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For indoor pedestrian navigation with a shoe-mounted inertial measurement unit (IMU), the
zero velocity update (ZUPT) technique is implemented to constrain the sensors’ error. ZUPT
uses the fact that a stance phase appears in each step at zero velocity to correct IMU errors
periodically. This paper introduces three main contributions we have achieved based on
ZUPT. Since correct stance phase detection is critical for the success of applying ZUPT, we
have developed a new approach to detect the stance phase of different gait styles, including
walking, running and stair climbing. As the extension of ZUPT, we have proposed a new
concept called constant velocity update (CUPT) to correct IMU errors on a moving platform
with constant velocity, such as elevators or escalators where ZUPT is infeasible. A closed-
loop step-wise smoothing algorithm has also been developed to eliminate discontinuities in
the trajectory caused by sharp corrections. Experimental results demonstrate the effectiveness
of the proposed algorithms.
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1. INTRODUCTION. Obtaining seamless navigation in all circumstances,
including an environment with degraded Global Positioning System (GPS) signals, is
a challenging issue. An Inertial Navigation System (INS) can provide continuous
navigation information independently but accumulates errors, which need to be
corrected frequently by additional measurements. GPS/INS integration has received
much attention in navigation applications. Godha and Lachapelle (2008) proposed a
system that combined a shoe-mounted Inertial Measurement Unit (IMU) and GPS to
bound drift errors in outdoor scenarios.
For pedestrian navigation in an indoor environment where the GPS signal

is unreliable, some non-GPS approaches require external references for tracking and
navigation. Hide et al. (2010) investigated the use of computer vision-derived velocity
measurements to frequently correct the drift of a low-cost IMU. Aoki et al. (1999)
proposed an image sequence matching technique for the recognition of locations and
previously visited places. Work is also being done on simultaneous location and
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mapping (SLAM), which usually uses cameras as sensors. However, unlike the inertial
sensor, these sensors are very sensitive to the environment and are unreliable in
unfavourable operating conditions.
Compared to other types of navigation technologies, the main advantages

of inertial sensor-based systems are that they are self-contained, environment-
independent and can provide continuous navigation information. These meet the
requirements of robust pedestrian navigation, not requiring an instrumented, marked,
or pre-mapped environment. Meanwhile, the major challenge for IMU navigation
alone is how to efficiently reduce the integral drift which is the primary cause of errors
in inertial navigation. Whether a pedestrian is walking, running or climbing stairs,
there is a stance phase in each step that can provide a zero velocity measurement for
error correction of a shoe-mounted IMU. This approach is called zero velocity update
(ZUPT). Consequently it is critical to correctly identify the stance phase in each step
and then to apply ZUPT for IMU error correction.
Numerous ZUPT-based pedestrian navigation systems have been developed using

various approaches for stance phase detection. Foxlin (2005) developed a system
called NavShoe to use the stance phase of walking as measurements into an extended
Kalman filter (EKF) for performing ZUPT. Castaneda and Lamy-Perbal (2010)
proposed an improved shoe-mounted inertial navigation system based on the fuzzy
logic step detector and an angular updating algorithm. Cho and Park (2006) proposed
a pedometer-like approach which counts steps and estimates average length of steps.
Step length is estimated from accelerometer readings that are passed through a neural
network, and a Kalman filter was used to reduce the effect of magnetic disturbances.
Alternatively, a dead reckoning method of propagating the step length over a

certain direction is often used. Huang et al. (2010) proposed a method that fuses both
strap-down inertial navigation and pedestrian dead-reckoning methods. Feliz et al.
(2009) proposed using a compass and gyroscope to determine trajectories and correct
sensor measurements, along with an integrated barometer for height measurement. A
similar zero-velocity detector constructed around a pressure sensor mounted beneath
the heel of a shoe was used with good results (Bebek et al., 2010). Jiménez et al. (2009)
implemented and compared several of the most relevant algorithms for step detection,
stride length, heading and position estimation. Tests were conducted and it was found
that the stride length estimation errors were only about 1%. The positioning errors
were almost always below 5% of the total travelled distance. The main source of
positioning errors was orientation estimation.
The algorithms for step detection using accelerometers mainly consist of three

types: peak detection, zero crossing detection and flat zone detection (Cho et al.,
2003). A gait state is modelled as a Markov process and gait states are estimated
using the hidden Markov model filter based on force sensors to determine when to
apply ZUPT (Suh and Park, 2009). Similarly, a Markov model is constructed using
segmentation of gyroscope outputs (Park and Suh, 2010). Different step detection
algorithms are developed based on both accelerometer and gyroscope outputs. The
zero velocity is determined by comparing z-axis accelerometer and y-axis gyroscope
outputs with proper threshold values (Yun et al., 2007). Alternatively, the zero
velocity is determined based on norms of accelerometer and gyroscope along with
variance of the accelerometer. Then a Kalman filter-based framework, called INS-
EKF-ZUPT, is implemented (Jiménez et al., 2010). Skog et al. (2010) developed a
novel stance hypothesis optimal detector; however this is restricted to 2D cases.
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Ojeda and Borenstein (2007) implemented two empiric rules for gyro signals analysis
to detect zero velocity. The system was tested with a variety of walking patterns, on
stairs and on rugged terrain. The horizontal relative error is about 0·49% of the total
distance travelled; the vertical error is 1·2%, which might be the highest accuracy in
related work.
However, all the step detection algorithms mentioned above only function for

walking, and fail to detect stance phases in high-speed movement (running or
jumping). Compared with walking, the duration of the stance phase in running is
shorter and the velocity in the stance phase is less close to zero velocity. Barely
enlarging the threshold will introduce false stance phase detection. It is a challenge to
correctly detect stance phases in all the moving styles.
Moreover, none of the shoe-mounted MEMS inertial sensors-based pedestrian

navigation systems, using strap-down inertial navigation or pedestrian dead-reckoning
methods, can perform well in situations with constant velocity, such as in an elevator
or on an escalator. This is due to the fact that they treat stance phases always as zero
velocity even if a sensor is not stationary but moving with a constant velocity.
As the errors of estimated position and velocity grow rapidly with time for

shoe-mounted MEMS inertial sensors, ZUPT applied at each step leads to sharp
corrections of velocity and position; the estimated trajectories have discontinuities and
periodic drift, which is unpleasant in accurate navigation and tracking. Colomar and
his group (Colomar et al., 2012) developed an open loop step-wise smoothing
algorithm to aid ZUPT that can efficiently eliminate the sharp corrections and
discontinuities at the end of the step.
This paper describes our contributions on shoe-mounted inertial sensor navigation

on three aspects. We have proposed a robust stance phase detection algorithm to
handle both walking and running (Li and Wang, 2012). The new algorithm consists of
a footstep detector to indicate a new step and a swing phase detector to inform the end
of the step, a stance phase detector is applied to detect whether the foot is stationary.
As the extension of ZUPT, a new concept called CUPT has been proposed to apply
velocity correction when a pedestrian is on an escalator or in an elevator (Li et al.,
2012). CUPT can broaden the practical use of a shoe-mounted pedestrian navigation
system in a building environment. As an improvement of Colomar’s open loop step-
wise smoothing, a closed-loop step-wise smoothing algorithm is implemented to
eliminate the sharp corrections over the steps (Li and Wang, 2013).
This paper is organised as follows. Section 2 briefly introduces the general

background of a standard strap-down INS mechanism; the framework of ZUPT-
aided INS and EKF error model applied in pedestrian navigation. Section 3 presents
the stance phase detection for different gait styles, including walking, running and
stair climbing. The new concept CUPT for correcting IMU errors on a moving
platform with constant velocity is introduced in Section 4 and a closed-loop step-wise
smoothing algorithm is introduced in Section 5. Experimental results and discussions
are presented in Section 6 and the paper is concluded in Section 7.

2. INERTIAL PEDESTRIAN NAVIGATION. The proposed shoe-
mounted inertial navigation system uses only a MEMS IMU, which consists of
accelerometers, gyroscopes and magnetometers. The system adopts the standard
strap-down inertial navigation mechanization, with zero/constant velocity as the
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measurement for correction. Figure 1 shows the system mechanization. Attitude can
be determined by integration of the rotation rate of gyros. After vector trans-
formation, velocity and position can be determined by the integration of acceleration
with compensation of gravity and Coriolis force. If no estimated error states (EES)
provide correcting information however, due to the bias of the sensors and the noise
associated with the measurement, this simple integration in practice leads to
unbounded growth in position errors with time.

2.1. ZUPT/CUPT. In order to obtain a high accuracy navigation solution with
a shoe-mounted IMU, ZUPT/CUPT can be applied to reduce the errors. They use the
fact that when a pedestrian travels, one’s feet alternate between a stance phase and
a swing phase. If the stance phase appearing in each step can be detected correctly at a
known (zero or constant) velocity, the INS velocity errors can be corrected
periodically. More detailed explanation about ZUPT/CUPT can be found in Foxlin
(2005) and Li et al. (2012).
It is important to correctly identify the stance phases of the IMU attached to a shoe

and then apply ZUPT/CUPT to bind the navigation errors by providing proper EES
(see Figure 1) with EKF or other estimation algorithms. There are two types of
error in stance phase detection: misdetection and false-detection. It is noticed that a
stance phase misdetection causes less serious problems for navigation accuracy than
a false-detection. A misdetection just misses a chance for INS correction while a false-
detection results in a wrong ‘correction’ and may cause the navigation results to
become useless.
In order to get a high accuracy navigation solution, ZUPT/CUPT is applied with an

EKF to reduce navigation errors. The framework of the proposed navigation system is
illustrated in Figure 2. It has three main blocks: 1) INS Mechanization to compute the
position, velocity and attitude; 2) Stance Phase Detection block to determine stance
phases and apply ZUPT/ CUPT; 3) EKF block to estimate the error states and bound
navigation errors.

2.2. EKF. The EKF we used consists of 24 error states including navigation
errors, sensor errors and gravity uncertainty. In each estimation cycle, once zero
velocity has been detected, ZUPT delivers the updated error states to INS, the
navigation error states are reset to zero after the current position, velocity and attitude
is corrected. Other error states are accumulated and fed back to the inertial navigation
mechanization.

Figure 1. The basic blocks of strap-down inertial navigation mechanization.
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The EKF includes the following 24 error states:

δxNav = δrN,δrE,δrD,δvN,δvE,δvD,δφH,δφP,δφR
� �T

δxINS = ∇b,∇f , εb, εf
� �

δxGrav = δgN,δgE,δgD
� � (1)

where δxNav δxINS and δxGrav are the navigation error vector, the IMU sensor
measurement error vector and gravity uncertainty respectively. δr δv and δφ are the
position, velocity and attitude error vectors. ∇ expresses the accelerometer error
vector, and ε is the gyro error vector. Subscript b stands for bias and subscript f stands
for scale factor.
The Psi-angle INS error model is adopted in the system (Grejner-Brzezinska et al.,

2001):

δṙ = −wen × δr+ δv

δv̇ = −(wie + win) × δv− δφ× f + δg + ∇
δφ̇ = −win × δφ+ ε

(2)

where δr δv δφ are the position, velocity, and attitude error vectors respectively, ∇ is
the accelerometer error vector, δg is the error in the computed gravity vector, ε is the
gyro error vector, f is the specific force vector, wie is the earth rotation rate vector, wen

is the transport rate vector and win is the angular rate vector from the navigation to the
inertial frame. The dynamic matrix is obtained by a linearization of Equation (2).
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3
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2
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3
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where wNav wIMU and wgrav are all zero-mean Gaussian white noise vectors. A detailed
expression of the dynamic matrix can be found in Grejner-Brzezinska et al. (2001).

Figure 2. The main blocks in the framework used for pedestrian inertial navigation.
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For ZUPT/CUPT, the observation z1×3 is the velocity vector in three directions,
and the measurement model is:

z = Hδx+ n (4)

where H3×24 = [O3×3I3×3 O3×3] and n is the measurement noise vector.
Consider the error state δx = x̂− x where x̂ is the estimated state and x is the true

state, the observation z is x̂− 0 for ZUPT and x̂− vc or CUPT, where x̂ is computed
by the strap-down inertial navigation mechanization and vc is the constant velocity.
In addition to pursuing reliable observation to improve an EKF’s estimation, as we

are doing here, some other approaches are also conducted, such as the quantization
and coloured noises error modelling for inertial sensors (Han and Wang, 2011), and
adaptive EKF (Wang et al., 2007). This paper’s scope only covers the approaches for
obtaining reliable observation with ZUPT/CUPT.

2.3. Stance Phase Detection. The stance phase detector we proposed consists of
the following four logical conditions C1-C4, using both the accelerometer and gyro
measurements. These four conditions must be satisfied (=1) simultaneously to declare
a foot as stationary for every sample epoch k.

1) The magnitude of the acceleration |ak| where axk ayk azk are the magnitude of the
acceleration on x, y, z-axis respectively:

|ak| = [a2xk + a2yk + a2zk]1/2

C1 = 1 thresholdamin , |ak| , thresholdamax

0 otherwise

� (5a)

2) The magnitude of the acceleration on z-axis |azk|:

C2 = 1 thresholdazmin , azk| | , thresholdazmax

0 otherwise

�
(5b)

3) The magnitude of the angular velocity |wk|:

|wk| = [w2
xk + w2

yk + w2
zk]1/2

C3 = 1 |wyk| , thresholdwmax

0 otherwise

� (5c)

4) The magnitude of the angular velocity on y-axis |wyk|:

C4 = 1 |wyk| , thresholdywmax

0 otherwise

�
(5d)

Since a foot firmly contacts the ground in a stance phase, the acceleration
and rotation of the foot is zero over this duration. In an ideal condition the
magnitude of total angular velocity |wk| in Equation (5c) and acceleration in a
horizontal plane should be zero during a stance phase. However, the actual
measurements are not zero due to vibration and the sensors’ bias, but are still lower
than the given thresholds.
By observing the outputs of a shoe-mounted IMU, it is found that the z-axis

acceleration azk and the y-axis angular velocity wyk are the most significant indicators
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in pedestrian travel. Due to the tilt of a shoe’s surface, however, the measured |wyk| and
|azk| are not exactly 0 and g respectively. So the thresholds in Equations (5b) and (5d)
are set based on the average value of z-axis accelerometer and y-axis gyro outputs
during an initial stationary period, plus a certain level of fluctuation to ensure its
robustness. The initial stationary period is at the beginning of sensor data collection
when the shoe-mounted IMU is in a stationary condition.

2.4. Height Constraint. Similar to the concept proposed by Abdulrahim et al.
(2012), we assume that the changes in height are only caused by climbing stairs since
the floor is level in most indoor environments. If a change in height over one step is
above a threshold, we regard it as reaching a new level or a stair; otherwise the height
will be maintained at the previous level and uses this as a measurement of the Kalman
filter. This constraint works well in structured environments with only level floor and
stairs, but fails in the case of gently sloping terrains.

3. RUNNING. A stance phase detector for walking is incapable of detecting the
stance phase correctly for running since the duration of the stance phase in running is
shorter, and the stance phase is less stable as zero velocity. Barely enlarging the
detection thresholds will introduce false stance phase detection.
In addition to developing a robust stance phase detector for walking and climbing

as described in Section 2.3, we have also proposed a new detector for running. It
includes a footstep detector that is used to determine the beginning of the gait cycle; a
swing phase detector to indicate the swing phase of the step and zero velocity detectors
that are used to detect the stance phase before the swing phase. The swing phase
detector is used to avoid false detection during swing phase especially when the foot is
nearly leaving the ground.

3.1. Footstep Detector. In pedestrian navigation with a shoe-mounted
IMU, especially for running, it is important to know when a pedestrian takes a
step. A footstep detector can not only mark the beginning of a gait cycle, but also
helps to segment the pedestrian’s gait cycle into four phases: stance, heel-off, swing,
heel strike. A footstep detector mainly detects the heel strike after a foot completes
swing phase in the air, reaches the highest point and touches down on the ground.
Once the heel has hit the ground, the deceleration of the forefoot is very dramatic
and characterised by large changes in the acceleration profile. Thus, we simplify
the characteristic thus: in heel strike phase, the z-axis acceleration experiences
a monotonic decreasing that is unique and obvious to detect so we denote it as a
new step.

3.2. Swing Phase Detector. A swing phase detector is designed to identify swing
phases and prevent false stance phase detection in swing phases when enlarging the
thresholds of the stance phase detector for the running case. The swing phase detector
introduced here is based on the energy of rotation threshold TS. y

g
k is the angular

velocity at the time instant k, W is the window size. The swing phase detector is
combined with the footstep detector to separate a swing phase from other phases. As
swing phases are identified, false stance phase detection in swing phases can be
avoided.

T(k) = 1
W

Pk+W−1

k
‖ ygk‖2, Ts (6)

935A PEDESTRIAN NAVIGATION SYSTEMNO. 6

https://doi.org/10.1017/S0373463314000344 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000344


Figure 3 shows the energy of rotation T in two gait cycles. It should be noted
that the footstep detector can also use this T to detect heel strikes. The energy of
rotation goes through a big jump when the foot falls down to the ground, as Figure 3
indicates.

4. CUPT. As mentioned by Abdulrahim et al. (2012), ZUPT will fail in two
situations such as on an elevator or escalator. This is due to the fact that the stance
phases detected on a moving platform are not zero velocity. If a ZUPT algorithm is
applied to a moving platform, it will regard the moving platform as having zero
velocity and perform ZUPT. As a result, the navigation solution is obviously wrong.
Use of other sensors or additional measurements may help to address these issues, but
it will be complex and costly. Without additional sensors, we have proposed a CUPT
algorithm that uses constant velocity as the additional measurement.
ZUPT is just a special case in CUPT where the true velocity in the stance phases is

zero. CUPT can detect the stance phases as ZUPT when stepping on the ground, and
also a constant velocity when the pedestrian is standing in a moving elevator or on an
escalator.
The core concept of the CUPT algorithm is to detect the velocity of a platform

instead of assuming it as zero as in ZUPT. Obviously, the stance phase detection on
a moving platform is exactly the same as the stance phase detection on the ground
without considering a platform velocity. However, CUPT needs not only to identify a
stance phase, but also to measure the velocity of the moving platform and decide
whether the velocity is constant or not.

4.1. Elevator. Taking an elevator as example, Figure 4 shows the measurement
of the vertical accelerometer AccZ and the estimated velocity. A pedestrian walked
into the elevator and stood still when the elevator was moving. As indicated by the
velocity in Figure 4, the elevator went through a period of acceleration, kept at
constant velocity and decelerated before it was stationary again. The constant velocity
appears once the elevator finishes accelerating and before the elevator starts slowing
down. In this circumstance, the most significant indicator is the acceleration in the
vertical direction.

Figure 3. The energy of rotation T.

936 YAN LI AND JIANGUO JACK WANG VOL. 67

https://doi.org/10.1017/S0373463314000344 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000344


When the elevator starts to move, the acceleration in the z-axis experiences a jump
which can be easily distinguished from the normal gaits. When this special case of
acceleration has been detected, the velocity is calculated by the inertial navigation
algorithm without a velocity measurement update. Since the pedestrian stands in the
elevator, the zero horizontal velocity can be added as a measurement to the EKF,
referencing to Equation (4):

z = x̂− vXY (7)
After the elevator finishes accelerating, the velocity keeps constant before the

elevator begins to slow down. During this constant velocity section, CUPT is applied
to correct navigation errors. So the measurement z is x̂− vconstant . The decelerating
section is similar to the accelerating section, and the zero horizontal velocity update is
applied.
During the accelerating and decelerating sections, elevator data processing follows

the INS mechanization to obtain position, velocity and attitude information without
any velocity update until a constant velocity is detected. However, in some cases it is
hard to detect constant velocity. The motion in accelerating and decelerating sections
actually has a variable acceleration rate. Especially during braking, an elevator first
slows down to a low speed, then keeps at this low constant velocity for a while, before
decelerating to zero velocity. As a result, frequent elevator stops have an influence on
the accuracy of height measurement.

4.2. Escalator. For the case of being on an escalator, the horizontal velocity is
the most significant indicator. When a foot steps onto the escalator and keeps pace
with the escalator going up or down, a constant velocity is determined by the instance
of the foot being set on the escalator. So in this case, the measurement z is x̂− vconstant.
Once the horizontal velocity is over a threshold in stance phase, it is assumed that the
foot is on an escalator and we apply CUPT as measurement of the EKF.
Figure 5 shows the horizontal and vertical velocity of a foot on a moving escalator.

We can see that ZUPT is applied when the pedestrian walks on the ground; the
observation is zero velocity during the stance phase, while the velocity keeps constant
when the pedestrian stands on the escalator and CUPT corrects the velocity error
using the constant velocity as the observation.
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In summary, the stance phase detection for CUPT is the same with ZUPT since
the foot is statically in contact with a platform in both cases. But for CUPT the
velocity of the moving platform needs to be measured. ZUPT is applied when a person
is walking on the ground while CUPT is to handle the case on a moving platform.
In order to apply CUPT, firstly we need to use the stance phase detector to declare
whether the foot is stationary, then determine whether the foot is on a moving
platform, measure the constant velocity of the platform and apply CUPT to correct
the errors.

5. SMOOTHING. Smoothing uses the fact that the sensor data can also be
used in a reverse time fashion. The goal of smoothing is to determine an optimal
estimate utilizing information before and after the current time. This paper introduces
a closed-loop step-wise smoothing algorithm based on a Rauch-Tung-Striebel (RTS)
smoother.

5.1. RTS Smoother. The RTS smoother is a two-pass smoothing algorithm. The
forward pass is the same as the regular Kalman filter algorithm. During the prediction
and update steps, the states and covariance are saved for use in the backwards pass.
After the forward pass, the RTS smoothing begins from the end of the mission and
moves back to the starting point of the data set. In the backwards pass, the smoothed
state estimates and covariance propagate using the states saved in the forward pass
(Rauch et al., 1965). The smoothed estimate of the states is computed using the
equations below.

x̂k|N = x̂k|k + Ck[(x̂k+1|N − x̂k+1|k] (8)
Pk|N = Pk|k + Ck(Pk+1|N − Pk+1|k)Ck

′ (9)
where Ck = Pk|kØ

′ k+1,k( )P−1
k+1|k , x̂k|k, x̂k+1|k, Pk|k, Pk+1|k are the error states and their

variances stored in the forward filter.
5.2. Data Segmentation. The implementation of the RTS smoother has some

limitations. Firstly, it is commonly applied for post processing. Secondly, a lot of
memory is required to store the predicted and updated information (Chiang et al.,
2012). In order to achieve near-real-time smoothing and reduce the storage burden,
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Figure 5. Motion in an escalator with CUPT.
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one intuitive way is to take profit of the detected zero velocity intervals and divide the
step with them.
In order to get near-real-time smoothing, proper segmentation rules should

be applied. The principle for our data segmentation is similar to the one proposed
by Colomar et al. (2012). They use velocity error covariance as a threshold. The choice
of the threshold value is based on typical values from the training data of random
walking, so it is not suitable for scenarios that involve running. Moreover, it is
not applicable for navigation on a moving platform, such as elevator or escalator,
where the velocity of a foot in stance phase may not converge to zero but a constant
velocity. In addition, the fixed time constant of 30 samples that they applied may
work properly in normal walking but fail occasionally in running, since the
duration of stance phase in running may be shorter than 30 samples and it will cause
misdetection. Furthermore, if the person alternates between walking and running, the
segmentation rule based on velocity error covariance will easily get confused and
become invalid.
We proposed a new segmentation rule by combining both the footstep detector and

swing phase detector. The energy of rotation threshold T is used to avoid false
segmentation in swing phases, which makes the rule more flexible to meet the complex
environment.
The segmentation point should be in the stance phase. Here we have tried three

methods to get the segmentation point; the first one is to use the middle point of the
stance phase, the second one is the sample point with smallest T during the stance
phase and the third one is the sample point with T under a certain small threshold.
According to our tests, these three methods have little difference in the final smoothing
results, which means that we do not need to find where the exact point converges to
zero, as long as the segmentation point is within the stance phase. The third method is
used as the segmentation rule in the following closed-loop smoothing.

5.3. Closed-Loop Smoothing. In our ZUPT-aided INS implementation, the
predicted EKF error states are always reset to zero. During measurement updates, the

Figure 6. Step wise close loop smoothed ZUPT aided INS.
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estimated error states are corrected and fed back to compensate the estimated
navigation states. However, in a closed-loop smoothing-aided ZUPT, the EKF runs as
normal but the predicted error states need to be propagated and no longer reset to
zero. The estimated states and covariance are updated only when ZUPT are applied
and the smoothing is applied over the error states. After the step segmentation is
performed, the estimated states are combined with the smoothed error states to get the
final navigation results. Figure 6 summarises the implementation procedures for the
closed-loop smoothing.

6. EXPERIMENTS. The proposed pedestrian navigation system has been
tested for walking, running, stair climbing and taking an elevator or escalator.

6.1. Hardware Description. We implemented our pedestrian navigation system
with the Navchip IMU from Intersense. The small size of Navchip makes it easy to
attach to a boot and has no effect on walking. Table 1 lists the specification of Navchip
(encapsulated within casing).

6.2. Walking and Running Test.
6.2.1. Experimental data processed results. All the trajectories are closed-loop

with the finish point the same as the start point. Since the start and stop points are the
exact same location in reality, the distance between the black and blue dots in the
below figures represents the error on the horizontal plane. Figure 7 represents three
trajectories including stair climbing.
Table 2 shows the final return position errors for three-dimensional (3D)

experiments.

Table 1. Specification of Navchip IMU.

Gyroscope Performance Accelerometer Performance

Range (deg/sec) ±480 Range(m/s2) ±8
Noise Density (°/s/

√
Hz) 0·004 Noise Density (ug/

√
Hz) 70

Bias Stability (°/hr,1σ) 12 Bias Stability (mg, 1σ) 0·1
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Figure 7 (a) 3D trajectory 1, (b) 3D for trajectory 2 and (c) 3D trajectory 3.
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In this section we present two trajectories (Figure 8) and each trajectory is traversed
several times with different human gaits that include walking, running and alternating
between walking and running. All the trajectories are closed-loop.
Table 3 summarises the final return position errors for each trajectory and Table 4

also gives the comparison results of different gait styles.
Ideally the error of running should be larger than that of alternating

between walking and running, since the higher dynamics experienced during
running than in walking result in fewer ZUPT applications. However, from

Table 2. Return Position Errors.

Test Estimated Distance (m)

Relative Position Error (%)

X-Y plane Z direction

3D Walk 1 354·8 0·30% 0·61%
3D Walk 2 240·8 0·14% 0·70%
3D Walk 3 277·4 0·01% 0·71%
3D Walk 4 339·2 0·08% 0·90%
3D Walk 5 408·6 0·75% 0·25%

Average 324·2 0·26% 0·63%

Table 3. Return Position Errors.

Test Estimated Distance (m)

Relative Position Error (%)

X-Y plane Z direction

Trajectory1 Walk 292·1 0·24% 1·24e–4%
Walk & run 173·6 0·96% 8·5e–5%
Run 67·9 0·42% 0·002%

Trajectory2 Walk 195·7 0·20% 4·54e–4%
Walk & run 173·2 0·95% 8·66e–5%
Run 168·9 1·01% 0·0015%

Average 178·6 0·63% 7·08e–4%
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Figure 8 (a) Trajectory 1 and (b) Trajectory 2.
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our results as shown in Table 4, we get a different conclusion. The main reason is
that when the pedestrian changes his gait randomly, sometimes it is easy to confuse
the footstep detector. On the other hand, the swing phase detector is applied to ensure
that no false stance phase detection in swing phases, thus we can still get reasonable
results.
In addition, out of the excessive shock of feet strikes, the bi-directional overflows

exceed the ranges of accelerometer and/or gyroscope and will affect navigation
accuracy to a large extent. Although we have already taken measures to reduce the
impact, it is still inevitable that the overflow would affect the INS mechanism
computing vertical velocity and position.

6.2.2. Reference data processed results. In this section, we also give the results by
processing the reference dataset provided in Angermann et al. (2010). In their paper,
the authors also give the processed results using two customary methods that
fail when processing the running data. Table 5 shows the distance travelled error
normalized to the total distance travelled.

6.3. Elevator and Escalator Test. This section describes elevator and escalator
tests conducted in the UTS tower building.

6.3.1. Elevator test. The pedestrian walked for a while before going into an
elevator. The pedestrian randomly chose which elevator to take and which level to
stop at. When the door was closed, the pedestrian stopped walking and stayed still
until the door opened again.
Three trajectories are shown in Figure 9. The left figure is the 3D view of the

trajectory while the right figure represents the height change over time shown by the
red line. The black dots in the right figures indicate the sample points have been
applied CUPT in the slope sections with a constant velocity, or ZUPT in the flat
sections. It is noticed that only a few small sections of the red line in the right figures

Table 5. Distance-Travelled Errors Normalized to the Total Distance Travelled.

Data Set Distance Travelled (m) Positioning Error (%)

Walk “Walk 2D –Rectangle other direction” 28·68 0·050%
“Walk 2D – 8” 47·46 0·049%
“Walk 2D –On table” 24·42 0·43%
“Walk 2D – Patrick long” 2·79e2 0·10%

Run ‘Run 2D - Straight’ 28·34 0·13%
“Run 2D –Circle” 73·94 0·26%
“Run 2D –Circle other direction” 40·41 0·20%

Table 4. Errors of Different Gait styles.

Gait style

Relative Position Error (%)

X-Y plane X-Y plane

Walk & run 0·96% 8·58e-5%
Run 0·72% 0·0018%
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are not covered by the black dots, which are the periods that the elevator is
accelerating or decelerating where neither ZUPT nor CUPT can be applied for
vertical position and speed correction.
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Figure 9 (a) Trajectory 1 of elevator test, (b) Trajectory 2 of elevator test and (c) Trajectory 3 of
elevator test.
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6.3.2. Escalator test. Tests were also conducted for an escalator. As shown in
Figure 10, starting at a lower level, the pedestrian walked for a while and then stood
on a rising escalator with the IMU mounted on one foot. After getting off the
escalator at the middle level the pedestrian walked to another rising escalator to the
top level; and then walked to the two falling escalators in sequence to descend back to
the start point.
Figure 10 is the 3D view of the trajectory, which clearly represents the four

escalators and the three levels walked. Tables 6 and 7 summarise the return position
errors for elevator and escalator experiments respectively.

Table 6. Return Position Errors for Elevator.

Elevator Estimated Travel Distance (m)

Relative Position Error (%)

X-Y plane Z direction

Trajectory 1 248·3 0·17% 0·47%
Trajectory 2 324·7 0·39% 0·063%
Trajectory 3 373·0 0·56% 0·02%

Average 315·3 0·37% 0·18%

Table 7. Return Position Errors for Escalator.

Escalator Estimated Travel Distance (m)

Relative Position Error (%)

X-Y plane Z direction

Trajectory 1 223·3 0·34% 0·11%
Trajectory 2 259·1 0·56% 0·34%
Trajectory 3 232·4 0·64% 0·37%
Trajectory 4 210·8 0·22% 0·10%

Average 231·4 0·44% 0·23%
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Figure 10. Trajectory of escalator test.
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Although these test results are reasonably good, there is still plenty of room to
further improve the proposed algorithm to achieve better performance and handle
more challenging situations. For the escalator, the vertical angle of the escalators was
predetermined to compute the vertical velocity. This angle could be measured by the
sensor with more sophisticated investigation. Although the height relative error in
Table 7 is small, the horizontal relative error is not so good. This may be due to
the change in the vertical angle at the two end sections of escalators where the
staircase keeps moving forward but does not change in the vertical direction. The
predetermined slope angle introduces error for the measurement update in the short
end sections.

6.4. Smoothing Results. All experimental tests have been conducted
in UTS, including walking, running and taking escalator and elevator. The
figures below show the achieved smoothing effect compared with the estimated
trajectory.
Figures 11 and 12 show the effect of smoothing over a walking and running

trajectory respectively. From the height and velocity analysis, we can see that when the
first ZUPT is applied, the correction applied over the estimated trajectory results in a
big jump appearing in every step. After smoothing, these big jumps can be eliminated
thus the trajectory is smoother than the original one.
Compared with walking, the magnitude of running velocity may vary and not

converge to exactly zero as walking does during the stance phase.
For the cases in an elevator and on an escalator, CUPT is applied to let velocity

not converge to zero as ZUPT, but to a constant velocity when the pedestrian
stands on the moving platform. It is also obvious to see that the smoothing
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algorithm can significantly improve the smoothness of the trajectory especially when
the elevator finishes accelerating or decelerating and the pedestrian gets on or off
the escalator (Figures 13 and 14).
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7. CONCLUSION. In this paper, we have documented a robust pedestrian
navigation system that can not only detect the stance phase for running, but also give
the navigation solution when the pedestrian is in an elevator and on an escalator.
Based on the RTS smoother, we also proposed a closed-loop step-wise smoothing to
eliminate the sharp correction and discontinuity of the trajectory.
This paper presented a self-contained pedestrian navigation system that could work

in both 2D and 3D environments with good performance. For 3D stairs climbing
experiments, the average final return position error on the horizontal plane is around
0·26% of distance travelled, the height drift is about 0·63%, while the final return
position error for 2D walking is even smaller, that is 0·16% on X-Y plane by average
and we can always get back to the original position for each loop with an average error
of 0·33%.
The proposed pedestrian navigation system can also handle running cases. From the

test results, we can draw a conclusion that the algorithm is efficient to limit the growth
of IMU error. Our robust stance phase detection shows satisfactory performance.
In addition, this paper presents a CUPT algorithm that works on a moving

platform with good performance. For elevator experiments, the average return
position error on the horizontal plane is around 0·37% of the total distance travelled;
the height drift is about 0·18%. The return position error for an escalator is a little
larger, that is 0·44% in the horizontal plane by average and 0·23% in the vertical.
Future work will attempt to address several aspects of the navigation system.

Firstly, more specific mathematical models will be analysed for the elevator and
escalator tests. Secondly, augmentation with other sensors will be explored, such as
using a magnetometer to improve the navigation accuracy. Finally, the feasibility of
integration with GPS and a camera will be tested. This multi-sensor integration will
make the pedestrian navigation system meet more complex environments and thus
broadening the practical use.
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