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1. Introduction and results

Rational approximations of the values of Mahler functions have been an active
research area in the past few years. Since Bugeaud’s remarkable paper [4], where
he proved that the irrationality exponent of Thue–Morse numbers is 2, several
papers have appeared on the irrationality exponents of the values of degree 1 Mahler
functions (see [2,5,8,11,13,16]). A good overview of these results is given in [5]. In
particular, we know that the irrationality exponents of the numbers in theorems 1.1,
1.3 and 1.4 are equal to 2.

As a natural generalization of the above results, our aim here is to obtain linear
independence measures for the values of a class of Mahler functions F (z), G(z) ∈
Q[[z]] converging on some open disc Dr := {z : |z| < r � 1} and satisfying a system
of Mahler-type functional equations:

F (zd) = p11(z)F (z) + p12(z)G(z) + p10(z),

G(zd) = p21(z)F (z) + p22(z)G(z) + p20(z),

}
(1.1)

where pij(z) ∈ Q(z) and p11(z)p22(z)−p12(z)p21(z) �= 0. Note that Mahler functions
of degree 1 or 2 satisfy functional equations of the above type: if F (z) and G(z)
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are Mahler functions of degree 1, then p12(z) = p21(z) = 0, and if F (z) is of
degree 2, then we choose G(z) = F (zd), p12(z) = 1 and p11(z) = p10(z) = 0. Our
general result (theorem 4.1) needs some technical notation (to be presented later),
and therefore to introduce our results we now demonstrate applications to some
well-known functions.

The linear independence measures studied here are lower bounds for linear forms
(in 1 and certain numbers γ1 and γ2) of the form

|h0 + h1γ1 + h2γ2| > CH−µ, (1.2)

valid for any integers h0, h1, h2, not all zero, where the exponent µ is given explicitly,
H = max{|h1|, |h2|, H0} and positive constants C and H0 are independent of hi. In
our results, γ1 and γ2 are the values of the functions under consideration at rational
points a/b ∈ Dr\{0}, where

log |a| = λ log b (0 � λ < log(rb)/ log b).

We note that generally [12, theorem 4.4.1] implies the existence of a µ (µ � 2)
in our cases below, and here our aim is to obtain an explicit upper bound for the
linear independence exponent

µ(γ1, γ2) := inf{µ : (1.2) holds for some C > 0, H0 > 0}.

It is known that µ(γ1, γ2) = 2 for Lebesgue almost all (γ1, γ2) ∈ R2 and µ(γ, γ2) = 2
for Lebesgue almost all γ ∈ R, but if a pair (γ1, γ2) ∈ R2 is given, it is usually
difficult to determine µ(γ1, γ2) or even an upper bound for it. By the Schmidt
subspace theorem, µ(γ1, γ2) = 2 if γ1 and γ2 are real algebraic numbers such that
1, γ1 and γ2 are linearly independent over the rationals, and µ(γ, γ2) = 2 for all
real algebraic numbers γ of degree greater than or equal to 3. We also know pairs
of transcendental numbers having linear independence exponent 2. For instance,
Popken proved in 1929 that µ(e, e2) = 2, and there are similar results for the
values of more general Siegel E-functions. Furthermore, the theory of linear forms
in logarithms implies that µ(γ1, γ2) has an effectively computable upper bound if
γi are values of the logarithmic function at algebraic points. All these results are
presented, for example, in [10]; note also that often analogous results hold more
generally for similarly defined µ(γ1, . . . , γm) with m � 3.

In the following applications of theorem 4.1, we choose five pairs of Mahler func-
tions. The first three pairs, which are degree 1 Mahler functions, satisfy different
shapes of Mahler-type functional equations. In our fourth example, the functions are
related to the Rudin–Shapiro sequence and satisfy more general functional equa-
tions of type (1.1). The Mahler functions in the last pair are degree 2 Mahler
functions.

1.1. The Thue–Morse number and its square

Our first application is to study the product

T (z) =
∞∏

j=0

(1 − z2j

),
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the generating function of the Thue–Morse sequence on {−1, 1}, satisfying

T (z) = (1 − z)T (z2). (1.3)

Theorem 1.1. We have

µ

(
T

(
1
b

)
, T 2

(
1
b

))
� 91

32
≈ 2.843 . . . .

More generally, if 0 � λ < 7
29 , then

µ

(
T

(
a

b

)
, T 2

(
a

b

))
� 91

32 − 104λ
.

It is well known that a bound for µ(γ, γ2) implies a bound for the approximation
of γ by quadratic algebraic numbers α. Namely, if p(x) = h0 + h1x + h2x

2 ∈ Z[x]
is the minimal polynomial of α and |γ − α| < 1, then

|p(γ)| = |p(γ) − p(α)| � ch|γ − α|,

where h = max{|hi|} is the height of α and c = 2(1 + |γ|) is a positive constant
independent of α. If we take γ = T (1/b) here, then theorem 1.1 implies the following
corollary on the approximation of T (1/b) by quadratic numbers.

Corollary 1.2. If ε > 0 is given, then there exist positive constants C1 = C1(b, ε)
and H1 = H1(b, ε) such that, for all algebraic numbers α of degree less than or equal
to 2 and height less than or equal to h,∣∣∣∣T

(
1
b

)
− α

∣∣∣∣ > C1H
−ω−ε,

where ω = 123
32 ≈ 3.843 . . . and H = max{h, H1}.

1.2. Stern’s sequence and its twisted version

Next, let A(z) and B(z) be the generating functions of Stern’s diatomic sequence
and its twisted version, respectively. These functions satisfy the functional equations

A(z) = (1 + z + z2)A(z2), B(z) = 2 − (1 + z + z2)B(z2), (1.4)

of type (1.1) (see, for example, [6]).

Theorem 1.3. We have

µ

(
A

(
1
b

)
, B

(
1
b

))
� 26

9
≈ 2.888 . . . .

More generally,

µ

(
A

(
a

b

)
, B

(
a

b

))
�

⎧⎪⎪⎨
⎪⎪⎩

130
45 − 149λ

if λ <
145
1289

,

69
25 − 89λ

if
145
1289

� λ <
5
29

.
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1.3. Lambert series G3(z) and F3(z)

The functions

G3(z) =
∞∑

j=0

z3j

1 − z3j , F3(z) =
∞∑

j=0

z3j

1 + z3j = −G3(−z)

satisfy

(1 − z)G3(z) − (1 − z)G3(z3) − z = 0, (1 + z)F3(z) − (1 + z)F3(z3) − z = 0.
(1.5)

The following result studies the values of these typical examples of Mahler functions.

Theorem 1.4. We have

µ

(
G3

(
1
b

)
, F3

(
1
b

))
� 129

37
≈ 3.486 . . . .

More generally,

µ

(
G3

(
a

b

)
, F3

(
a

b

))
�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

129
37 − 119λ

if λ <
25
443

,

83
24 − 80λ

if
25
443

� λ <
43
337

,

57
17 − 59λ

if
43
337

� λ <
7
29

.

1.4. The Rudin–Shapiro sequence

Let (rn)n�0 be the Rudin–Shapiro sequence defined by r0 = 1, r2n = rn, r2n+1 =
(−1)nrn. Its generating function, R(z) =

∑
n�0 rnzn, satisfies

R(z) = R(z2) + zR(−z2). (1.6)

We shall investigate the values of R(z) and R(−z) at some rational points.

Theorem 1.5. We have

µ

(
R

(
1
b

)
, R

(
−1

b

))
� 13

4
= 3.25.

More generally,

µ

(
R

(
a

b

)
, R

(
−a

b

))
�

⎧⎪⎨
⎪⎩

39
12 − 40λ

if λ <
21
187

,

47
15 − 53λ

if
21
187

� λ <
3
13

.

1.5. A degree 2 Mahler function

As an example of degree 2 Mahler functions we take the function S(z) satisfying
S(0) = 1 and

zS(z) − (1 + z + z2)S(z4) + S(z16) = 0. (1.7)

https://doi.org/10.1017/S0308210518000148 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210518000148


On linear independence measures of the values of Mahler functions 1301

This function was introduced by Dilcher and Stolarsky [9], and it has been studied
recently in, for example, [1,3,7]. In particular, the algebraic independence of S(α),
S′(α), S(α4) and S′(α4) is proved in [3] for all algebraic α, 0 < |α| < 1. Note also
that, in [7], an upper bound 5 is obtained for the irrationality exponent of S(1/b).

Theorem 1.6. We have

µ

(
S

(
1
b

)
, S

(
1
b4

))
� 167

25
= 6.68.

More generally, if 0 � λ < 1
5 , then

µ

(
S

(
a

b

)
, S

((
a

b

)4))
� 167

25 − 93λ
.

This work is a continuation of [14], in which we the studied simultaneous approx-
imations of similar numbers. These results and Khintchine’s transference theorem
can be used to obtain linear independence measures for the numbers in theorems 1.3,
1.4 and 1.6, but the results are weaker than those obtained in this paper.

The results on irrationality exponents mentioned above are based on the non-
vanishing property of certain Hankel determinants. Analogously, all results here are
based on the non-vanishing property of the determinants of suitable Hermite–Padé
approximation polynomials, which are given explicitly in [15, appendix]. The non-
vanishing property is verified here by computing the determinants, but it would
be of great interest to find a more general criterion for this. Once some non-zero
determinants have been obtained, the functional equations can be used to produce a
sufficiently dense infinite sequence of approximations with non-zero determinants. It
is well known that such approximations can be used to produce linear independence
measures along the lines of Siegel’s method. Section 3 contains this consideration,
and it is then applied to prove a general result in § 4. The proofs of theorems 1.1
and 1.3–1.6 are given in § 5.

2. Important determinants

We first note that system (1.1) can be given in the form

P (z)F (zd) = P11(z)F (z) + P12(z)G(z) + P10(z), (2.1)

P (z)G(zd) = P21(z)F (z) + P22(z)G(z) + P20(z), (2.2)

where P (z), the least common denominator of pij(z), and Pij(z) = P (z)pij(z)
belong to Z[z] and satisfy P11(z)P22(z) − P12(z)P21(z) �= 0.

For an integer k � 1, let Ak(z), Bk(z), Ck(z) ∈ Z[z] denote (d1, d2, d3) = (d1(k),
d2(k), d3(k)) Hermite–Padé approximation polynomials of F (z), G(z) and 1, so

Ak(z)F (z) + Bk(z)G(z) + Ck(z) = Rk(z), (2.3)

where deg Ak(z) � d1, deg Bk(z) � d2, deg Ck(z) � d3 and the order of zero of
the remainder term Rk(z) at z = 0 satisfies ord Rk(z) =: o(k) � d1 + d2 + d3 + 2.
By comparing the coefficients of zj for all 0 � j < o(k), (2.3) yields a system of
o(k) homogeneous equations for o(k) + 1 unknown coefficients of Ak(z), Bk(z) and
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Ck(z), which implies that such polynomials exist and at least one of Ak(z), Bk(z)
is non-zero. Substituting zd for z in (2.3) and applying (2.1) and (2.2), we obtain

(P11(z)Ak(zd) + P21(z)Bk(zd))F (z)

+ (P12(z)Ak(zd) + P22(z)Bk(zd))G(z)

+ P10(z)Ak(zd) + P20(z)Bk(zd) + P (z)Ck(zd) = P (z)Rk(zd).

Repeating this procedure m times yields

Ak,m(z)F (z) + Bk,m(z)G(z) + Ck,m(z) = Rk,m(z), m = 0, 1, . . . , (2.4)

where Ak,0(z) = Ak(z), Bk,0(z) = Bk(z), Ck,0(z) = Ck(z), Rk,0(z) = Rk(z) and,
for m = 1, 2, . . . ,

Ak,m(z) = P11(z)Ak,m−1(zd) + P21(z)Bk,m−1(zd),

Bk,m(z) = P12(z)Ak,m−1(zd) + P22(z)Bk,m−1(zd),

Ck,m(z) = P10(z)Ak,m−1(zd) + P20(z)Bk,m−1(zd) + P (z)Ck,m−1(zd),

Rk,m(z) = P (z)Rk,m−1(zd).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.5)

We are interested in the determinants

∆(k, m, z) := det

⎛
⎝Ak1,m(z) Bk1,m(z) Ck1,m(z)

Ak2,m(z) Bk2,m(z) Ck2,m(z)
Ak3,m(z) Bk3,m(z) Ck3,m(z)

⎞
⎠ ,

where 1 � k1 < k2 < k3. By the above recursions (2.5),

∆(k, m, z) = Φ(z)∆(k, m − 1, zd), Φ(z) := (P11(z)P22(z) − P12(z)P21(z))P (z),

and so

∆(k, m, z) = ∆(k, 0, zdm

)
m−1∏
j=0

Φ(zdj

). (2.6)

In particular, for degree 1 functions we have Φ(z) = P11(z)P22(z)P (z), and for the
degree 2 function F (z) with G(z) = F (zd) we have Φ(z) = −P21(z)P 2(z), since
P11(z) = 0 and P12(z) = P (z).

Let d̄(k) := max{d1(k), d2(k), d3(k)}. By our assumption k1 < k2 < k3, it is
natural to assume that d̄(k1) � d̄(k2) � d̄(k3) and o(k1) � o(k2) � o(k3). Since

∆(k, 0, z) = det

⎛
⎝Ak1(z) Bk1(z) Rk1(z)

Ak2(z) Bk2(z) Rk2(z)
Ak3(z) Bk3(z) Rk3(z)

⎞
⎠ ,

it follows that o(k1) � ord ∆(k, 0, z) � deg ∆(k, 0, z) � d̄(k1) + d̄(k2) + d̄(k3) if
∆(k, 0, z) �= 0. Thus, in this case

∆(k, 0, z) =: zo(k1)D(k, z) (2.7)

with some polynomial D(k, z) �= 0, deg D(k, z) � d̄(k1) + d̄(k2) + d̄(k3) − o(k1).
Furthermore, if o(k1) > d̄(k1) + d̄(k2) + d̄(k3), then ∆(k, 0, z) = 0.
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We note that the condition D(k, z) �= 0 gives a strong restriction to o(k1).
For example, if dj(k1) = k, dj(k2) = k + 1, dj(k3) = k + 2 (j = 1, 2, 3), then
deg ∆(k, 0, z) � 3k + 3 and o(k1) � 3k + 2. Thus, the condition D(k, z) �= 0 is
possible only if 3k + 2 � o(k1) � 3k + 3.

The above condition means that one determinant ∆(k, 0, z) �= 0 gives an infinite
sequence of determinants ∆(k, m, z) �= 0, m = 0, 1, . . . . When considering the values
of the functions at rational points z = a/b we need to know that ∆(k, m, a/b) �= 0
at least for all sufficiently large m. This condition can be verified in many concrete
cases by using (2.6) and (2.7), since deg D(k, z) is small.

3. Fundamental lemma

In this section γ1 and γ2 denote real numbers and b � 2 is an integer. Let k =
k(�) = (k�,1, k�,2, k�,3) (� = 1, . . . , L) be vectors with positive integer components
k�,i satisfying k�,1 < k�,2 < k�,3 and k�,3 � k�+1,1 (� = 1, . . . , L − 1), kL,3 � dk1,1.
Assume that for each k = k�,i there exists an integer m0(k) such that for all m �
m0(k) we have the linear forms

ak,mγ1 + bk,mγ2 + ck,m = rk,m

with the following properties.

(i) The coefficients ak,m, bk,m, ck,m ∈ Z and satisfy

max{|ak,m|, |bk,m|} � c1(k)bE(k)dm

, (3.1)

where E(k) and c1(k) (and, later, c2(k), . . . ) are positive constants indepen-
dent of m.

(ii) We have
|rk,m| � c2(k)b−V (k)dm

, (3.2)

where V (k) > 0 is independent of m.

(iii) The determinant

det

⎛
⎝ak�,1,m bk�,1,m ck�,1,m

ak�,2,m bk�,2,m ck�,2,m

ak�,3,m bk�,3,m ck�,3,m

⎞
⎠ �= 0

for all � = 1, . . . , L; m � m0(k(�)) = max1�i�3{m0(k�,i)}.

For the following fundamental lemma, we finally define, for all � = 1, . . . , L, the
notation

θ(�) = max
1�i<j�3

{E(k�,i) + E(k�,j)},

ν(�) = min
1�i,j�3

i �=j

{V (k�,i) − E(k�,j)},

and set K := (k(1), . . . ,k(L)).
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Lemma 3.1. Suppose that 0 < ν(1) < · · · < ν(L) < dν(1). Then there exist positive
constants C = C(K) and H0 = H0(K) such that for any integers h0, h1, h2 not all
zero,

|h0 + h1γ1 + h2γ2| > CH−µ,

where H = max{|h1|, |h2|, H0} and

µ = max
1���L

µ(�), µ(�) :=
θ(� + 1)

ν(�)
, θ(L + 1) := dθ(1).

Proof. Let
Λ = h0 + h1γ1 + h2γ2.

By condition (iii) above, for all � = 1, . . . , L there exist 1 � i < j � 3 such that

D(k(�),h) := det

⎛
⎝ h1 h2 h0

ak�,i,m bk�,i,m ck�,i,m

ak�,j ,m bk�,j ,m ck�,j ,m

⎞
⎠

= det

⎛
⎝ h1 h2 Λ

ak�,i,m bk�,i,m rk�,i,m

ak�,j ,m bk�,j ,m rk�,j ,m

⎞
⎠ �= 0.

Since D(k(�),h) is an integer, we obtain, by (3.1) and (3.2),

1 � 2|Λ|c1(k�,i)c1(k�,j)b(E(k�,i)+E(k�,j))dm

+ 2hc1(k�,j)c2(k�,i)b−(V (k�,i)−E(k�,j))dm

+ 2hc1(k�,i)c2(k�,j)b−(V (k�,j)−E(k�,i))dm

(3.3)

with h = max{|h1|, |h2|}. The definitions of θ(�) and ν(�) then give

1 � C1(K)|Λ|bθ(�)dm

+ C2(K)hb−ν(�)dm

(3.4)

for all m � M0 := max{m0(k(1)), . . . , m0(k(L))}, and C1(K) and C2(K) (and also
C3(K) later) are positive constants depending on K. Note that C1(K) and C2(K)
here are the same for all �.

We now choose H0 such that

2C2(K)H0 � bν(1)dM0
,

and fix the pair (�, m) from the sequence (1, M0), . . . , (L, M0), (1, M0 + 1), . . . ,
(L, M0 + 1), (1, M0 + 2), . . . to be the first one satisfying

2C2(K)H < bν(�)dm

,

where H = max{h, H0}. Then (�, m) �= (1, M0), and the pair just before it is
(� − 1, m) if � > 1 or (L, m − 1) if � = 1. The above choice means that

2C2(K)H �
{

bν(�−1)dm

, � > 1,

bν(L)dm−1
, � = 1.
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In the first case, by (3.4),

1
2 < C1(K)|Λ|bθ(�)dm

= C1(K)|Λ|(bν(�−1)dm

)θ(�)/ν(�−1) � C3(K)|Λ|Hµ.

In the � = 1 case, we similarly have

1
2 < C1(K)|Λ|bθ(1)dm

= C1(K)|Λ|(bν(L)dm−1
)dθ(1)/ν(L) � C3(K)|Λ|Hµ.

4. General theorem

We now assume that F (z), G(z) ∈ Q[[z]] converge in some disc Dr and satisfy
(2.1) and (2.2). Our aim is to apply lemma 3.1 to consider the function values
F (a/b) and G(a/b) at non-zero rational points a/b ∈ Dr, where log |a| = λ log b,
0 � λ < log(rb)/ log b. We also assume that

(
P11

((
a

b

)dj )
P22

((
a

b

)dj )
− P12

((
a

b

)dj )
P21

((
a

b

)dj ))
P

((
a

b

)dj )
�= 0,

j = 0, 1, . . . . (4.1)

The approximation forms we use are obtained from (2.4) at z = a/b. The recur-
sions (2.5) imply, for all m � 1, Journal style is to use centred dots only for “place-
holders” and scalar products. I have assumed that the centred dot denoted simple
multiplication of scalars and deleted it here– OK?

deg Ak,m(z), deg Bk,m(z), deg Ck,m(z) �
(

ē(k) +
τ

d − 1

)
dm − τ

d − 1
, (4.2)

where ē(k) and τ are non-negative integers satisfying ē(k) � d̄(k) := max{d1(k),
d2(k), d3(k)} and τ � ν, the maxima of the degrees of Pij(z) and P (z). Thus, the
multiplication of (2.4) at z = a/b by

Qk,m := b(ē(k)+τ/(d−1))dm−τ/(d−1)

leads to the linear forms

ak,mF

(
a

b

)
+ bk,mG

(
a

b

)
+ ck,m = rk,m, m = 0, 1, . . . ,

where all ak,m, bk,m and ck,m are integers. To be able to apply lemma 3.1 with
γ1 = F (a/b) and γ2 = G(a/b), we need to estimate the coefficients ak,m and bk,m

and the remainders rk,m. For this we apply the recursions (2.5).
Let P̃ (z) denote the polynomial, where the coefficient of zj is the maximum of

the absolute values of the corresponding coefficients in Pij(z), 1 � i, j � 2. Then,
for all m = 1, 2, . . . ,

|Ak,m(z)| � P̃ (|z|)(|Ak,m−1(zd)| + δ|Bk,m−1(zd)|),

|Bk,m(z)| � P̃ (|z|)(δ|Ak,m−1(zd)| + |Bk,m−1(zd)|),
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where δ = 0 for degree 1 functions F (z) and G(z), and δ = 1 otherwise. Applying
these inequalities, we obtain

max{|Ak,m(z)|, |Bk,m(z)|} � (1 + δ)m max{|Ak(zdm

)|, |Bk(zdm

)|}
m−1∏
j=0

P̃ (|z|dj

).

Therefore, for all m � m1(k),

max{|ak,m|, |bk,m|} � c3(k)b(ē(k)+τ/(d−1))dm

if the condition
(1 + δ)|P̃ (0)| � 1 (4.3)

holds. Generally, for any given δ1 > 0, there exists an m2(k, δ1) > m1(k) such that

(1 + δ)m
m−1∏
j=0

P̃ (|z|dj

) <
(
(1 + δ) max

z∈Dr

P̃ (|z|)
)m

< (bδ1)dm

for all m � m2(k, δ1). So, for any given δ1 > 0,

max{|ak,m|, |bk,m|} � c3(k)b(ē(k)+τ/(d−1)+δ1)dm

(4.4)

for all m � m2(k, δ1), and under condition (4.3) we may choose δ1 = 0 here.
Since

Rk,m(z) = Rk(zdm

)
m−1∏
j=0

P (zdj

),

we also have

|rk,m| � c4(k) max{1, |P (0)|m}b−((1−λ)o(k)−ē(k)−τ/(d−1))dm

for all m � m3(k). Thus, for any given δ2 > 0,

|rk,m| � c4(k)b−((1−λ)o(k)−ē(k)−τ/(d−1)−δ2)dm

(4.5)

for all m � m4(k, δ2), and we may use the value δ2 = 0 here if the condition

|P (0)| � 1 (4.6)

holds.
Thus, we obtain the estimates (3.1) and (3.2) for all m � m5(k, δ1, δ2), where

E(k) = ē(k) +
τ

d − 1
+ δ1, V (k) = (1 − λ)o(k) − ē(k) − τ

d − 1
− δ2. (4.7)

By using these values with lemma 3.1 we get the following theorem (we need only
to note that the condition D(k, z) �= 0 implies D(k, (a/b)dm

) �= 0 for all m �
m6(k, a/b)).

Theorem 4.1. Assume that condition (4.1) holds and that D(k, z) �= 0 for all
� = 1, . . . , L. Let θ(�) and ν(�) be defined as in lemma 3.1, with E(k) and V (k)
given in (4.7). If 0 < ν(1) < · · · < ν(L) < dν(1), then there exist positive constants
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λ0 = λ0(K, F, G), C = C(K, a/b, F, G) and H0 = H0(K, a/b, F, G) such that, for
all 0 � λ < λ0 and any integers h0, h1, h2 not all zero,∣∣∣∣h0 + h1F

(
a

b

)
+ h2G

(
a

b

)∣∣∣∣ > CH−µ,

with H and µ as in lemma 3.1.

5. Proof of theorems 1.1 and 1.3–1.6

We are ready to prove theorems 1.1 and 1.3–1.6. We start by giving the following
formulae, which follow from (4.7):

θ(�) = max
1�i<j�3

{ē(k�,i) + ē(k�,j)} +
2τ

d − 1
+ 2δ1,

ν(�) = min
1�i,j�3

i �=j

{(1 − λ)o(k�,i) − ē(k�,i) − ē(k�,j)} − 2τ

d − 1
− δ1 − δ2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.1)

Thus, we should choose τ and δi as small as possible while applying lemma 3.1.

Proof of theorem 1.1. To prove theorem 1.1, we apply theorem 4.1 with F (z) =
T (z) and G(z) = T 2(z). Now, by (1.3),

(1 − z)2F (z2) = (1 − z)F (z), (1 − z)2G(z2) = G(z).

Therefore, r = 1, δ = 0, P (z) = (1 − z)2, P̃ (z) = 1 + z and P̃ (0) = P (0) = 1
give δ1 = δ2 = 0. We shall use (k, k + 1, k − 1) approximations and we may take
ē(k) = k + 1 and τ = 0. Our k(�) are (k�,1, k�,1 + 1, k�,1 + 2) and the choices
for k = k�,1 are 29, 31, 34, 43 and 49. For all these values, o(k) = 3k + 2. Since
deg ∆(k(�), z) � 3k + 3, we have D(k(�), z) = s�,0 + s�,1z, where

s�,0 = det

(
Ak+1(0) Bk+1(0)
Ak+2(0) Bk+2(0)

)
c �= 0

and c is the coefficient of z3k+2 in Rk(z) (see [15, appendix]). In fact s�,0 is non-zero
in all of our cases, including the proofs of theorems 1.3–1.6. By using (5.1) we get

θ(�) = 2k + 5, ν(�) = k − 2 − λ(3k + 2)

for all λ < 2
3 . So we have table 1.

For the condition 0 < ν(1) < · · · < ν(5) < 2ν(1) we need to assume λ < λ0 :=
7
29 ≈ 0.241 . . . . When λ < λ0, the comparison of µ(�) gives

µ = max
�

θ(� + 1)
ν(�)

=
θ(4)
ν(3)

=
91

32 − 104λ
.

To prove theorems 1.3–1.6, we need to modify our choice of parameters.
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Table 1. Selected values of k for theorem 1.1.

� 1 2 3 4 5
k 29 31 34 43 49
θ(�) 63 67 73 91 103
ν(�) 27 − 89λ 29 − 95λ 32 − 104λ 41 − 131λ 47 − 149λ

Table 2. Selected values of k for theorem 1.3.

� 1 2 3 4 5 6
k 29 31 34 38 43 49
θ(�) 65 69 75 83 93 105
ν(�) 25 − 89λ 27 − 95λ 30 − 104λ 34 − 116λ 39 − 131λ 45 − 149λ

Proof of theorem 1.3. Here we apply theorem 4.1 with F (z) = A(z), G(z) = B(z),
and the use of (1.4) gives r = 1, δ = 0, P (z) = 1+z+z2, P̃ (z) = 1 and δ1 = δ2 = 0.
The (k, k + 1, k − 1) approximations give ē(k) = k + 1 and τ = 1. By choosing k(l)
as above, where k = k�,1 are 29, 31, 34, 38, 43 and 49, we get o(k) = 3k + 2 and
the determinants D(k(�), z) �= 0 (see [15, appendix]). Furthermore,

θ(�) = 2k + 7, ν(�) = k − 4 − λ(3k + 2)

for all λ < 2
3 , and this leads to table 2.

To satisfy the condition 0 < ν(1) < · · · < ν(6) < 2ν(1), we need to assume
λ < λ0 := 5

29 ≈ 0.172 . . . . After the comparison of µ(�) = θ(� + 1)/ν(�) we see that

µ = max
1���6

µ(�) =

⎧⎪⎪⎨
⎪⎪⎩

µ(6) =
130

45 − 149λ
if λ <

145
1289

,

µ(1) =
69

25 − 89λ
if

145
1289

� λ <
5
29

.

Remark 5.1. We note that here all determinants D(k(�), z) �= 0, 1 � k � 50. In
all other theorems most of these determinants equal zero.

Proof of theorem 1.4. In this case we apply theorem 4.1 with d = 3, F (z) = G3(z)
and G(z) = F3(z). Then (1.5) implies r = 1, δ = 0, P (z) = 1 − z2, P̃ (z) = 1 + z2

and δ1 = δ2 = 0. The use of (k, k, k) approximations gives ē(k) = k and τ = 2. If
k(�) is the same as above and k = k�,1 are 19, 26 and 39, then o(k) = 3k + 2 and
D(k(�), z) �= 0 (see [15, appendix]). By (5.1), if λ < 2

3 , we get

θ(�) = 2k + 5, ν(�) = k − 2 − λ(3k + 2).

Now, we have table 3.
The condition 0 < ν(1) < ν(2) < ν(3) < 3ν(1) holds if λ < λ0 := 7

29 ≈ 0.241 . . . .
Similarly to the above proofs, we now get theorem 1.4.
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Table 3. Selected values of k for theorem 1.4.

� 1 2 3
k 19 26 39
θ(�) 43 57 83
ν(�) 17 − 59λ 24 − 80λ 37 − 119λ

Table 4. Selected values of k for theorem 1.5.

� 1 2 3
k 17 21 26
θ(�) 39 + 2δ1 47 + 2δ1 57 + 2δ1

ν(�) 15 − δ1 − 53λ 19 − δ1 − 65λ 24 − δ1 − 80λ

Proof of theorem 1.5. Here we may use theorem 4.1 with

F (z) = R(z) and G(z) = R(−z).

By (1.6), we have

2zF (z2) = zF (z) + zG(z), 2zG(z2) = F (z) − G(z).

Therefore, we can choose r = 1, δ = 1, P (z) = 2z and P̃ (z) = 1+z. Since P (0) = 0,
(4.5) holds and we may take δ2 = 0. We use the (k, k, k) approximations and we
can take ē(k) = k and τ = 1. We also choose k(�) = (k�,1, k�,1 + 1, k�,1 + 2), where
k = k�,1 are 17, 21 and 26. Then we get o(k) = 3k + 2 and the determinants
D(k(�), z) �= 0 (see [15, appendix]). Moreover,

θ(�) = 2k + 5 + 2δ1, ν(�) = k − 2 − δ1 − λ(3k + 2)

for all λ < 2
3 . This gives table 4.

The condition 0 < ν(1) < ν(2) < ν(3) < 2ν(1) holds if λ < 3
13 ≈ 0.230 . . . and

δ1 is sufficiently small. If λ < 21
187 ≈ 0.112 . . . and δ1 is small enough, then

µ =
θ(4)
ν(3)

=
78 + 4δ1

24 − δ1 − 80λ
.

If 21
187 � λ < 3

13 , then

µ =
θ(2)
ν(1)

=
47 + 2δ1

15 − δ1 − 53λ
.

This proves theorem 1.5, since we may choose δ1 arbitrarily small.

Proof of theorem 1.6. We now apply theorem 4.1 with F (z) = S(z) and G(z) =
S(z4). The use of (1.7) gives d = 4, r = 1 and

F (z4) = G(z), G(z4) = −zF (z) + (1 + z + z2)G(z).

Since P (0) = 1, we may choose δ2 = 0 in (4.5). We shall use (k, k − 1, k) approxi-
mations and we may take ē(k) = k, τ = 2. Again our k(�) = (k�,1, k�,1 + 1, k�,1 + 2)
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Table 5. Selected values of k for theorem 1.6.

� 1 2
k 10 26
θ(�) 23 + 2

3 + 2δ1 55 + 2
3 + 2δ1

ν(�) 9 − 2
3 − δ1 − 31λ 25 − 2

3 − δ1 − 79λ

and the choices for k = k�,1 are 10 and 26. For both of these values, o(k) = 3k + 1
and the determinants D(k(�), z) �= 0 (see [15, appendix]). By using (5.1), if λ < 2

3 ,
we get

θ(�) = 2k + 3 + 2
3 + 2δ1

and
ν(�) = k − 1 − 2

3 − δ1 − λ(3k + 1).

Thus, we have table 5.
If λ < λ0 := 1

5 and δ1 > 0 is sufficiently small, then 0 < ν(1) < ν(2) < 4ν(1).
Since

55 + 2
3 + 2δ1

9 − 2
3 − δ1 − 31λ

>
4(23 + 2

3 + 2δ1)
25 − 2

3 − δ1 − 79λ

for all 0 � λ < λ0, and δ1 > 0 can be arbitrarily small, theorem 1.6 follows from
theorem 4.1.
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Stern’s sequence and of its twist. J. Théorie Nombres Bordeaux 25 (2013), 43–57.

7 P. Bundschuh and K. Väänänen. Transcendence results on the generating functions of the
characteristic functions of certain self-generating sets. Acta Arith. 162 (2014), 273–288.

8 M. Coons. On the rational approximation of the sum of the reciprocals of the Fermat
numbers. Ramanujan J. 30 (2013), 39–65.

9 K. Dilcher and K. B. Stolarsky. Stern polynomials and double-limit continued fractions.
Acta Arith. 140 (2009), 119–134.

https://doi.org/10.1017/S0308210518000148 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210518000148


On linear independence measures of the values of Mahler functions 1311

10 N. I. Fel′dman and Y. V. Nesterenko. Number theory IV: transcendental numbers (ed. A. N.
Parshin and I. R. Shafarevich). Encyclopaedia of Mathematical Sciences, vol. 44 (Springer,
1998).

11 Y.-J. Guo, Z.-X. Wen and W. Wu. On the irrationality exponent of the regular paperfolding
numbers. Linear Alg. Applic. 446 (2014), 237–264.

12 K. Nishioka. Mahler functions and transcendence. Lecture Notes in Mathematics, vol. 1631
(Springer, 1996).

13 K. Väänänen. On rational approximations of certain Mahler functions with a connection
to the Thue–Morse sequence. Int. J. Number Theory 11 (2015), 487–493.

14 K. Väänänen and W. Wu. On simultaneous approximation of the values of certain Mahler
functions. Preprint, 2015. (Available at http://arxiv.org/abs/1505.00931.)

15 K. Väänänen and W. Wu. On linear independence measures of the values of Mahler func-
tions. Preprint, 2016. (Available at http://arxiv.org/abs/1604.01630.)

16 Z.-X. Wen and W. Wu. Hankel determinants of the Cantor sequence. Sci. Sinica Math. 44
(2014), 1059–1072. (In Chinese.)

https://doi.org/10.1017/S0308210518000148 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210518000148

