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Wing sweep effects on laminar separated flows
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We reveal the effects of sweep on the wake dynamics around NACA 0015 wings at
high angles of attack using direct numerical simulations and resolvent analysis. The
influence of sweep on the wake dynamics is considered for sweep angles from 0° to
45° and angles of attack from 16° to 30° for a spanwise periodic wing at a chord-based
Reynolds number of 400 and a Mach number of 0.1. Wing sweep affects the wake
dynamics, especially in terms of stability and spanwise fluctuations with implications
on the development of three-dimensional (3-D) wakes. We observe that wing sweep
attenuates spanwise fluctuations. Even as the sweep angle influences the wake, force
and pressure coefficients can be collapsed for low angles of attack when examined in
wall-normal and wingspan-normal independent flow components. Some small deviations
at high sweep and incidence angles are attributed to vortical wake structures that impose
secondary aerodynamic loads, revealed through the force element analysis. Furthermore,
we conduct global resolvent analysis to uncover oblique modes with high disturbance
amplification. The resolvent analysis also reveals the presence of wavemakers in the
shear-dominated region associated with the emergence of 3-D wakes at high angles of
attack. For flows at high sweep angles, the optimal convection speed of the response modes
is shown to be faster than the optimal wavemakers speed suggesting a mechanism for the
attenuation of perturbations. The present findings serve as a fundamental stepping stone
to understanding separated flows at higher Reynolds numbers.
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1. Introduction

Understanding the dynamics of airfoil wakes is critically important for the design of
aircraft. Moreover, many nature-inspired engineering applications can benefit from the
study of the complex fluid dynamics observed, for instance, in the flight of common swifts
(Apus Apus), where wings are swept (Videler, Stamhuis & Povel 2004). The dynamics of
wakes have been studied extensively to reveal the mechanisms that trigger flow separation
and three-dimensionality over unswept wings (Taira & Colonius 2009; Anderson 2010;
Zhang et al. 2020b). The wake dynamics of swept wings, however, has not received much
attention in understanding the effect of sweep on the vortical structures that emerge at high
angles of attack.

Fundamental studies on flow separation have been performed on two-dimensional (2-D)
unswept wings. The flow structures emerging in poststall wakes have been a subject of
research for decades (Gaster 1967; Tobak & Peake 1982). In the early work of Horton
(1968), the behaviour of a canonical laminar boundary layer separation was investigated
through theoretical and experimental approaches. On the numerical side, 2-D simulations
of flow separation were performed by Pauley, Moin & Reynolds (1990), establishing
a relation between vortex shedding, adverse pressure gradient and inviscid shear layer
mechanisms.

The characteristics of vortex shedding are related to geometrical parameters of the
wing and physical parameters of the flow, including the angle of attack and the Reynolds
number (Huang et al. 2001; Yarusevych, Sullivan & Kawall 2009). The Reynolds number
is important for discussing the transition on vortex shedding patterns in 2-D laminar flows
(Williamson & Roshko 1988; Rossi et al. 2018). For the analysis of flow fields at the
Reynolds number where such transitions occur, experiments and computations have shown
that three-dimensionality emerges as stall cells develop on the suction side (Winkelman &
Barlow 1980). Numerically, three-dimensionality at high angles of attack can be captured
by extending the wingspan in spanwise periodic simulations (Braza, Faghani & Persillon
2001; Hoarau et al. 2003).

Around swept wings at high incidence, vortical structures are affected by the
combination of the streamwise and spanwise flows, where the latter yields a cross-flow
instability over the airfoil (Serpieri & Kotsonis 2016). The spanwise flow alters the stall
characteristics and vortical interactions in the airfoil wake (Harper & Maki 1964). Laminar
flows over swept wings have been examined through experiments (Yen & Hsu 2007) and
numerical simulations (Mittal & Sidharth 2014; Zhang et al. 2020a; Mittal, Pandi & Hore
2021; Zhang & Taira 2022). Turbulent flows over swept wings have also been studied
through large-eddy simulations (Visbal & Garmann 2019; Garmann & Visbal 2020). Such
efforts, however, have considered finite swept wings, hence the effects of sweep angle are
not independently analysed from the wing tip effects.

To distinguish the influence of sweep from tip effects, one may consider analysing a
spanwise periodic swept wing, as in the works of Paladini ef al. (2019), Crouch, Garbaruk
& Strelets (2019), Plante, Dandois & Laurendeau (2020) and Plante er al. (2021), which
revealed stall cells advection during transonic buffet over swept wings. Although the
wake dynamics is influenced by the sweep angle, the flows of swept and unswept wings
still preserve similarities in the chordwise and wall-normal flow components through
the boundary layer independence principle (White 1991; Wygnanski et al. 2011). This
principle has prompted many studies in turbulent flow regimes (Wygnanski, Tewes &
Taubert 2014; Coleman, Rumsey & Spalart 2019), although the independence principle
for laminar separated flows remains to be examined.
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Analysing the flow variables on the plane normal to the leading edge, we are able
to identify the collapse of laminar flow characteristics for flows over swept wings at
lower angles of attack, suggesting an independence of streamwise and spanwise flow
components. When interaction between them is present, it is not expected that the
independence principle holds. In this study, we call on the force element theory (Chang
1992) to reveal the flow structures that exert additional forces on the wing responsible for
the departure from the independence principle.

The presence of spanwise instabilities in the wakes behind swept wings suggests the
existence of self-sustained mechanisms that affect the wake dynamics. For instance, these
mechanisms may be responsible for initiating three-dimensionality at higher incidence and
reducing spanwise oscillations in swept wings. This flow complexity motivates the use of
modal analysis (Taira et al. 2017, 2020) to provide a comprehensive understanding of the
wake dynamics and evolution of disturbances in swept wings.

Among all modal analysis methods, the resolvent analysis reveals the evolution of
perturbations excited by optimal harmonic inputs to the flow (Trefethen et al. 1993;
Farrell & Ioannou 1994; Jovanovi¢ & Bamieh 2005). Resolvent analysis can be performed
with respect to steady (equilibrium) and time-averaged states. The latter case assumes
that the flow is statistically stationary. In such a case, resolvent analysis can be used
to study laminar and turbulent flows, extending the applicability of resolvent analysis
to time-averaged base flows (McKeon & Sharma 2010). Jovanovi¢ (2004) extended the
methodology to unstable systems and Schmid & Brandt (2014) discussed the evolution of
perturbations over a finite-time horizon and the modal sensitivity to small changes in the
resolvent operator. These efforts enabled the use of resolvent analysis for studying various
types of complex fluid flows (Gémez et al. 2016; Schmidt et al. 2018; Yeh & Taira 2019;
Kojima et al. 2020; Yeh et al. 2020; Liu et al. 2021).

For laminar separated flows, resolvent analysis reveals how flow perturbations arise,
grow and self-sustain in the flow field. For instance, disturbances generated from the
vortices at the flow separation over the wing can grow and develop into wake unsteadiness
downstream. This behaviour can be captured by the optimal forcing and response
structures, and their spatial overlap, characterized by wavemakers. Such regions of the
flow field act as a source to the global stability of the flow and are optimal locations for the
introduction of self-sustained perturbations in the flow field (Giannetti & Luchini 2007,
Giannetti, Camarri & Luchini 2010; Fosas de Pando, Schmid & Sipp 2017).

Wavemaker analysis can aid in uncovering mechanisms that sustain flow unsteadiness
in particular flow regions. In the present work, we further reveal that optimal response
structures have a lower phase speed than the optimal wavemakers, which explains
the attenuation of unsteadiness and three-dimensionality in flows over swept wings.
Furthermore, resolvent analysis predicts the onset of oblique shedding on flows over swept
wings, as observed in flows over high aspect ratio bodies (Mittal & Sidharth 2014; Zhang
et al. 2020a; Mittal et al. 2021). As oblique vortices are observed in laminar flows over
finite-length bodies and unseen over spanwise periodic bodies, there is an open question on
whether sweep angle or the body tip promotes oblique shedding. In the present work, we
address this question using resolvent analysis. The emergence of highly amplified oblique
resolvent modes shows that oblique shedding can be triggered and sustained over swept
wings with an appropriate input.

This work aims to study the influence of the sweep angle on the wake dynamics of
laminar flows over swept wings by combining direct numerical simulations (DNS) and
resolvent analysis. We present the problem set-up and the numerical methods in § 2. Next,
we characterize the flow over swept wings in § 3. We also examine the applicability of
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Figure 1. The problem set-up. Instantaneous flow over a spanwise periodic NACA 0015 profile at o = 30°
and sweep angle A = 15° visualized with isosurfaces of Q criterion coloured by streamwise velocity u,. A
2-D slice of airfoil in coordinate systems (x, y, z) and (x', y, '), with x" and 7’ perpendicular and parallel to the
wingspan, respectively. Here DNS and resolvent grids are shown as grey lines in the background.

the concepts associated with the boundary layer independence principle for flows with
massive separation and employ the force element theory to identify sources of vortically
induced lift and drag in §§ 3.1 and 3.2. Moreover, we discuss the effects of spanwise flow
on the evolution of perturbations via resolvent analysis in § 3.3. The role of wavemakers
in swept wings is also studied in § 3.4. Lastly, we summarize our findings in § 4.

2. Problem set-up

We study laminar separated flows over swept wings with a NACA 0015 airfoil
cross-section for sweep angles 0° < A < 45° and angles of attack 16° < « < 30°. For
all cases, we set the chord-based Reynolds number to Re, = U L./v = 400 and the free
stream Mach number to My, = Uxo/aso = 0.1. Here, Uy, is the free stream velocity, L.
is the chord length, v is the kinematic viscosity and a is the free stream speed of sound.
We illustrate the present set-up in figure 1 with an instantaneous flow field visualized for
a =30°and A = 15°.

For the present work, we consider a NACA 0015 profile with constant chord length
in the (x,y) plane for all angles of attack and sweep, with spanwise periodicity in
the 7/-direction. As shown in figure 1, the effective chord length is defined as L =
Lc(cos2 a cos? A + sin? oz)l/ 2 < . and the effective angle of attack is defined as o,y =
tan~!(tan &t/ cos A) > «. Effective L. and a4 are dependent on the sweep angle A and
relate to the airfoil geometry on the (x', y) plane.

2.1. Direct numerical simulations

To study the flows over swept NACA 0015 airfoils, we perform DNS with CharLES,
a finite-volume-based compressible flow solver with second- and third-order accuracies
in space and time, respectively (Khalighi et al. 2011; Bres et al. 2017). We position the
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A=0° A=15° A=30° A =45
Cr Cp Cr Cp CL Cp Cr Cp
Present 0.690 0405  0.649 0391 0536 0350 0384  0.296

Zhang et al. (2020a) 0.702 0.405 0.657 0.392 0.547 0.353 0.393 0.301

Table 1. Time-averaged lift and drag coefficients (C; and Cp) compared with Zhang et al. (2020a) for
laminar separated flow over NACA 0015 airfoils with o = 20°, A = 0°, 15°, 30° and 45°.

leading edge of the airfoil at (x'/L., y/L:) = (0, 0). The C-shaped computational mesh
extends over (X'/L¢,y/Lc,7 /L) € [—20,25] x [—20, 20] x [0, 4]. We build the grids
with (min Ax, min Ay, min Az)/L. = (0.005, 0.005, 0.0625), with mesh refinement near
the airfoil and wake. This yields a mesh with 100 000 to 200 000 cells on the root plane,
extruded in the spanwise direction with equally spaced cell elements. We have verified our
computational set-up and validated the results with Zhang et al. (2020a). Our simulations
obtained close agreement for the instantaneous and time-averaged velocity components,
skin friction lines and pressure coefficients over the wing surface.

We prescribe Dirichlet boundary conditions at the inlet and far-field boundaries as
(0, Uy, Uy, Uz, p) = (Poo, Uso €0s A, 0, U sin A, pso), where p is density, p is pressure,
uy, uy and uy are velocity components in the (x’, y, ') directions, respectively, poo is the
free stream density and p is the free stream pressure. On the airfoil surface, we prescribe
the adiabatic no-slip boundary condition. For the outflow, a sponge layer (Freund 1997)
is applied over X' /L. € [15, 25] with the target state being the running-averaged flow over
five acoustic time units. For time integration, a fixed acoustic Courant—Friedrichs—Lewy
number of 1 is utilized. We start the simulations with uniform flow. The initial transients
are flushed out of the computational domain for 80 convective time units, after which
statistics are recorded over at least 100 convective time units.

The current results are carefully validated by examining the lift, drag and pressure
coefficients, defined as

F F -
CL——y Cn=—2>" " and C:M

— ) D — , (Zla—c)
3PUL L 3PULe 3pU%

respectively; where F and Fy are the x and y force components, respectively. The forces
for o« = 20° are in close agreement with those reported by Zhang et al. (2020a), as shown
in table 1. The flow fields were also compared and exhibit agreement validating the current
set-up.

2.2. Resolvent analysis

To analyse the perturbation dynamics over swept wings, let us decompose the flow state g
as

g=q+4, (2.2)

where g is the time- and spanwise-averaged flow and ¢ is the fluctuating component.
With this Reynolds decomposition, we can express the compressible Navier—Stokes
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equations as

8 /
=Ly +f 2.3)

where f” gathers all nonlinear terms. The spanwise periodicity and statistical stationarity
allows for ¢’ and f” to be represented with temporal and spanwise Fourier modes

00 OO o,
g ¢.5.2.0.565.2,01 = / / [0 ), fi 00 M1 dky do,
—o0J—00 N
(2.4)
where ky is the spanwise wavenumber, and ¢, , and f ko AT€ the biglobal modes

for spanwise wavenumber k. and temporal frequency w. By substituting these modal
expressions into (2.3), we obtaln

- iwékzr,w = ‘cq&kz/,w +sz/,a)’ (2.5)

which is an inhomogeneous linear differential equation describing the perturbation
evolution with input f7 , . This formulation leads us to

U0 = Maky.of 100 (2.6)

where
k. = [—i] — Lg(k)]™" 2.7)

is known as the resolvent (Reddy & Henningson 1993; Trefethen et al. 1993). This operator
acts as a state-space transfer function between the input forcing }'kzuw and the output
response gy, ,, With respect to the base flow g (Jovanovi¢ & Bamieh 2005). To construct a
discrete linear operator Lz and a discrete resolvent Hz € C"™*™, we use the time-averaged
flow g (McKeon & Sharma 2010). Here, m is the resolvent operator size defined by the
product of the number of spatial grid points used to discretize the domain and the number

of state variables. Appropriate boundary conditions are embedded in Hj.
The discrete resolvent is examined through singular value decomposition,

H; = [—iwl — L] = Q3F*, (2.8)
where F = [fl,fz, cees fm] is the orthonormal matrix of right singular vectors
representing the forcing modes, X = diag[oy, 02, ..., 0p,] is the diagonal matrix of
singular values ranked in descending order, and Q@ = [, 5, - . ., q,,] is the orthonormal

matrix of left singular vectors representing the response modes (Trefethen et al. 1993;
Jovanovi¢ & Bamieh 2005; McKeon & Sharma 2010).

We can also incorporate temporal damping into forcing and response modes as
4, jk,/ ol e P! through a discounted resolvent operator, where § is a time-discounting
pafametef (Jovanovi¢ 2004; Schmid & Brandt 2014). Moreover, the pseudospectral
analysis is dependent on the norm (Trefethen & Embree 2005). In this work, we use
the Chu norm (Chu 1965) which is incorporated into the resolvent through a similarity
transform Hz — wl/2 H; w12 where W is the weight matrix that accounts for numerical
quadrature and energy weights.

The weighted resolvent is dependent on the temporal frequency w, spanwise
wavenumber k, and the base flow ¢ = q(«, A). These parameters define a large parameter
space to characterize the effect of sweep angle on the wake dynamics. To facilitate this
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characterization, we employ an adjoint-based parametric sensitivity method for w and k,
(Schmid & Brandt 2014; Fosas de Pando & Schmid 2017). This approach is helpful when
the parameter space is large, as well as capturing the sensitivity of the resolvent norm to
specific geometrical and flow parameters (Skene & Schmid 2019).

To perform the resolvent analysis, we construct a discrete linear operator Lz (Sun et al.
2017). This operator is discretized over a 2-D unstructured grid, as shown in figure 1,
with a reduced-size spatial domain x/L. € [—10, 15] and y/L. € [—10, 10] to alleviate the
computational costs of performing resolvent analysis without affecting the accuracy of the
resolvent modes. The structured DNS base flow solution is transferred to the unstructured
grid via cubic interpolation. We enforce homogeneous Dirichlet boundary conditions for
the fluctuating variables p” and «’ and homogeneous Neumann boundary conditions for 7’
along the far field and airfoil boundaries, as well as to all variables at the computational
outlet. In addition, we apply sponges far from airfoil in conjunction with the boundary
conditions.

In the present work, we construct Lz with m ranging between 150 000 and 200 000. The
resolvent modes were computed using the randomized resolvent algorithm (Ribeiro, Yeh &
Taira 2020), sketching the operator with 10 random test vectors weighted by the gradients
of the baseflow (|Voll, [Vuxll, [Vuyll, IVu,ll, IVpl). The resolvent norm converges to
at least seven significant digits. For the spectral analysis of Lg, eigenmodes were computed
using the Krylov—Schur method (Stewart 2002) with 128 vectors for the Krylov subspace
and tolerance residual of 1070, The direct and adjoint linear systems were solved using
the MUMPS (multifrontal massively parallel sparse direct solver) package. The codes used
to compute the resolvent modes and eigenvalues are part of the ‘linear analysis package’
made available by Skene, Ribeiro & Taira (2022).

3. Effect of sweep on wake dynamics
3.1. Wake characterization

The wake structures are affected by sweep and incidence angles, as shown by the
isosurfaces of Q coloured by the vorticity w, in figure 2. For angles of attack o < 20°,
the flow is 2-D and the wake vortices are aligned with the sweep angle. For o > 26°, the
vortical structures exhibit spanwise oscillations with a transition from 2-D to 3-D vortex
shedding. Ata = 26°, a sinusoidal pattern of oscillations appears in the spanwise direction
and, at « = 30°, streamwise vortical structures emerge.

Highly swept wings induce spanwise flows and attenuate wake three-dimensionality as
evident from the flow visualizations. When the sweep angle is A < 15° the wake is similar
to the flow over unswept wings for all angles of attack. The wake is significantly altered
for sweep angles A > 30°, especially at high angles of attack, when spanwise oscillations
are advected by the spanwise flow. For instance, at A = 45° and o = 26°, the spanwise
oscillations are almost suppressed. The attenuation of spanwise fluctuations also occurs
for « = 30°, as we observe a similar effect for A > 30°.

Even though sweep attenuates three-dimensionality, the sustained unsteadiness of the
wake suggests the existence of self-supported mechanisms that yield distinct vortex
shedding patterns in swept wings at high incidence angles. We gain further insights into
the separated flows by analysing the time-averaged flow field contours of streamwise and
spanwise velocities, as seen in figure 3. In general, as we increase the sweep angle, the
u, = 0 contour line approaches the wing surface. For « = 30°, we also notice a circular
u; profile appearing in the wake region where the spanwise flow is stronger.
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Figure 2. Instantaneous flow field visualization with isosurfaces of Q criterion coloured by the vorticity
component w;. For a > 26°, the wake is 3-D. As A increases, the vortices become slanted with the sweep
angle and wake three-dimensionality is reduced for o > 26°.

(a) (b) (0 (d)

A=0° A=15° A=30° A=45°

g

(e) (1) ) (h)

30°

Q

Figure 3. Time-averaged flow field visualization with z-velocity component, u; € [0, 0.5], in greyscale, for
0° < A <45° and o = 16° and 30°. Red solid contours mark the laminar separation bubble, with six equally
distributed isolines of x-velocity component, u, € [0, 0.5]. Cross-flow component u, strengthens with «
and A.

The aerodynamic loads exerted on the wing are also affected by the sweep angle (Zhang
et al. 2020a; Zhang & Taira 2022). However, it is possible to observe similarities between
force characteristics with different sweep angles through the independence principle. This
leads to the application of proper scaling factors to collapse aerodynamic properties for
a variety of swept wings where adverse pressure gradients and spanwise fluctuations are
negligible (Wygnanski et al. 2011).

For the present flows, however, the adverse pressure gradients cannot be neglected due
to the massive separation. In figure 4, we show that Cy and Cp differ for the same « if we
analyse the flow variables in (x, y, z). The coefficients collapse if we consider scaling the
same force coefficients in (x', y, /). Here, the vector-valued variables in (x, y, z) aligned
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Figure 4. Time-averaged lift, Cy, drag, Cp and coefficient ratio C; /Cp, for all a, A pair of the present study
compared with 2-D incompressible results shown by Zhang er al. (2020b). Panels (d—f) show the scaled
time-averaged coefficients where the flow is analysed in (¥, y, ), and the results collapse for each «, for
all sweep angles.

with x are scaled with cos A, and the effective chord length
L. = Lo(cos> acos® A + sin?a)/? < L, 3.1
is used to form the scaled C; and C}, coefficients as

F)’
1p(Uss cos AL,

F A
Cp= : x €08 T (3.2a—c)
30 (Uso cos A)°L;,

Cr

where F, cos A = Fy is the X’ component of the pressure and viscous forces integrated
over the airfoil surface per unit depth. As shown in figure 4(d-f), these scaled coefficients
collapse over the angles of attack. Deviations are noticed only for sweep angles A > 30°
at high angles of attack o > 26°.

The shown scaling can also be applied to the Fage—Johansen Strouhal number in the
(*', y) plane as
o L sinog,
2 Usocos A

As presented in figure 5, the PSD profiles of C; for swept wings exhibit peaks at their
characteristic Strouhal number of the vortex shedding and its harmonics. When the adapted
Fage-Johansen Strouhal number S7’ is considered, the spectral peaks collapse at the same
frequencies as observed for the unswept wings. For « = 16°, the flow is characterized by
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Figure 5. Scaled lift power spectrum density (PSD) for (a,c) o = 16° and (b.d) « = 30° at sweep angles
A = 0°, 30° and 45°. In (c,d) the Fage-Johansen Strouhal number is analysed in the (x', y) plane and the
dominant and harmonic frequencies for swept wings collapse with the unswept wings.

a single 2-D vortex shedding and the C; spectra is smooth with distinct peak values. For
o = 30°, the spectra exhibits secondary peaks for A < 30° and is smooth for A = 45°,
when three-dimensionality is attenuated.

We can also similarly normalize the pressure coefficients C, by considering the
Uso cos A in place of Uy in (2.1a—c). Indeed, large differences in C), distribution over
the wing are shown in figure 6(a.,b), however, if we consider the scaled-C),, we reveal that
the pressure distributions collapse for moderate angles of attack, even though these flows
exhibit massive separation, as shown in figure 6(c,d). Although we can bring pressure
coefficients closer using C,/ cos? A, we notice some deviations for higher angles of
sweep and attack, as observed for A = 45° and o = 30°. This motivates us to further
understand how massively separated streamwise flow and the strong spanwise flow may
impose additional loads over the wing. These deviations indeed suggest that even when the
three-dimensionality is attenuated, the wake over laminar swept wings can exert additional
aerodynamic forces over the wing for A > 30° and o > 26°.

3.2. Force element analysis

To further understand the sources of deviations in the independence principle, we use
the force element theory of Chang (1992) to relate the near-body vortical structures to
aerodynamic forces. Through this method, we identify lift and drag force elements in the
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Figure 6. Time-averaged pressure coefficients (a.b) Cp, and (c.d) C,/ cos? A over the airfoil surface at
(a,c) a = 16° and (b,d) 30°.

near-wake region of the current low-Reynolds number flows and analyse the distribution of
force elements near the surface as the wing is swept. This analysis captures the emerging
wake structures over swept wings at high angles of attack that exert nonlinear poststall
forces onto the wing.

We observe that the emergence of these force elements is associated with a departure
from the collapsed force and pressure coefficients. The sweep-angle dependent scaling in
(3.2a—c) and (3.3) assumes independence of streamwise and spanwise flow components.
The interaction between them can cause a departure from the collapsed force and pressure
coefficients. By using the force element analysis, we uncover near-wake structures that are
responsible for the extra forces at high angles of sweep and attack.

To perform this analysis, we start by defining an auxiliary potential with a specific
boundary condition of —n - V¢; = n - ¢; along the wing surface, where ¢ is the auxiliary
potential, n is the unit wall-normal vector and e; ar normal vectors in the ith direction. For
a solenoidal velocity field, the force exerted on the wing in the ith direction can be written
as

1
F,-:—/uxw-qu,-dV—l——/nxw-(VqS,-—i—e,-)dS, (3.4)
14 Re Js

where the first integral term on the right-hand side is named the vortical elements force
and the second integral term is called the surface element force. We can visualize the
lift and drag force elements by the Hadamard product of the V¢; and the Lamb vector
(@ x u). The auxiliary potential field decays rapidly far from the wing surface, hence the
force elements of (u X @) o V¢; are concentrated near the wing.
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Figure 7. Characterization of force elements on swept wings. The symbols refer to o (yellow), force elements
only near the leading and trailing edges; [J (blue), additional equally spaced small lift elements; and A (red),
large force structures observed on the suction side. On the right-hand side, we show isosurfaces of lift force
elements, (w x u) - V¢ € [—0.3, 0.3] and isosurfaces of Q values coloured by streamwise velocity component
i, with range [0, 1] for the time step with the highest lift coefficient C; for @ = 30° and 15° < A < 45°,

Sweep has a strong influence in limiting the validity of the independence principle
at high angles of incidence and it favours the emergence of additional force elements
near the wing surface. To show this, let us reveal the vortical structures that generate lift
(@ x u) - V¢, at the instance when the maximum lift is achieved, as shown in figure 7.
Drag elements have a similar behaviour as the lift and are not shown for brevity. For
o < 20°, the force elements are located near the airfoil’s leading and trailing edges, in the
shear-dominated region of the flow, along the edge of the laminar separation bubble.

Additional lift elements appear for higher angles of sweep and attack, as shown in
figure 7. These lift elements are observed over the final quarter chord of the airfoil on
the suction side, and as the sweep angle increases, they also increase in size. The force
elements can be contrasted with the vortical structures in Q criterion visualization in
figure 7. As such coherent structures are present inside the laminar separation bubble,
with size and shape similar to the force elements, they can be identified as the lift elements
related to the larger deviations in figure 6(c,d).

We observe that sweep affects the coherent structures, time-averaged flow fields and
aerodynamic loads and, although some similarities are perceived, sweep has a strong
influence on the wake flow downstream at the higher angles of attack. This suggests that
flow perturbations originated near the airfoil in the laminar flows over swept wings can
be related to the features observed in the nonlinear simulations. To further understand
how sweep alters the vortex dynamics we conduct global resolvent analysis to identify the
sources of self-sustained mechanisms near the wing that affect the wake behaviour.

3.3. Resolvent analysis

To identify the existence of regions susceptible to the growth of perturbations in the flows
over swept wings, we study the effect of sweep using resolvent analysis. Details on the
stability of the linear operators and the usage of time-discounting are provided in the
Appendix. We characterize the present flows through the dominant singular value o of the
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Figure 8. (a) Forcing (red boxes) and (b) response (blue boxes) contours for the |uy|/||ux|lco € [0.1, 1] in
blue—green—red scale at the largest o1 with ky = 0 at A = 0° and 45°. Forcing modes extend in the wake and
response modes become closer to the airfoil in swept wings. Isosurfaces of dominant resolvent gain oy in the
A-St'—k, space for o = 16° to 30°.

resolvent operator and its corresponding singular vectors @sz,w and sz,,w. The influence of
sweep on the vortex dynamics in the wake is analysed through the forcing and response
modes in figure 8. The shown modal structures highlight the regions of the flow field which
are more sensitive and responsive to the growth of perturbations.

Forcing modes are more localized than response modes, which are supported in the
shear-dominated region of the flow, where perturbations can be highly amplified. On the
other hand, the response modes are seen in the wake. For swept wings, the response
modes are deformed spatially towards the airfoil surface and, for ¢ = 30°, we notice
the emergence of a characteristic responsive region near the airfoil leading edge. Such
response structures appear over swept wings only at high angles of attack, as seen in
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Figure 9. The leading resolvent gain contours at o = 20° and 30° for 0° < A < 45°. The dash—dotted
slopes represent spanwise convection speeds. The green line exhibits the convection speed prediction with
0.25U tan A.

figure 8(a). We observe the contours of the magnitude of modal streamwise velocity
component |ii,| to reveal the regions of the flow that have more responsive to introduced
perturbations. We visualize similar contours for the forcing counterpart and see that the
modes extend slightly into the wake, over the laminar separation bubble. This behaviour
reveals that the flow over swept wings can amplify optimal disturbances closer to the airfoil
suction side, which can be used to alter the formation of the laminar separation bubble.

Furthermore, the present resolvent analysis predicts the formation of oblique vortex
shedding, as observed in Mittal et al. (2021) and Zhang et al. (2020a), even though the
present study is performed on spanwise periodic wings. Previous works have shown that
oblique coherent structures become spatially periodic for large aspect ratio wings, making
spanwise periodic analysis valid to study such 3-D structures. Through resolvent analysis,
we can explain how oblique coherent structures are advected by the flow stream using the
spatiotemporal frequencies of the optimal response modes.

The frequency at maximum o for each spanwise wavenumber is a function of the sweep
angle and is characterized by the convection speed of the optimal oblique modes. We
compute this phase speed as ¢ = dw/dk,, the slope of the optimal response frequencies
for each spanwise wavenumber. This value is a function of A and k, (Paladini et al. 2019;
He & Timme 2021; Plante et al. 2021). For flow regimes studied in the present work,
S~ 0.25U4 tan A gives a reasonable prediction for the frequency of the maximum o
for each spanwise wavenumber and sweep angle for all angles of incidence, as shown in
figure 9. This function can be used to predict the optimal forcing and response modes for
laminar separated flows over swept wings. Additionally, the mode shapes of the optimal
forcing and response are similar for low k.. The present results reveal the optimal actuation
location and response as well as the spatiotemporal behaviour of the flow perturbations
over laminar separated flows on swept wings.

In general, oblique modes are the most amplified optimal disturbances for all swept
wings. The effect of sweep on o1, however, depends on the angle of attack, as shown in
figure 8 and summarized in table 2. For o < 20°, swept wings have higher amplification
than unswept wings. This is a distinct behaviour when compared with & > 26°, in which
swept wings have lower resolvent norm than unswept wings. This behaviour suggests that
it is more challenging to perturb highly swept wings at high angles of attack.

The spatial and temporal frequency of the maximum resolvent gain max(o) in the
St'—k, space depends on the sweep angle, as shown in table 2. For unswept wings,
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o = 16° o = 20° _ 16
A max(oy) Y ke max(oy) St ky 0.4 o 20°
«=26°
0° 1077 0.143 0.000m 137.0  0.165 0.0007 —_— = 30°
15° 1107  0.146 0.16l7  140.6  0.169 0.171x
30° 1213 0.154 0281% 1503  0.175 0.221% 03w
45° 1453 0.170 0392w 166.5  0.190 0.3027
0A=0°
o o = 26° o = 30° k _ 1c0
OA=15
A maxey)  SY ke maxe) SY ke 20T &Y A 42300
0°  250.1 0.173 0.000% 3685 0.174 0.0007 o vV A=45°
15 2572 0.178 0.131% 3759  0.175 0.090% o
30° 2282 0.189 0.191% 3638 0.182 0.10lw :
45° 186.6 0207 0211w 2994  0.195 0.1llx Ot max
0 Ul,min

0.12 0.5 0.18 021 024
St’

Table 2. The maximum leading resolvent gain max(oy) for each o, A pair. In the inset figure, we plot
max(oy) in S —k, space coloured in blue scale with respect to the minimum and maximum o for each «.

the largest resolvent gain o7 is found for the 2-D setting of k; = 0 associated with the
temporal frequency of the characteristic vortex shedding. However, both k, and S’ of the
optimal disturbances max(o1) increase with the sweep angle. Thus, the 3-D oblique modal
structures are not only predicted by the present resolvent analysis but also found to be the
most amplified flow mechanism in swept wings, as shown in figure 10.

Although all flows analysed in this work are spanwise periodic, and oblique shedding is
absent in the DNS, the large o in k; > 0 modes suggest that the spanwise flow over swept
wings supports the formation and shedding of 3-D oblique vortices in infinite wings. To
analyse the spatial behaviour of oblique modes, let us focus on the resolvent analysis at
the angle of attack o« = 20° and sweep angle A = 45°, as seen in figure 10. As noticed at
k, = 0, the 2-D forcing and response modes are aligned with the wingspan, however, the
maximum resolvent gain o in the St'—k, for this flow is found at k; = 0.37 and St = 0.19,
where modes are oblique with respect to the wingspan. For this reason, the flow over swept
wings has a higher propensity to develop oblique shedding when compared with the flow
over unswept wings and such characteristic is revealed through resolvent analysis to be
associated with the sweep angle.

The flow mechanisms that are responsible for oblique shedding and the attenuation of
the spanwise oscillations for swept wings were described as the growth of response modes
towards the airfoil surface and the extension of forcing modes into the wake and over
the laminar separation bubble. This phenomenon also creates an overlapping region of
the flow where both forcing and response modes are supported. This overlap of forcing
and response structures is more prominent at the higher sweep angles, although it is also
present in unswept wings. The overlap of forcing and response modes and their associated
resolvent gain can both be relevant to characterize how the flow over swept wings at high
incidence gives rise to perturbations on the flow as we discuss such a phenomenon through
the lens of wavemakers.
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Figure 10. (a,c) Forcing ( f , red boxes) and (b,d) response (g, blue boxes) modes isosurfaces with y-velocity
components ity /||ity|loc € £0.2 in red—blue colour scale for « = 20° and A = 45°. Wingspan length is 10L..
Forcing and response modes are associated with the largest resolvent gain for each k; as shown in the o
contours over St~k plane.

3.4. Wavemakers

Wavemakers have been described as regions of the flow field characterized by both
high sensitivity and responsiveness to perturbation growth (Giannetti & Luchini 2007;
Giannetti et al. 2010; Fosas de Pando et al. 2017). Such regions are optimal for the
introduction of self-sustained instabilities, acting as the source of global instabilities of
the system, and motivate the analysis of structural sensitivity of the modal forcing and
response structures.

In global stability analysis, wavemakers are generally derived with direct and adjoint
modes. Here, we quantify the strength of the wavemakers with the inner product of the
forcing and response modes (c}kz/,w, sz/,w) and visualize the corresponding wavemaker
modes with their Hadamard product. Wavemaker modes exhibit a higher magnitude
downstream the airfoil, as shown in figure 11, in the region where 3-D flow develops for
o = 30°. Thus, the emergence of strong wavemakers near the leading edge and over the
separation bubble highlights the presence of self-sustained oscillations in the flow field.
As the sweep angle tends to empower forcing and response modes overlap, wavemakers
tend to be spatially wider in swept wings.

We evaluate the strength of wavemakers in the A-Sr'—k, space with the inner product
of pseudomodes @kzuw’ sz,,w) and their associated resolvent gain o;. In this way, we
avoid accounting for the wavemakers where o is too small to amplify perturbations.
Hence, to understand which combination of temporal frequencies, spanwise wavenumber
and sweep angle is most likely to generate wavemakers, we consider the coefficient
& = (o/max(01)){gi, f‘i), where max(o1) is evaluated for each angle of attack over the
St'—k,—A space, with contours shown in figure 11 for @ = 20° and 30°.
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Figure 11. Contours of & = (o1 /max(c1)){(qi, fi), the inner product between forcing and response modes,
scaled by the ratio of o1 and the maximum o for each . Green line shows the convection speed ¢ = dw/dk, for

the optimal wavemakers. Spatial modes shown by the Hadamard product of g; and f, in magnitude, normalized
by their maximum value, and coloured in purple scale.

The resolvent modes with higher values of & are observed for swept wings
at higher angles of attack. The wavemaker modes appear where vortex shedding
develops in the wake. Hence a higher & suggests perturbations are introduced with
higher gain to be amplified in this region for flows over wings at high incidence.
Furthermore, those disturbances feed the flow with self-generated disturbances that
maintain three-dimensionality of the wake, as observed for instance at « = 30°. In unswept
wings, the St'—k, frequencies with strong wavemaker modes is found for 2-D wavemakers.

For swept wings, the modes with the highest £ coefficient for each angles of attack
are located at A = 45° and non-zero k;, hence being associated with oblique modes.
This finding is in agreement with the previous observations on the overlap of forcing and
response modes, in figure 8. Hence, even if the amplification gain o7 is reduced for swept
wings at @ = 30°, the overlap of forcing and response modes is stronger, which introduces
wavemakers over swept wings that are stronger than wavemakers for unswept wings, which
explains the three-dimensionality observed in these flow fields.

This finding, however, is in contrast with the DNS results that show an attenuation of
spanwise oscillations with the sweep angle. To understand why such alleviation occurs,
we must observe that optimal responses and optimal wavemakers also have an associated
wave speed, characterized by their spatial and temporal frequencies, that is associated with
the transport of disturbances over the periodic direction.

We note that an optimal wavemaker speed being faster than the optimal response wave
speed leads to an attenuation on three-dimensionality. Wavemakers yield self-sustained
instabilities in swept wings with an associated wavemaker phase speed ¢, = dw/dk,,
which we characterize by the slope of the slash—dotted green lines in figure 11. As
observed in table 3, when c,, is large for high sweep angles and the optimal response ¢
is small, the reduction of spanwise oscillations is seen in the flow field. In such cases, a
misalignment appears between optimal responses and wavemakers which cannot support
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a = 26° a = 30°
A=0° 15° 30° 45° 0° 15° 30° 45°
Opt. response —-0.021  0.022 0.089 0.253 —0.042 0.039 0.150 0.406

Opt. wavemaker 0.117 0.18 0316 0595 —-0.008 0.073 0.204 0.537

Table 3. Convective speed ¢ = dw/dk, for the optimal response and the optimal wavemakers for the 3-D
flows at ¢ = 26° and 30° and sweep angles 0° < A < 45°.

spanwise oscillations. For this reason, wavemakers cannot sustain 3-D disturbances over
swept wings.

Finally, even for & = 20°, in which the flow field is 2-D, resolvent analysis reveals the
presence of wavemakers. Those are associated with the sustained unsteady 2-D vortex
shedding. To sustain three-dimensionality, wavemakers must introduce sufficiently strong
3-D structures to the flow with high amplification gain. For swept wings at high incidence,
even though optimal wavemakers have a high gain, they are advected faster than the
optimal responses, which reduces the flow three-dimensionality.

4. Conclusions

We reported on the wake dynamics under the influence of sweep for laminar flows over
2-D wings through the use of DNS and resolvent analysis. The study focused on the onset
of 3-D wake structures at high incidence and the reduction of spanwise oscillations at
high sweep. The DNS revealed the influence of sweep in terms of attenuating spanwise
fluctuations over the wing and giving rise to 3-D wakes in agreement with the literature
on finite wings. Although the wake dynamics exhibit larger differences between swept
and unswept wings, a sweep-angle-based scaling can be used to collapse aerodynamic
characteristics when we consider streamwise and spanwise flows to be independent.

As some differences in pressure, lift and drag for the lower angle of attack settings are
perceived at the higher angles of sweep and attack, we resort to the force element theory
and identify the vortical structures with spanwise periodicity formed closer to the wing
within the laminar separation bubble. Such elements are observed to increase in size and
shape with an increase in angles of sweep and attack, a behaviour associated with the
deviations of scaled force and pressure coefficients for massively separated flows. This
finding revealed force elements that impose additional forces over the wing and showed
that spanwise and streamwise flow components cannot be independently analysed for
massively separated flows over swept wings.

Through resolvent analysis, we showed how sweep angle induces a convection speed
to the optimal resolvent modes, and provide a linear model to predict the optimal forcing
and response spatiotemporal frequencies for laminar flows over swept wings. The forcing
and response spatial mode pairs are also affected by the sweep as well as wavemakers that
sustain and promote unsteadiness in the wake. We revealed that a misalignment between
the optimal response convection speed and the wavemaker speed leads to the reduction
in spanwise oscillations for higher sweep angle. Additionally, we observed that resolvent
modes with large amplification gain on swept wings represent the oblique vortex shedding,
as observed for laminar flows over high aspect ratio wings in the literature. The present
results reveal the fundamental influence of the sweep angle on the airfoil wake dynamics
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Figure 12. Dominant eigenvalues of Ly for (a) @ = 16°, (b) 20°, (c) 26° and (d) 30°, for different sweep angles
A, and spanwise wavenumbers k. Here St, and Sz, are the S7 numbers for growth rate and temporal frequency,
respectively. Black solid lines connect the eigenvalues for the same k.

and support future studies on the control of wake oscillations on swept wings at higher
angles of attack.
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Appendix. Dominant eigenvalues of the linearized operators
The eigenspectrum of the linearized Navier-Stokes operator Lz is comprised of
eigenvalues —iw = —iw, + w;, with growth rate ; and temporal frequency ;.
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The dominant eigenmode reveals the spatial structures that can emerge in the flow.
We track the dominant eigenvalue in the complex plane as we increase the spanwise
wavenumber k, for each (o, A) pair to examine if some of these parameters may cause
the linear operator to become unstable, as shown in figure 12.

There is a distinct behaviour for « < 20° and @ > 26°. For the lower angles of attack,
swept wings have a greater growth rate for each k,, while for the higher angles of attack
we observe the opposite trend. For o < 20°, swept wings wakes are close to the stability
threshold as we increase k. On the other hand, for « > 26° unstable modes move into
the stable region as we increase k; for all swept wings. As the linearized operators are
unstable for « = 30° and k, ~ 0, small perturbations can be amplified and sustained by
the wavemakers generating the 3-D wake flow observed in the numerical simulations.

Even when the modes are unstable, they are close to the stable region in the complex
plane. We keep the same finite time window for resolvent analysis for all angles of sweep
and attack. We find the highest growth rate among all cases to set the discounted resolvent
operator with a finite time shorter than the associated time scale of the largest w;, which is
observed for the unswept wing at « = 30°. For this reason, we use a fixed time window of
t;Uso sine /L. cos A = 50 for the discounted resolvent analysis of all angles of attack and
sweep.
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