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Abstract. In this note we consider parabolic subroot systems of a complex simple
Lie Algebra. We describe root theoretic data of the subroot systems in terms of that of the
root system and we give a selection of applications of our results to the study of generalized
flag manifolds.

2000 Mathematics Subject Classification. 53C30, 17B20

1. Introduction. Some years ago R. Carles [12, 13] considered the subroot system
of an irreducible (reduced, crystallographic) root system � obtained by taking the orthog-
onal complement of the highest root. The Dynkin diagram of such a subroot system is
obtained from the Dynkin diagram of � by deletion of one or two (for type A root systems)
nodes. We will refer to a subroot system whose Dynkin diagram is obtained by deletion of
a subset I of nodes (simple roots) from the Dynkin diagram of� as a parabolic subroot sys-
tem, as it corresponds naturally to a parabolic subgroup P of a complex simple Lie group
GC corresponding to �. Carles related root theoretic data such as the cardinality and the
sum 2ρ of the set of positive roots of this subroot system to those of the root system � (see
also [17] p. 524). We extend these results to all maximal (i.e. I is a singleton) parabolic
subroot systems of �. We also give a selection of geometric applications of our results
to the study of flag manifolds. Our results can also be applied to the study of the closely
related subroot systems obtained by the same process in the extended Dynkin diagram (see
for instance Theorem 3.4). These subroot systems also have many geometric applications
such as the study of the compact homogeneous spaces with positive Euler characteristic of
[16], the centrioles of [20, 15] and the orbits of compact symmetric spaces under the action
of the isotropy subgroups of [24]. In this note, we will restrict our applications to (general-
ized) flag manifolds M, that is, homogeneous spaces of the form M =GC/P, where GC is
the complexification of a compact connected semisimple Lie group G and P is a parabolic
subgroup of GC. M also has a description of the form M =G/K, where K is the centralizer
of a torus in G (connected, compact, and semisimple). We denote by o= eK the identity
coset of G/K and by g and k the Lie algebras of G and K, respectively. Taking a reductive,
orthogonal (w.r.t. the negative of the Killing form B) decomposition of g= k⊕m, we have
a natural isomorphism between the tangent space ToM and m. Also, the isotropy repre-
sentation of K is equivalent to the adjoint representation of K restricted to m. G-invariant
metrics on G/K are therefore determined by Ad(K)-invariant inner products Q(.,.) on m.
Taking a Q-orthogonal decomposition m=m1 ⊕ · · · ⊕mq of m into its Ad(K)-irreducible
(inequivalent) submodules, one obtains a family of G-invariant metrics on G/K, given by
〈,〉 = x1Q|m1 + · · · + xqQ|mq where (x1, ..., xq) ∈R

q
+. Such a metric belongs to the space of
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G-invariant, unit volume metrics on M if and only if
∏q

i=1 xdi
i = 1, where di = dim mi, on

which variational methods can be applied to the scalar curvature functional (also involving
the di) to obtain Einstein metrics on M . In Theorem 4.1 we will give uniform formulae for
the dimensions di when P is a maximal parabolic subgroup of GC as an alternative to a
case-by-case application of Weyl’s dimension formula.

A flag manifold M =GC/P also admits an equivariant holomorphic embedding into
a complex projective space. For any smooth projective variety X embedded in projective
space via the global sections of a very ample line bundle L, we can consider the codimen-
sion of the variety X ′ ⊂PN of hyperplanes tangent to X , known as the dual or discriminant
variety of X . Typically X ′ is a hypersurface and therefore the defect of (X , L), defined to be
def (X , L)= codim X ′ − 1, is typically zero. If the defect is positive, then it is determined
by the nef value τ(X , L) (defined in Section 4), which in our context also determines the
first Chern class of X [21] and by [4] we have that {def (X , L)= 2(τ (X , L)− 1)− dim X .
In Proposition 4.2 and Theorem 3.3 we give uniform formulae for τ(M, L) and dim M,
respectively, when M =GC/P and P is a maximal parabolic subgroup of GC and L is a
minimal (very) ample line bundle on M . Most known examples of smooth varieties with
positive defect are homogeneous and the flag varieties with positive defect have been clas-
sified in [18] and [21]. The classification in [18] is based on invariant theory and considers
the different cases corresponding to the type of the group, whereas in [21] the relationship
between the defect and the nef value is exploited to give a fairly straightforward classifica-
tion. Even so, the numerical criterion that dP := 2(τ (M, L)− 1)− dim M be positive must
be checked for all M =GC/P, where P= Pαi is a maximal parabolic subgroup, in order to
arrive at a list of candidates for positive defect flag varieties. In Theorem 4.2 we give a fairly
comprehensive description of when dP is not positive (the norm) in terms of the coefficient
nα̃i of αi in the expression of the highest root α̃ w.r.t. the simple roots, the length of the
corresponding fundamental weight ωi and the dual Coxeter number g. Namely we prove:

THEOREM. (i) If nα̃i = 1, then dP = (2− 〈ωi, ωi〉)g− 2.
(ii) If nα̃i ≥ 2 and αi is long, then dP < 0.

2. Preliminaries. Let G be a simple, compact, connected Lie group, with Lie
Algebra g. For a fixed Cartan subalgebra h, let gC = hC ⊕∑

α∈� gα be the root space
decomposition of the complexification of g w.r.t. hC. As the restriction of the Killing form
(,) on gC to hC is non-degenerate, there corresponds to each root α ∈ (hC)∗ an element
hα ∈ hC, with α(h)= (h, hα) for all h ∈ hC. In this way we obtain a non-degenerate bilinear
form on the real linear span E of the roots by defining (α, β) := (hα, hβ).We will normalise
(,) to an inner product 〈,〉 so that for the highest root α̃ we have that 〈α̃, α̃〉 = 2. The two
inner products are related by (,)= 1

2g 〈,〉, where g (called the dual Coxeter number) is the

eigenvalue of the Casimir element of gC in its adjoint representation (see [11], Proposition
2.1). Choosing a fixed linear functional on E that does not vanish on any of the roots, we can
define positive roots�+ and simple positive roots�= {α1, . . . , αr}, where r= dimC hC is
the rank of gC, and we set ρ = 1

2

∑
α∈�+ α. The Coxeter number h is the order of a Coxeter

element σ = sα1 sα2 . . . sαr , where sαi is reflection in the hyperplane orthogonal to αi in E.
We will express the highest root α̃ as a positive integer linear combination α̃=∑r

i=1 nα̃i αi,

in terms of the simple roots α1, . . . , αr, labelled as in [8], and in general we will express a
root α in the form α =∑r

i=1 nαi αi. For α ∈�+, we let ht(α) denote the height of α, that is,
the sum of the coefficients of α relative to the basis of positive simple roots. It is well known
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that ht(α̃)= h− 1. Recall that the integers cij = 2〈αi, αl〉
〈αi, αi〉 are called the Cartan integers and

the Dynkin diagram �� is the (undirected, multi) graph with r vertices (labelled by the
positive simple roots), and cijcji edges joining αi to αj. The extended Dynkin diagram �̃�
is the (undirected, multi) graph constructed from �� by adding a new vertex α0 =−α̃ and
joining it to any vertex αi by (the old rule of ) n(αi, α̃) · n(α̃, αi) edges, where for α, β ∈�,
n(α, β)= 2〈α, β〉

〈α, α〉 , We then write the coefficient nα̃i over the vertex αi and nα̃0 = 1 over α0,

The following result from [19] will prove very useful.

PROPOSITION 2.1.
∑

α∈�+〈α, γ 〉α = g γ for all γ ∈ E where g is the dual Coxeter
number. If g is simply laced, then g is also the Coxeter number of g.

Finally, for a fixed node αi of the Dynkin diagram, we define integers nk and ki as follows:
nk := |{α ∈� : nαi = k}| and ki := 〈α̃,α̃〉

〈αi,αi〉 .

3. Cardinality and root-sum formulae. Rather than working with the subroot sys-
tems obtained by deletion of a node αi from the Dynkin diagram we will instead consider
the closely related subroot systems obtained by deletion of a node αi from the extended
Dynkin diagram (or two nodes when nα̃i = 1.) This means that our subroot systems are max-
imal closed subroot systems of�, corresponding to maximal rank subgroups Ki,which are
also maximal when nα̃i is a prime, by the following theorem of Borel and de Siebenthal [6].
Recall that a subroot system �′ of � is said to be closed if for any α, β ∈�′ we have that
α + β ∈�′ whenever α+ β is a root.

We will denote the root system of Ki (which we may assume contains a maximal torus
of G) by �Ki and call 
 := � \ �Ki the set of complementary roots.

THEOREM 3.1. ([6, 25]) Let G be a compact centerless simple Lie group and let 1≤
i≤ r.

(i) Suppose that nα̃i = 1, then the centralizer of the circle group {exp(2π itvi) : t ∈R}
(where v1, . . . , vr satisfy αi(vj)= 1

ni
δij) is a maximal connected subgroup of max-

imal rank in G with �Ki = {α1, . . . , αi−1, αi+1, . . . , αr} as a system of simple
roots.

(ii) Suppose that nα̃i is a prime p> 1, then the centralizer of the element exp(2π ivi)

(of order p) is a maximal connected subgroup of maximal rank in G with �Ki =
{α1, . . . , αi−1, αi+1, . . . , αr,−α̃} as a system of simple roots.

(iii) Every maximal connected subgroup of maximal rank in G is conjugate to one of
the above groups.

Our starting point will be to follow [25, p. 282], to give a description of the isotropy rep-
resentation of Ki on the tangent space to G/Ki, for all i. The isotropy representation of
Ki complexifies to a representation of Ki on

∑
α∈
 gα and it comes from the adjoint rep-

resentation of G. We will denote this representation by adG/Ki and of course the set of
complementary roots 
 =� \�Ki are its weights. Denoting the irreducible representation
of Ki with highest weight v by πv we have:

PROPOSITION 3.1. Let πv be the irreducible representation of Ki with highest weight v.

(i) If nα̃i = 1, then adG/Ki = π−αi + (π−αi)
∗.

(ii) If nα̃i = 2, then adG/Ki = π−αi .

(iii) If nα̃i = 3, then adG/Ki = π−αi + (π−αi)
∗.

(iv) If nα̃i = 4, then adG/Ki = π−αi + (π−αi)
∗ + π−βi , where βi is the lowest height

positive root with nβi
i = 2.
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(v) If nα̃i = 5, then adG/Ki = π−αi + (π−αi)
∗ + π−βi + (π−βi)

∗, where βi is the lowest

height positive root with nβi
i = 2.

(vi) If nα̃i = 6, then adG/Ki = π−αi + (π−αi)
∗ + π−βi + (π−βi)

∗ + π−γi , where βi is as
above and γi is the lowest height positive root with nγi

i = 3.

In deriving formulae for the cardinality of the subroot systems described in the intro-
duction, we are lead naturally to formulae for certain sums of roots. Such sums of roots
formulae have a long history, starting most notably with [7] where they appear in the calcu-
lation of the first Chern class of certain homogeneous spaces (see also [2]). More recently
similar formulae appear in [14] to describe the barycentres of the faces of the root polytope
corresponding to the root system. For our purposes we now prove the following:

PROPOSITION 3.2. Let nα̃i = n, and let j ∈N, with j≤ n. Then
∑
{nαi =j} α= sjωi for some

integer sj ∈N, and for n≥ 2, and 1≤ j≤ � n
2� we have

sj = sn−j.

Proof. Let �i,j = {α ∈� : nαi = j}. Since

sαkα = α− 2
〈α, αk〉
〈αk, αk〉αk,

we have that sαk permutes the elements of �i,j for k �= i, so that 〈∑α∈�i,j
α, αk〉 =

〈sαk (
∑

α∈�i,j
α), sαkαk〉 = 〈∑α∈�i,j

α, sαkαk〉 =−〈∑α∈�i,j
α, αk〉 and 〈∑α∈�i,j

α, αk〉 = 0.
Therefore,

∑
α∈�i,j

α= cjωi for some cj ∈R. Recalling that every root can be expressed
as an integral linear combination of fundamental weights, we see that

∑
α∈�i,j

α = sjωi for
some sj ∈Z. Finally, the αi coefficient of

∑
α∈�i,j

α can be alternatively written as jnj or
sjki〈ωi, ωi〉 so that for j> 0, sj ∈N.

Let πv be an irreducible summand of adG/Ki . As its weights are invariant under the
Weyl group of Ki we again have that for k �= i 〈∑λ∈πv

λ, αk〉 = 〈sk(
∑

λ∈πv
λ), skαk〉 =

〈∑λ∈πv
λ, skαk〉 =−〈∑λ∈πv

λ, αk〉 and therefore 〈∑λ∈πv
λ, αk〉 = 0. Similarly

〈∑λ∈πv
λ, α̃〉 = 0 as sα̃ is in the Weyl group of Ki and therefore

∑
λ∈πv

λ= 0. The
result we now show follows from the description of the weights of the irreducible
summands of adG/Ki in the proof of Theorem 3.1. For m ∈Z, let �m = {α ∈� : nαi =m}.

The weights of π−αi , π−βi , and π−γi for the various values of n are: for n= 1, the set
of weights of π−αi is �−1; for n≥ 2, the set of weights of π−αi is �−1 ∪�n−1; for n≥ 4,
the set of weights of π−βi is �−2 ∪�n−2. Finally for n= 6, the set of weights of π−γi is
�−3 ∪�n−3 which merely says that s3 = s3.

PROPOSITION 3.3. Let k be an integer, 0< k < n, and let nα̃i = n and n≥ 2 then:

sj = sn−( j+k) for k + 1≤ j≤
⌊

n− k

2

⌋
.

Also

sj + sn−(k−j) − sn−( j+k) = 0 for 1≤ k ≤ n and j≤ k <

⌊
n− k

2

⌋
.

Proof. Let β ∈�j with k + 1≤ j and let α ∈�n−k with k ≥ 1 (we choose α to
be long in non-simply laces cases). If 〈α, β〉 = 0, then sαβ = β, and if 〈α, β〉 �= 0,
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then either α + β is a root (when 〈α, β〉< 0 ) or α− β is a root (when 〈α, β〉> 0).
However, α + β would be contained in �n−k+j, but n− k + j> n. This means that
sαβ =−γ where nγi = n− ( j+ k). The set �j −�n−( j+k) :=�j ∪�( j+k)−n is there-
fore invariant under sα so that 〈∑λ∈�j−�n−( j+k)

λ, α〉 = 〈sα(∑λ∈�j−�n−( j+k)
λ), sαα〉 =

−〈∑λ∈�j−�n−( j+k)
λ, α〉 = 0. Using Proposition 3.2. we have

∑
λ∈�j−�n−( j+k)

λ= (sj −
sn−( j+k))ωi so that 0= 〈α,∑λ∈�j−�n−( j+k)

λ〉 = (sj − sn−( j+k))〈α, ωi〉. As nαi = n− k, we
have that 〈α, ωi〉 �= 0 and therefore sj − sn−( j+k) = 0.

We now consider the cases when j≤ k. For j≤ k, either sαβ =−γ where as above nγi =
n− ( j+ k), or sαβ =ψ with nψi = n− (k − j). The set �j −�n−( j+k) +�n−(k−j) :=�j −
�n−( j+k) ∪�n−(k−j) is therefore invariant under sα so that 〈∑�j−�n−( j+k)+�n−(k−j)

λ, α〉 = 0.
Again by Proposition 3.2.

∑
�j−�n−( j+k)+�n−(k−j)

λ= (sj − sn−( j+k) + sn−k−j))ωi and as
〈α, ωi〉 �= 0 we have that sj − sn−( j+k) + sn−(k−j) = 0.

THEOREM 3.2. Let � be an irreducible reduced crystallographic root system and let
nα̃i = n. Denote by Vωi the hyperplane perpendicular to ωi and let �ωi =�∩ Vωi , then:
�ωi is a root system and for nα̃i ≥ 2, card �+ωi

=

card �+ −
{

2gki

n(n− 1)

[
1+ 1

2
· · · + 1

n− 1

]
− sn

(
1+ 1

n(n− 1)

)}
ki〈ωi, ωi〉.

For nα̃i = 1, card �+ωi
= card �+ − (2g− s1)ki〈ωi, ωi〉 = card �+ − g〈ωi, ωi〉.

Proof. �ωi =� ∩ Vωi , so �ωi consists of those roots with αi coefficient equal to
zero, and they constitute the root system (usually not irrreducible) with Dynkin diagram
obtained from that of g by the deletion of the node labelled αi. We now count the num-
ber of roots in the complement (in �+) of �+ωi

, that is, the positive roots with non-zero
αi coefficient. For 0≤ j≤ n, the αi coefficient of

∑
{nαi =j} α can be alternatively writ-

ten as jnj or sjki〈ωi, ωi〉 so that nj = sjki

j 〈ωi, ωi〉. When nα̃i ≥ 2 we use the equations in
s1, . . . , sn derived from Propositions 3.1 and 3.2, together with the additional equation
s1 + 2s2 + · · · + (n− 1)sn−1 + nsn = gki (from Proposition 2.1). These n− 1 equations
are easily solved in terms of g, n, and sn using Gaussian elimination (when n> 2). All
rows of the extended matrix with the exception of the last (coming from Proposition
2.1) consist of two or three non-zero entries (equal to ±1) and are essentially in upper
echelon form. Killing the entries 1, 2, . . . , n− 1 in the last row has the effect of mak-
ing 1+ 2+ · · · + n− 1= n(n−1)

2 the coefficient of sn−1 and sn in the last row of the

reduced extended matrix to give the equation n(n−1)
2 sn−1 + n(n−1)

2 sn = gki. Back substitu-
tion using sn−1 = 2

n(n−1)gki − sn (= s1) then gives s2 = · · · = sn−2 = 2
n(n−1)gki and recalling

that nj = sjki

j 〈ωi, ωi〉 the result follows in these cases. When nα̃i = 1, the result follows from
the equation s1 + 2s2 + · · · + (n− 1)sn−1 + nsn = gki where n= 1 and the fact that ki = 1
as αi is always long (because α̃ is). Also when n= 2 we have that s1 = gki − 2s2.

COROLLARY 3.1. ([12, 23]) Let � be an irreducible reduced crystallographic root sys-
tem and let Vα̃ denote the hyperplane perpendicular to α̃ and let �′ =�∩ Vα̃, then �′ is a
root system and

card �′ = card �− 4g+ 6.

Proof. When � is not of type A, we have that α̃= cωi with c ∈ {1, 2} and nα̃i = 2.
When c= 1, 〈α̃, α̃〉 = 2= 〈α̃, ωi〉 = 〈2αi, ωi〉, so that αi is long and ki = 1. The next
highest long root α = sαi α̃ has nαi = 1, as does the highest short root, so that s2 = 1. When
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α̃ = 2ωi (for Cr), the argument is similar but now s2 = 2 and αi is short so that ki = 2. By
Theorem 3.3 card �′+ = card �+ − 2g+ 3. When � is of type Ar, card �= r(r+ 1) and
α̃ =ω1 +ωr so that �′ is of type Ar+2 and g= h= r+ 1.

COROLLARY 3.2. In the notation of Theorem 3.1 we have the following formulae for
the dimensions of the irreducible components of adG/Ki .

(i) For nα̃i = 1, we have dim π−αi = g〈ωi, ωi〉.
(ii) For nα̃i = 2, we have dim π−αi = {2(gki − 2sn)}ki〈ωi, ωi〉 and for n> 2,

dim π−αi =
{

n
n−1 (

2gki

n(n−1) − sn)
}
ki〈ωi, ωi〉.

(iii) For nα̃i ≥ 4, we have dim π−βi =
{(

n
2(n−2)

) 2gki

n(n−1)

}
ki〈ωi, ωi〉.

(iv) For nα̃i = 6, we have dim π−γi =
{(

n
3(n−3)

) 2gki

n(n−1)

}
ki〈ωi, ωi〉.

Proof. Recall from Proposition 3.1 the descriptions of the weights of π−αi , π−βi , and
π−γi for the various values of n. For n= 1 the set of weights of π−αi is �−1 so that
|�−1| = |�1| = n1 = g〈ωi, ωi〉 by Theorem 3.2. For n≥ 2 the set of weights of π−αi is
�−1 ∪�n−1. In the case that n= 2 the value of 2n1 is determined by the equation s1 =
gki − 2s2. When n> 2, |�−1| + |�n−1| = n1 + nn−1 = {s1 + 1

n−1 sn−1}ki〈ωi, ωi〉 = {(1+
1

n−1 )(
2

n(n−1)gki − sn)}ki〈ωi, ωi〉 by the proof of Theorem 3.2. For n≥ 4 the set of weights

of π−βi is�−2 ∪�n−2, so that |�−2| + |�n−2| = n2 + nn−2 = { 12 s2 + 1
n−2 sn−2}ki〈ωi, ωi〉 =

{( 1
2 + 1

n−2 )(
2

n(n−1)gki)}ki〈ωi, ωi〉 by the proof of Theorem 3.2. Finally for n= 6, the
argument is similar observing that the set of weights of π−γi is �−3 ∪�n−3.

REMARKS: (i) As the number of complementary roots with nαi = n (or equivalently sn)
is relatively small, it is easily computed or can be read off the extended Dynkin
diagram in many cases. When the node αi lies in the extended Dynkin diagram
path from α0 up to and including the branch node (when � is simply laced), or
the node nearest to α0 with a multiple connection (when � is non-simply laced),
nn is equal to the number of nodes in the extended Dynkin diagram in the path
joining α0 to αi not counting α0. This is because we can reflect α̃ by the composi-
tions of the simple reflections in the extended Dynkin diagram path above without
changing the αi coefficient.

(ii) In [5] the quantity m(G/Ki) is defined for an Hermitian symmetric space, to be
the number of positive roots α ∈
, α �= αi for which α− αi is a root, and it
is related to the scalar curvature of the space. When nα̃i = 1, this is the same as
the number of positive roots α ∈
, α �= αi for which mα

i is positive, where α =∑r
j=1 mα

j ωj. Taking the latter as the definition of m(G/Ki), it was proved in [9] that
when n= 2, s2 = g−m(G/Ki)− 2 when αi is long and s2 = h−m(G/Ki)− 2,
when αi is short. For n> 2, it is still the case that sn = g−m(G/Ki)− 2, when αi

is long.

EXAMPLE: For � of type F4, choosing αi = α2, we have nα̃2 = n= 3, ω2 = 3α1 +
6α2 + 8α3 + 4α4, [8, p. 273] so that 〈ω2, ω2〉 = 〈6α2, ω2〉 = 3〈α2, α2〉 = 6 (as α2 is long,
i.e. k2 = 1). By Corollary 3.2 dim π−α2 = { n

n−1 (
2gk2

n(n−1) − sn)}k2〈ω2, ω2〉. As the number
of nodes in the extended Dynkin diagram path joining α0 to α2, not counting α0, is two,
we have that sn = 1. Finally as g= 9 we have that dim π−α2 = 18. From Theorem 3.2 we
calculate card �+ω2

to be 24− { 92 − 7
6 }6= 4.

We next turn our attention to the sum of the positive roots of the related root systems
�ωi and �Ki , which we will denote by 2ρωi and 2ρKi respectively, and we relate them to
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the sum of the positive roots 2ρ of �. Note that by Theorem 3.1 2ρωi = 2ρKi when Ki is
semisimple, that is, when nα̃i = 1, but otherwise they are different.

THEOREM 3.3. Let � be an irreducible reduced crystallographic root system and let
nα̃i = n≥ 2 and ki = (α̃,α̃)

(αi,αi)
, then:

2ρKi = 2ρ − 2kig

n
ωi

and for nα̃i = n≥ 1

2ρωi = 2ρ −
(

2kig

n
− sn

)
ωi.

In particular for nα̃i = 1 we have that 2ρωi = 2ρ − g ωi.

Proof. By definition �ωi = {α ∈� : nαi = 0} and therefore

2ρωi = 2ρ −
⎛
⎝∑

nαi =1

α + · · · +
∑
nαi =n

α

⎞
⎠.

Recall that
∑
{nαi =j} α = sjωi, 〈αi, ωi〉 = 1/ki and by Proposition 2.1,

∑
α∈�+
〈α, ωi〉α =

∑
nαi =0

〈α, ωi〉α+
∑
nαi =1

〈α, ωi〉α + · · · +
∑
nαi =n

〈α, ωi〉α = g ωi,

so that s1ωi + 2s2ωi + · · · + nsnωi = gkiωi. When n is odd therefore

s1 + 2s2 + · · · +
(

n− 1

2

)
s n−1

2
+

(
n− 1

2
+ 1

)
s n−1

2 +1 + · · · + (n− 1)sn−1 + nsn = gki,

and by Proposition 3.2 s1 = sn−1, . . . , s n−1
2
= s n−1

2 +1, so that nsn + nsn−1 + · · · + ns n−1
2 +1 =

gki and 2sn + 2sn−1 + · · · + 2s n−1
2 +1 = 2gki

n . Applying Proposition 3.2 again, we have that

s1 + s2 + · · · + sn−1 + 2sn = 2gki

n and

s1 + s2 + · · · + sn = 2kig

n
− sn.

Similarly when n is even, by Proposition 3.1 s n
2−1 = s n

2+1, therefore nsn + nsn−1 + · · · +
ns n

2+1 + n
2 s n

2
= gki, and again

2gki

n
= 2sn + 2sn−1 + · · · + 2s n

2+1 + s n
2
,

so that

2ρωi = 2ρ −
(

2kig

n
− sn

)
ωi

in all cases. By Theorem 3.1, �Ki = {α1, . . . , αi−1, αi+1, . . . , αr,−α̃} is a system of pos-
itive simple roots of Ki so that �+Ki

=�+ωi
∪ {−α ∈� : nαi = n} and 2ρKi = 2ρωi − snωi =

2ρ − 2kig
n ωi.When nα̃i = 1, we note that αi is necessarily long (because α̃ is) so that s1ωi =∑

{nαi =1} α=
∑

α∈�+〈α, ωi〉α = gωi by Proposition 2.1. and the result follows. As we have

https://doi.org/10.1017/S0017089519000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089519000156


362 JOHN M. BURNS AND MOHAMMAD A. MAKROONI

proved that s1 = g and ki = 1 when nα̃i = n= 1 we have that 2ρωi = 2ρ − ( 2kig
n − sn) ωi in

all cases.

4. Applications to flag manifolds. The background material for this section can be
found in [1, 2, 3, 21].

A flag manifold M is a homogeneous space G/K, where G is a compact connected Lie
group and K =C(S) is the centralizer of a torus S ⊆G, or equivalently they are the orbits
of the adjoint representation of G on its Lie algebra g. Flag manifolds have an alternative
description of the form GC/P, where GC is the complexification of G and P is a parabolic
subgroup of GC, the definition of which we now recall.

The subalgebra b= hC ⊕∑
α<0 gα is a maximal solvable subalgebra of gC. Let B be

the closed connected solvable subgroup of GC with Lie algebra b, then any conjugate of B
is called a Borel subgroup.

DEFINITION 4.1. A connected subgroup P of GC containing a Borel subgroup is called
a parabolic subgroup.

The Lie algebra of P is given by

p= hC +
∑
α>0

g−α +
∑
α∈�+P

gα,

where �+P is a closed (under addition) subset of positive roots. As �P := �− ∪�+P is also
a closed set of roots containing all negative simple roots, it follows that �+P is generated by
a set of positive simple roots {αi : i ∈ I}, where I ⊆ {1, . . . , r}.

The set of positive complementary roots �+ \ �+P is denoted �M and is called the set
of roots of M . In particular if |I| = r− 1, we call P a maximal parabolic subgroup and it
is this case that we will focus on in this section. When I = {1, . . . , î, . . . , r} with nα̃i = n,
we note that �M =
+ ∪ {α ∈� : nαi = n}. We now adapt the results of Section 3 to study
the isotropy representation of K on ToM, where o= eK the identity coset of G/K. This
representation is equivalent to the adjoint representation of K on m, where g= k⊕m is
a reductive, orthogonal (w.r.t. the negative of the Killing form B) decomposition of g=
h⊕∑

α∈�+(RAα +RBα), where Aα = Eα + E−α, Bα = i(Eα − E−α) and gα =CEα. The
intersection k= p∩ g is the Lie algebra of K. In particular we will derive formulae for
the dimensions dj = dim mj, where m=m1 ⊕ · · · ⊕mq is the decomposition of m into its
Ad(K)-irreducible (inequivalent) real submodules, because of their importance in finding
Einstein metric on M .

THEOREM 4.1. Let M =G/K =GC/P, where P= Pαi is a maximal parabolic sub-
group corresponding to I = {1, . . . , î, . . . , r} with nα̃i = n, then m decomposes as a sum
m=m1 ⊕ · · · ⊕mn of Ad(K)-irreducible (inequivalent) real submodules of dimensions
d1, . . . , dn given as follows:

(i) dj = 4gki

n(n−1)
ki〈ωi,ωi〉

j , for 2≤ j≤ n− 2.

(ii) d1 = (n− 1)dn−1 =
(

4gki

n(n−1) − 2sn

)
ki〈ωi, ωi〉.

(iii) d1 + ndn = jdj, for 2≤ j≤ n− 2.

Proof. Minor adjustments to the arguments of Theorem 3.2 and Corollary 3.2, to take
account of the fact that α̃ is not a simple root of K, yield that mC decomposes into complex
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irreducible ad(kC)-submodules m′l, one for each l ∈ {−n,−n+ 1, . . . , n}. Recalling the
notation �m = {α ∈� : nαi =m} for m ∈Z, we have that m′l =∑

α∈�l
CEα. Accordingly

m decomposes as m=m1 ⊕ · · · ⊕mn of real irreducible ad(k)-submodules mj, 1≤ j≤ n,
where mj =∑

α∈�j
(RAα +RBα). Alternatively the decomposition can be obtained using

the theory of T-roots [2, 3]. To complete the proof we note that dj = dim mj = 2|�j| =
2sjki

j 〈ωi, ωi〉 and use the values for sj obtained by solving the system of linear equations in
Theorem 3.3.

EXAMPLE: In [3] the invariant Einstein metrics on flag manifolds with four isotropy
summands were calculated. This involved using the Weyl dimension formula to calculate
the dimensions dj of the isotropy summands mj above. There are two types of such flag
manifolds, with Type I corresponding to a maximal parabolic subgroup Pαi with nα̃i =
n= 4. We will apply Theorem 4.1 to recalculate these dimensions for the two spaces of
Type I with � of type E8. For the case of nα̃6 = 4, we have 〈ω6, ω6〉 = 12 [8, p. 269], and
as � is simply laced ki = 1 and g= h (= 30). By Theorem 4.1 (i) therefore d2 = 4.30

4.3
12
2 =

60. As the number of nodes in the extended Dynkin diagram path joining α0 to α6, not
counting α0, is three, we have that n4 = 3 (equivalently s4 = 1), and therefore d4 = 6.Using
part (ii) of Theorem 4.1 we get d1 = ( 4.30

4.3 − 2)12= 96 and d3 = 32. For the flag manifold
corresponding to the maximal parabolic subgroup Pα3 with nα̃3 = n= 4, the calculation is
similar. In this case, however, the number of nodes in the extended Dynkin diagram path
joining α0 to α3, not counting α0, is six but it passes through the branch node α4 so that
the simple reflection sα2 (α2 is connected to the branch node) yields an additional root with
nα̃3 = n= 4, giving n4 = 7. As 〈ω3, ω3〉 = 14, s4 = 2 and d4 = 14. Now by Theorem 4.1 (ii)
d1 = 84, d2 = 70, and d3 = 28.

We next use Theorem 3.4 to study the first Chern class of the tangent bundle of M =
GC/P (or simply the first Chern class of M). The Chern classes can be expressed in terms
of the roots of M [1, 7, 21]. The total Chern class c(M) has a description as

c(M)=
∏
α∈�M

(t+ α)=
dim M∑
q=0

cqtdim M−q,

so that the first Chern class c1(M)=∑
α∈�M

α. Theorem 3.4 now has a geometric inter-

pretation in terms of the first Chern class of M =GC/Pαi , where Pαi in the maximal
parabolic subgroup and the space of full flags M =GC/B, where B is a Borel subgroup.
Noting that for M =GC/B, we have c1(M)=∑

α∈�M
α =∑

α∈�+ α= 2ρ we obtain the
following:

PROPOSITION 4.1. Let M =GC/P, where P= Pαi is a maximal parabolic subgroup
corresponding to I = {1, . . . , î, . . . , r} with nα̃i = n, then

c1(G
C/B)= 2ρωi + c1(G

C/Pαi),

and

c1(G
C/Pαi)=

(
2kig

nα̃i
− snα̃i

)
ωi.

REMARK: The first Chern class c1(GC/P) of any parabolic subgroup P can be obtained
from knowledge of all the c1(GC/Pαi), where Pαi are the maximal parabolic subgroups by
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an algorithm described in [22]. Also we note for later that if τ := 2ρ − 2ρωi , then using the
natural isomorphism between h∗ and �2(X )G (the G-invariant 2 forms on M) we see that

τ←→ i

2π
dτ = i

4π

∑
α∈�+M
〈τ, α〉dxα ∧ dxα

represents the first Chern class of M [2].

We now consider another interpretation of c1(M)when M is considered as a projective
manifold. Let P be a parabolic subgroup defined by a subset I with corresponding roots �P

and let

�M = {λ ∈� : 〈λ, α〉 = 0, ∀α ∈�P},
which is generated by {ωi : i /∈ I}. Any line bundle on M is homogeneous and is determined
by a character λ ∈�M which gives a character λ̃ : P→C∗ so that

L=GC ×P Cλ̃ =GC ×Cλ̃/(g, z)∼ (gp−1, λ̃( p)z) ∀p ∈ P.

As above, the first Chern class of L= Lλ is c1(Lλ)= i
4π

∑
α∈�λ〈λ, α〉dx∧ dxα, and we

say that Lλ is nef (numerically effective) if
∫

c c1(Lλ)≥ 0 for all (effective) curves c in M,
which in our context means that Lλ is nef⇔ all ni ≥ 0, where λ=∑r

i=1 niωi. We denote
the (holomorphic) sections of Lλ by:

� :=H0(M,Cλ̃) := {s :GC→Cλ̃ : s(gp−1)= λ̃( p)s(g) ∀p ∈ P}.
� is a vector space on which GC acts via g.s(g′)= s(g−1g′).

DEFINITION 4.2. A line bundle Lλ on M is said to be ample if some power Lm
λ embeds

M via its sections in P(�∗).

In this setting, ampleness is equivalent to the condition that λ=∑
i/∈I niωi, with all

ni > 0.
An important line bundle on M is the canonical bundle KM =∧dim(M)TM∗, where TM∗

is the cotangent bundle of M and c1(KM )=−∑
α∈�M

α, so that it is never nef.

DEFINITION 4.3. Let M be a projective manifold whose canonical bundle is not nef and
let L be an ample line bundle on M. The nef value of L denoted

τ(M, L)= inf
{

p/q ∈Q :Kq
M ⊗ Lp is nef

}
.

In the case that M =GC/P, where P is the maximal parabolic subgroup corresponding
to I = {1, . . . , î, . . . , r}, it is proved in [21] that L= Lωi is the minimal (very) ample line
bundle on M and τ(M, L)ωi = c1(X ) so that by Theorem 3.4 we have:

PROPOSITION 4.2. Let M =GC/P, where P= Pαi is a maximal parabolic subgroup
corresponding to I = {1, . . . , î, . . . , r} with nα̃i = n, and let L= Lωi be the minimal ample
line bundle on M, then

τ(M, L)= 2kig

n
− sn.

When M is embedded in P(�∗) via the global sections of L= Lωi , there is a con-
nection between the nef value τ(M, L) and the codimension of the dual variety M ′ ⊂
PN. Recall that the defect of (M, L) is defined to be def (M, L)= codim M ′ − 1. If
def (M, L) > 0, then def (M, L)= 2(τ (M, L)− 1)− dim M [4]. We denote the quantity
2(τ (M, L)− 1)− dim M by dP, so that when def (M, L) > 0 we have def (M, L)= dP.
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We now evaluate the quantity dP = 2(τ (M, L)− 1)− dim M and we obtain the following
theorem:

THEOREM 4.2. (i) If nα̃i = 1, then dP = (2− 〈ωi, ωi〉)g− 2.
(ii) If nα̃i ≥ 2 and αi is long, then dP < 0.

Proof. We first consider those cases where nα̃i ≥ 4. By Proposition 4.2 the quan-
tity dP = 2( 2g

nα̃i
− snα̃i

)− dim M − 2≤ 2( 2g
4 − snα̃i

)− dim M − 2= g− 2snα̃i
− dim M − 2.

Recalling that the quantity m(G/Ki) is defined to be the number of positive roots α ∈
,
α �= αi for which mα

i is positive, where α=∑r
j=1 mα

j ωj and that m(G/Ki)+ 2= g− snα̃i

when αi is long, we have that dP =m(G/Ki)− dim M − snα̃i
< 0. Similarly for nα̃i = 3

we have dP = 2( 2g
3 − s3)− dim M − 2=m(G/Ki)+ g

3 − s3 − dim M =m(G/Ki)+ s2 −
dim M (see the proof of Theorem 3.3). Using the definition of m(G/Ki) we have
that dP < s2 − card {α ∈�M |mα

i ≤ 0} ≤ card {α ∈�M |nαi = 2 and mα
i > 0} − card {α ∈

�M |mα
i ≤ 0} = card {α ∈�M |nαi = 1 and mα

i < 0} − card {α ∈�M |mα
i ≤ 0}< 0. Finally

when nα̃i = 2 (and αi is long) we can lookup the αi coefficient of ωi in [8] to establish that
〈ωi, ωi〉 ≥ 3 , unless 〈ωi, ωi〉 = 2 in which case α̃= cωi, and s2 = 1 by Corollary 2.2, so that
dP = 2( 2g

2 − s2)− dim M − 2= 2g− 4− (2g− 3) < 0.We next deal with the cases where
〈ωi, ωi〉 ≥ 4, then dP = 2g− 2s2 − dim M − 2= 2s1 + 2s2 − n1 − n2 − 2= 2n1+4n2

〈ωi,ωi〉 −
n1 − n2 − 2< 0. Similarly when 〈ωi, ωi〉 ≥ 3, we have dP ≤− n1

3 + n2
3 − 2, which we now

show is negative for 3≤ 〈ωi, ωi〉 ≤ 4. Observing that mα
i ∈ {0, 1} for α ∈ {α ∈�M |nαi = 2},

we obtain s2 = 2n2
〈ωi,ωi〉 roots in {α ∈�M |nαi = 1} with mα

i =−1 and there are therefore at

least 4n2
〈ωi,ωi〉 roots in {α ∈�M |nαi = 1}, so that n1 ≥ 4n2

〈ωi,ωi〉 ≥ n2 and dP < 0.

REMARK: We observe that the quantity ki〈ωi, ωi〉 is important in determining the
sign of dP. It follows from Proposition 2.1 in [10] that 〈ωi, ωi〉 increases (and nα̃i cannot
decrease) as the corresponding node αi in the extended Dynkin diagram is further along
the path from a pendant node to the first node with a branch or multiple connection. Also
for root systems of type other than Ar or Cr we have that α̃=ωj so that 〈ωj, ωj〉 = 2, and
the corresponding Dynkin diagram node αj either is a pendant node or is connected to
a pendant node. So in general we expect dP to be positive when nα̃i ≤ 2 only if the corre-
sponding αi node in the Dynkin diagram is a pendant node or is adjacent to a pendant node.
Checking the few cases not covered already we see that this indeed turns out to be the case
and we have the following [22]:

COROLLARY 4.1. The following infinite families of Flag manifolds G/Pi have dP > 0 :
(a) If nα̃i = 1,

(i) �= Ar, i ∈ {1, 2, r− 1, r}.
(ii) �= Br, i= 1.

(iii) �=Dr, i= 1.
(b) If nα̃i = 2, �=Cr, i ∈ {1, 2}.
COROLLARY 4.2. The following finite collection completes the list of Flag manifolds

G/Pi with dP > 0 :
(a) If nα̃i = 1,

(i) �= Ar, r= 5, i= 3.
(ii) �=Dr, 5≤ r≤ 7, i ∈ {r, r− 1}.
(iv) �= E6, i ∈ {1, 6}.
(iv) �= E7, i= 1.
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(b) If nα̃i = 2,

(i) �= Br, 2≤ r≤ 6, i= r.
(ii) �= F4, i= 4.

(c) If nα̃i = 3, �=G2, i= 1.
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