + ky

is a surjective morphism such that ϕ−1(ϕ(x, y)) = GL2(k).(x, y) for all (x, y) ∈ O2(u).
Note that GL2(k) acts simply on O2(u), so that each fibre of ϕ is four-dimensional.

The Borel subgroup B acts on A(2, u) via

b.a := Ad(b)(a) ∀b ∈ B, a ∈ A(2, u).

Moreover, the set O2(u) is B-stable and ϕ : O2(u) −→ A(2, u) is B-equivariant.

Lemma 6.1. Suppose that rkss(G)≥2. Then the following statements hold.

(1) Given x ∈ u�{0}, there is y ∈ u such that (x, y) ∈ O2(u).

(2) O2(u) lies dense in C2(u).

Proof. (1) Let z ∈ C(u)�{0}. If x ∈ u�kz, then (x, z) ∈ O2(g). Alternatively, x ∈
kz�{0}. Since rkss(G)≥2, we have dimk u>1, so that there is y ∈ u�kx. It follows that
(x, y) ∈ O2(u).

(2) Let x ∈ u�{0}. By (1), there is y ∈ u such that (x, y) ∈ O2(u). Given β ∈ k, we
consider the morphism

fβ : k −→ C2(u); α �→ (x, βx + αy).

Then we have fβ(k×) ⊆ O2(u), so that f(k) ⊆ O2(u). In particular, (x, βx) = f(0) ∈
O2(u). Setting β = 0, we obtain (x, 0) ∈ O2(u). Using the GL2(k)-action, we conclude
that (0, x) ∈ O2(u). Since

g : k −→ C2(u); α �→ (αx, 0)

is a morphism such that g(k×) ⊆ O2(u), we conclude that (0, 0) ∈ O2(u). As a result,
C2(u) = O2(u). �
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Lemma 6.2. Suppose that char(k) is good for G and that rkss(G)≥2. Let O ⊆ u�{0}
be a B-orbit, x ∈ O.

(1) We have ϕ(B.({x}×Cu(x)) ∩ O2(u)) = {a ∈ A(2, u); a ∩ O �= ∅}.
(2) If O = Oreg ∩ u, then ϕ(B.({x}×Cu(x)) ∩ O2(u)) is an irreducible component of

A(2, u) of dimension dim B − dim Z(G) − 4.

Proof. (1) We put A(2, u)O := {a ∈ A(2, u); a ∩ O �= ∅}. Let y ∈ Cu(x) be such
that (x, y) ∈ O2(u). Then x ∈ ϕ(x, y) ∩ O, so that ϕ(x, y) ∈ A(2, u)O. Since A(2, u)O

is B-stable, it follows that ϕ(B.({x}×Cu(x)) ∩ O2(u)) = B.ϕ(({x}×Cu(x)) ∩ O2(u)) ⊆
A(2, u)O.

Now suppose that a ∈ A(2, u)O, and write a = ky⊕kz, where y ∈ O. Then there is b ∈ B
such that x = b.y, so that b.a ∈ ϕ(({x}×Cu(x)) ∩ O2(u)). As a result, a ∈ ϕ(B.({x}×
Cu(x)) ∩ O2(u)).

(2) General theory tells us that O = Oreg ∩ u is an open B-orbit of u. Note that Oreg

is a conical subset of g, so that Oreg ∩ u is a conical subset of u. It now follows from
(1) and [2, (3.2)] that ϕ(B.({x}×Cu(x)) ∩ O2(u)) is an open subset of A(2, u). In view
of Lemma 6.1, the irreducible set {x}×Cu(x) meets O2(u), so that B.(({x}×Cu(x)) ∩
O2(u)) = B.({x}×Cu(x)) ∩ O2(u) is irreducible. Hence ϕ(B.({x}×Cu(x)) ∩ O2(u)) is a
non-empty, irreducible, open subset of A(2, u). Let C ⊇ ϕ(B.({x}×Cu(x)) ∩ O2(u)) be
an irreducible component of A(2, u). Then ϕ(B.({x}×Cu(x)) ∩ O2(u)) lies dense in C, so
that C = ϕ(B.({x}×Cu(x)) ∩ O2(u)). Observing Lemma 4.1.1, we thus obtain

dim C = dim B.({x}×Cu(x)) ∩ O2(u) − 4 = dim B.({x}×Cu(x)) − 4

= dim B − dim Z(G) − 4,

as desired. �

Given x ∈ u, we put

A(2, u, x) := {a ∈ A(2, u); x ∈ a}.

Proposition 6.3. Suppose that char(k) is good for G and that rkss(G)≥2.

(1) dim A(2, u) = dimB − dim Z(G) + mod(B; u) − 4.

(2) The variety A(2, u) is equidimensional if and only if every almost simple component
of (G,G) is of type (An)n≤4 or B2. In that case, every irreducible component

C ∈ Irr(A(2, u)) is of the form C = B.A(2, u, x) for some B-distinguished element
x ∈ u.

(3) The variety A(2, u) is irreducible if and only if every almost simple component of
(G,G) is of type A1 or A2.

Proof. (1) We write

C2(u) =
⋃

C∈Irr(C2(u))

C
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as the union of its irreducible components. Since rkss(G)≥2, Lemma 6.1 shows that O2(u)
is a dense open subset of C2(u). As a result, every irreducible component C ∈ Irr(C2(u))
meets O2(u). In view of Theorem 4.1.2, we obtain

dim O2(u) = dim C2(u) = dimB − dim Z(G) + mod(B; u).

Let C ∈ Irr(C2(u)). Then C ∩ O2(u) is a GL2(k)-stable, irreducible variety of dimension
dim C, so that

dim ϕ(C ∩ O2(u)) = dimC ∩ O2(u) − 4 = dim C − 4.

Consequently,

dim A(2, u) = max
C∈Irr(C2(u))

ϕ(C ∩ O2(u)) = dimC2(u) − 4

= dim B − dim Z(G) + mod(B; u) − 4.

(2) Suppose that A(2, u) is equidimensional. As Lemma 6.2 provides C ∈ Irr(A(2, u))
such that dim C = dim B − dim Z(G) − 4, it follows from (1) that mod(B; u) = 0. The
theorem of Hille–Röhrle (see Proposition 4.3.1) ensures that every almost simple com-
ponent of (G,G) is of the asserted type. Assuming this to be the case, Corollary 5.4.1
implies that C2(u) is equidimensional. In view of [2, (2.5.1)], O2(u) is equidimensional as
well. We may thus apply [2, (2.5.2)] to the canonical surjection O2(u) � A(2, u) and the
GL2(k)-action on O2(u) to conclude that A(2, u) is equidimensional.

Given C ∈ Irr(C2(u)), Lemma 4.3.2 provides xC ∈ u such that C = C(xC). In view of
Lemma 4.1.1, our current assumption shows that xC is distinguished for B. According to
Lemma 6.1, we have ({xC}×Cu(xC)) ∩ O2(u) �= ∅, while Lemma 6.2 yields ϕ(B.({xC}×
Cu(xC)) ∩ O2(u)) = B.A(2, u, xC).

Let a ∈ C(xC) ∩ O2(u). If U ⊆ C2(u) is an open subset containing a, then U ∩
(B.({xC}×Cu(xC))) is a non-empty open subset of the irreducible set B.({xC}×Cu(xC)).
Since this also holds for B.({xC}×Cu(xC)) ∩ O2(u), we conclude that U ∩ B.({xC}×
Cu(xC)) ∩ O2(u) �= ∅. This shows that a ∈ B.({xC}×Cu(xC)) ∩ O2(u). Consequently,

A(2, u) =
⋃

C∈Irr(C2(u))

ϕ(C(xC) ∩ O2(u))

⊆
⋃

C∈Irr(C2(u))

ϕ(B.({xC}×Cu(xC)) ∩ O2(u))

⊆
⋃

C∈Irr(C2(u))

ϕ(B.({xC}×Cu(xC)) ∩ O2(u))

⊆
⋃

C∈Irr(C2(u))

ϕ(B.[({xC}×Cu(xC)) ∩ O2(u)])

=
⋃

C∈Irr(C2(u))

B.ϕ(({xC}×Cu(xC)) ∩ O2(u))

=
⋃

C∈Irr(C2(u))

B.A(2, u, xC) ⊆ A(2, u),
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so that A(2, u) =
⋃

C∈Irr(C2(u)) B.A(2, u, xC) is a finite union of closed irreducible subsets.

It follows that every irreducible component of A(2, u) is of the form B.A(2, u, xC) for some
C ∈ Irr(C2(u)).

(3) Suppose that A(2, u) is irreducible. Then (2), Proposition 4.3.1 and Corollary 5.4.1
show that the variety C2(u) is equidimensional. Using [2, (2.5.2)], we conclude that C2(u)
is irreducible, and Corollary 5.4.1 implies that G has the asserted type. The reverse
implication is a direct consequence of Corollary 5.4.1. �

Remark. The arguments of (2) can actually be used to show that C2(u) and A(2, u) have
the same number of components in the case where one (and hence both) of these spaces is
(are) equidimensional. Let C ∈ Irr(C2(u)). Returning to the proof of Proposition 1.3(3),
we find a subset XC ⊆ u such that

C = pr−1
1 (XC).

Since C is GL2(k)-stable, we conclude that XC �⊆ {0}. Let x ∈ XC �{0}. Then {x}×
Cu(x) ⊆ C. The assumption Cu(x) = kx implies x ∈ C(u) and hence dimk u = 1, a con-
tradiction. As a result, C ∩ O2(u) �=∅. In view of [2, (2.5.1)], the variety O2(u) is therefore
equidimensional with | Irr(O2(u))| = | Irr(C2(u))|. By virtue of [2, (2.5.2)], we obtain
| Irr(O2(u))| = | Irr(A(2, u))|.
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