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In this paper we develop a functional programming language for quantum computers by

extending the simply-typed lambda calculus with quantum types and operations. The design

of this language adheres to the ‘quantum data, classical control’ paradigm, following the first

author’s work on quantum flow-charts. We define a call-by-value operational semantics, and

give a type system using affine intuitionistic linear logic. The main results of this paper are

the safety properties of the language and the development of a type inference algorithm.

1. Introduction

The objective of this paper is to develop a functional programming language for quantum

computers. Quantum computing is a theory of computation based on the laws of quantum

physics, instead of classical physics. While no large-scale general-purpose quantum com-

puter has yet been built, it is known that certain hard computational problems, such as

integer factoring, can, in theory, be solved efficiently on a quantum computer (Shor 1994).

For this and other reasons, quantum computing has become a fast growing research area

in recent years. For a good introduction to the subject, see Nielsen and Chuang (2002) or

Preskill (1999).

The laws of quantum physics dictate that there are only two kinds of elementary

operations that one can perform on a quantum state, namely, unitary transformations and

measurements. Many existing formalisms for quantum computation, such as the quantum

circuit model, put an emphasis on the former, that is, a computation is understood as the

evolution of a quantum state by means of unitary gates. In these models, measurements

are usually performed at the end of the computation, by an outside observer who is not

part of the formalism proper. This means that a quantum computer is considered as a

purely quantum system, without any classical parts. Examples of such models include

the quantum Turing machine (Benioff 1980; Deutsch 1985), where the entire machine

state, including the tape, the finite control and the position of the head, is assumed to

be a quantum state. Another example is the quantum lambda calculus of van Tonder

(2004), which is a higher-order, purely quantum language without an explicit measurement

operation.
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On the other hand, some models for quantum computing have been proposed that

combine unitary operations and measurements into a single formalism. One such example

is the QRAM model of Knill (1996), which is also described in Bettelli et al. (2003). Here,

a quantum computer consists of a classical computer connected to a quantum device. The

operation of the machine is controlled by a classical program that emits a sequence of

instructions for the quantum device to perform measurements and unitary operations. This

situation is summarized by the slogan ‘quantum data, classical control’ (Selinger 2004).

In such a model, there is no explicit need for an outside ‘observer’, as measurements can

be performed by the device itself. Several programming languages have been proposed to

deal with such a model (Bettelli et al. 2003; Sanders and Zuliani 2000), and the present

paper is based on the work of Selinger (2004).

The main novelty of this paper is that we propose a higher-order quantum programming

language, that is, one in which functions can be considered as data. A typical feature of

higher-order programming languages is that a program can take another program as an

input (a situation called a ‘blackbox experiment’ in physics terminology), or can produce

another program as an output. There is no limit to the number of nesting levels of

‘programs within programs’. Higher-order programming languages are often described in

terms of the lambda calculus, a prototypical formalism introduced by Church and Curry

in the 1930’s, and we also follow this approach.

Because our language combines classical and quantum features, it is natural to consider

two distinct basic data types: a type bit of classical bits and a type qbit of quantum bits.

These two types have very different properties. For instance, the value of a classical bit

can be copied as many times as needed. On the other hand, a quantum bit cannot be

duplicated, because of the well-known no cloning property of quantum physics (Nielsen

and Chuang 2002; Preskill 1999). We therefore introduce a type system for our language

that distinguishes between types whose elements can be duplicated, and types whose

elements cannot. This distinction not only exists at basic types, but also at higher-order

types: for example, some functions of type qbit → qbit can be called an unlimited number

of times (such as the identity function), whereas others can only be called once (such

as the function that returns a fixed qubit φ of unknown state). Hence, we cannot see

directly from the types of a function’s arguments or of its result whether it can or cannot

be duplicated, but this must be determined by inspecting the types of any free variables

occurring in the function definition. As we will show, the appropriate type system for

higher-order quantum functions in our setting is a variant of affine intuitionistic linear logic

(Girard 1987).

We specify the behaviour of programs in our language in terms of an operational

semantics with probabilistic reduction rules. One of the main results of this paper is a

set of safety properties (subject reduction and progress) of the operational semantics with

respect to well-typed programs. We also give a type inference algorithm, which can be

used to determine whether a given term is typable in the linear type system, and to find a

type for it. Type inference is an interesting problem for this language, because the linear

type system does not satisfy the principal type property. Our algorithm is based on the

idea that linear types are decorations of intuitionistic ones.
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This work is based on the second author’s Master’s thesis (Valiron 2004). A preliminary

version of this paper appeared in TLCA 2005.

2. Quantum computing basics

We briefly recall the basic definitions of quantum computing; see Nielsen and Chuang

(2002) or Preskill (1999) for a complete introduction to the subject. The basic unit of

information in quantum computation is a quantum bit or qubit. The state of a single qubit

is described by a normalised vector of the 2-dimensional Hilbert space �2. We denote the

standard basis of �2 as {|0〉, |1〉}, so that the general state of a single qubit can be written

as α|0〉 + β|1〉, where |α|2 + |β|2 = 1. It is customary to identify any states that differ only

by a global phase, that is, α|0〉 + β|1〉 and α′|0〉 + β′|1〉 denote the same physical state if

there is some scalar λ such that α′ = λα and β′ = λβ.

The state of n qubits is described by a normalised vector in ⊗n
i=1�

2 ∼= �2n . We write

|xy〉 = |x〉 ⊗ |y〉, so that a standard basis vector of �2n can be denoted by |�i�n〉, where

�i�n is the binary representation of i in n digits, for 0 � i < 2n. As a special case, if n = 0,

we use |〉 to denote the unique standard basis vector in �1.

The basic operations on quantum states are unitary operations and measurements. A

unitary operation maps an n-qubit state to an n-qubit state, and is given by a unitary

2n × 2n-matrix. It is common to assume that the computational model provides a certain

set of built-in unitary operations, including, for example, the Hadamard gate H and the

controlled not-gate CNOT , among others:

H =
1√
2

(
1 1

1 −1

)
CNOT =

⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎠ .

The measurement acts as a projection. When a qubit α|0〉 + β|1〉 is measured, the

observed outcome is a classical bit. The two possible outcomes 0 and 1 are observed with

probabilities |α|2 and |β|2, respectively. Moreover, the state of the qubit is affected by the

measurement, and collapses to |0〉 if 0 was observed, and |1〉 if 1 was observed. More

generally, given an n-qubit state |φ〉 = α0|0〉 ⊗ |ψ0〉 + α1|1〉 ⊗ |ψ1〉, where |ψ0〉 and |ψ1〉 are

normalised (n− 1)-qubit states, then measuring the leftmost qubit results in the answer i

with probability |αi|2, and the resulting state will be |i〉 ⊗ |ψi〉.

3. The untyped quantum lambda calculus

3.1. Terms

Our language uses the notation of the intuitionistic lambda calculus. For a detailed

introduction to the lambda calculus, see, for example, Barendregt (1984). We start from

a standard lambda calculus with booleans and finite products. We extend this language

with three special quantum operations, which are new , meas and built-in n-ary gates. new

maps a classical bit to a quantum bit. meas maps a quantum bit to a classical bit by
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performing a measurement operation; this is a probabilistic operation. Finally, we assume

that there is a set Un of built-in n-ary gates for each n. We use the letter U to range over

built-in n-ary gates. Thus, the syntax of our language is as follows:

Term M,N, P ::= x | MN | λx.M | if M then N else P | 0 | 1 | meas

| new | U | ∗ | 〈M,N〉 | let 〈x, y〉 = M in N.

We follow Barendregt’s convention in identifying terms up to α-equivalence. We also

sometimes use the following shorthand notation:

〈M1, . . . ,Mn〉 = 〈M1, 〈M2, . . . 〉〉
let x = M in N = (λx.N)M

λ〈x, y〉.M = λz.(let 〈x, y〉 = z in N) .

3.2. Programs

Note that we have not provided a syntax for constant quantum states such as α|0〉 + β|1〉
in our language. One may ask why we have not allowed the insertion of quantum states

into a lambda term, such as λx.(α|0〉 + β|1〉). The reason is that, in the general case, such

a syntax would be insufficient. Consider, for instance, the lambda term (λy.λf.fpy)(q),

where p and q are entangled quantum bits in the state |pq〉 = α|00〉 + β|11〉. Such a state

cannot be represented locally by replacing p and q with some constant qubit expressions.

The non-local nature of quantum states thus forces us to introduce a level of indirection

into the representation of a state of a quantum program.

Definition 1. A program state is represented by a triple [Q,L,M], where:

— Q is a normalised vector of ⊗n−1
i=0 �2, for some n � 0.

— M is a lambda term.

— L is a function from W to {0, . . . , n− 1}, where FV (M) ⊆ W ⊆ Vterm . L is also called

the linking function or the qubit environment.

The purpose of the linking function is to assign specific free variables of M to specific

quantum bits in Q. The notion of α-equivalence extends naturally to programs, for instance,

the states [|1〉, {x �→ 0}, λy.x] and [|1〉, {z �→ 0}, λy.z] are equivalent. The set of program

states, up to α-equivalence, is denoted by �.

Convention 2. In order to simplify the notation, we will often use the following convention:

we use pi to denote the free variable x such that L(x) = i. A program [Q,L,M] is

abbreviated to [Q,M ′] with M ′ = M[pi1/x1] . . . [pin/xn], where ik = L(xk).

3.3. Linearity

An important well-formedness property of quantum programs is that quantum bits

should always be uniquely referenced: roughly speaking, this means that no two variable

occurrences should refer to the same physical quantum bit. The reason for this restriction
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is the well-known no-cloning property of quantum physics, which states that a quantum

bit cannot be duplicated: there exists no physically meaningful operation that maps an

arbitrary quantum bit |φ〉 to |φ〉 ⊗ |φ〉.
Syntactically, the requirement of unique referencing translates into a linearity condition:

a lambda abstraction λx.M is called linear if the variable x is used at most once during

the evaluation of M. A well-formed program should be such that quantum data is only

used linearly; however, classical data, such as ordinary bits, can, of course, be used

non-linearly. Since the decision as to which subterms must be used linearly depends on

type information, we will not formally enforce any linearity constraints until we discuss a

type system in Section 4; nevertheless, we will assume that all our untyped examples are

well-formed in the above sense.

3.4. Evaluation strategy

As is usual in defining a programming language, we need to settle on a reduction strategy.

The obvious candidates are call-by-name and call-by-value. Because of the probabilistic

nature of measurement, the choice of reduction strategy affects the behaviour of programs,

not just in terms of efficiency, but in terms of the actual answer computed. We can

demonstrate this in an example. Let plus be the boolean addition function, which is

definable as plus = λxy. if x then (if y then 0 else 1) else (if y then 1 else 0). Consider the term

M = (λx.plus x x)(meas(H(new 0))).

Call-by-value Using the call-by-value reduction strategy to reduce M in the empty

environment, we obtain the following reductions:

−→CBV [|0〉, (λx.plus x x)(meas(H p0))]

−→CBV [ 1√
2
(|0〉 + |1〉), (λx.plus x x)(meas p0)]

−→CBV

{
[ |0〉, (λx.plus x x)(0)]

[ |1〉, (λx.plus x x)(1)]

−→CBV

{
[ |0〉, plus 0 0]

[ |1〉, plus 1 1]

−→CBV

{
[ |0〉, 0]

[ |1〉, 0]

where the two branches are taken with probability 1/2 each. Thus, under call-by-value

reduction, this program produces the boolean value 0 with probability 1. Note that we

have used Convention 2 for writing these program states.

Call-by-name Using the call-by-name strategy to reduce the same term, we obtain in

one step [ |〉, plus (meas(H(new 0))) (meas(H(new 0)))], and then with probability 1/4,
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[ |01〉, 1 ], [ |10〉, 1 ], [ |00〉, 0 ] or [ |11〉, 0 ]. Therefore, the boolean output of this function

is 0 or 1 with equal probability.

Mixed strategy If we mix the two reduction strategies, the program can even reduce to

an ill-formed term. Namely, reducing by call-by-value until we reach the term [ 1√
2
(|0〉 +

|1〉), (λx.plus x x)(meas p0)], and then changing to call-by-name, we obtain in one step the

term [ 1√
2
(|0〉 + |1〉), plus (meas p0) (meas p0)], which is not a valid program since there are

two occurrences of p0.

In the remainder of this paper, we will only consider the call-by-value reduction strategy,

which seems to us to be the most natural.

3.5. Probabilistic reduction systems

In order to formalise the operational semantics of the quantum lambda calculus, we need

to introduce the notion of a probabilistic reduction system.

Definition 3. A probabilistic reduction system is a tuple (X,U, R, prob) where X is a set

of states, U ⊆ X is a subset of value states, R ⊆ (X \ U) × X is a set of reductions, and

prob : R → [0, 1] is a probability function, where [0, 1] is the real unit interval. Moreover,

we impose the following conditions:

— For any x ∈ X, Rx = { x′ | (x, x′) ∈ R } is finite.

—
∑

x′∈Rx prob(x, x′) � 1.

We call prob the one-step reduction, and use x→p y to denote prob(x, y) = p. We extend

prob to the n-step reduction:

prob0(x, y) =

{
0 if x 
= y

1 if x = y

prob1(x, y) =

{
prob(x, y) if (x, y) ∈ R

0 else

probn+1(x, y) =
∑

z∈Rx prob(x, z)probn(z, y),

and extend the notation so that x→n
p y means probn(x, y) = p.

We say that y is reachable in one step with non-zero probability from x, denoted x→>0 y,

when x →p y with p > 0. We say that y is reachable with non-zero probability from x,

denoted x→∗
>0 y, when there exists n � 0 such that x→n

p y with p > 0.

We can then compute the probability of reaching u ∈ U from x: it is a function from

X × U to � defined by probU(x, u) =
∑∞

n=0 probn(x, u). The total probability of reaching

U from x is probU(x) =
∑∞

n=0

∑
u∈U probn(x, u).

On the other hand, there is also the probability of diverging from x, or of never reaching

anything. This value is prob∞(x) = limn→∞
∑

y∈X probn(x, y).

Lemma 4. For all x ∈ X, probU(x) + prob∞(x) � 1.

We define the error probability of x to be the number proberr (x) = 1 − probU(x) −
prob∞(x).
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Definition 5. We can define a notion of equivalence in X:

x ≈ y iff ∀u ∈ U

{
probU(x, u) = probU(y, u)

prob∞(x) = prob∞(y).

Definition 6. In addition to the notion of reachability with non-zero probability, there is

also a weaker notion of reachability, given by R: we will say that y is reachable in one

step from x, written x� y, if xRy. By the properties of prob, x →>0 y implies x� y. As

usual, �∗ denotes the transitive reflexive closure of �, and we say that y is reachable

from x if x�∗ y.

Definition 7. In a probabilistic reduction system, a state x is called an error-state if x 
∈ U

and
∑

x′∈X prob(x, x′) < 1. An element x ∈ X is consistent if there is no error-state e such

that x�∗ e.

Lemma 8. If x is consistent, then proberr (x) = 0.

Remark 9. We need the weaker notion of reachability, x�∗ y, in addition to reachability

with non-zero probability, x→>0
∗ y, because a null probability of getting a certain result

is not an absolute warranty of its impossibility. In the QRAM, suppose we have a qubit

in state |0〉. Theoretically, measuring it cannot yield the value 1, but, in practice, this

might happen with small probability, due to imprecision of the physical operations and

decoherence. Therefore, when we prove type safety (see Theorem 26), we will use the

stronger notion. In short, a type-safe program should not crash, even in the event of

random QRAM errors.

Remark 10. The converse of Lemma 8 is false. For instance, if X = {a, b}, U = �, a→1 a,

and a→0 b, then b is an error state, and b is reachable from a, but only with probability

zero. Hence, proberr (a) = 0, although a is inconsistent.

3.6. Operational semantics

We define a probabilistic call-by-value reduction procedure for the quantum lambda

calculus. Note that, although the reduction itself is probabilistic, the choice of which redex

to reduce at each step is deterministic.

Definition 11. A value is a term of the following form:

Value V ,W ::= x | λx.M | 0 | 1 | meas | new | U | ∗ | 〈V ,W 〉.

The set of value states is � = {[Q,L, V ] ∈ � | V ∈ Value}.

The reduction rules are shown in Table 1, where we have used Convention 2 to

shorten the description of states. We write [Q,L,M] →p [Q′, L′,M ′] for a single-step

reduction of states that takes place with probability p. In the rule for reducing the

term U〈pj1 , . . . , pjn〉, U is an n-ary built-in unitary gate, j1, . . . , jn are pairwise dis-

tinct, and Q′ is the quantum state obtained from Q by applying this gate to qubits

j1, . . . , jn. In the rule for measurement, |Q0〉 and |Q1〉 are normalised states of the form

|Q0〉 =
∑

j αj |φ0
j 〉 ⊗ |0〉 ⊗ |ψ0

j 〉 and |Q1〉 =
∑

j βj |φ1
j 〉 ⊗ |1〉 ⊗ |ψ1

j 〉, where φ0
j and φ1

j
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[Q, (λx.M)V ] →1 [Q,M[V/x]]

[Q,N] →p [Q′, N′]

[Q,MN] →p [Q′,MN′]

[Q,M] →p [Q′,M′]

[Q,MV ] →p [Q′,M′V ]

[Q,M1] →p [Q′,M′
1]

[Q, 〈M1,M2〉] →p [Q′, 〈M′
1,M2〉]

[Q,M2] →p [Q′,M′
2]

[Q, 〈V1,M2〉] →p [Q′, 〈V1,M
′
2〉]

[Q, if 0 then M else N] →1 [Q,N]

[Q, if 1 then M else N] →1 [Q,M]

[Q,U〈pj1 , . . . , pjn 〉] →1 [Q′, 〈pj1 , . . . , pjn 〉]

[α|Q0〉 + β|Q1〉,meas pi] →|α|2 [|Q0〉, 0]

[α|Q0〉 + β|Q1〉,meas pi] →|β|2 [|Q1〉, 1]

[Q, new 0] →1 [Q⊗ |0〉, pn]

[Q, new 1] →1 [Q⊗ |1〉, pn]

[Q, P ] →p [Q′, P ′]

[Q, if P then M else N] →p [Q′, if P ′ then M else N]

[Q,M] →p [Q′,M′]

[Q, let 〈x1, x2〉 = M in N] →p [Q′, let 〈x1, x2〉 = M′ in N]

[Q, let 〈x1, x2〉 = 〈V1, V2〉 in N] →1 [Q,N[V1/x1, V2/x2]]

Table 1. Reduction rules of the quantum lambda calculus

are i-qubit states (so that the measured qubit is the one pointed to by pi). In the rule for

new , Q is an n-qubit state, so that Q ⊗ |i〉 is an (n + 1)-qubit state and pn refers to its

rightmost qubit.

We define a weaker relation �. This relation models the transformations that can

happen in the presence of decoherence and imprecision of physical operations. We define

[Q,M]� [Q′,M ′] to be [Q,M] →p [Q′,M ′], even when p = 0, plus the additional rule that

if Q and Q′ are vectors of equal dimensions, [Q,M]� [Q′,M].

Lemma 12. Let prob be the function such that for x, y ∈ �, prob(x, y) = p if x →p y and

0 otherwise. Then (�,�,�, prob) is a probabilistic reduction system.

This probabilistic reduction system has error states, for example, [Q,H(λx.x)] or

[Q,U〈p0, p0〉]. Such error states correspond to run-time errors. In the next section, we

introduce a type system designed to rule out such error states.

4. The typed quantum lambda calculus

We will now define a type system designed to eliminate all run-time errors arising from

the reduction system of the previous section. We need base types (such as bit and qbit),

function types, and product types. In addition, we need the type system to capture a notion

of duplicability, as discussed in Section 3.3. We follow the notation of linear logic (Girard

1987). By default, a term of type A is assumed to be non-duplicable, and duplicable terms

are given the type !A instead. Formally, the set of types is defined as follows, where α

ranges over a set of type constants and X ranges over a countable set of type variables:

qType A,B ::= α | X | !A | (A� B) | � | (A⊗ B) .
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Note that, because all terms are assumed to be non-duplicable by default, the language

has a linear function type A� B and a linear product type A ⊗ B. This reflects the fact

that there is, in general, no canonical diagonal function A → A⊗ A. Also, � is the linear

unit type. This will be made more formal in the typing rules below. We write !nA for

!!! . . .!!A, with n repetitions of !. We also write An for the n-fold tensor product A⊗ . . .⊗A.

4.1. Subtyping

The typing rules will ensure that any value of type !A is duplicable. However, there is no

harm in using it once only; thus, such a value should also have type A. For this reason,

we define a subtyping relation <: as follows:

α <: α
(α)

X <:X
(X) �<: � (�)

A <: B
!A <: B

(D)
!A <: B
!A <: !B

(!)

A1 <: B1 A2 <: B2

A1 ⊗ A2 <: B1 ⊗ B2
(⊗)

A <: A′ B <: B′

A′� B <: A� B′ (�) .

Lemma 13. For types A and B, if A <: B and (m = 0) ∨ (n � 1), then !nA <: !mB.

Proof. The proof is by repeated application of (D) and (!).

Notice that one can rewrite types using the notation

qType A,B ::= !nα | !nX | !n(A� B) | !n� | !n(A⊗ B)

with n ∈ �. Using the overall condition on n and m that (m = 0) ∨ (n � 1), the rules can

be re-written as

!nα <: !mα
(α2)

!nX <: !mX
(X2)

!n�<: !m� (�2)

A1 <: B1 A2 <: B2

!n(A1 ⊗ A2)<: !m(B1 ⊗ B2)
(⊗2)

A <: A′ B <: B′

!n(A′� B)<: !m(A� B′)
(�2) .

The two sets of rules are equivalent.

Lemma 14. The rules of the second set are reversible.

Proof. Note that for each possible type only one rule can be used.

Lemma 15. (qType, <:) is reflexive and transitive. If we define an equivalence relation �
by A � B iff A <: B and B <: A, then (qType/�, <:) is a poset.

Proof. Both properties are shown by induction on the second set of rules. For

transitivity, note that the condition (m = 0)∨(n � 1) can be re-written as (n = 0)⇒(m = 0),

which is transitive.

Lemma 16. If A <: !B, then there exists C such that A = !C .

Proof. The proof is by a direct application of the second set of rules.
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A <: B

∆, x:A � x : B
(var)

Ac <: B

∆ � c : B
(const)

Γ1, !∆ � P : bit Γ2, !∆ �M : A Γ2, !∆ � N : A

Γ1,Γ2, !∆ � if P then M else N : A
(if )

Γ1, !∆ �M : A� B Γ2, !∆ � N : A

Γ1,Γ2, !∆ �MN : B
(app)

x:A,∆ �M : B

∆ � λx.M : A� B
(λ1)

If FV (M) ∩ |Γ| = �:

Γ, !∆, x:A �M : B

Γ, !∆ � λx.M : !n+1(A� B)
(λ2)

!∆,Γ1 �M1 : !nA1 !∆,Γ2 �M2 : !nA2

!∆,Γ1,Γ2 � 〈M1,M2〉 : !n(A1 ⊗ A2)
(⊗.I)

∆ � ∗ : !n� (�)

!∆,Γ1 �M : !n(A1 ⊗ A2) !∆,Γ2, x1:!
nA1, x2:!

nA2 � N : A

!∆,Γ1,Γ2 � let 〈x1, x2〉 = M in N : A
(⊗.E)

Table 2. Typing rules

Remark 17. The subtyping rules are a syntactic device, and are not intended to catch

all plausible type isomorphisms. For instance, the types !A ⊗ !B and !(A ⊗ B) are not

subtypes of each other, although an isomorphism between these types is easily definable

in the language.

4.2. Typing rules

We need to define what it means for a quantum state [Q,L,M] to be well-typed. It

turns out that the typing does not depend on Q and L, but only on M. We introduce

typing judgments of the form ∆ � M : B. Here M is a term, B is a qType, and ∆

is a typing context, that is, a function from a set of variables to qType. As usual, we

write |∆| for the domain of ∆, and we use x1:A1, . . . , xn:An to denote typing contexts. As

usual, we write ∆, x:A for ∆ ∪ {x:A} if x 
∈ |∆|. Also, if ∆ = x1:A1, . . . , xn:An, we write

!∆ = x1:!A1, . . . , xn:!An. A typing judgment is called valid if it can be derived from the

rules in Table 2.

The typing rule (ax ) assumes that to every constant c of the language, we have

associated a fixed type Ac. The types Ac are defined as follows:

A0 = !bit Anew = !(bit� qbit)

A1 = !bit Ameas = !(qbit� !bit) AU = !(qbitn� qbitn) .

Note that we have given the type !(bit� qbit) to the term new . Another possible

choice would have been !(!bit� qbit), which makes sense because all classical bits are

duplicable. However, since !(bit� qbit)<: !(!bit� qbit), the second type is less general,

and can be inferred by the typing rules.

The shorthand notations have the required behaviour:

!∆,Γ1, x:A � N:B !∆,Γ2 �M:A

!∆,Γ1,Γ2 � let x = M in N:B

!∆,Γ, x:A, y:B �M:C

!∆,Γ � λ〈x, y〉.M:(A⊗ B)� C
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qubit 1: |φ〉 • H

(1) (2)
M

(3)

x,y

��

qubit 2: |0〉 H • ⊕

qubit 3: |0〉 ⊕ �� location B

location A

��
Uxy

(4)

|φ〉

� ��
�
�
�
�

�
�
�
�
�� �

Table 3. Quantum teleportation protocol

and if FV (M) ∩ |Γ| = �,

!∆,Γ, x:!nA, y:!nB �M:C

!∆,Γ � λ〈x, y〉.M:!m+1(!n(A⊗ B)� C)

are provable.

Note that, if [Q,L,M] is a program state, the term M need not be closed; however,

all of its free variables must be in the domain of L, and thus must be of type qbit . We

therefore have the following definition.

Definition 18. A program state [Q,L,M] is well-typed of type B if ∆ �M : B is derivable,

where ∆ = {x: qbit | x ∈ FV (M)}. In this case, we write [Q,L,M] : B.

Note that the type system enforces the requirement that variables holding quantum data

cannot be duplicated; thus, λx.〈x, x〉 is not a valid term of type qbit� qbit ⊗ qbit . On the

other hand, we allow variables to be discarded freely. Other approaches are also possible,

for instance, Altenkirch and Grattage (2005) proposes a syntax that allows duplication

but restricts the discarding of quantum values.

4.3. Example: quantum teleportation

Let us illustrate the quantum lambda calculus and the typing rules with an example.

The following is an implementation of the well-known quantum teleportation protocol

(see, for example, Nielsen and Chuang (2002)). The purpose of the teleportation protocol

is to send a qubit from location A to location B, using only classical communication

and a pre-existing shared entangled quantum state. In fact, this can be achieved by

communicating only the content of two classical bits. In the usual quantum circuit

formalism, the teleportation protocol is described in Table 3.

The state |φ〉 of the first qubit is ‘teleported’ from location A to location B. The

important point of the protocol is that the only quantum interaction between locations
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A and B (shown as (1) in the illustration) can be done ahead of time, that is, before the

state |φ〉 is prepared.

The dashed box M (shown as (3)) represents a measurement of two qubits. The gate

Uxy (shown as (4)) depends on two classical bits x and y, which are the result of this

measurement. It is defined as

U00 =

(
1 0

0 1

)
U01 =

(
0 1

1 0

)
U10 =

(
1 0

0 −1

)
U11 =

(
0 1

−1 0

)
.

The teleportation protocol consists of four steps:

(1) Create an entangled state 1√
2
(|00〉 + |11〉) between qubits 2 and 3.

(2) At location A, rotate qubits 1 and 2.

(3) At location A, measure qubits 1 and 2, obtaining two classical bits x and y.

(4) At location B, apply the correct transformation Uxy to qubit 3.

Proof of the correctness of the teleportation protocol. The rotation (2) has the following

effect:

CNOT H ⊗ id

|00〉 �→ |00〉 �→ 1√
2
(|00〉 + |10〉),

|01〉 �→ |01〉 �→ 1√
2
(|01〉 + |11〉),

|10〉 �→ |11〉 �→ 1√
2
(|01〉 − |11〉),

|11〉 �→ |10〉 �→ 1√
2
(|00〉 − |10〉).

If we apply it to the two first qubits of

(α|0〉 + β|1〉) ⊗ 1√
2
(|00〉 + |11〉) = 1√

2
(α|000〉 + α|011〉 + β|100〉 + β|111〉) ,

we get

1
2
(α(|000〉 + |100〉) + α(|011〉 + |111〉) + β(|010〉 − |110〉) + β(|001〉 − |101〉))

= 1
2
(|00〉 ⊗ (α|0〉 + β|1〉) + |01〉 ⊗ (α|1〉 + β|0〉)

+|10〉 ⊗ (α|0〉 − β|1〉) + |11〉 ⊗ (α|1〉 − β|0〉)) .

If we measure the two first qubits, the third qubit becomes

α|0〉 + β|1〉 if 00 was measured,

α|1〉 + β|0〉 if 01 was measured,

α|0〉 − β|1〉 if 10 was measured,

α|1〉 − β|0〉 if 11 was measured.

Finally, note that if Uxy is applied in the case where x, y was measured, then the state of

the last qubit is α|0〉 + β|1〉 = |φ〉.

To express the quantum teleportation protocol in our quantum lambda calculus, we

implement each part of the protocol as a function. We define three functions:

EPR : !(�� (qbit ⊗ qbit))

BellMeasure : !(qbit�(qbit� bit ⊗ bit))

U : !(qbit�(bit ⊗ bit� qbit)) .

https://doi.org/10.1017/S0960129506005238 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005238


A lambda calculus for quantum computation with classical control 539

The function EPR corresponds to step (1) of the protocol, and creates an entangled

2-qubit state. The function BellMeasure corresponds to steps (2) and (3), and takes two

qubits, rotates and measures them. The function U corresponds to step (4). It takes a

qubit q and two bits x, y and returns Uxyq. These functions are defined as follows:

EPR = λx.CNOT 〈H(new 0), new 0〉,
BellMeasure = λq2.λq1.(let 〈p, p′〉 = CNOT 〈q1, q2〉

in 〈 meas(Hp),meas p′〉),
U = λq.λ〈x, y〉. if x then (if y then U11q else U10q)

else (if y then U01q else U00q),

where Uxy are defined as above when the measured qubits were x and y.

The teleportation procedure can be seen as the creation of two non-duplicable functions

f and g

f : qbit� bit ⊗ bit ,

g : bit ⊗ bit� qbit ,

such that g ◦ f(q) = q for an arbitrary qubit q. We can construct such a pair of functions

by the following code:

let 〈p, p′〉 = EPR ∗
in let f = BellMeasure p

in let g = U p′

in 〈f, g〉.
Note that, since f and g depend on the state of the qubits p and p′, respectively, these

functions cannot be duplicated, which is reflected in the fact that the types of f and g do

not contain a top-level ‘!’. The detailed typing derivation of these terms, and a proof that

g(f(q)) → q, using the reduction rules of Table 1, are given in the Appendix.

Superdense coding The two functions f and g generated for the quantum teleportation

protocol also satisfy a dual property, namely (f ◦ g)〈x, y〉 = 〈x, y〉, for an arbitrary pair of

classical bits 〈x, y〉. This property can be used to send two classical bits along a channel

that can hold a single quantum bit, in the presence of a pre-existing shared entangled

quantum state. This procedure is known as superdense coding (see Nielsen and Chuang

(2002)), and it is dual to quantum teleportation. A detailed proof of (f ◦ g)〈x, y〉 → 〈x, y〉
from the reduction rules is given in the Appendix.

Remark 19. Note that the types qbit and bit ⊗ bit are clearly not isomorphic. However,

we have f : qbit� bit ⊗ bit and g : bit ⊗ bit� qbit such that f ◦ g = id and g ◦ f = id .

This is not a contradiction, of course, because each of f and g can only be used once, and

therefore they are not isomorphisms in the usual sense. We might describe such a pair of

functions as a pair of ‘single-use isomorphisms’.

While this behaviour of the functions f and g, and the corresponding properties of

teleportation and superdense coding, are well-understood in quantum mechanics, this is

still something of a mystery to us in the context of programming language semantics.

We are not aware of any other situation in programming languages that produces such

single-use isomorphisms.
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4.4. Properties of the type system

We will now derive some basic properties of the type system.

Definition 20. We extend the subtyping relation to contexts by writing ∆<: ∆′ if |∆′| = |∆|
and for all x in |∆′|, ∆f(x)<: ∆′

f(x).

Lemma 21.

(1) If x 
∈ FV (M) and ∆, x:A �M:B, then ∆ �M:B.

(2) If ∆ �M:A, then Γ,∆ �M:A.

(3) If Γ<: ∆ and ∆ �M : A and A <: B, then Γ �M : B.

Proof. The proof is by structural induction on the type derivation of M.

The next lemma is crucial in the proof of the substitution lemma. Note that it is only

true for a value V , and in general fails for an arbitrary term M.

Lemma 22. If V is a value and ∆ � V : !A, then for all x ∈ FV (V ), there exists some

U ∈ qType such that ∆(x) = !U.

Proof. The proof is by induction on V :

— If V is a variable x, the last rule in the derivation was

B <: !A

∆′, x : B � x : !A
.

Since B <: !A, we know B must be exponential by Lemma 16.

— If V is a constant c, then FV (V ) = �, and the result holds vacuously.

— If V = λx.M, the only typing rule that applies is (λ2), and ∆ = Γ, !∆′ with

FV (M) ∩ |∆′| = �. So every y ∈ FV (M) except possibly when x is exponential.

Since FV (λx.M) = (FV (M) \ {x}), this suffices.

— The remaining cases are similar.

Lemma 23 (Substitution). If V is a value such that Γ1, !∆, x:A �M : B and Γ2, !∆ � V : A,

then Γ1,Γ2, !∆ �M[V/x] : B.

Proof. The proof is by structural induction on the derivation of Γ1, !∆, x:A �M : B.

Corollary 24. If Γ1, !∆, x:A � M : B and Γ2, !∆ � V : !nA, then we have Γ1,Γ2, !∆ �
M[V/x] : B.

Proof. The proof follows from Lemma 23 and Lemma 21(3).

Remark 25. Note that all the usual rules of affine intuitionistic linear logic are derived

rules of our type system, except for the general promotion rule. Indeed, � new 0 : qbit is

valid, but � new 0 : !qbit is not. However, the promotion rule is derivable when V is a

value:
!Γ � V : A
!Γ � V :!A

.
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4.5. Subject reduction and progress

Theorem 26 (Subject reduction). Given a well-typed program [Q,L,M]:B such that

[Q,L,M]�∗ [Q′, L′,M ′], we have [Q′, L′,M ′] : B.

Proof. It suffices to show this for [Q,L,M]→p [Q′, L′,M ′], and we proceed by induction

on the rules in Table 1. The rule [Q, (λx.M)V ] →1 [Q,M[V/x]] and the rule for ‘let’

use the substitution lemma. The remaining cases are direct applications of the induction

hypothesis.

Theorem 27 (Progress). Let [Q,L,M] : B be a well-typed program. Then [Q,L,M] is not

an error state in the sense of Definition 7. In particular, either [Q,L,M] is a value, or

there exists some state [Q′, L′,M ′] such that [Q,L,M] →p [Q′, L′,M ′]. Moreover, the total

probability of all possible single-step reductions from [Q,L,M] is 1.

Corollary 28. Every sequence of reductions of a well-typed program either converges to

a value, or diverges.

The proof of the Progress Theorem is similar to the usual proof, with two small

differences. The first is the presence of probabilities, and the second is the fact that M

is not necessarily closed. However, all the free variables of M are of type qbit , and this

property suffices to prove the following lemma, which generalises the usual lemma on the

shape of closed well-typed values.

Lemma 29. Suppose ∆ = x1:qbit , . . . , xn:qbit , and V is a value. If ∆ � V :A�B, then V is

new , meas , U or a lambda abstraction. If ∆ � V :A⊗ B, then V = 〈V1, V2〉. If ∆ � V :bit ,

then V = 0 or V = 1.

Proof. The proof is by inspection of the typing rules.

Proof of the Progress Theorem. The proof is by induction on M. The claim follows

immediately in the cases when M is a value, or when M is the left-hand-side of one of

the rules in Table 1 that have no hypotheses. Otherwise, using Lemma 29, M is one of

the following: PN, NV , 〈N,P 〉, 〈V ,N〉, if N then P else Q, let 〈x, y〉 = N in P , where N

is not a value. In this case, the free variables of N are still all of type qbit , and, by the

induction hypothesis, the term [Q,L,N] has reductions with total probability 1, and the

rules in Table 1 ensure that the same is true for [Q,L,M].

5. Type inference algorithm

It is well known that the simply-typed lambda calculus, as well as many programming

languages, satisfies the principal type property: every untyped expression has a most general

type, provided it has some type. Since most principal types can usually be determined

automatically, the programmer can be relieved from the need to write any types at all.

In the context of our quantum lambda calculus, it would be nice if we had a type

inference algorithm; however, the principal type property fails due to the presence of

exponentials !A. Not only can an expression have several different types, but, in general,

none of the types is ‘most general’. For example, the term M = λxy.xy has as possible
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types T1 = (A� B)� (A� B) and T2 = !(A� B)� !(A� B), among others. Neither

of the types T1 or T2 is a substitution instance of the other, and in fact the most general

type subsuming T1 and T2 is X� X, which is not a valid type for M. Also, neither of

the types T1 or T2 is a subtype of the other, and the most general type of which they are

both subtypes is (A� B)� !(A� B), which is not a valid type for M.

In the absence of the principal type property, we need to design a type inference

algorithm based on a different idea. The approach we follow is the one suggested in Danos

et al. (1995). The basic idea is to view a linear type as a ‘decoration’ of an intuitionistic

type. Our type inference algorithm is based on the following technical fact, whose precise

statement appears in Theorem 36 given belows: if a given term has an intuitionistic type

derivation π of a certain kind, it is linearly typable if and only if there exists a linear type

derivation that is a decoration of π. Typability can therefore be decided by first doing

intuitionistic type inference, and then checking finitely many possible linear decorations.

5.1. Skeletons and decorations

The class of intuitionistic types is

iType U,V ::= α | X | (U ⇒ V ) | (U × V ) | �

where α ranges over the type constants and X over the type variables.

To each A ∈ qType, we associate its type skeleton †A ∈ iType, which is obtained

by removing all occurrences of ‘!’. Conversely, every U ∈ iType can be lifted to some
♣U ∈ qType with no occurrences of ‘!’. Formally, we have the following definition.

Definition 30. Define functions † : qType → iType and ♣ : iType → qType by:

†!nα = α ♣α = α
†!nX = X ♣X = X
†!n� = � ♣� = �

†!n(A� B) = †A⇒ †B ♣(U ⇒ V ) = ♣U� ♣V
†!n(A⊗ B) = †A× †B ♣(U × V ) = ♣U ⊗ ♣V .

If U = †A, we also say that A is a decoration of U.

Lemma 31. If A <: B, then †A = †B. If U ∈ iType, then U = †♣U.

Writing ∆ 	M : U for a typing judgment of the simply-typed lambda calculus, we can

extend the notion of a skeleton to contexts, typing judgments and derivations as follows:

†{x1:A1, . . . , xn:An} = {x1:
†A1, . . . , xn:

†An}
†(∆ �M : A) = (†∆ 	M : †A).

From the rules in Table 2, it is immediate that if ∆ � M : A is a valid typing judgment

in the quantum lambda calculus, then †(∆ �M : A) = (†∆ 	 M : †A) is a valid typing

judgment in the simply-typed lambda calculus.
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5.2. Decorating intuitionistic type derivations

The basic idea of our quantum type inference algorithm is as follows. Given a term M,

first find an intuitionistic typing judgment ∆ 	 M : U, say with type derivation π, if

such a typing exists. Then look for a quantum type derivation that is a decoration of π.

Clearly, if the term M is not quantum typable, this procedure will fail to yield a quantum

typing of M. For the algorithm to be correct, we also need the converse property to be

true: if M has any quantum type derivation, then it has a quantum type derivation that

is a decoration of the given intuitionistic derivation π. We therefore would ideally like to

prove the following property.

Property 32 (desired). Let M be a term with an intuitionistic type derivation π. Then M

is quantum typable if and only if there exists a quantum type derivation π′ of M such

that †π′ = π.

Unfortunately, this property is false, as the following example shows.

Example 33. Consider the term M = (λx.meas x)(new 0). Clearly, this term is quantum

typable, for instance, it has type bit (also !bit , !!bit , and so on). Consider the following

intuitionistic type derivation π for M:

x : qbit 	 meas : qbit ⇒ bit x : qbit 	 x : qbit

x : qbit 	 meas x : bit

	 λx.meas x : qbit ⇒ bit

	 new : bit ⇒ qbit 	 0 : bit

	 new 0 : qbit

	 (λx.meas x)(new 0) : bit

This particular intuitionistic type derivation is not the skeleton of any valid quantum

type derivation of M. To see this, note that the variable x has been duplicated in the

typing rule for meas x. Therefore, any valid decoration of π has to give the type !qbit

to x. On the other hand, the only valid quantum type for new 0 is qbit , which is not a

subtype of !qbit . Hence, there is no quantum type derivation for M whose skeleton is π,

demonstrating that Property 32 fails.

5.3. Normal derivations

The reason Property 32 fails is because an intuitionistic derivation can duplicate variables

unnecessarily, as shown in Example 33. The duplication of a variable in a typing rule

is unnecessary if the variable does not actually occur in one of the premises. We can

avoid this problem by slightly changing the typing rules to disallow such unnecessary

duplications. This is done by eliminating all ‘dummy’ variables from typing contexts.

Definition 34. A typing judgment ∆ � M : A of the quantum lambda calculus is called

normal if |∆| = FV (M). If ∆ � M : A is any typing judgment, its normal form is

∆|FV (M) �M : A. We also write ∆|M for ∆|FV (M). If π is a type derivation, its normal form

is the derivation N(π) obtained by taking the normal form of each of its nodes.

Note that the normal form of a type derivation is not necessarily a type derivation in

the strict sense, because the rules of Table 2 are not invariant under taking normal forms.
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However, we can define a new set of typing rules, called the normal typing rules, which are

obtained by normalising the rules from Table 2. For example, the new rule for application

is:
{Γ1, !∆}|FV (M) �M : A� B {Γ2, !∆}|FV (N) � N : A

{Γ1,Γ2, !∆}|FV (MN) �MN : B
(appnorm ) .

We treat all the other typing rules analogously.

Lemma 35. Let ∆ � M : A be any typing judgment. Then ∆ � M : A is derivable from

the rules in Table 2 if and only if ∆|FV (M) � M : A is derivable from the normal typing

rules.

Proof. The left-to-right implication follows by normalising the type derivation of ∆ �
M : A. The opposite implication follows because the normal typing rules are admissible

by Lemma 21.

The normal form of intuitionistic typing judgments, rules and derivations is defined

analogously. The counterpart of Lemma 35 also holds in the intuitionistic case.

The analog of Property 32 now holds relative to the normal typing rules.

Theorem 36. Let M be a term with a normal intuitionistic type derivation π. Then M is

quantum typable if and only if there exists a normal quantum type derivation π′ of M

such that †π′ = π.

5.4. Proof of Theorem 36

The proof of Theorem 36 requires us to find a suitable decoration π′ of π. For this purpose

we are going to introduce the concept of the decoration of an intuitionistic type along a

quantum type. Intuitively, U 
 A takes the skeleton from U and the exponentials from A.

Definition 37. Given A ∈ qType and U ∈ iType, we define the decoration U 
 A ∈ qType

of U along A by

U 
 !nA = !n(U 
 A),

(U ⇒ V )
 (A� B) = (U 
 A)� (V 
 B),

(U × V )
 (A⊗ B) = (U 
 A) ⊗ (V 
 B),

and in all other cases:

U 
 A = ♣U.

Lemma 38. If U,V ∈ iType and A,B ∈ qType, then the following are true:

(a) †(U 
 A) = U.

(b) If †A = U, then U 
 A = A.

(c) If A <: B, then (U 
 A)<: (U 
 B).

Definition 39. Let Γ be an intuitionistic typing context, and ∆ be a quantum typing

context, such that |Γ| ⊆ |∆|. Then we define Γ
 ∆ := Γ′, where |Γ′| = |Γ|, and for all x
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in |Γ|, Γ′(x) = Γ(x)
 ∆(x). This notation is extended to typing judgments, provided that

|Γ| ⊆ |∆|, by

(Γ 	M : U)
 (∆ �M : A) := Γ
 ∆ �M : U 
 A,

and to type derivations by structural induction, provided the intuitionistic derivation is

normal.

Lemma 40. If π is a normal intuitionistic type derivation and ρ is any quantum type

derivation, then π′ := (π 
 ρ) is a normal quantum type derivation.

Proof. The proof is by structural induction on ρ, with case distinction on the last typing

rule used. For instance, suppose the last rule used was the (app) rule. Then M = NP and

the type derivation ρ ends in

.... ρ1

∆1, !∆3 � N : A� B

.... ρ2

∆2, !∆3 � P : A

∆1,∆2, !∆3 � NP : B
.

In normal intuitionistic lambda calculus the type derivation π is of the form:

.... π1

Γ|FV (N) 	 N : U ⇒ V

.... π2

Γ|FV (P ) 	 P : U

Γ|FV (NP ) 	 NP : V
.

Writing Γ|X for Γ|FV (X), the type derivation π 
 ρ is

.... π1 
 ρ1

Γ|N 
 (∆1, !∆3) � N : (U ⇒ V )
 (A� B)

.... π2 
 ρ2

Γ|P 
 (∆2, !∆3) � P : U 
 A

Γ|NP 
 (∆1,∆2, !∆3) � NP : V 
 B
.

By the induction hypothesis, π1 
 ρ1 and π2 
 ρ2 are quantum normal type derivations.

If we write Γi for Γ|dom∆i 
 ∆i, using Lemma 38 and the definition of 
, the last rule of

the derivation above becomes

{Γ1, !Γ3}|N � N : (U 
 A)� (V 
 B) {Γ2, !Γ3}|P � P : U 
 A

{Γ1,Γ2, !Γ3}|NP � NP : V 
 B
,

which is an instance of the normal quantum (app) rule. Thus π′ := (π 
 ρ) is a normal

quantum type derivation. The other typing rules are treated similarly.

Proof of Theorem 36. For the left-to-right implication, if ρ is some quantum type

derivation of M, we can define π′ = (π 
 ρ) as in Lemma 40. Then †π
′
= π follows from

Lemma 38. The right-to-left implication follows trivially from Lemma 35.

5.5. Elimination of repeated exponentials

The type system in Section 4 allows types with repeated exponentials such as !!A. While

this is useful for compositionality, it is not very convenient for type inference. We therefore

consider a reformulation of the typing rules that only requires single exponentials.
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Definition 41. For A ∈ qType, we define #A ∈ qType to be the result of erasing multiple

exponentials in A. Formally, if σ(0) = 0 and σ(n+ 1) = 1,

#!nα = !σ(n)α

#!nX = !σ(n)X

#!n� = !σ(n)�
#!n(A� B) = !σ(n)(#A� #B)
#!n(A⊗ B) = !σ(n)(#A⊗ #B) .

We also extend this operation to typing contexts and judgments in the obvious way.

Lemma 42. The following are derived rules of the type system in Table 2, for all τ, σ ∈
{0, 1}.

!∆,Γ1 �M1 : !A1 !∆,Γ2 �M2 : !A2

!∆,Γ1,Γ2 � 〈M1,M2〉 : !(!τA1 ⊗ !σA2)
(⊗.I ′)

!∆,Γ1 �M : !(!τA1 ⊗ !σA2) !∆,Γ2, x1:!A1, x2:!A2 � N : A

!∆,Γ1,Γ2 � let 〈x1, x2〉 = M in N : A
(⊗.E ′) .

Furthermore, the normal forms of (⊗.I ′) and (⊗.E ′) are derivable in the normal type

system.

Proof. Suppose !∆,Γ1 �M1 : !A1 and !∆,Γ2 �M2 : !A2 are derivable. Since !A1<:!!τA1

and !A2 <: !!σA2, we have that !∆,Γ1 � M1 : !!τA1 and !∆,Γ2 � M2 : !!σA2 are also

derivable by Lemma 21(3). But then !∆,Γ1,Γ2 � 〈M1,M2〉 : !(!τA1 ⊗ !σA2) follows from

rule (⊗.I). The proof of the second rule is similar. Finally, the last claim follows from

Lemma 35.

Lemma 43. If π is a derivation of a typing judgment ∆ � M : A from the normal

quantum typing rules, then #π is a valid normal derivation of #∆ �M : #A, possibly using

the normal forms of (⊗.I ′) and (⊗.E ′) as additional rules. Moreover, †π = †#π.

Proof. The proof follows by inspection of the rules. For each normal typing rule r, #r

is either an instance of the same rule, or of the normal form of (⊗.I ′) or (⊗.E ′).

5.6. Description of the type inference algorithm

Theorem 36 yields a simple type inference algorithm. Given a term M, we can perform

type inference in the quantum lambda calculus in three steps:

(1) Find an intuitionistic type derivation π of M, if any.

(2) Eliminate ‘dummy’ variables to obtain its normal form Nπ.

(3) Find a decoration of Nπ that is a valid normal quantum type derivation, if any.

Step (1) is known to be decidable, and step (2) is computationally trivial. By Theorem 36,

step (3) will succeed if and only if M is quantum typable. Note that by Lemma 43, it

suffices to consider decorations of Nπ without repeated exponentials. Since there are only

finitely many such decorations, step (3) is clearly decidable. Also note that if the algorithm

succeeds, it returns a possible type for M. However, it does not return a description of all

possible types.
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Remark 44 (Efficiency of the algorithm). In principle, the search space of all possible

decorations of Nπ is exponential in size. However, this space can be searched efficiently

by solving a system of constraints. More precisely, if we create a boolean variable for each

place in the type derivation that potentially may hold a ‘!’, the constraints imposed by the

linear type system can all be written in the form of implications x1 ∧ . . . ∧ xn ⇒ y, where

n � 0, and negations ¬z. It is well known that such a system can be solved in polynomial

time in the number of variables and clauses. Therefore, the type inference problem can

be solved in time polynomial in the size of the type derivation π.

Note, however, that the size of an intuitionistic type derivation π need not be polynomial

in the size of the term M, because in the worst case, π can contain types that are

exponentially larger than M. We do not presently know whether quantum typability can

be decided in time polynomial in M.

6. Conclusion and further work

In this paper, we have defined a higher-order quantum programming language based on

a linear typed lambda calculus. Compared with the quantum lambda calculus of van

Tonder (2004), our language is characterised by the fact that it contains classical as well

as quantum features; for instance, we provide classical datatypes and measurements as a

primitive feature of our language. Moreover, we provide a subject reduction result and

a type inference algorithm. As the language shows, linearity constraints do not just exist

at base types, but also at higher types, due to the fact that higher-order functions are

represented as closures, which may in turn contain embedded quantum data. We have

shown that a version of affine intuitionistic linear logic provides the correct type system

to deal with this situation.

There are many open problems left for further work. Several interesting variations of

the language presented here need to be explored in more detail. For instance, we have not

included a syntax for recursive function definitions in this paper. We believe that this can

be done, but the details are more subtle than we first expected. Another obvious extension

is to add the additive types of linear logic to the system. One may also study alternative

reduction strategies. In this paper, we have considered the call-by-value strategy, because

it conforms with our intuition of quantum computation as being essentially value-

driven. However, a call-by-name strategy is also conceivable and would lead to a very

different semantics and type system. Finally, an important problem that we have not

addressed here is how to give a denotational semantics for higher order quantum pro-

gramming languages. This appears to be a difficult problem and is the subject of ongoing

research.

Appendix A. Examples

A.1. Example: Type derivation of the teleportation protocol

To illustrate the linear type system from Section 4.2, we give a complete derivation of the

type of the quantum teleportation term from Section 4.3. The notation (L.x) means that

Lemma x is used.
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Computing some subtypes:

1 α2 !nα <: α

2 α2 !mβ <: β

3 �2, 1, 2 !k(α� !mβ)<: (!nα� β)

4 (L.15) A <: A

5 D, 4 !A <: A

Computing the type of EPR:

6 const , 3 � new : bit� qbit

7 const , 5 � 0: bit

8 app, 6, 7 � new 0: qbit

9 const , 3 � H: qbit� qbit

10 app, 9, 8 � H(new 0): qbit

11 ⊗.I, 10, 9 � 〈H(new 0), new 0〉 : qbit ⊗ qbit

12 const , 3 x:� � CNOT :(qbit ⊗ qbit)� (qbit ⊗ qbit)

13 app, 12, 11 x:� � CNOT 〈H(new 0), new 0〉: qbit ⊗ qbit

14 λ2, 13 � λx.CNOT 〈H(new 0), new 0〉:!(�� (qbit ⊗ qbit))

Computing the type of BellMeasure:

15 var , 1 y:qbit � y:qbit

16 const , 3 � meas :qbit� bit

17 app, 16, 15 y: qbit � meas y:bit

18 var , 1 x: qbit � x:qbit

19 app, 9, 18 x:qbit � Hx:qbit

20 app, 16, 19 x: qbit � meas(Hx):bit

21 var , 1 q1: qbit � q1: qbit

22 var , 1 q2: qbit � q2: qbit

23 ⊗.I, 21, 22 q2: qbit , q1: qbit � 〈q1, q2〉: qbit ⊗ qbit

24 const , 3 � CNOT :(qbit ⊗ qbit)� (qbit ⊗ qbit)

25 app, 24, 23 q2: qbit , q1: qbit � CNOT 〈q1, q2〉: qbit ⊗ qbit

26 ⊗.I, 20, 17 x: qbit , y: qbit � 〈 meas(Hx),meas y〉: bit ⊗ bit

27 ⊗.E, 25, 26 q2: qbit , q1: qbit � let 〈x, y〉 = CNOT 〈q1, q2〉
in〈 meas(Hx),meas y〉: bit ⊗ bit

28 λ1, 27 q2: qbit � λq1.(let 〈x, y〉 = CNOT 〈q1, q2〉
in 〈 meas(Hx),meas y〉):qbit� bit ⊗ bit

29 λ2, 28 � λq2.λq1.(let 〈x, y〉 = CNOT 〈q1, q2〉
in 〈 meas(Hx),meas y〉):!(qbit�(qbit� bit ⊗ bit))

Computing the type of U:

30 var , 1 q:qbit � q:qbit

31 const , 3 � Uij:qbit� qbit

32 app, 30, 31 q:qbit � Uijq:qbit
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33 var , 1 y:bit � y:!bit

34 var , 1 x:bit � x:!bit

35 if , 33, 32, 32 q:qbit , y:bit � if y then Ui1q else Ui0q:qbit

36 if , 34, 35, 35 q:qbit , x:bit , y:bit � if x then (if y then U11q else U10q)

else (if y then U01q else U00q): qbit

37 �′
1, 36 q:qbit � λ〈x, y〉.if x then (if y then U11q else U10q)

else (if y then U01q else U00q): bit ⊗ bit� qbit

38 �2, 37 � λq.λ〈x, y〉. if x then (if y then U11q else U10q)

else (if y then U01q else U00q):!(qbit�(bit ⊗ bit� qbit))

Finally, computing the type of the pair 〈f, g〉:

39 � � ∗ :�
40 (L.21), 14, 5 � EPR:�� (qbit ⊗ qbit)

41 app, 40, 39 � EPR ∗ :qbit ⊗ qbit

42 (L.21), 29, 5 � BellMeasure:qbit� (qbit� bit ⊗ bit)

43 var , 1 x:qbit � x:qbit

44 app, 42, 43 x:qbit � BellMeasure x: qbit� bit ⊗ bit

45 var , 1 y:qbit � y:qbit

46 (L.21), 38, 5 � U: qbit�(bit ⊗ bit� qbit)

47 app, 46, 45 y:qbit � U y: bit ⊗ bit� qbit

48 var , 1 f:qbit� bit ⊗ bit � f:qbit� bit ⊗ bit

49 var , 1 g: bit ⊗ bit� qbit � g: bit ⊗ bit� qbit

50 ⊗, 48, 49 g: bit ⊗ bit� qbit , f: qbit� bit ⊗ bit � 〈f, g〉:
(qbit� bit ⊗ bit) ⊗ (bit ⊗ bit� qbit)

51 let , 47, 50 f: qbit� bit ⊗ bit , y:qbit � let g = U y in 〈f, g〉:
(qbit� bit ⊗ bit) ⊗ (bit ⊗ bit� qbit)

52 let , 44, 51 x:qbit , y:qbit � let f = BellMeasure x in let g = U y

in〈f, g〉:(qbit� bit ⊗ bit) ⊗ (bit ⊗ bit� qbit)

53 let , 41, 52 � let 〈x, y〉 = EPR ∗ in let f = BellMeasure x

in let g = U y in 〈f, g〉:
(qbit� bit ⊗ bit) ⊗ (bit ⊗ bit� qbit)

A.2. Example: Reduction of the teleportation term

As an illustration of the reduction rules of the quantum lambda calculus, we show the

detailed reduction of the term from the teleportation example from Section 4.3. The

reduction of the teleportation term corresponds to the equality g ◦ f = id . We use the

following abbreviations:

Mp,p′ := let f = BellMeasure p in let g = U p′ in g(f p0)

Bp1
:= λq1.(let 〈p, p′〉 = CNOT 〈q1, p1〉 in 〈 meas(Hp),meas p′〉)

Up2
:= λ〈x, y〉. (if x then (if y then U11p2 else U10p2)

else (if y then U01p2 else U00p2)) .
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The reduction of the term is then as follows:

⎡
⎢⎢⎣α|0〉 + β|1〉,

let 〈p, p′〉 = EPR ∗
in let f = BellMeasure p

in let g = U p′

in g(f p0)

⎤
⎥⎥⎦

→1

[
α|0〉 + β|1〉, let 〈p, p′〉 = CNOT 〈H(new 0), new 0〉 in Mp,p′

]
→1

[
(α|0〉 + β|1〉) ⊗ |0〉, let 〈p, p′〉 = CNOT 〈Hp1, new 0〉 in Mp,p′

]
→1

[
(α|0〉 + β|1〉) ⊗ 1√

2
(|0〉 + |1〉), let 〈p, p′〉 = CNOT 〈p1, new 0〉 in Mp,p′

]

→1

[
(α|0〉 + β|1〉) ⊗ 1√

2
(|0〉 + |1〉) ⊗ |0〉, let 〈p, p′〉 = CNOT 〈p1, p2〉 in Mp,p′

]

→1

[
(α|0〉 + β|1〉) ⊗ 1√

2
(|00〉 + |11〉), let 〈p, p′〉 = 〈p1, p2〉 in Mp,p′

]

→1

⎡
⎣(α|0〉 + β|1〉) ⊗ 1√

2
(|00〉 + |11〉),

let f = BellMeasure p1

in let g = U p2

in g(f p0)

⎤
⎦

→1
∗

[
(α|0〉 + β|1〉) ⊗ 1√

2
(|00〉 + |11〉), Up2

(Bp1
p0)

]

→1

[
(α|0〉 + β|1〉) ⊗ 1√

2
(|00〉 + |11〉), Up2

(
let 〈p, p′〉 = CNOT 〈p0, p1〉

in 〈 meas(Hp),meas p′〉

)]

→1

[
1√
2

(
α|000〉 + α|011〉

+β|110〉 + β|101〉

)
, Up2

(
let 〈p, p′〉 = 〈p0, p1〉

in 〈 meas(Hp),meas p′〉

)]

→1

[
1√
2

(
α|000〉 + α|011〉

+β|110〉 + β|101〉

)
, Up2

〈 meas(Hp0),meas p1〉
]

→1

⎡
⎢⎢⎣ 1

2

⎛
⎜⎜⎝

α|000〉 + α|011〉
+α|100〉 + α|111〉
+β|010〉 + β|001〉
−β|110〉 − β|101〉

⎞
⎟⎟⎠ , Up2

〈 meas p0,meas p1〉

⎤
⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 ������

1
2

������

[
1√
2

(
α|000〉 + α|011〉

+β|010〉 + β|001〉

)
, Up2

〈0,meas p1〉
]

[
1√
2

(
α|100〉 + α|111〉

−β|110〉 − β|101〉

)
, Up2

〈1,meas p1〉
]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/2 ������
1/2

������

1/2 ������
1/2

������

[(
α|000〉 + β|001〉

)
, Up2

〈0, 0〉
]

[(
α|011〉 + β|010〉

)
, Up2

〈0, 1〉
]

[(
α|100〉 − β|101〉

)
, Up2

〈1, 0〉
]

[(
α|111〉 − β|110〉

)
, Up2

〈1, 1〉
]

→1
∗ [(

α|000〉 + β|001〉
)
, U00p2

]
→1

∗ [(
α|011〉 + β|010〉

)
, U01p2

]
→1

∗ [(
α|100〉 − β|101〉

)
, U10p2

]
→1

∗ [(
α|111〉 − β|110〉

)
, U11p2

]
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

→1

→1

→1

→1

[
(α|000〉 + β|001〉), p2

]
[

(α|010〉 + β|011〉), p2

]
[

(α|100〉 + β|101〉), p2

]
[

(α|110〉 + β|111〉), p2

]

=
[

|00〉 ⊗ (α|0〉 + β|1〉), p2

]
=

[
|01〉 ⊗ (α|0〉 + β|1〉), p2

]
=

[
|10〉 ⊗ (α|0〉 + β|1〉), p2

]
=

[
|11〉 ⊗ (α|0〉 + β|1〉), p2

]
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A.3. Example: Reduction of the superdense coding term

As another example of the reduction rules, we give the reduction of the superdense coding

example from Section 4.3. This reduction shows the equality f◦g = id . Of the four possible

cases, we only give one case, namely (f ◦ g)〈0, 1〉 = 〈0, 1〉; the remaining cases are similar.

We use the same abbreviations as above.⎡
⎢⎢⎣|〉,

let 〈p, p′〉 = EPR ∗
in let f = BellMeasure p

in let g = U p′

in f(g〈0, 1〉)

⎤
⎥⎥⎦

→1
∗

⎡
⎣ 1√

2
(|00〉 + |11〉),

let f = BellMeasure p0

in let g = U p1

in f(g〈0, 1〉)

⎤
⎦

→1
∗

[
1√
2
(|00〉 + |11〉), Bp0

(Up1
〈0, 1〉)

]

→1
∗

[
1√
2
(|00〉 + |11〉), Bp0

(U01p1)
]

→1

[
1√
2
(|01〉 + |10〉), Bp0

p1

]

→1

[
1√
2
(|01〉 + |10〉), let 〈p, p′〉 = CNOT 〈p1, p0〉 in 〈 meas(Hp),meas p′〉

]

→1

[
1√
2
(|11〉 + |10〉), let 〈p, p′〉 = 〈p1, p0〉 in 〈 meas(Hp),meas p′〉

]

→1

[
1√
2
(|11〉 + |10〉), 〈 meas(Hp1),meas p0〉

]

→1

[
|10〉, 〈 meas p1,meas p0〉

]
→1

∗ [
|10〉, 〈0, 1〉

]
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