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In the present study we investigate the dynamics of initially spherical capsules (made
from elastic membranes obeying the strain-hardening Skalak or the strain-softening
neo-Hookean law) in strong planar extensional flows via numerical computations. To
achieve this, we develop a three-dimensional spectral boundary element algorithm
for membranes with shearing and area-dilatation tensions in Stokes flow. The main
attraction of this approach is that it exploits all the benefits of the spectral methods
(i.e. high accuracy and numerical stability) but without creating denser systems. To
achieve continuity of the interfacial geometry and its derivatives at the edges of the
spectral elements during the interfacial deformation, a membrane-based interfacial
smoothing is developed, via a Hermitian-like interpolation, for both the interfacial
shape and the membrane elastic forces. Our numerical results show that no critical
flow rate exists for both Skalak and neo-Hookean capsules in the moderate and
strong planar extension flows considered in the present study. As the flow rate
increases, both capsules reach elongated ellipsoidal steady-state configurations;
the cross-section of the Skalak capsule preserves its elliptical shape, while the
neo-Hookean capsule becomes more and more lamellar. The curvature at the pointed
edges of these elongated steady-state shapes shows a very fast increase with the flow
rate. The large interfacial deformations are accompanied with the development of
strong membrane tensions especially for the strain-hardening Skalak capsule; the
computed increase of the membrane tensions with the flow rate or the shape extension
can be used to predict rupture of a specific membrane (with known lytic tension) due
to excessive tensions. The type of the experiment imposed on the capsule as well as
the applied flow rate affect dramatically the time evolution of the capsule edges owing
to the interaction of the hydrodynamic forces with the membrane tensions; when a
spherical Skalak capsule is let to deform in a strong flow, very large edge curvatures
(with respect to the steady-state value) are developed during the transient evolution.

Key words: capsule/cell dynamics, interfacial flows (free surface), low-Reynolds-
number flows
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264 W. R. Dodson III and P. Dimitrakopoulos

1. Introduction
The study of the interfacial dynamics of artificial or physiological capsules (i.e.

membrane-enclosed fluid volumes) in Stokes flow has seen an increased interest during
the last few decades due to their numerous engineering and biomedical applications.
Artificial capsules have wide applications in the pharmaceutical, food and cosmetic
industries (Pozrikidis 2003). In pharmaceutical processes, for example, capsules are
commonly used for the transport of medical agents. In addition, the motion of red
blood cells through vascular microvessels has long been recognized as a fundamental
problem in physiology and biomechanics, since the main function of these cells, to
exchange oxygen and carbon dioxide with the tissues, occurs in capillaries (Baskurt &
Meiselman 2003; Popel & Johnson 2005).

In this work we restrict our interest to elastic membranes with shearing and
area-dilatation resistance but negligible bending resistance. This class represents a
wide range of artificial capsules. Experimental findings for biocompatible alginate
capsules (Carin et al. 2003), synthetic polysiloxane (Husmann et al. 2005) and
aminomethacrylate capsules (Pieper, Rehage & Barthès-Biesel 1998) compare very
well with theoretical models that ignore bending resistance. Therefore, several earlier
theoretical investigations have focused on this class of problems (e.g. Pozrikidis 1995;
Ramanujan & Pozrikidis 1998; Secomb, Hsu & Pries 1998; Lac et al. 2004; Lac &
Barthès-Biesel 2005). To a great extent, this model also applies to the human red
blood cells, where the interior haemoglobin solution is enclosed by a multi-layer
membrane whose reduced bending modulus (with respect to its shearing resistance)
is O(10−3) (Mohandas & Chasis 1993; Secomb et al. 1998).

To solve this problem, several theoretical methodologies have been employed.
Secomb and co-workers (Secomb et al. 1998; Secomb, Hsu & Pries 2001, 2002)
utilized lubrication approximation to solve for the axisymmetric cell deformation in a
capillary and investigated the effects of non-uniform vessel diameter and the presence
of a flow-resistive layer on the vessel wall. Eggleton & Popel (1998) employed an
immersed boundary method to study the capsule deformation in shear flows, for
different initial capsule shapes (i.e. spherical, oblate and biconcave discoid shapes)
and for small to moderate capillary numbers over relatively short time periods.
Recently, Doddi & Bagchi (2008) employed an immersed boundary/front-tracking
method to study the effects of inertia on the hydrodynamic interactions between two
liquid capsules in simple shear flow. In addition, several computational methods based
on the boundary integral formulation have been developed. The main benefit of this
approach is the reduction of the problem dimensionality by one owing to the fact
that only the system’s surface needs to be discretized. The simplest boundary integral
methods have assumed axisymmetry which further reduces the problem dimensionality
(e.g. Diaz, Pelekasis & Barthès-Biesel 2000; Kwak & Pozrikidis 2001). Fully three-
dimensional boundary integral methods have also been developed based on structured
or unstructured mesh discretization of the capsule interface (e.g. Pozrikidis 1995;
Navot 1998; Ramanujan & Pozrikidis 1998; Lac et al. 2004; Lac & Barthès-Biesel
2005). We emphasize that all previously implemented numerical methods are based
on low-order interpolation schemes.

It is of interest to note that the results of the existing three-dimensional
methodologies agree well at moderate flow rates (where the interfacial deformation
is not very large). In this range of flow rates, the numerical findings are also in
agreement with experimental observations (Eggleton & Popel 1998; Lac et al. 2004)
and thus provide physical insight on the capsule dynamics at moderate deformations.
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Dynamics of capsules in strong planar extensional flows 265

However, current understanding of capsule dynamics at high flow rates is rather
limited, even though such flows are commonly encountered in industrial and
physiological processes. For example, for millimetre-size capsules made from
aminomethacrylate membranes with shearing modulus Gs = O(10−2) N m−1, flow rates
Ca =O(1) require shear stress μG =O(10) Pa (Pieper et al. 1998). (The definition of
these variables are provided later in § 2.) Experimental studies on capsule deformation
in linear flow fields are still very limited in number and restricted to moderate
deformations (e.g. Chang & Olbricht 1993a,b), even though the required flow rates for
large capsule deformation have long been achieved in corresponding experiments with
droplets and bubbles (e.g. Bentley & Leal 1986; Ha & Leal 2001). The asymptotic
solutions for initially spherical capsules by Barthès-Biesel and co-workers are
restricted to small deformations (Barthès-Biesel 1980; Barthès-Biesel & Rallison 1981;
Barthès-Biesel & Sgaier 1985). The state-of-the-art (low-order) three-dimensional
computational methodologies are unable to find stable steady-state capsule shapes
at high flow rates. These methodologies either predict interfacial breaking even at
moderate flow rates (Pozrikidis 1995; Lac et al. 2004) or are restricted to moderate
interfacial deformations (Eggleton & Popel 1998; Ramanujan & Pozrikidis 1998;
Doddi & Bagchi 2008). The failure at large deformations of the existing theoretical
studies points to the fact that the dynamic behaviour of a membrane-like interface
submerged in an ambient flow is a complicated physical problem due to the coupling
of the fluid dynamics with the (nonlinear) elastic mechanics of the membrane.

The present paper has thus two main goals: (a) to develop a robust methodology
for the efficient and accurate determination of complicated capsule shapes in Stokes
flows and (b) to investigate the dynamics of two types of membranes, strain-hardening
and strain-softening, in strong planar extensional flows.

In § 3, we develop an interfacial spectral boundary element (SBE) algorithm
for membranes with shearing and area-dilatation tensions. The main attraction of
our high-order algorithm is that it combines the benefits of the spectral methods,
including high accuracy and numerical stability as the number of discretization points
increases, with the geometric versatility associated with boundary element schemes. In
addition, our methodology is not affected by the disadvantage of the spectral methods
used with partial differential equations, namely the requirement to deal with dense
systems, because in boundary integral formulations the resulting systems are always
dense, independent of the form of the discretization (Muldowney & Higdon 1995;
Dimitrakopoulos & Higdon 1998; Wang & Dimitrakopoulos 2006). Our method also
exploits all the benefits of the boundary element techniques, i.e. reduction of the
problem dimensionality and great parallel scalability.

In § 4, we present the major characteristic of our interfacial algorithm, i.e. its high
accuracy in determining both the geometric properties of a given shape (such as the
interfacial curvature) and the dynamic evolution of the capsule’s shape. The transient
dynamics of both strain-hardening Skalak and strain-softening neo-Hookean capsules
in a planar extensional flow are investigated in § 5, while in § 6 we consider the steady-
state properties for these capsules, including the evolution of the interfacial shape and
the membrane tensions with the flow rate and the capsule extension. In contrast to
earlier low-order methodologies which predict interfacial breaking at strong enough
flows (and thus the existence of a critical flow rate), our spectral algorithm predicts
stable transient and steady-state capsule shapes. As the flow rate increases, both
capsules reach elongated ellipsoidal steady-state configurations, but the neo-Hookean
shapes are thinner and flatter (i.e. more lamellar) than the Skalak ones for the same
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266 W. R. Dodson III and P. Dimitrakopoulos

extension. The pointed profiles of these shapes are in qualitative agreement with
experimental findings (Barthès-Biesel 1991) and suggest a very fast increase of the edge
curvature with the flow rate. An extended summary of our results is included in § 7.

2. Mathematical formulation
2.1. Fluid dynamics

We consider a three-dimensional capsule with an elastic interface in an infinite ambient
fluid. The interior (fluid 1) and exterior (fluid 2) are Newtonian, with viscosities λμ and
μ and the same density. The capsule size is specified by its volume V or equivalently
by the radius a of a sphere of volume 4πa3/3 = V . Far away, the flow approaches the
undisturbed flow u∞, e.g. a planar extensional flow u∞ = G (x, −y, 0) or a simple shear
flow u∞ = G (z, 0, 0), where G is the shear rate. In this study, the characteristic length
a is used as the length scale, while the time is scaled with the flow time scale G−1.

Assuming low-Reynolds-number flows, the governing equations in fluid 2 are the
Stokes equations and continuity,

∇ · σ = −∇p + μ∇2u = 0, (1)

∇ · u = 0, (2)

while inside the capsule, the same equations apply with the viscosity replaced by λμ.
At the interface, the velocity is continuous, and we define the surface stress vector

(or hydrostatic traction) � f from the stress tensor σ and the surface unit normal n,
i.e.

u1 = u2 = u, (3)

� f ≡ n · (σ 2 − σ 1). (4)

Here the subscripts designate quantities evaluated in fluids 1 and 2, respectively, while
n is the unit normal which we choose to point into fluid 2.

Based on the standard boundary integral formulation, for a freely suspended
capsule, the velocity at a point x0 on the interface SB may be determined by the
following boundary integral equation:

(1 + λ)u(x0) − 2u∞(x0) = − 1

4πμ

∫
SB

[S · � f − (1 − λ)μT · u · n](x) dS, (5)

where the tensors S and T are the fundamental solutions for the velocity and stress for
the three-dimensional Stokes equations, respectively (e.g. Pozrikidis 2001; Lac et al.
2004; Dimitrakopoulos 2007).

Owing to the no-slip condition at the interface, the time evolution of the material
points of the membrane may be determined via the kinematic condition at the
interface,

∂x
∂t

= u. (6)

To produce a closed system of equations, the surface stress � f is determined by
the membrane dynamics as described in the following subsection.

2.2. Membrane dynamics

Our description of the membrane dynamics is based on the well-established continuum
approach and the theory of thin shells (Barthès-Biesel & Rallison 1981; Gould 1999;
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Dynamics of capsules in strong planar extensional flows 267

Pozrikidis 2003; Lac et al. 2004). Typical membrane thickness ranges from O(μm)
for alginate capsules (Carin et al. 2003) to O(nm) for synthetic polysiloxane capsules
(Husmann et al. 2005) (i.e. it is several orders of magnitude smaller than the size of
the capsule), and thus the thin-shell theory has proven to be an excellent description
of these membranes (Pieper et al. 1998; Carin et al. 2003; Pozrikidis 2003; Husmann
et al. 2005). We emphasize that the study of capsules or cells via the continuum
approach and the theory of thin shells is now a rather classical problem. Thus in this
section we present a laconic description of the membrane statics; more details may
be found in relevant review papers and books (Pozrikidis 2001, 2003).

Let the membrane be a two-dimensional surface, with arbitrary curvilinear co-
ordinates θα . We define the complete basis system consisting of the surface tangents
tα and the unit normal n by

tα =
∂x
∂θα

, n =
t1 × t2

|t1 × t2| . (7)

A set of reciprocal tangents tβ can be defined such that tα · tβ = δ β
α . (Note that n is its

own reciprocal.) Tensors can then be expressed in either covariant or contravariant
components with respect to the base in the standard manner (Papastavridis 1999).
Note that in this work the Greek indices range over 1 and 2, while Einstein notation
is employed for (every two) repeated indices.

Tensors defined in R3 must then be transformed into R2. The stress tensor σ

is integrated across the solid phase to produce the second-order tensor τ , which
contains in-plane resultants, and into the first-order tensor (vector) q, which contains
transverse shearing forces (Barthès-Biesel & Rallison 1981; Pozrikidis 2003). We will
assume that there is no resistance to flexure, in which case q =0 and τ is symmetric.

A force balance over an arbitrary differential area of membrane shows that � f =
−∇s · τ (Waxman 1984; Pozrikidis 2001, 2003), which in contravariant form gives

� f = −(ταβ |α tβ + bαβ ταβ n). (8)

In this expression, bαβ is the surface curvature tensor and the ταβ |α notation denotes
covariant differentiation. (See Papastavridis 1999 for further explication of the calculus
of differential surface geometry.)

The in-plane stress resultant tensor τ is the two-dimensional analogue of the three-
dimensional stress, but to describe elastic behaviour it is also necessary to have
an analogue of strain. This is accomplished by projection of the three-dimensional
deformation gradient F, which transforms elements from a reference object into a
deformed state. Denoting the deformed element dx and the reference element dX ,
dx = F · dX (Barthès-Biesel & Rallison 1981; Lubarda 2002). (For vectors, capital
letters denote the reference shape, and lower-case letters the deformed shape; e.g. the
reference tangents and normal will be denoted Tα and N , respectively.) The surface
strain tensor is derived by the projection

A ≡ (I − nn) · F · (I − NN). (9)

The effect of the projection is that the linear operator A only transforms elements
from the plane of the reference surface, and it only transforms those elements into
the plane of the deformed surface. The strain tensor A is calculated efficiently by
A = tαT α (Steigmann & Ogden 1999).

The left Cauchy–Green strain tensor V2 = A · AT has two non-zero eigenvalues,
corresponding to the squares of the principal stretch ratios λα . The corresponding

unit eigenvectors b̂α are the directions of principal stretch. The in-plane stress tensor
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τ is given by the dyadic product (Lubarda 2002),

τ =
∑

α

τP
α b̂α b̂α. (10)

The principal elastic tensions τP
α are calculated from the stretch ratios via a

constitutive law which depends on the material composition of the membrane
(Barthès-Biesel, Diaz & Dhenin 2002; Pozrikidis 2003). The material law of Skalak
et al. (1973) describing certain biological capsules (such as red blood cells) as well as
membranes obtained by interfacial polymerization is given by

τP
1 =

Gsλ1

λ2

(
λ2

1 − 1 + Cλ2
2[(λ1λ2)

2 − 1]
)
. (11)

(To calculate τP
2 , reverse the λα subscripts.) In the equation above, Gs is the shearing

modulus, while the dimensionless parameter C is associated with the area-dilatation
resistance of the membrane. The Mooney–Rivlin law is intended to represent a thin,
incompressible elastic sheet such as polymeric materials,

τP
1 =

Gs

λ1λ2

(
λ2

1 − 1

λ2
1λ

2
2

)[
Ψ + λ2

2(1 − Ψ )
]
, (12)

where the parameter Ψ varies in the range [0, 1]. Here, local area dilatation correlates
with membrane thickness. In the special case in which Ψ =1, the Mooney–Rivlin law
simplifies to the neo-Hookean form

τP
1 =

Gs

λ1λ2

(
λ2

1 − 1

λ2
1λ

2
2

)
. (13)

Note that the membrane mechanics involves two moduli, one for shearing and one
for area dilatation. The parameter C which is associated with area dilatation is already
dimensionless. The shearing modulus Gs can also be used to form a dimensionless
group when the membrane is in contact with an ambient flow. The associated (elastic)
capillary number

Ca =
μGa

Gs

(14)

shows the ratio of viscous flow forces to resistive elastic forces on the membrane.
(Here μ is the viscosity of the ambient fluid, G the shear rate and a the capsule’s
characteristic length scale.) Note that slightly different dimensionless groups have
been used in earlier studies (e.g. Navot 1998; Ramanujan & Pozrikidis 1998). In this
study, the reported membrane tensions are scaled with Gs .

3. Interfacial spectral boundary element (SBE) algorithm
3.1. Spectral boundary element (SBE) discretization

The numerical solution of the boundary integral equations described previously
in § 2 is achieved through an extension of the SBE method which originally was
developed for Stokes flow computations with fixed boundaries (Muldowney &
Higdon 1995) and later was extended to interfacial dynamics of fluid droplets
(Dimitrakopoulos & Higdon 1998; Wang & Dimitrakopoulos 2006; Dimitrakopoulos
2007; Dimitrakopoulos & Wang 2007). Here we present a concise description of the
SBE method; more details may be found in the aforementioned references.

The discretization used in the SBE method is a block-structured mesh in which
the initial capsule surface is divided into NE � 6 curvilinear quadrilateral elements.
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(a) (b) (c)

Figure 1. SBE discretization of a spherical capsule into (a) NE = 6 elements based on cube
projection, (b) NE = 10 elements based on division into two rows of elements along the
x-direction and (c) NE = 14 elements based on division into three rows of elements along the
y-direction.

Since we employ quadrilateral elements, a convenient way of discretizing the initial
interface is via prism projection; e.g. the capsule surface is projected on to a cube
or parallelepiped whose faces correspond to the interfacial elements as shown in
figure 1(a). We also have the ability to subdivide the prism’s faces into additional
spectral elements as shown in figure 1(b, c). By partitioning the surface in this way, we
can control the distribution of spectral points on the surface to maximize efficiency
and accuracy. In addition, calculations via interpolation are more efficient, since they
are based on the spectral points defined on each element (and not on the entire
interface).

Each quadrilateral surface element is then mapped on to a square parametric
domain [−1, 1]2. The geometric variables on each element are discretized using
Lagrangian interpolation in terms of the parametric variables ξ , η on the square
domain, e.g.

x(ξ, η) =

NB∑
i=1

NB∑
j=1

x(ξi, ηj ) hi(ξ ) hj (η), (15)

where hi is the (NB − 1)-order Lagrangian interpolant polynomial. The physical
variables u and f are represented similarly. The base points (ξi, ηj ) for the
interpolation are chosen as the zeros of NB-order orthogonal polynomials; this yields
the spectral convergence associated with the orthogonal polynomial expansions.

The boundary integral equations (5) admit two different types of points. The
collocation points x0 of the left-hand side where the equation is required to hold and
the basis points x of the right-hand side where the physical variables u and f are
defined. The spectral element method as implemented here employs collocation points
of Gauss quadrature, i.e. in the interior of the element only. (As a result the boundary
integral equation holds even for singular elements where the normal vector is not
uniquely defined, e.g. for a membrane attached to a solid surface, similar to our earlier
studies on attached droplets; Dimitrakopoulos & Higdon 1998.) In addition, we use
basis points of Gauss–Lobatto quadrature (i.e. in the interior and the edges of the
elements; Canuto et al. 1998), which facilitate the interfacial smoothing described in
§ 3.2. The numerical integration associated with (5) is performed by Gauss–Legendre
quadrature with the aid of variable transformations. Owing to the singularity in the
kernels, special care must be taken to ensure the accurate numerical evaluation of
these integrations as described in Muldowney & Higdon (1995).
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(a)

(b)

Figure 2. (a) Interfacial shape of a Skalak capsule with C = 1 and λ= 1 in a planar extensional
flow with Ca = 0.35 at time t = 0.123. A fourth-order Runge–Kutta scheme with zero-order
(i.e. geometry) continuity at the edges of adjacent elements was employed with NE = 6, NB = 12
and �t =10−3. For this specific case, the disparities in the derivatives of the geometry near the
elements corners cause interfacial breaking at the next time step. (b) As in (a), but now our
first-order capsule interfacial smoothing is employed at every time step. The capsule interface
is continuous and smooth across the spectral elements at all times as our results up to t = 10
(i.e. well past steady state) indicate.

3.2. Membrane interfacial smoothing

To determine the capsule’s shape as a function of time, the kinematic condition (6)
is applied based on a high-order explicit scheme (usually the fourth-order Runge–
Kutta method). We emphasize that in the present work, the grid points represent
material points of the capsule’s interface, and thus both normal and tangential velocity
components must be employed. This differs from the case of droplets, where the grid
points commonly represent interfacial marker points (Ramanujan & Pozrikidis 1998;
Wang & Dimitrakopoulos 2006).

The explicit time integration is applied at the (Gauss–Lobatto) basis points x where
the interfacial velocity u is determined. Similar to the drop dynamics, the time step
�t should be sufficiently small to ensure numerical stability, i.e.

�t < O(Ca �xmin), (16)

where �xmin is the minimum length scale appearing in the computational problem,
e.g. the minimum grid spacing (Pozrikidis 2001; Wang & Dimitrakopoulos 2006).

If we apply the advancing scheme described above, requiring coincidence of the
end points belonging to adjacent elements and without any additional geometric
constraints, the resulting algorithm is unstable as shown in figure 2(a) for a Skalak
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capsule in a planar extensional flow. The numerical instability is caused by the
discontinuity of interfacial derivatives at the edges of the spectral elements as shown
in this figure. In particular, starting from a smooth interfacial shape, the geometry
derived by the time integration of (6) shows discrepancies at its derivatives at the
edges of the spectral elements. These discrepancies are very small after one time step;
in particular they are several orders of magnitude smaller than the accuracy of the
numerical method. (For the case shown in figure 2, the accuracy of the numerical
method is at least three significant digits, while the derivative discrepancies are
O(10−8) or smaller.) However, if these discrepancies are left unattended, local errors
build over time, resulting in severe derivative disparities between coincident points
on adjacent elements. This instability first manifests as interfacial tips located at the
element corners as shown in figure 2(a) and quickly causes failure of the numerical
method.

We emphasize that these derivative disparities across the spectral elements result
from the (spectral) element nature of our algorithm and the fact that we use Gauss–
Lobatto coincidence (i.e. zero-order geometric continuity) across the elements. Similar
disparities appear for droplet deformation as discussed in Wang & Dimitrakopoulos
(2006). To avoid the resulting numerical instabilities additional interfacial smoothing
is necessary.

Wang & Dimitrakopoulos (2006) developed a first-order smoothing scheme (i.e.
continuity of up to the first derivative of the interfacial geometry) for drop dynamics
which is based on averaging, at the end of each time step, of the local tangent vectors
belonging to consecutive spectral elements. When we apply the droplet smoothing
algorithm to capsules, we find that the resulting algorithm is numerically unstable
due to discrepancies very similar to those shown in figure 2(a). The reason for this
instability lies in the fact that the smoothing scheme of Wang & Dimitrakopoulos
(2006) is valid for interfacial marker points such as those used for droplet dynamics.
For the material points of a capsule, the smoothing causes the grid points to drift on
the surface which, owing to the mapping with the reference shape, creates non-existent
local strains and finally instability.

With this in mind, we have developed a first-order smoothing scheme for capsule
deformation that preserves the correspondence between the reference shape and
the current deformed geometry. Our smoothing methodology for capsule dynamics
includes smoothing, at the end of each time step, of the transient interfacial shape as
well as of the surface stress forces which depend on the membrane material.

To describe the interfacial smoothing of the capsule shape, let the non-smoothed
interfacial shape of the Gauss–Lobatto basis points at time t + �t , derived by the
time integration of (6), be identified as xold . The first step is to average the position
of all coincident points of adjacent spectral elements. For coincident nodes belonging
to adjacent elements [1] and [2], the new position is

xnew
[1] = xnew

[2] =
1

2

(
xold

[1] + xold
[2]

)
. (17)

This achieves zero-order (i.e. position) continuity across the interface as well as high-
order continuity (i.e. continuity of the geometric derivatives) along the local direction
parallel to the element edges (see figure 2b).

Thus, to achieve complete first-order continuity on the surface, we need to smooth
in the other interfacial direction. For this, we employ a tensor quantity as the basis for
our first-order smoothing, i.e. the surface strain tensor A = tαTα which incorporates
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the reference shape. We average this tensor over coincident nodes, e.g.

Anew =
1

2

[
(tαTα)old

[1] + (tαTα)old
[2]

]
. (18)

Note that because the reference shape is time invariant, it always has high-order
continuity across the elements; e.g. the reference tangents Tα are always continuous
at the elements’ edges. We then use (A)new to obtain a new partial surface derivative
in the direction away from the element boundary, i.e.(

∂x
∂θα

)new

= (tα)
new = (A)new · Tα. (19)

The final step of our first-order geometry smoothing scheme is to generate the
updated geometry at the time step t + �t which preserves zero-order continuity
and in addition incorporates the new derivative values at the coincident points. To
achieve this goal, we employ the two-dimensional Hermitian interpolation presented
in Wang & Dimitrakopoulos (2006), which utilizes function and first derivative values
at the end points but only function values at the interior points of a spectral element
(see § IV in Wang & Dimitrakopoulos 2006).

In addition, we smooth the surface force vector � f (which is determined by the
membrane properties as discussed in § 2.2) via a similar first-order smoothing which
applies before we utilize � f in the boundary integral system, i.e. at the beginning
of each time step. This smoothing mirrors the geometric smoothing, except that
the interpolated function is � f instead of x. In particular, we first achieve zero-
order continuity by averaging � f across coincident points. The tensor used for the
subsequent first-order smoothing is the surface gradient

∇S(� f ) = tα ∂(� f )

∂θα
. (20)

Then we average ∇S(� f ) at coincident points and recover the new derivatives by(
∂(� f )

∂θα

)new

= tα · (∇S(� f ))new . (21)

Afterwards, we perform the two-dimensional Hermitian interpolation as with the
interfacial geometry described previously.

In figure 2(b) we show the time evolution of the capsule presented earlier in
figure 2(a), but now we employ our first-order smoothing scheme for capsules at
every time step. In contrast to the earlier result, the new smoothing scheme suppresses
numerical instability for elastic capsule deformation at all times, i.e. well past steady
state.

As a closure to this section, we emphasize that the membrane smoothing
methodology we have developed in this paper is an efficient technique to preserve the
continuity of the interfacial spectral geometry and its derivatives for membrane-like
interfaces. Our first-order smoothing, which we employ at every time step, is able to
achieve this, since the discrepancies at the edges of the spectral elements are very
small when treated at the end of each time step. The entire process, including
the relevant two-dimensional Hermitian interpolation, requires a computational cost
of only O(NE NB), i.e. O(NB) on each spectral element, owing to the fact that it
is implemented through products of one-dimensional rules. (The reduction of the
operation cost is a characteristic feature of all product rules in spectral methods;
Canuto et al. 1998.)
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4. Properties of capsule interfacial algorithm
We have conducted numerous tests to verify the correctness, accuracy and

robustness of our interfacial algorithm for capsules with elastic tensions. We have
investigated the deformation of initially spherical capsules with several viscosity ratios
in steady linear flows (i.e. simple shear and planar extensional flows), while we have
considered all material laws mentioned in § 2.2. To quantify the interfacial deformation
over time we monitor the capsule’s length L, width S and depth W , as well as Taylor’s
deformation parameter

D =
L − S

L + S
. (22)

The capsule dimensions are determined as the semi-axes of the ellipsoid which has
the same inertia tensor as that of the capsule (Ramanujan & Pozrikidis 1998; Lac
et al. 2004).

Our computational results presented in this paper were mainly derived by employing
NE = 6, 10, 14 spectral elements (based on different element divisions of the capsule
surface) with NB = 10–14 basis points. For the time integration, we usually employed
the fourth-order Runge–Kutta scheme with time step in the range �t = 10−4–10−3.
The accuracy of our results was verified by employing smaller time steps and different
grid densities for several representative cases.

In particular, for the transient and steady-state dynamics of Skalak and neo-
Hookean capsules in moderate and strong planar extensional flows presented in §§ 5
and 6, we mainly employed two different element divisions of the capsule surface. We
divided the interfacial shape into two rows of elements along the x-direction or three
rows of elements along the y-direction as shown in figure 1. Both element divisions
preserve the three symmetry planes of the extensional flow; our algorithm exploits
these symmetries to reduce the computational cost (Dimitrakopoulos & Higdon 1998;
Dimitrakopoulos 2007). Convergence runs covering the entire interfacial evolution (i.e.
well past steady state) with NB = 10–14 basis points showed that our results for the
interfacial shape presented in §§ 5 and 6 are accurate to at least three significant digits
for both moderate and high flow rates except for the very highest flow rates at which
the interfacial shape was determined with an accuracy of at least two significant
digits. More details on the accuracy of our results are included in the captions of
figures 5, 10 and 11 in § 5.

In addition, for moderate flow rates we have compared our transient and steady-
state results with published results in shear and planar extensional flows from several
low-order methods (e.g. Eggleton & Popel 1998; Ramanujan & Pozrikidis 1998;
Lac et al. 2004) by printing our results in the same scale as the earlier results
and superimposing them. All reported comparisons have revealed that the curves
are nearly coincident and thus within the expected near-1% error of the earlier
low-order methodologies. Additional comparisons have been made with the actual
data of Lac et al. (2004). For example, for a Skalak capsule with C =1 in a
planar extensional flow with Ca = 0.45, 0.6, Lac et al. (2004) found a steady-
state deformation D =0.549, 0.6 and length L =1.78, 1.95, while according to our
computations D =0.548, 0.595 and L = 1.76, 1.90. In the case of a neo-Hookean
capsule in a planar extensional flow with Ca =0.18, 0.21, Lac et al. (2004) found at
steady state D = 0.504, 0.552 and L =1.62, 1.73, while according to our computations
D = 0.507, 0.552 and L = 1.60, 1.71.

It is of interest to note that in strong flows, the surface area of specific spectral
elements may show a significant increase. As mentioned earlier, convergence runs
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have verified the accuracy of our results. We note that the spectral boundary method
for fixed surfaces has proven to be very accurate even when it employs large spectral
elements (e.g. see § 5 in Muldowney & Higdon 1995). As discussed in our earlier
publications for droplets (Wang & Dimitrakopoulos 2006; Dimitrakopoulos 2007)
and also found in the present study for capsules, our spectral method is able to
determine accurately the interfacial geometry at large deformations when the spectral
grid evolves reasonably over time, i.e. when it is not very distorted. With respect to
this issue, interfacial dynamics of capsules is computationally more efficient than that
for droplets, since in the former case the spectral grid represents the material points
of a membrane, and thus it is not severely distorted over time as shown in all the
three-dimensional shapes presented in this paper.

During the entire interfacial deformation, our computations show that the capsule
volume is usually preserved to at least seven significant digits, while for the very
highest flow rates reported in this paper, the capsule volume is accurate to at least
five significant digits. In our earlier study with droplets (Wang & Dimitrakopoulos
2006) and the present study with capsules, we also have the option to adjust the
volume of the capsule at the end of each time step (e.g. after the application of the
smoothing methodology) by

xnew − xc =

√
V0

V

3

(x − xc), (23)

where x, xc and V are the interfacial shape, the volume centroid and the volume of
the capsule, respectively, at the end of each time step while V0 is the initial capsule
volume. For the problems studied in this work, both ways produce identical results.

Having established the validity and robustness of our interfacial algorithm with
the representative examples mentioned above, we proceed now to discuss its spectral
performance. In particular, a major property of our interfacial algorithm is its high
accuracy with increasing the number of discretization points which results from
the spectral nature of our algorithm. We emphasize that the high accuracy of our
methodology holds for both the geometric properties of a given shape, such as the
interfacial curvature, and the dynamic evolution of the capsule’s shape.

Figure 3 shows the maximum absolute error in the computed curvature as the
number of spectral points N increases from 150 to 3750 for a spherical capsule and two
representative lamellar capsules. (As discussed in § 5, strain-softening capsules obtain
lamellar shapes at strong extensional flows.) We note the exponential convergence
of our spectral algorithm is in direct contrast to the common linear or quadratic
convergence associated with low-order algorithms.

The spectral accuracy also holds for the determination of the evolution of any
interfacial property. To show this, we calculated the transient evolution of an initially
spherical capsule for a moderate and a large capillary number, i.e. Ca = 0.35, 1.5.
In both cases, we kept the number of elements NE fixed and increased the number
of basis points in the range NB = 6–15. Our results for NB = 15 were regarded as
a close approximation for the exact answer. Figure 4 shows the relative error in
the computed deformation D as the number of spectral points N = NE N2

B increases.
The exponential convergence shown for our results for Ca = 0.35 represents the time
t = 0.15 where D ≈ 0.14 while the capsule length has been increased by 15 %. For
Ca = 1.5, our results represent the time t = 0.60 where D ≈ 0.49 and the capsule
length has been increased by 71 %. In this case the convergence is not as fast as for
Ca = 0.35 because we employed a rather coarse grid to describe a quite deformed
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Figure 3. Maximum absolute error in the computed curvature versus the number of spectral
points N = NE N2

B for a sphere (——) and different lamellar ellipsoids: - - - -, a = 2, b = 1, c = 0.5;
– · –, a = 4, b = 1, c = 0.25 (where a, b and c are the semi-axes of the ellipsoids). The exponential
convergence shown in this figure was generated by employing NE =6 spectral elements and
varying the number of basis points NB from 5 to 25. The exact value was used to determine
the numerical error.
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Figure 4. Relative error in the computed deformation D versus the number of spectral points
N =NE N2

B for a Skalak capsule with C = 1 and λ= 1 in a planar extensional flow with
Ca = 0.35, 1.5. For the case Ca =0.35, our results represent the time t = 0.15 where D ≈ 0.14
while the capsule length has been increased by 15 % and its width has been decreased by
13 %. For Ca = 1.5, our results represent the time t =0.60 where D ≈ 0.49 while the capsule
length has been increased by 71 % and its width has been decreased by 41 %. Our results
were generated by employing NE = 6 spectral elements for Ca = 0.35 and NE = 10 elements for
Ca = 1.5 and varying the number of basis points NB from 6 to 15. In both cases, the results
for NB = 15 were used to determine the numerical error.

interfacial shape; however, our spectral method is able to achieve a relative error of
2 × 10−6 by employing NE = 10 and NB = 14, i.e. with only N =1960 spectral points.

It is of interest to note that the accuracy in determining the interfacial shape during
transient dynamics shown in figure 4 also represents the accuracy of our spectral
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method for steady-state shapes of similar deformation, since in our computations the
accuracy is restricted by the space discretization (and not the time step).

The observed high accuracy of our present membrane algorithm is similar to the
one we found for drop dynamics (Wang & Dimitrakopoulos 2006; Dimitrakopoulos
2007). We emphasize that the difference in the interfacial accuracy between our
spectral algorithms and low-order methods is dramatic, since the latter commonly
achieve only linear convergence by increasing the number of the employed grid points.

5. Transient dynamics of Skalak and neo-Hookean capsules in a planar
extensional flow

In this section we consider the transient dynamics of an initially spherical capsule
with λ=1 in a planar extensional flow u∞ = G (x, −y, 0) for moderate and large
capillary numbers. We study both strain-hardening Skalak capsules with C =1 and
strain-softening neo-Hookean capsules. The main goal of this section is to investigate
the physical behaviour of elastic capsules, including the evolution of the interfacial
shape and the membrane tensions, at large deformations, where current understanding
of capsule dynamics is rather limited, as discussed in § 1.

In particular, earlier computational studies based on low-order methodologies in
shear or extensional flows either found that there exists a critical flow rate above
which the capsule’s interface cannot reach a steady state and thus breaks (Pozrikidis
1995; Lac et al. 2004) or were restricted to rather moderate steady-state deformations
(Eggleton & Popel 1998; Ramanujan & Pozrikidis 1998; Doddi & Bagchi 2008).
For planar extensional flows, the recent comprehensive work of Lac et al. (2004)
found that steady-state shapes exist only for a region of moderate capillary numbers
[CaL, CaH ]. For a Skalak capsule with C = 1, CaL = 0.15 and 0.6 <CaH < 0.75, while
for a neo-Hookean capsule CaL = 0.14 and 0.21 <CaH < 0.24. The corresponding
maximum steady-state deformations were reported to be D = 0.53 and D ≈ 0.57 for
the two types of membranes (see table 1 in Lac et al. 2004). Above these flow
rates CaH , the authors found that the capsule develops high-curvature tips and that
the deformation and membrane tensions increase without bound, causing interfacial
breaking.

We note that our computational results agree with those of Lac et al. (2004) for
low flow rates; i.e. for capillary numbers Ca <CaL compressive tensions result in
wrinkling around the capsule equator which causes interfacial breaking near steady
state. However, our findings at high flow rates are dramatically different from those
of the earlier study.

Thus in this section we will try to address the following questions: (i) Does a critical
flow rate exist or not for capsule dynamics? (ii) If no critical flow rate exists, what
is the capsule’s configuration and dynamics at strong flow rates? (iii) How does the
behaviour of strain-hardening capsules differ from that of strain-softening ones?

Figure 5 shows the deformation of a Skalak capsule in a planar extensional flow for
several capillary numbers. As Ca increases, the capsule’s length L is increased while
its width S is decreased as shown in figure 5(b); this results in a monotonic increase of
the capsule’s deformation D at steady state with the capillary number as illustrated in
figure 5(a). We note that the surface area of the capsule (not presented here) shows a
monotonic increase with time and the flow rate (similar to that of the capsule’s length
L). A careful examination of figure 5(a, b) reveals that while the capsule’s width S

reaches steady state at about the same time for all the flow rates (or Ca) studied
here, it takes more time for the capsule’s length L (and thus for its deformation D)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

16
62

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009991662


Dynamics of capsules in strong planar extensional flows 277

0

0.2

0.4

0.6

0.8

4 8 12 16

D

t
4 8 12 16

t

0 4 8 12 16

t

Ca = 1.25

1
0.75

0.45

0.25

0.15

(a) (b)

(c)

0

0.5

1.0

1.5

2.0

2.5

S

L

Ca increasing

1.00

1.04

1.08

1.12

W

0.15

0.25
0.45

Ca = 0.75

1

1.25

Figure 5. Evolution of a Skalak capsule with C = 1 and λ= 1 in a planar extensional flow
for capillary number Ca = 0.15, 0.25, 0.45, 0.75, 1, 1.25. Time evolution of (a) the capsule’s
deformation D, (b) its length L and width S and (c) its depth W . (Note that for Ca = 0.75, 1
our computations cover the time period [0, 20], while for Ca = 1.25 they cover the period
[0, 30].) Our convergence runs revealed that our results are accurate to at least three significant
digits, and thus if we include the different convergence runs on the same plot, they show no
difference.

to reach steady state for the high capillary numbers, Ca = 0.75, 1, 1.25. (This is the
reason that for these flow rates we monitor the capsule evolution for a long time
period; in particular, for Ca = 0.75, 1 our computations cover the time period [0, 20],
while for Ca = 1.25 they cover the period [0, 30].)

To explain this anisotropy, in figure 5(c) we present the evolution of the capsule’s
depth W for the same capillary numbers. At low flow rates (e.g. Ca = 0.15, 0.25, 0.45),
the capsule’s depth W shows a monotonic increase with time, reaching steady state
at about the same time as the other two dimensions of the capsule. (Observe that
W shows a maximum with the capillary number even in this range of flow rates.)
However, the time evolution of the capsule’s depth W is quite different at the large
flow rates Ca = 0.75, 1, 1.25; after a fast initial growth, W decreases over time, while
at steady state the higher capillary number corresponds to smaller depth. This non-
trivial behaviour of the capsule’s depth W affects mostly its length L; i.e. the late-time
reduction of the depth W at high flow rates causes a further increase of its length L

as shown in figure 5(a).
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Figure 6. Evolution of a Skalak capsule with C =1 and λ= 1 in a planar extensional
flow with Ca = 0.45. (a) Capsule profile (i.e. interface intersection) with the plane z = 0 at
times t =0, 0.5, 1, 18. (b) Capsule profile (i.e. interface intersection) with the plane y = 0 at
times t = 0, 0.5, 1, 18. (c) Capsule shape (computed based on two different element divisions
employing NB = 6, 10 spectral elements) at time t = 18, i.e. well past steady state.

The evolution of the capsule’s profile in the z = 0 and y = 0 planes for Ca = 0.45 is
shown in figure 6(a, b). As the capsule deforms, the increase of its length L along with
the corresponding decrease of its width S, shown in figure 5(b), results in a rather
elongated shape in the z = 0 plane as depicted in figure 6(a). However, at the same time
the capsule’s depth W is slightly increased as shown in figures 5(c) and 6(b). Both ac-
tions result in a flat ellipsoidal shape of the capsule at steady state as seen in figure 6(c).
(Note that the three-dimensional views of the capsule shape presented in this section
were derived from the actual spectral grid by spectrally interpolating to NB = 25.)

We emphasize that our results for the evolution of the capsule’s deformation D for
the moderate capillary number Ca = 0.45 shown in figure 5(a) are in very good agree-
ment with the computations of Lac et al. (2004) reported in their figure 16. In addition,
the capsule profile in the plane z = 0 at steady state shown in figure 6(a) is in very good
agreement with that from the study of Lac et al. (2004) reported in their figure 17.

Thus, our results agree with those of Lac et al. (2004) in their region of stability
(i.e. for moderate capillary numbers); however, our spectral boundary interfacial
algorithm also predicts stable steady-state shapes for higher capillary numbers, e.g.
Ca � 0.75. We emphasize that our computational investigation at these large flow
rates covers an extended time period (up to time t = 30 for Ca = 1.25) to verify the
validity of our results.

To provide more information on the behaviour of the capsule at large capillary
numbers, in figure 7 we present our numerical results for Ca = 1.25. As seen in
figure 7(a, b), over time the capsule elongates in the x-direction and thins in the
y-direction, while its depth shows a rather small but non-trivial variation (which was
presented earlier in figure 5c). The capsule shape at steady state is shown in figure 7(c).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

16
62

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009991662


Dynamics of capsules in strong planar extensional flows 279

–1

0

1

–2 –1 0 1 2

y

x

(a) (b)

–1

0

1

–2 –1 0 1 2

z

x

(c)

Figure 7. Evolution of a Skalak capsule with C = 1 and λ= 1 in a planar extensional flow
with Ca = 1.25. (a) Capsule profile (i.e. interface intersection) with the plane z = 0 at times
t =0, 0.5, 1, 30. (b) As in (a) but for the capsule profile with the plane y = 0. (c) Capsule shape
(computed based on two different element divisions employing NB =14, 10 spectral elements)
at time t = 30, i.e. well past steady state.
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Figure 8. Time evolution of the edge curvature (determined along the interfacial cross-section
with the z = 0 plane) for a Skalak capsule with C =1 and λ= 1 in a planar extensional flow
with Ca = 0.15, 0.25, 0.45, 0.75, 1, 1.25.

It is of interest to observe that the capsule profile with the plane z = 0, shown in
figure 7(a), becomes quite pointed around time t =1, while at steady state the edges
in the x-direction are more rounded but still more pointed than those for Ca = 0.45
shown in figure 6(a). This non-monotonic behaviour for the capsule edges is not
observed at moderate flow rates at which the edges become monotonically more
pointed with time up to steady state, as shown in figure 6(a).

To investigate this issue more, in figure 8 we plot the time evolution of the
edge curvature for several flow rates. This figure clearly supports our observations
based on the evolution of the capsule profiles. In particular, for moderate flow rates
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Figure 9. Time evolution of the (a) maximum τP
max and (b) minimum τP

min principal tensions
among the spectral discretization points on the membrane for a Skalak capsule with C = 1
and λ= 1 in a planar extensional flow with Ca = 0.45, 0.75, 1, 1.25.

Ca = 0.15, 0.25, 0.45 the edge curvature shows a monotonic increase over time up to
steady state. On the other hand, its evolution for high flow rates Ca =0.75, 1, 1.25 is
dramatically different especially for the highest flow rate. At strong flows, the edge
curvature shows a fast initial increase followed by a similarly fast decrease towards
steady state where higher flow rates result in greater edge curvature, i.e. more pointed
edges. We emphasize that the maximum value of the edge curvature during the
transient evolution can be several times its steady-state value as clearly shown for
Ca = 1.25; thus it is during the (initial) transient evolution where the capsule edges
become very pointed. In addition, note that our first-order smoothing does not affect
the tip curvature, since the capsule edges fall in the interior of the two edge elements
as shown in figure 7(c).

To investigate the membrane dynamics, in figure 9 we present the time evolution of
the maximum τP

max and minimum τP
min principal tensions over the capsule surface for

several capillary numbers. (Note that in our study the reported membrane tensions
are scaled with Gs .) As shown in figure 9(a), the maximum principal tension increases
with time from a zero initial value until steady state, and thus it is always positive.
In addition, higher capillary numbers cause larger values of τP

max at steady state. The
evolution of the minimum principal tension is more complicated. Starting from zero,
τP
min decreases with time, and thus it obtains a negative value at early times. Later

the minimum tension increases with time and becomes positive. Since the membrane
tensions at steady state are everywhere positive (i.e. the tensions are tensile), no
compression is developed, and thus the pointed edges of the Skalak capsule are
concave for the flow rates studied in this paper, as seen in figures 6 and 7.

The location of the minimum and maximum tensions on the capsule surface follows
the same basic trend for the different capillary numbers. Initially, the minimum tension
τP
min occurs at the capsule edges; e.g. looking at the capsule profiles in figure 7, the

minimum tension is located at the intersection of the capsule’s surface with the x-
axis. After an initial transient period, however, the location of the surface minimum
changes. The new surface minimum occurs at the capsule largest depth, i.e. at the
intersection of the capsule’s surface with the z-axis. The direction of this tension at
late times has no x-component; i.e. this tension acts entirely in the yz cross-section.
The maximum tension τP

max is initially located at the largest width of the capsule, e.g.
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(a)

(b)

Figure 10. Steady-state shapes for a Skalak capsule with C =1 and λ= 1 in a planar
extensional flow with (a) Ca = 2 and (b) Ca =2.5. The three-dimensional views of the capsule
shown were determined based on two different element divisions employing NB = 14, 10 spectral
elements. Our convergence runs revealed that for both capillary numbers the interfacial shape
was determined with a maximum relative error of 5 × 10−3.

at the points x = z = 0. After a transient period, this tension switches location and is
located in the same place as the steady-state minimum tension; thus at steady state
the locations of the minimum and maximum tensions become congruent. Note that
the maximum tension τP

max always points in the direction of the capsule’s elongation.
Proceeding further, we determine the steady-state shape of the Skalak capsule at

much higher flow rates by gradually increasing the capillary number (with step size
�Ca = 0.25, 0.5) and allowing the system to reach steady state after each flow rate
increase. Our spectral algorithm is able to determine accurately these very elongated
steady-state configurations as shown in figure 10 for capillary number Ca =2, 2.5.

It is of interest to note that during the gradual increase of the flow rate (where the
capsule is let to reach steady state after each flow rate increase), the edge curvature
shows a monotonic increase with time even in these strong flow rates. This contracts
the evolution of the capsule edges observed in figure 8, where a spherical capsule is
let to deform in a steady strong flow.

To explain the edge evolution in these two types of experiments, we need to consider
the interaction of the hydrodynamic forces with the membrane tensions. When a
spherical capsule is let to deform in a steady flow, the restoring membrane tensions
are initially weak (owing to the small interfacial deformation) but increase over time
as the capsule deforms. In a moderate flow rate, the deforming hydrodynamic forces
are also weak, and thus the capsule edges become monotonically more pointed over
time as shown in figure 8 for Ca = 0.15, 0.25, 0.45. On the other hand, shortly after
a spherical capsule is let to deform in a strong flow, the strong hydrodynamic forces
overcome the weak membrane tensions; thus the edge curvature increases, trying to
balance the hydrodynamic forces, as suggested by (8), and initially the capsule tips
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Figure 11. Evolution of a neo-Hookean capsule with λ= 1 in a planar extensional flow for
capillary number Ca = 0.2, 0.3, 0.4. Time evolution of (a) the capsule’s deformation D, (b) its
length L and (c) its width S and depth W . (Note that for Ca = 0.4 our computations cover
the time period [0, 40].) Our convergence runs revealed that for Ca = 0.4 our results show a
maximum relative error of 7 × 10−3, while for Ca = 0.2, 0.3 our results are accurate to at least
three significant digits.

become very pointed (as shown in figure 8 for Ca = 0.75, 1, 1.25). In this case, after
some time the membrane tensions increase and cause a decrease of the edge curvature
towards its steady-state value. It is of interest to note that for these high flow rates, the
capsule tension τP

max reaches its maximum value at about the same time as the capsule
deformation D, i.e. at time t ≈ 1.5–2; the fast decrease of the edge curvature also starts
at about this time (see figures 5a , 8 and 9a). In the second type of experiment, i.e. via
a gradual increase of the flow rate, the gradual capsule deformation is accompanied
by a gradual increase of the membrane tensions, and thus the capsule edges become
monotonically more pointed over time.

We now turn our attention to strain-softening membranes and investigate the
dynamics of a neo-Hookean capsule in a planar extensional flow. Figure 11 shows the
evolution towards steady state of the capsule’s deformation and lengths for several
capillary numbers, i.e. Ca = 0.2, 0.3, 0.4. We note that for Ca = 0.4 we have continued
our computations until t = 40 (not shown here) to ensure that a steady state has
been reached. This figure reveals that the evolution of the neo-Hookean capsule is
monotonic over time and thus not so complicated as the Skalak capsule. For the soft-
straining membrane, the capsule’s length L and depth W increase with time, while its
width S decreases until steady state is reached; this results in a monotonic increase of
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Figure 12. Evolution of a neo-Hookean capsule with λ= 1 in a planar extensional flow
with Ca = 0.4. (a) Capsule profile (i.e. interface intersection) with the plane z =0 at times
t =0, 0.5, 1, 2, 4, 40. (b) As in (a) but for the capsule profile with the plane y = 0. (c) Capsule
shape (based on two different element divisions) at time t = 40, i.e. well past steady state.
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Figure 13. Time evolution of the edge curvature (determined along the interfacial cross-section
with the z = 0 plane) for a neo-Hookean capsule with λ=1 in a planar extensional flow with
Ca = 0.15, 0.2, 0.3, 0.35, 0.39, 0.4.

the capsule’s deformation D. The surface area of the capsule (not presented here) also
shows a monotonic increase with time up to steady state and with flow rate similar
to that of the capsule’s length.

Figure 12(a, b) shows the evolution of the profile of a neo-Hookean capsule in the
z = 0 and y = 0 planes for capillary number Ca = 0.4. Over time, the capsule elongates
significantly in the flow direction and thins in the y-direction, while its depth shows
a small increase. Thus the capsule shape at steady state is quite lamellar as shown in
figure 12(c).

The evolution of the capsule profile with the plane z =0, shown in figure 12(a),
suggests that the edges of the neo-Hookean capsule become monotonically more
pointed with time. This is shown clearly in figure 13 in which we have plotted the
time evolution of the edge curvature for flow rates Ca = 0.2, 0.3, 0.4. The monotonic
increase of the edge curvature is associated with the moderate hydrodynamic forces
appearing at these flow rates as discussed above for the Skalak capsules. Figure 13
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Figure 14. Time evolution of the (a) maximum τP
max and (b) minimum τP

min principal tensions
among the spectral discretization points on the membrane for a neo-Hookean capsule with λ= 1
in a planar extensional flow with Ca = 0.2, 0.3, 0.4. (Note that for Ca = 0.4 our computations
cover the time period [0, 40].)
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Figure 15. Steady-state profiles of a neo-Hookean capsule (——) for Ca = 0.4 and a Skalak
capsule (- - - -) with C = 1 for Ca = 2 (which have similar extension), in a planar extensional flow
with λ= 1. (a) Capsule profiles (i.e. interface intersections) with the plane z = 0. (b) As in (a) but
for the capsule profiles with the plane y =0. Also shown is the undisturbed profile (-- --).

also reveals that at steady state, the edge curvature of the neo-Hookean capsule shows
a rapid increase at high flow rates.

The time evolution of the maximum τP
max and minimum τP

min principal tensions
over the surface of the neo-Hookean capsule is shown in figure 14. The maximum
principal tension increases with time from a zero initial value until equilibrium; it is
always positive, while higher flow rates cause larger values of τP

max at steady state.
On the other hand, the minimum principal tension τP

min has a negative value at early
times, while later it increases with time and becomes positive near steady state. The
locations of the minimum and maximum tensions on the capsule surface follow the
same trends as for the Skalak capsules described above. Since the membrane tensions
at steady state are everywhere positive, no compression is developed, and thus the
pointed edges of the neo-Hookean capsule are always concave as seen in figure 12.

Comparing the steady-state profiles of the neo-Hookean capsule for Ca = 0.4 and
the Skalak capsule for Ca =2 (which has similar length) it is obvious that the strain-
softening capsule is thinner (i.e. it shows a smaller width S) and flatter (higher depth
W ) as seen in figure 15. Thus for the same extension L, the neo-Hookean capsule is
more lamellar than the Skalak capsule.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

16
62

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009991662


Dynamics of capsules in strong planar extensional flows 285

It is of interest to note that the influence of the capillary number on the capsule’s
steady-state shape we present in this section is in qualitative agreement with the
experimental findings included in the work of Barthès-Biesel (1991). As reported in
figure 6 of Barthès-Biesel (1991), the steady-state shapes of polylysine membrane
capsules in planar extensional flow show edges which are more rounded at small
capillary numbers and become more pointed as Ca increases. (Note that we are not
able to do quantitative comparisons, since the exact properties of the membrane in
the experimental study are not known.)

As a summary, we have found that no critical flow rate exists for both Skalak and
neo-Hookean capsules in the moderate and strong planar extension flows considered
in the present study. At strong flows, both capsules reach elongated ellipsoidal steady-
state configurations, while the neo-Hookean shapes are more lamellar than the Skalak
ones for the same extension. The time evolution of the edge profiles are affected by
the type of the experiment imposed on the capsule as well as the applied flow
rate. Spherical capsules at moderate flow rates show a monotonic increase of the
edge curvature up to steady state as found for capsules imposed to gradual flow
rate increases even up to strong flows. On the other hand, when a spherical Skalak
capsule is let to deform in a strong flow, the strong hydrodynamic forces overcome
the initial weak membrane tensions, and thus initially the edge curvature increases
trying to balance the hydrodynamic forces. After some time the membrane tensions
increase (owing to the increased capsule deformation) and cause a decrease of the
edge curvature towards its steady-state value. Thus, for the Skalak capsule in a strong
flow rate, the maximum value of the edge curvature during the transient evolution
can be several times its steady-state value.

In addition, our study reveals that the failure of earlier (low-order) computational
methods at strong flow rates was a numerical artefact and not of physical origin
as was reported (Lac et al. 2004). It is of interest to note that for both Skalak
and neo-Hookean capsules, with or without prestress, in both shear and extensional
flows, Lac et al. (2004) were able to determine interfacial deformation at steady state
up to D ≈ 0.55–0.6 (or for L < 2) as reported in table 1 of Lac et al. (2004) and
figure 5 of Lac & Barthès-Biesel (2005). Our understanding is that this shows the
upper numerical limit of the bi-cubic B-spline method of Lac et al. (2004), and thus
it should not be confused as a physical phenomenon. In addition, we emphasize
that the difficulty in the numerical computations is not only associated with the
complicated interfacial shapes encountered in strong flows but also with the fact that
for both Skalak and neo-Hookean membranes the elastic tensions are associated with
nonlinear constitutive laws. (Note that the bi-cubic B-spline method of Lac et al. 2004
was able to determine elongated steady-state shapes for a capsule obeying the linear
Navot law, as seen in figure 9 of Lac et al. 2004). With respect to this issue, our SBE
method has the significant advantage of the accurate determination of any interfacial
property as illustrated in § 4.

6. Steady-state properties of Skalak and neo-Hookean capsules in a planar
extensional flow

In this section we present the steady-state properties of Skalak and neo-Hookean
capsules in planar extensional flows as the flow rate increases. We consider both shape
properties (i.e. the capsule lengths and the edge curvature) as well as the maximum
tensions on the membrane (which can be used to predict rupture for a real membrane).
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Figure 16. Steady-state half-lengths L, S and W (calculated from capsule’s inertia tensor) as
well as the capsule’s actual half-length Lc as a function of the capillary number Ca for a
Skalak capsule with C = 1 and λ= 1 in a planar extensional flow.

Our interest is mainly concentrated on the steady-state behaviour at high flow rates
at which no information currently exists as discussed in § 1.

Figure 16 shows the half-lengths L, S and W of a Skalak capsule with C = 1 as a
function of the capillary number Ca . As the flow rate increases, the capsule length
L is increased fast at first and then linearly at high flow rates. The capsule width S

shows a slow monotonic decrease with the flow rate. On the other hand, the capsule
depth W after an initial small increase decreases below its undisturbed value. It is
of interest to note that Lac et al. (2004) predicted interfacial breaking for flow rates
higher than an upper limit CaH , with 0.6 <CaH < 0.75, and thus they reported the
capsule’s steady-state properties for L < 2 (see table 1 and figure 19 of Lac et al.
2004).

The flow rate dependence of the capsule’s dimensions for the neo-Hookean
membrane is shown in figure 17. Compared to the Skalak capsule, the length L

of the neo-Hookean capsule increases faster with the flow rate, while its width S

shows a fast decrease towards small values. Thus, owing to its strain-softening nature,
the neo-Hookean capsule shows a much larger deformation for the same flow rate
than that of the Skalak capsule. At the same time, the width W of the neo-Hookean
capsule shows a monotonic increase which becomes quite rapid at large flow rates.
Note that Lac et al. (2004) predicted interfacial breaking for flow rates higher than
an upper limit CaH , where 0.21 <CaH < 0.24, and thus they reported the capsule
properties for L < 1.75.

At this point, it is of interest to note that the capsule dimensions, L, S and W

presented in this paper, are determined as the semi-axes of the ellipsoid which has the
same inertia tensor as that of the capsule (as discussed in § 4). For small and moderate
deformations of an initially spherical shape, the corresponding lengths coincide with
the actual capsule lengths. However, at large deformations results from the inertia
tensor may under- or overestimate the true capsule dimensions, as we discussed in
our earlier publication for large droplet deformations (see § 7 in Dimitrakopoulos
2007). As shown in figure 16, for a Skalak capsule the length L from the inertia
tensor underestimates the actual half-length Lc of the capsule at large deformation;
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Figure 17. Steady-state half-lengths (calculated from capsule’s inertia tensor) as well as the
capsule’s actual half-length Lc as a function of the capillary number Ca for a neo-Hookean
capsule with λ= 1 in a planar extensional flow: (a) length L, (b) width S and (c) depth W . Note
that in (a) and (b), the curves (– · –) denote the actual lengths, Lc and Sc , of the neo-Hookean
capsule. Also shown are the lengths of a Skalak capsule with C = 1 for the same conditions.

however, S and W do measure the correct width Sc and depth Wc of the capsule for
the range of capillary numbers presented in this paper. For a neo-Hookean capsule,
figure 17 shows that only the width S underestimates slightly the actual width of the
capsule. (Note that for any problem/type of flow, we calculate the actual semi-axes Lc

and Sc as the maximum and minimum distance from the capsule’s volume centroid
to the interface by employing a Newton method for the optimization problems; for
this problem Wc is easily determined via surface projection.)

We note that in § 5, we have presented the transient evolution of capsule lengths
and the associated deformation D based on the inertia tensor so that we can compare
our results with earlier studies which commonly determine the capsule dimensions
from the inertia tensor. However, in our analysis in this section we will employ the
actual capsule lengths which can easily be measured in any type of research, e.g.
experiments.

Our results shown in figures 16 and 17 provide useful data and information for the
behaviour of the two types of capsules with respect to the flow rate Ca . To illustrate
more the effects of the extensional dynamics of the planar extensional flow on the
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Figure 18. Steady-state capsule’s dimensions as a function of its length Lc for a neo-Hookean
and a Skalak capsule with C =1 in a planar extensional flow: (a) width Sc , (b) depth Wc and
(c) ratio Sc/Wc .

steady-state shape of the strain-hardening Skalak and strain-softening neo-Hookean
capsules, in figure 18 we present the capsules’ width and depth as function of their
length Lc.

Figure 18 clearly shows that for the same extension Lc, the width of the neo-
Hookean capsule decreases faster than that for the Skalak capsule. The evolution of
the depth of the two types of capsule is quite different though; for a Skalak capsule
the depth Wc decreases at high extensions, but the depth of neo-Hookean always
increases. Thus, as we show in § 5, while both capsules obtain ellipsoidal-like shapes
at high extensions, the strain-softening capsule is more lamellar. Figure 18(c) provides
additional information on the cross-section of these capsules. At high extensions, the
cross-section of the Skalak capsule preserves its length ratio Sc/Wc (i.e. it preserves
its elliptical shape), while the neo-Hookean capsule becomes more and more lamellar
with extension since its ratio Sc/Wc diminishes.

As shown in figure 19(a), the capsules’ surface area SB increases with the flow rate
Ca in a manner similar to that for the capsule length Lc depicted earlier in figure 16.
Therefore the surface area SB shows a nearly linear increase with the capsule length
Lc as seen in figure 19(b). It is of interest to note that for the same extension, the
neo-Hookean capsule shows a greater surface area increase which can be attributed
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Figure 19. Surface area of the capsule at steady state SB (scaled by the surface area S0
B of

the reference spherical shape) as a function of (a) the capillary number Ca and (b) the capsule
length Lc , for a neo-Hookean and a Skalak capsule with C = 1 in a planar extensional flow.
Note that in (a) the neo-Hookean curve refers to the x-axis at the top of the figure.
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Figure 20. Steady-state edge curvature as a function of capsule’s length Lc in a log-linear
plot for a neo-Hookean and a Skalak capsule with C = 1 in a planar extensional flow.

to the its depth increase shown in figure 18(b). We note that in our work, the surface
area of the neo-Hookean and Skalak capsules has been increased up to 102 % and
63 %, respectively. In this range of surface area increases, experimental findings have
shown that the capsule dynamics can be well described by a single constitutive law
with fixed value of the employed moduli, if an appropriate law for the membrane is
used (e.g. see Carin et al. 2003). Thus our modelling is appropriate for real membranes
for the entire range of deformations we study.

The capsules’ profiles and shapes at steady state presented in § 5 demonstrate that
at high flow rates, the large shape extensions result in the development of pointed
edges with large curvature. To investigate this issue more, in figure 20 we plot the
steady-state edge curvature (determined along the interfacial cross-section with the
z = 0 plane) as a function of the capsule length for both types of membrane. As
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Figure 21. Steady-state maximum principal tensions τP
max among the spectral discretization

points on the membrane as a function of (a) the capillary number Ca and (b) the capsule’s
length Lc , for a neo-Hookean and a Skalak capsule with C = 1 in a planar extensional flow.
The inset in (a) shows the same variation for small capillary numbers.

the capsules’ length increases, the curvature at the edges show a very fast increase
especially at large lengths. In addition, the neo-Hookean capsule shows more pointed
tips (i.e. higher edge curvature) at large extensions Lc; this may be attributed to
the fact that its width decreases more than that of the Skalak capsule as seen in
figures 15(a) and 18(a). It is of interest to note that figure 20 suggests that the edge
curvature for both types of capsules follows an exponential-like increase with the
capsule extension at steady state. (We note that owing to the relatively small range
of the x-axis, it is not clear if the exponential-like increase shown in figure 20 is truly
exponential; however, our results do show that the edge curvature increases at least
as L3

c .) The increase of the edge curvature with the flow rate at steady state is in
agreement with published results for low-viscosity drops (e.g. Taylor 1934; Bentley &
Leal 1986). Note that owing to the specific symmetry of the planar extensional flow,
at steady state there is no flow inside the capsule; thus capsule dynamics at this flow
type for any viscosity ratio corresponds better to the dynamics of low-viscosity drops.

We focus now our attention on the membrane tensions at steady state. Figure 21(a)
reveals that on the surface of the Skalak capsule large tensions are developed which
increase linearly with the flow rate Ca at strong flows. On the other hand, as shown
in the inset of this figure, the maximum tensions on the neo-Hookean capsule show a
late superlinear increase with the flow rate. The information presented in figure 21(a)
can be used to predict the flow rate at which a specific membrane (with known lytic
tension) will rupture due to excessive tensions in a planar extensional flow (assuming
that the membrane elastic behaviour can be described by one of the two laws studied
in this paper). As discussed in § 5 maximum tensions at steady state occur at the
intersection of the capsule’s surface with the z-axis; therefore this location is the most
probable to rupture in an extensional flow.

In figure 21(b) we plot our data for the maximum principal tension τP
max as a

function of the capsule’s length Lc. As the capsule elongates in a planar extensional
flow, the maximum tension on the neo-Hookean capsule increases nearly linearly,
while that on the Skalak capsule shows a much faster increase with the capsule
length. At the same extension Lc, owing to its strain-hardening nature the Skalak
capsule shows much larger tensions than the strain-softening neo-Hookean capsule.
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Figure 22. Steady-state maximum principal tension τP
max among the spectral discretization

points on the membrane as a function of strain indicator (L2
c − 1)/2, where Lc is the capsule’s

length, for a neo-Hookean and a Skalak capsule with C =1 in a planar extensional flow. The
straight line (– · –) is an estimation of the initial common slope of the curves for the two
capsules (based on our results for a Hookean capsule, e.g. see Barthès-Biesel et al. 2002) and
denotes the linear growth of the tensions τP

max with the strain indicator (L2
c − 1)/2.

We conclude our investigation on the steady-state capsule behaviour, by considering
how the tensions on the two types of capsules studied in this work increase with the
applied strain. We note that the two principal strain components are connected with
the principal stretch ratios λα by (λ2

α − 1)/2 (see § 2.2 and Barthès-Biesel et al. 2002).
Thus, assuming that the stretch ratio along the flow direction can be characterized by
the capsule length Lc, the associated strain can be estimated as (L2

c − 1)/2. Figure 22
shows the maximum principal tensions τP

max for both capsules as a function of strain
indicator (L2

c −1)/2. This figure reveals the nature of the two types of membranes; the
superlinear increase of the tensions on the Skalak capsule shows that this membrane
is strain hardening. On the other hand, the sublinear increase of the tensions on
the neo-Hookean capsule reveals its strain-softening nature. It is of interest to note
that figure 22 is remarkably similar to figure 1 in Barthès-Biesel et al. (2002), where
the tension versus strain relation was presented for several types of membranes
undergoing (mechanically) uniaxial extension; this agrees with the main role of a
planar extensional flow to produce elongation in the flow direction.

7. Conclusions
In the present study we have investigated via numerical computations the

dynamics of initially spherical capsules (made from elastic membranes obeying the
strain-hardening Skalak or the strain-softening neo-Hookean law) in strong planar
extensional flows. In such flows current understanding of capsule dynamics is limited,
since experimental findings are restricted to moderate flow rates; no asymptotic
solutions exist, while the state-of-the-art (low-order) three-dimensional computational
methodologies are unable to find stable steady-state capsule shapes.

To achieve our investigation, we have developed an SBE algorithm for interfacial
dynamics in Stokes flow of three-dimensional capsules with shearing and area-
dilatation tensions. To preserve the continuity of the interfacial geometry and its
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derivatives at the edges of the spectral elements during the interfacial deformation,
a suitable interfacial smoothing based on a Hermitian-like interpolation has been
developed which preserves the correspondence between the reference shape and the
deformed geometry of the capsule. Our smoothing methodology, which we employ at
every time step, applies to both the transient interfacial shape and the surface stress
forces which depend on the membrane material.

Our interfacial SBE algorithm preserves the main characteristic of the spectral
methods, i.e. high accuracy as the number of spectral points increases, but without
creating denser systems as spectral methods used in volume discretization do. The
accuracy of the method has been demonstrated for the calculation of the geometric
properties of a given shape, such as the interfacial curvature, as well as the dynamic
evolution of the interfacial shape. Our computational results for capsules obeying
Skalak and neo-Hookean membrane laws in planar extensional flows at low and
moderate capillary numbers are in agreement with those of earlier methodologies.
However, at strong flow rates, our spectral algorithm is able to predict accurately
stable transient and steady-state capsule shapes in contrast to earlier low-order
methodologies which predict interfacial breaking owing to numerical instabilities.

In the current work we have investigated the capsule dynamics up to quite large
deformations, i.e. surface area increases up to 102 % and 63 % for neo-Hookean and
Skalak membranes, respectively. We emphasize that in this range of surface area
increases, experimental findings have shown that the capsule dynamics can be well
described by a single constitutive law with fixed value of the employed moduli (Carin
et al. 2003), and thus our modelling is appropriate for the entire range of deformations
we have studied.

Our computational investigation has revealed a number of new physical results
and insight for the dynamics of strain-hardening Skalak and strain-softening neo-
Hookean capsules at high flow rates which are commonly encountered in industrial
and physiological processes.

In particular, at strong flows, both capsules reach elongated ellipsoidal steady-state
configurations, but the neo-Hookean shapes are thinner and flatter (i.e. more lamellar)
than the Skalak ones for the same extension. It is of interest to note that at high
extensions, the cross-section of the Skalak capsule preserves its elliptical shape, while
the neo-Hookean capsule becomes more and more lamellar with extension; thus for
the same extension, the neo-Hookean capsule shows a larger surface area increase
than that for the Skalak capsule. The large shape extensions result in the development
of pointed edges with large curvature; our results suggest that the steady-state edge
curvature for both types of capsules follows a very rapid increase with the capsule
extension. The pointed profiles of these shapes are in qualitative agreement with
experimental findings (Barthès-Biesel 1991). Thus our present work complements the
similar evolution for low-viscosity drops which was first identified by the famous
experiments of G. I. Taylor in 1934 (Taylor 1934), was further explained in the 1970s
and 1980s (Buckmaster 1972; Acrivos & Lo 1978; Bentley & Leal 1986) and still
finds useful applications (Ha & Leal 2001).

As the flow rate increases, the large interfacial deformations for both types of
capsules are accompanied by the development of strong tensions especially for the
strain-hardening Skalak capsule. Our findings on the increase of the membrane
tensions with the flow rate or the shape extension (figure 21) can be used to predict
the rupture of a specific membrane (with known lytic tension) due to excessive
tensions in a planar extensional flow.
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The type of the experiment imposed on the capsule as well as the applied flow rate
affect dramatically the time evolution of the capsule edges owing to the interaction of
the hydrodynamic forces with the membrane tensions. Spherical capsules at moderate
flow rates show a monotonic increase of the edge curvature up to steady state as found
for capsules imposed to gradual flow rate increases even up to strong flows. On the
other hand, shortly after a spherical capsule is let to deform in a steady strong flow,
the strong hydrodynamic forces overcome the weak membrane tensions; thus initially
the edge curvature increases trying to balance the hydrodynamic forces. After some
time the membrane tensions increase (owing to the increased capsule deformation)
and cause a decrease of the edge curvature towards its steady-state value. Thus, for
the Skalak capsule in a strong flow, very large edge curvatures (with respect to the
steady-state value) can be developed during the transient evolution.

In addition, we have found that no critical flow rate exists for Skalak and neo-
Hookean capsules in the moderate and strong planar extension flows considered
in this study. The complicated interfacial shapes at high flow rates along with the
fact that for both membrane types the elastic tensions are associated with nonlinear
constitutive laws show that the failure of earlier computational methods at strong
flow rates was a numerical artefact and not of physical origin owing to continuous
interfacial extension as was reported by Lac et al. (2004).

It is of interest to note that Ca = 0.4 is the maximum flow rate at which we were
able to compute accurate interfacial shapes for the neo-Hookean capsules; this flow
rate corresponds to a very deformed lamellar interfacial shape with a semi-length
L ≈ 3 which is difficult to be computed numerically with the current version of our
SBE method. (Note that in our computations we mainly used NE =10, 14 spectral
elements; much denser grids were not employed owing to large computational cost.)
However, our present results show no evidence of a critical flow rate for these capsules;
e.g. observe the dependence of the capsule’s length L and surface area SB with the
capillary number Ca presented in figures 17(a) and 19(a). For Skalak capsules, our
interfacial spectral method is able to compute accurate shapes for flow rates up to
Ca =3 where L ≈ 3.6, i.e. higher than those reported in the present study (Ca � 2.5).
As discussed in our recent paper (Dodson & Dimitrakopoulos 2008), the strain-
hardening capsules develop steady-state shapes whose edges from concave become
cusped at sufficiently strong flow rates. The entire range of our results for Skalak
capsules does not support the existence of a critical flow rate even for flows stronger
than the ones considered in the present study. (See the dependence of the capsule’s
length L and surface area SB with the capillary number Ca presented in figures 16
and 19a .) At this point, we need to emphasize that any computational methodology
has an upper (numerical) limit, e.g. a very deformed interfacial shape above which
the computational methodology breaks owing to numerical inability and numerical
instabilities. However, one should be very careful in trying to associate a numerical
breaking to a physical origin such as a critical flow rate.

We hope that our study serves as motivation for more experiments at high flow
rates for both strain-hardening and strain-softening capsules. These experiments
can be performed in classical or microfluidic four-roll mill devices (Ha & Leal 2001;
Hudson et al. 2004). In such a case, the data for the capsule evolution and steady-state
properties we have provided in this paper may help reveal how well certain membranes
follow the neo-Hookean and Skalak constitutive laws at large deformations. It is of
interest to note that the three-dimensional dynamics of the planar extensional flow
helps to identify the true constitutive law valid for a given material.
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The present algorithm constitutes a new approach for membrane deformation in
Stokes flow based on the (high-order) SBE formulation which in the near past has
demonstrated its high accuracy, robustness and efficiency for fixed boundary surfaces
(Muldowney & Higdon 1995) and steady-state droplet interfaces under steady flows
(Dimitrakopoulos & Higdon 1998) as well as for the transient droplet evolution
(Wang & Dimitrakopoulos 2006; Dimitrakopoulos 2007). Owing to its spectral nature,
our interfacial algorithm has the significant advantage of the accurate determination
of any interfacial property, including geometric derivatives and membrane tensions.
As discussed in § 5, we believe that this is an important issue for the correct and
accurate determination of very deformed capsule shapes made from membranes
obeying nonlinear elastic laws such as the Skalak and neo-Hookean (or Mooney–
Rivlin) laws.

This work was supported in part by the National Science Foundation. Most com-
putations were performed on multiprocessor computers provided by the National
Center for Supercomputing Applications Applications (NCSA) in Illinois.
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