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Abstract

In this paper we consider the optimal scaling of high-dimensional random walk Metropolis
algorithms for densities differentiable in the Lp mean but which may be irregular at some
points (such as the Laplace density, for example) and/or supported on an interval. Our
main result is the weak convergence of the Markov chain (appropriately rescaled in
time and space) to a Langevin diffusion process as the dimension d goes to ∞. As the
log-density might be nondifferentiable, the limiting diffusion could be singular. The
scaling limit is established under assumptions which are much weaker than the one used
in the original derivation of Roberts et al. (1997). This result has important practical
implications for the use of random walk Metropolis algorithms in Bayesian frameworks
based on sparsity inducing priors.
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1. Introduction

A wealth of contributions has been devoted to the study of the behaviour of high-dimensional
Markov chains. One of the most powerful approaches for that purpose is the scaling analysis,
introduced by Roberts et al. [15]. Assume that the target distribution has a density with respect
to the d-dimensional Lebesgue measure given by

πd(xd) =
d∏

i=1

π(xd
i ). (1)

The random walk Metropolis–Hastings (RWM) updating scheme was first applied in [11]
and proceeds as follows. Given the current state Xd

k , a new value Yd
k+1 = (Y d

k+1,i )
d
i=1 is
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obtained by moving independently each coordinate, i.e. Yd
k+1,i = Xd

k,i + �d−1/2Zd
k+1, where

� > 0 is a scaling factor and (Zk)k≥1 is a sequence of independent and identically distributed
(i.i.d.) Gaussian random variables. Here � governs the overall size of the proposed jump
and plays a crucial role in determining the efficiency of the algorithm. The proposal is then
accepted or rejected according to the acceptance probability α(Xd

k , Y
d
k+1), where α(xd, yd) =

1 ∧ πd(yd)/πd(xd). If the proposed value is accepted it becomes the next current value,
otherwise the current value is left unchanged:

Xd
k+1 = Xd

k + �d−1/2Zd
k+1 1Ad

k+1
, (2)

Ad
k+1 =

{
Uk+1 ≤

d∏
i=1

π(Xd
k,i + �d−1/2Zd

k+1,i )

π(Xd
k,i)

}
, (3)

where (Uk)k≥1 is a sequence of i.i.d. uniform random variables on [0, 1] independent of (Zk)k≥1.
Under some regularity assumptions on π , it has been proved in [15] that if Xd

0 is distributed
according to the stationary distribution πd , then each component of (Xd

k )k≥0 appropriately
rescaled in time converges weakly to a Langevin diffusion process with invariant distribution π

as d → +∞.
This result allows us to compute the asymptotic mean acceptance rate and to derive a practical

rule to tune the factor �. It was shown in [15] that the speed of the limiting diffusion as a function
of � has a unique maximum. The corresponding mean acceptance rate in stationarity is equal
to 0.234.

These results have been derived for target distributions of the form (1), where π(x) ∝
exp(−V (x)) and where V is three-times continuously differentiable. Therefore, they do not
cover the cases where the target density is continuous but not smooth, for example the Laplace
distribution which plays a key role as a sparsity-inducing prior in high-dimensional Bayesian
inference.

The aim of this paper is to extend the scaling results for the RWM algorithm introduced in the
seminal paper [15, Theorem 3] to absolutely continuous densities differentiable in the Lp mean
(DLM) for some p ≥ 2 but which can be either nondifferentiable at some points or supported
on an interval. As shown in [10, Section 17.3], differentiability of the square root of the density
in the L2 norm implies a quadratic approximation property for the log-likelihood known as
the local asymptotic normality. As shown below, the DLM permits the quadratic expansion of
the log-likelihood without paying the twice-differentiability price usually demanded by such a
Taylor expansion (such an expansion of the log-likelihood plays a key role in [15]).

The paper is organised as follows. In Section 2 the target density π is assumed to be positive
on R. In Theorem 2 we prove that under the DLM assumption of this paper, the average
acceptance rate and the expected squared jump distance are the same as in [15]. In Theorem 3
we show that, under the same assumptions, the rescaled in time Markov chain produced by the
RWM algorithm converges weakly to a Langevin diffusion. We show that these results may be
applied to a density of the form π(x) ∝ exp(−λ|x| + U(x)), where λ ≥ 0 and U is a smooth
function. In Section 3 we focus on the case where π is supported only on an open interval
of R. Under appropriate assumptions, in Theorem 4 and Theorem 5 we show that the same
asymptotic results (limiting average acceptance rate and limiting Langevin diffusion associated
with π ) hold. We apply our results to gamma and beta distributions. The proofs are postponed
to Section 4 and Section 5.
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2. Positive target density on R

The key of the proof of our main result is to show that the acceptance ratio and the expected
squared jump distance converge to a finite and nontrivial limit. In the original proof of [15],
the density of the product form (1) with

π(x) ∝ exp(−V (x)) (4)

is three-times continuously differentiable and the acceptance ratio is expanded using the usual
pointwise Taylor formula. More precisely, the log-ratio of the density evaluated at the proposed
value and at the current state is given by

∑d
i=1 �V d

i , where

�V d
i = V (Xd

i ) − V (Xd
i + �d−1/2Zd

i ), (5)

withXd distributed according toπd andZd a d-dimensional standard Gaussian random variable
independent of X. The two leading terms are

�d−1/2
d∑

i=1

V̇ (Xd
i )Z

d
i and

�2d−1 ∑d
i=1 V̈ (Xd

i )(Z
d
i )

2

2
,

where V̇ and V̈ are the first and second derivatives of V , respectively. By the central limit
theorem, the first term converges in distribution to a zero-mean Gaussian random variable with
variance �2I, where

I =
∫

R

V̇ 2(x)π(x) dx. (6)

Note that I is the Fisher information associated with the translation model θ 	→ π(x + θ)

evaluated at θ = 0. Under appropriate technical conditions, and using the dual representation
of the Fisher information:

−E[V̈ (X)] = E[(V̇ (X))2] = I, (7)

the second term converges almost surely to −�2I/2. Assuming that these limits exist, the
acceptance ratio in the RWM algorithm converges to E[1 ∧ exp(Z)], where Z is a Gaussian
random variable with mean −�2I/2 and variance �2I ; elementary computations show that
E[1 ∧ exp(Z)] = 2�(−�/2

√
I ), where � denotes the cumulative distribution function of a

standard normal distribution.
For t ≥ 0, denote by Yd

t the linear interpolation of the Markov chain (Xd
k )k≥0 after time

rescaling:

Yd
t = (�dt� − dt)Xddt� + (dt − dt�)Xd�dt� = Xddt� + (dt − dt�)�d−1/2Zd

�dt� 1Ad�dt�
, (8)

where ·� and �·� denote the lower and the upper integer part functions. Note that, for all
k ≥ 0, Y d

k/d = Xd
k . Denote by (Bt , t ≥ 0) the standard Brownian motion.

Theorem 1. (See [15].) Suppose that the target πd and the proposal distribution are given by
(1)–(4) and (2), respectively. Assume that

(i) V is twice continuously differentiable and V̇ is Lipschitz continuous;

(ii) E[(V̇ (X))8] < ∞ and E[(V̈ (X))4] < ∞, where X is distributed according to π .
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Then (Y d
t,1, t ≥ 0), where Yd

t,1 is the first component of the vector Yd
t defined in (8), converges

weakly in the Wiener space (equipped with the uniform topology) to the Langevin diffusion

dYt = √
h(�) dBt − 1

2h(�)V̇ (Yt ) dt, (9)

where Y0 is distributed according to π , h(�) is given by

h(�) = 2�2�

(
−�

2

√
I

)
, (10)

and I is defined in (6).

Whereas V is assumed to be twice continuously differentiable, the dual representation of
the Fisher information (7) allows us to remove, in the statement of the theorem, all mention of
the second derivative of V , which hints that two derivatives might not really be required. For
all θ, x ∈ R, define

ξθ (x) = √
π(x + θ). (11)

For p ≥ 1, denote ‖f ‖p
π,p = ∫ |f (x)|pπ(x) dx. Consider the following assumptions.

Assumption 1. There exists a measurable function V̇ : R → R such that

(i) there exist p > 4, C > 0, and β > 1 such that, for all θ ∈ R,

‖V (· + θ) − V (·) − θV̇ (·)‖π,p ≤ C|θ |β;
(ii) the function V̇ satisfies ‖V̇ ‖π,6 < +∞.

In Example 1 we detail how these assumptions might be checked for the Bayesian Lasso
with V of the form V : x 	→ U(x) + λ|x|, where U is twice continuously differentiable with
bounded second derivative.

Lemma 1. Assume that Assumption 1 holds. Then, the family of densities θ → π(· + θ) is
differentiable in quadratic mean at θ = 0 with derivative V̇ , i.e. there exists C > 0 such that,
for all θ ∈ R, (∫

R

(
ξθ (x) − ξ0(x) + θV̇ (x)ξ0(x)

2

)2

dx
1/2)

≤ C|θ |β,

where ξθ is given by (11).

Proof. The proof is postponed to Section 4.1. �
The first step in the proof is to show that both the expected squared jump distance

E[(Zd
1 )

2{1 ∧ exp(
∑d

i=1 �V d
i )}], and the acceptance ratio P(Ad

1) = E(1 ∧ exp{∑d
i=1 �V d

i })
converge to a finite value.

Theorem 2. Assume that Assumption 1 holds. Then limd→+∞ P[Ad
1 ] = a(�), where a(�) =

2�(−√
I�/2).

Proof. The proof is postponed to Section 4.2. �
The next step consists in proving that the sequence {(Y d

t,1)t≥0, d ∈ N
�} defined by (8)

converges weakly to a Langevin diffusion. Denote by (μd)d≥1 the sequence of distributions
of {(Y d

t,1)t≥0, d ∈ N
�}. Following the proof of [9], it is shown in Lemma 6 (see Section 4.3)
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that this sequence is tight in the Wiener space W . By the Prohorov theorem, the tightness of
(μd)d≥1 implies that this sequence has a weak limit point.

The equivalence between the weak formulation of stochastic differential equations and
martingale problems is used to prove that any limit point is the law of a solution to (9). The
generator L of the Langevin diffusion (9) is given by, for all φ ∈ C2

c (R,R),

Lφ(x) = h(�)

2
(−V̇ (x)φ̇(x) + φ̈(x)), (12)

where, for k ∈ N and I an open subset of R, Ck
c (I,R) is the space of k-times differentiable

functions with compact support, endowed with the topology of uniform convergence of all
derivatives up to order k. We set C∞

c (I,R) = ⋂∞
k=0 Ck

c (I,R) and W = C(R+,R). The
canonical process is denoted by (Wt )t≥0 and (Bt )t≥0 is the associated filtration. For any
probability measure μ on W , the expectation with respect to μ is denoted by E

μ. A probability
measure μ on W is said to solve the martingale problem associated with (9) if the pushforward
of μ by W0 is π and if, for all φ ∈ C∞

c (R,R), the process(
φ(Wt) − φ(W0) −

∫ t

0
Lφ(Wu) du

)
t≥0

is a martingale with respect to μ and the filtration (Bt )t≥0, i.e. if, for all s, t ∈ R+, s ≤ t

(almost surely μ),

E
μ

[
φ(Wt) − φ(W0) −

∫ t

0
Lφ(Wu) du

∣∣∣∣ Bs

]
= φ(Ws) − φ(W0) −

∫ s

0
Lφ(Wu) ds.

Assumption 2. The function V̇ is continuous on R except on a Lebesgue-negligible set DV̇

and is bounded on all compact sets of R.
Under Assumption 2, Proposition 2 (see Section 4.4) proves that every limit point of the

sequence of probability measures (μd)d≥1 on W is a solution to the martingale problem
associated with (9). In addition, under Assumption 2, in [16, Chapter 5, Lemma 1.9 and
Theorem 20.1] it was shown that any solution to the martingale problem associated with (9)
coincides with the law of a solution to the stochastic differential equation (SDE) (9), and
conversely. Therefore, uniqueness in law of weak solutions to (9) implies uniqueness of the
solution to the martingale problem.

Theorem 3. Assume that Assumptions 1 and 2 hold. Assume also that (9) has a unique weak
solution. Then {(Y d

t,1)t≥0, d ∈ N
∗} converges weakly to the solution (Yt )t≥0 of the Langevin

equation defined by (9). Furthermore, h(�) is maximized at the unique value of � for which
a(�) = 0.234, where a is defined in Theorem 2.

Proof. The proof is postponed to Section 4.5. �
Remark 1. The idea of scaling random walk Metropolis algorithms by maximizing the speed
measure h(�) was discussed, for instance, in [1]–[6], [12], [14], [15], and [17]. For random
walk Metropolis proposals of the form Yd

k+1,i = Xd
k,i + √

�d−ϑZd
k+1, this choice is closely

related to maximizing the expected squared jump distance (ESJD):

ESJDd(�, ϑ) = E[‖Xd
1 − Xd

0 ‖2], (13)

where Xd
0 ∼ πd. Note that for one-dimensional distributions, as ESJD1(�, ϑ) = 2(1 −

ρ1) var[X1
0] with ρ1 the first-order autocorrelation, maximizing ESJD1(�, ϑ) is equivalent to
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1238 A. DURMUS ET AL.

Figure 1: Expected squared jump distance for V (x) = (x−1)2 +|x| as a function of the mean acceptance
rate for d = 10, 20, 50.

minimizing ρ1. It is shown in Theorem 2 and Theorem 3 (see also Theorem 4 and Theorem 5)
that

lim
d→+∞ ESJDd(�) = ESJDd(�, 1) = h(�) = �2a(�).

Therefore, in the case where ϑ = 1, the optimal value of � obtained in the paper is the value
maximizing the limit of the ESJDd as d → ∞.

Example 1. (Bayesian Lasso.) We apply the results obtained above to a target density π on R

given by x 	→ e−V (x)/
∫

R
e−V (y) dy, where V is given by

V : x 	→ U(x) + λ|x|,
and where λ ≥ 0 and U is twice continuously differentiable with bounded second derivative.
Furthermore,

∫
R

|x|6e−V (x) dx < +∞. Define V̇ : x 	→ U ′(x)+λsign(x), with sign(x) = −1
if x ≤ 0 and sign(x) = 1 otherwise. We first check that Assumption 1(i) holds. Note that, for
all x, y ∈ R,

||x + y| − |x| − sign(x)y| ≤ 2|y| 1R+(|y| − |x|),
which implies that, for any p ≥ 1, there exists Cp such that

‖V (· + θ) − V (·) − θV̇ (·)‖π,p

≤ ‖U(· + θ) − U(·) − θU ′(·)‖π,p + λ‖|· + θ | − |·| − θsign(·)‖π,p

≤ ‖U ′′‖∞ θ2 + 2|θ |λ{π([−θ, θ ])}1/p

≤ C|θ |p+1/p ∨ |θ |2.
Assumptions 1(ii) and 2 are easy to check. The uniqueness in law of (9) was established in [7,
Theorem 4.5(i)]. Therefore, Theorem 3 can be applied. To numerically illustrate this result, we
consider the density π associated with U(x) = (x − 1)2 and λ = 1. In Figure 1 we present an
empirical estimation of the ESJDd defined by (13) for dimensions d = 10, 20, 50 as a function
of the empirical mean acceptance rate. We can observe that, as expected (see Remark 1), the
ESJDd converges to some limit function as d goes ∞, and this function has a maximum for a
mean acceptance probability around 0.23.
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3. Target density supported on an interval of R

We now extend our results to densities supported by a open interval � ⊂ R:

π(x) ∝ exp(−V (x)) 1� (x),

where V : � → R is a measurable function. Note that, by convention, V (x) = −∞ for all
x /∈ � . Denote by � the closure of � in R. The results of Section 2 cannot be directly used in
such a case as π is no longer positive on R. Consider the following assumption.

Assumption 3. There exists a measurable function V̇ : � → R and r > 1 such that

(i) there exist p > 4, C > 0, and β > 1 such that, for all θ ∈ R,

‖{V (· + θ) − V (·)} 1� (· + rθ) 1� (· + (1 − r)θ) − θV̇ (·)‖π,p ≤ C|θ |β,
with the convention 0 × ∞ = 0;

(ii) the function V̇ satisfies ‖V̇ ‖π,6 < +∞;

(iii) there exist γ ≥ 6 and C > 0 such that, for all θ ∈ R,∫
R

1� c (x + θ)π(x) dx ≤ C|θ |γ .

As an important consequence of Assumption 3(iii), if X is distributed according to π and is
independent of the standard random variable Z, there exists a constant C such that

P(X + �d−1/2Z ∈ � c) ≤ Cd−γ /2.

Theorem 4. Assume that Assumption 3 holds. Then limd→+∞ P[Ad
1 ] = a(�), where a(�) =

2�(−√
I�/2).

Proof. The proof is similar to the proof of Theorem 2 and can be found in the supplementary
material; see [8]. �

We now establish the weak convergence of the sequence {(Y d
t,1)t≥0, d ∈ N

�}, following the
same steps as for the proof of Theorem 3. For all d ≥ 1, let μd be the law of the process
(Y d

t,1)t≥0. Under Assumption 3, Lemma S5 of the supplementary material [8] establishes that
the sequence (μd)d≥1 is tight in W (the proof is similar to the proof of Lemma 6).

Contrary to the case where π is positive on R, we do not assume that V̇ is bounded on all
compact sets of R. Therefore, we consider the local martingale problem associated with (9):
with the notation of Section 2, a probability measure μ on W is said to solve the local martingale
problem associated with (9) if the pushforward of μ by W0 is π and if, for all ψ ∈ C∞(R,R),
the process (

ψ(Wt) − ψ(W0) −
∫ t

0
Lψ(Wu) du

)
t≥0

, (14)

where L is given by (12), is a local martingale with respect to μ and the filtration (Bt )t≥0. By
[7, Theorem 1.27], any solution to the local martingale problem defined by (14) coincides with
the law of a solution to SDE (9) and conversely. If (9) admits a unique solution in law, this
law is the unique solution to the local martingale problem defined by (14). We consider the
following assumption on V̇ .
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Assumption 4. The function V̇ is continuous on � except on a null-set DV̇ , with respect to the
Lebesgue measure, and is bounded on all compact sets of � .

Note that this condition does not preclude that V̇ is unbounded at the boundary of � .
In Proposition 4 (see Section 5.2), we prove that any limit point μ of (μd)d≥1 is a solution to
the local martingale problem defined by (14). The key step of the proof is Lemma 2.

Lemma 2. Assume that Assumptions 3 and 4 hold. Let μ be a limit point of the sequence
(μd)d≥1. If, for all φ ∈ C∞

c (� ,R), the process (φ(Wt) − φ(W0) − ∫ t

0 Lφ(Wu) du)t≥0 is a
martingale with respect to μ and the filtration (Bt )t≥0, then μ solves the local martingale
problem associated with (9).

Proof. The proof is postponed to Section 5.1. �

Theorem 5. Assume that Assumptions 3 and 4 hold. Assume also that (9) has a unique weak
solution. Then {(Y d

t,1)t≥0, d ∈ N
∗} converges weakly to the solution (Yt )t≥0 of the Langevin

equation defined by (9). Furthermore, h(�) is maximized at the unique value of � for which
a(�) = 0.234, where a is defined in Theorem 2.

Proof. The proof follows the same lines as the proof of Theorem 3 and can be found in the
supplementary material [8]. �

The conditions for uniqueness in law of singular one-dimensional SDEs are given in [7].
These conditions are rather involved and difficult to summarize in full generality. Rather, we
illustrate Theorem 5 by two examples.

Example 2. (Application to the gamma distribution.) Define the class of the generalized
gamma distributions as the family of densities on R given by

πγ : x 	→ xa1−1 exp(−xa2) 1R
�+(x)∫

R
�+ ya1−1 exp(−ya2) dy

,

with two parameters a1 > 6 and a2 > 0. Note that in this case, � = R
�+ for all x ∈ � ,

Vγ : x 	→ xa2 −(a1−1) log x, and V̇γ : x 	→ a2x
a2−1−(a1−1)/x. We check thatAssumption 3

holds with r = 3
2 . First, we show that Assumption 3(i) holds with p = 5. Write, for all θ ∈ R

and x ∈ � ,

{Vγ (x + θ) − Vγ (x)} 1� (x + (1 − r)θ) 1� (x + rθ) − θV̇γ (x) = E1 + E2 + E3,

where

E1 = θV̇γ (x)

{
1�

(
x − θ

2

)
1�

(
x + 3θ

2

)
− 1

}
,

E2 = (1 − a1)

{
log

(
1 + θ

x

)
− θ

x

}
1�

(
x − θ

2

)
1�

(
x + 3θ

2

)
,

E3 = ((x + θ)a2 − xa2 − a2θx
a2−1) 1�

(
x − θ

2

)
1�

(
x + 3θ

2

)
.

It is enough to prove that there exists q > 5 such that, for all i ∈ {1, 2, 3}, ∫� |Ei |5πγ (x) dx ≤
C|θ |q . It follows from tedious but straightforward calculations (see the supplementary mate-
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Figure 2: The ESJDd for the beta distribution with parameters a1 = 10 and a2 = 10 as a function of the
mean acceptance rate for d = 10, 50, 100.

rial [8] for detailed computations) that∫
R

∗+
|E1(x)|5πγ (x) dx ≤ C(|θ |a1 + |θ |5a2+a1),

∫
R

∗+
|E2(x)|5πγ (x) dx ≤ C(|θ |a1 + |θ |10),

∫
R

∗+
|E3(x)|5πγ (x) dx ≤ C(|θ |5a2+a1 + |θ |10).

The proof of Assumption 3(ii) follows from∫
R

∗+
|V̇γ (x)|6πγ (x) dx ≤ C

(∫
R

∗+
xa1−1+6(a2−1)e−xa2 dx +

∫
R

∗+
xa1−7e−xa2 dx

)
< ∞,

and Assumption 3(iii) follows from
∫

R
1� c (x + θ)πγ (x) dx ≤ C|θ |a1 . Now consider the

Langevin equation associated with πγ given by dYt = −V̇γ (Yt ) dt + √
2 dBt with initial

distribution πγ . This SDE has 0 as a singular point, which has right type 3 according to the
terminology of [7]. On the other hand, ∞ has type A and the existence and uniqueness in
law for the SDE follows from [7, Theorem 4.6(viii)]. Since Assumption 4 is straightforward,
Theorem 5 can be applied.

Example 3. (Application to the beta distribution.) Consider now the case of the beta distribu-
tions πβ with density x 	→ xa1−1(1−x)a2−11(0,1)(x) with a1, a2 > 6. Here � = (0, 1) and the
log-density Vβ and its derivative on � are defined by Vβ(x) = −(a1−1) log x−(a2−1) log(1−
x) and V̇β(x) = −(a1 − 1)/x − (a2 − 1)/(1 − x). Along the same lines as above, πβ satisfies
Assumptions 3 and 4. Hence, Theorem 4 can be applied if we establish the uniqueness in law for
the Langevin equation associated with πβ defined by dYt = −V̇β(Yt ) dt + √

2 dBt with initial
distribution πβ . In the terminology of [7], 0 has right type 3 and 1 has left type 3. Therefore, by
[7, Theorem 2.16(i) and 2.16(ii)], the SDE has a global unique weak solution. To illustrate our
findings, we consider the beta distribution with parameters a1 = 10 and a2 = 10. In Figure 2 we
present an empirical estimation of the ESJDd defined by (13) for dimensions d = 10, 50, 100
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as a function of the empirical mean acceptance rate. We can observe that, as expected (see
Remark 1), the ESJDd converges to some limit function as d goes to ∞, and this function has
a maximum for a mean acceptance probability around 0.23.

4. Proofs of Section 2

We first prove differentiability in quadratic mean (Lemma 1) and then the convergence of the
acceptance ratio (Theorem 2) in Sections 4.1 and 4.2. Then the proof of Theorem 3 is detailed
in the remainder of the section in three main steps. First, Section 4.3 is devoted to the proof of
Lemma 6 which establishes the tightness of the sequence (μd)d≥1 in W which ensures that this
sequence has a weak limit point. Then it is proved in Section 4.4 (Proposition 2) that if (29)
holds, every limit point of the sequence (μd)d≥1 on W is a solution to the martingale problem
associated with (9) and, therefore, is the law of a solution to SDE (9). The fact that (29) holds
is a consequence of Proposition 3.

For any real random variable Y and any p ≥ 1, let ‖Y‖p := E[|Y |p]1/p.

4.1. Proof of differentiability in quadratic mean (Lemma 1)

Let �θV (x) = V (x) − V (x + θ). By definition of ξθ and π ,

(
ξθ (x) − ξ0(x) + θV̇ (x)ξ0(x)

2

)2

≤ 2{Aθ(x) + Bθ(x)}π(x),

where

Aθ(x) =
(

exp

(
�θV (x)

2

)
− 1 − �θV (x)

2

)2

, Bθ (x) = (�θV (x) + θV̇ (x))2

4
.

By Assumption 1(i), ‖Bθ‖π,p ≤ C|θ |β . For Aθ , note that, for all x ∈ R, (exp(x) − 1 − x)2 ≤
2x4(exp(2x) + 1). Then∫

R

Aθ(x)π(x) dx ≤ C

∫
R

�θV (x)4(1 + e�θV (x))π(x) dx

≤ C

∫
R

(�θV (x)4 + �−θV (x)4)π(x) dx.

The proof is completed by writing (the same inequality holds for �−θV ):

∫
R

�θV (x)4π(x) dx ≤ C

[∫
R

(�θV (x) − θV̇ (x))4π(x) dx + θ4
∫

R

V̇ 4(x)π(x) dx

]

and using Assumption 1(i) and 1(ii).

4.2. Proof of asymptotic acceptance rate (Theorem 2)

Define

E
d(q) = E

[
(Zd

1 )
q

∣∣∣∣1 ∧ exp

( d∑
i=1

�V d
i

)
− 1 ∧ exp(υd)

∣∣∣∣
]
,
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where �V d
i is given by (5),

υd = −�d−1/2Zd
1 V̇ (Xd

1 ) +
d∑

i=2

bd(Xd
i , Z

d
i ), (15)

bd(x, z) = − �z√
d
V̇ (x) + E[2ζ d(Xd

1 , Z
d
1 )] − �2

4d
V̇ 2(x), bd(x, z) (16)

ζ d(x, z) = exp

{
V (x) − V (x + �d−1/2z)

2

}
− 1. (17)

The key result to prove Theorem 2 is stated in Proposition 1 which shows that it is enough
to consider υd to analyse the asymptotic behaviour of the acceptance ratio and the expected
squared jump distance as d → +∞.

Proposition 1. Assume that Assumption 1 holds. Let Xd be a random variable distributed
according to πd and Zd be a zero-mean standard Gaussian random variable, independent
of Xd . Then, for any q ≥ 0, limd→+∞ E

d(q) = 0.

Proof. By the central limit theorem, the term −�
∑d

i=2(Z
d
i /

√
d)V̇ (Xd

i ) in (15) converges
in distribution to a zero-mean Gaussian random variable with variance �2I , where I is defined
in (6). By Lemma 5 (stated and proved below), the second term, which is dE[2ζ d(Xd

1 , Z
d
1 )] =

−dE[(ζ d(Xd
1 , Z

d
1 ))

2], converges to −�2I/4. The last term converges in probability to −�2I/4.
Therefore, the two last terms play a similar role in the expansion of the acceptance ratio as the
second derivative of V in the regular case. We now present the detailed arguments.

Let q > 0 and �d = −�d−1/2Zd
1 V̇ (Xd

1 ) + ∑d
i=2 �V d

i . By the triangle inequality, E
d(q) ≤

E
d
1(q) + E

d
2(q), where

E
d
1(q) = E

[
(Zd

1 )
q

∣∣∣∣1 ∧ exp

{ d∑
i=1

�V d
i

}
− 1 ∧ exp{�d}

∣∣∣∣
]
,

E
d
2(q) = E[(Zd

1 )
q |1 ∧ exp{�d} − 1 ∧ exp{υd}|].

Since t 	→ 1 ∧ et is 1-Lipschitz, by the Cauchy–Schwarz inequality, we obtain

E
d
1(q) ≤ ‖Zd

1 ‖q
2q‖�V d

1 + �d−1/2Zd
1 V̇ (Xd

1 )‖2.

By Lemma 3(ii) (stated and proved below), E
d
1(q) goes to 0 as d goes to +∞. Consider now

E
d
2(q). Using again the fact that t 	→ 1∧ et is 1-Lipschitz and Lemma 4, E

d
2(q) goes to 0. �

We have now all the necessary ingredients to establish Theorem 2.

Proof of Theorem 2. By the definition of Ad
1 , see (3),

P[Ad
1 ] = E

[
1 ∧ exp

{ d∑
i=1

�V d
i

}]
,

where �V d
i = V (Xd

0,i ) − V (Xd
0,i + �d−1/2Zd

1,i ) and where Xd
0 is distributed according to πd

and independent of the standard d-dimensional Gaussian random variable Zd
1 . Following the

same steps as in the proof of Proposition 1 yields

lim
d→+∞ |P[Ad

1 ] − E[1 ∧ exp{�d}]| = 0, (18)
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where

�d = −�d−1/2
d∑

i=1

Zd
1,i V̇ (Xd

0,i ) − �2
d∑

i=2

V̇ (Xd
0,i )

2

4d
+ 2(d − 1)E[ζ d(Xd

0,1, Z
d
1,1)].

Conditional on Xd
0 ,�

d is a one-dimensional Gaussian random variable with mean μd and
variance σ 2

d defined by

μd = −�2
d∑

i=2

V̇ (Xd
0,i )

2

4d
+ 2(d − 1)E[ζ d(Xd

0,1, Z
d
1,1)], σ 2

d = �2d−1
d∑

i=1

V̇ (Xd
0,i )

2.

Therefore, since, for any G ∼ N (μ, σ 2),E[1∧exp(G)] = �(μ/σ)+exp(μ+σ 2/2)�(−σ −
μ/σ), taking the expectation conditional on Xd

0 , we have

E[1 ∧ exp{�d}] = E

[
�

(
μd

σd

)
+ exp

(
μd + σ 2

d

2

)
�

(
−σd − μd

σd

)]
= E[�(σ 2

d ,−2μd)],

where the function� is defined in (23). By Lemma 5 and the law of large numbers, almost surely,
limd→+∞ μd = −�2I/2 and limd→+∞ σ 2

d = �2I . Thus, as � is bounded, by Lebesgue’s
dominated convergence theorem,

lim
d→+∞ E[1 ∧ exp{�d}] = 2�

(
−�

√
I

2

)
.

The proof is then completed by (18). �

We conclude this section by establishing the technical lemmas which are used in the proofs
above. Define

R(x) =
∫ x

0

(x − u)2

(1 + u)3 du, (19)

where R is the remainder term of the Taylor expansion of x 	→ log(1 + x):

log(1 + x) = x − x2

2
+ R(x). (20)

Lemma 3. Assume that Assumption 1 holds. Then, if X is a random variable distributed
according to π and Z is a standard Gaussian random variable independent of X,

(i) limd→+∞ d‖ζ d(X,Z) + �ZV̇ (X)/(2
√
d)‖2

2 = 0;

(ii) limd→+∞
√
d‖V (X) − V (X + �Z/

√
d) + �ZV̇ (X)/

√
d‖p = 0;

(iii) limd→∞ d‖R(ζ d(X,Z))‖1 = 0,

where ζ d is given by (17).

Proof. Using the definitions (11) and (17) of ζ d and ξθ ,

ζ d(x, z) = ξ�zd−1/2(x)

ξ0(x)
− 1. (21)
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(i) The proof follows from Lemma 1 using the fact that β > 1:∥∥∥∥ζ d(X,Z) + �ZV̇ (X)

2
√
d

∥∥∥∥
2

2
≤ C�2βd−β

E[|Z|2β ].

(ii) Using Assumption 1(i), we obtain∥∥∥∥V (X) − V

(
X + �Z√

d

)
+ �ZV̇ (X)√

d

∥∥∥∥
p

p

≤ C�βpd−βp/2
E[|Z|βp]

and the proof follows since β > 1.

(iii) Note that, for all x > 0, u ∈ [0, x], |(x − u)(1 + u)−1| ≤ |x|, and the same inequality
holds for x ∈ (−1, 0] and u ∈ [x, 0]. Then, by (19) and (20), for all x > −1, |R(x)| ≤
x2| log(1 + x)|.
Then, by (21), setting �d(x, z) = R(ζ d(x, z)):

|�d(x, z)| ≤ (ξ�zd−1/2(x)/ξ0(x) − 1)2|V (x + �zd−1/2) − V (x)|
2

.

Since, for all x ∈ R, | exp(x) − 1| ≤ |x|(exp(x) + 1), this yields

|�d(x, z)| ≤ 4−1|V (x + �zd−1/2) − V (x)|3(exp(V (x) − V (x + �zd−1/2)) + 1),

which implies that∫
R

|�d(x, z)|π(x) dx ≤ 4−1
∫

R

|V (x+�zd−1/2)−V (x)|3{π(x)+π(x+�zd−1/2)} dx.

By Hölder’s inequality and using Assumption 1(i),∫
R

|�d(x, z)|π(x) dx ≤ C

(
|�zd−1/2|3

(∫
R

|V̇ (x)|4π(x) dx

)3/4

+ |�zd−1/2|3β
)
.

The proof follows from Assumption 1(ii) since β > 1. �
For all d ≥ 1, let Xd be distributed according to πd , and Zd be a d-dimensional Gaussian

random variable independent of Xd , set

J d =
∥∥∥∥

d∑
i=2

{�V d
i − bd(Xd

i , Z
d
i )}

∥∥∥∥
1
,

where �V d
i and bd are defined in (5) and (16), respectively.

Lemma 4. We have limd→+∞ J d = 0.

Proof. Define

J d
1 =

∥∥∥∥
d∑

i=2

2ζ d(Xd
i , Z

d
i ) + �Zd

i√
d

V̇ (Xd
i ) − E[2ζ d(Xd

i , Z
d
i )]

∥∥∥∥
1
,

J d
2 =

∥∥∥∥
d∑

i=2

ζ d(Xd
i , Z

d
i )

2 − �2

4d
V̇ 2(Xd

i )

∥∥∥∥
1
, J d

3 = 2

∥∥∥∥
d∑

i=2

R(ζ d(Xd
i , Z

d
i ))

∥∥∥∥
1
,
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where R is defined by (19). As �V d
i = 2 log(1 + ζ d(Xd

i , Z
d
i )) and using (20), we obtain

J d ≤ J d
1 + J d

2 + J d
3 .

By the Cauchy–Schwarz inequality and as the (Xd
i , Z

d
i )2≤i≤d are independent,

J d
1 ≤ var

[ d∑
i=2

2ζ d(Xd
i , Z

d
i ) + �Zd

i√
d

V̇ (Xd
i )

]1/2

≤ √
d

∥∥∥∥2ζ d(Xd
1 , Z

d
1 ) + �Zd

1√
d

V̇ (Xd
1 )

∥∥∥∥
2
.

By Lemma 3(i), this term goes to 0 as d goes to +∞. Consider now J d
2 . We use the following

decomposition for all 2 ≤ i ≤ d:

ζ d(Xd
i , Z

d
i )

2 − �2

4d
V̇ 2(Xd

i ) =
(
ζ d(Xd

i , Z
d
i ) + �

2
√
d
Zd

i V̇ (Xd
i )

)2

− �√
d
Zd

i V̇ (Xd
i )

(
ζ d(Xd

i , Z
d
i ) + �

2
√
d
Zd

i V̇ (Xd
i )

)

+ �2

4d
{(Zd

i )
2 − 1}V̇ 2(Xd

i ).

Then

J d
2 ≤ d

∥∥∥∥ζ d(Xd
1 , Z

d
1 ) + �

2
√
d
Zd

1 V̇ (Xd
1 )

∥∥∥∥
2

2
+ �2

4d

∥∥∥∥
d∑

i=2

V̇ 2(Xd
i ){(Zd

i )
2 − 1}

∥∥∥∥
1

+ �
√
d

∥∥∥∥V̇ (Xd
1 )Z

d
1 (ζ

d(Xd
1 , Z

d
1 ) + �

2
√
d
Zd

1 V̇ (Xd
1 ))

∥∥∥∥
1
.

Using Assumption 1(ii), Lemma 3(i), and the Cauchy–Schwarz inequality, we see that the first
and the last term converge to 0. For the second term, note that E[(Zd

i )
2 − 1] = 0 so that

d−1
∥∥∥∥

d∑
i=2

V̇ 2(Xd
i ){(Zd

i )
2 − 1}

∥∥∥∥
1

≤ d−1/2 var[V̇ 2(Xd
1 ){(Zd

1 )
2 − 1}]1/2 → 0.

Finally, limd→∞ J d
3 = 0 by (20) and Lemma 3(iii). �

Following [9], we introduce the function G defined on R+ × R by

G(a, b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp

(
a − b

2

)
�

(
b

2
√
a

− √
a

)
if a ∈ (0,+∞),

0 if a = +∞,

exp

(
−b

2

)
1{b>0} if a = 0,

(22)

where � is the cumulative distribution function of a standard normal variable, and � is defined
by

�(a, b) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�

(
− b

2
√
a

)
+ exp

(
a − b

2

)
�

(
b

2
√
a

− √
a

)
if a ∈ (0,+∞),

1

2
if a = +∞,

exp

(
−b+

2

)
if a = 0.

(23)

Note that G and � are bounded on R+ × R. We use G and � throughout Section 4.

https://doi.org/10.1017/jpr.2017.61 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.61


Optimal scaling under Lp mean differentiability 1247

Lemma 5. Assume that Assumption 1 holds. For all d ∈ N
∗, let Xd be a random variable

distributed according toπd andZd be a standard Gaussian random variable in R
d , independent

of X. Then

lim
d→+∞ dE[2ζ d(Xd

1 , Z
d
1 )] = −�2

4
I,

where I is defined in (6) and ζ d in (17).

Proof. By (17),

dE[2ζ d(Xd
1 , Z

d
1 )] = 2dE

[∫
R

√
π(x + �d−1/2Zd

1 )
√
π(x) dx − 1

]

= −dE

[∫
R

(√
π(x + �d−1/2Zd

1 ) − √
π(x)

)2

dx

]
= −dE[{ζ d(Xd

1 , Z
d
1 )}2].

The proof is then completed by Lemma 3(i). �
4.3. Proof of tightness (Lemma 6)

Lemma 6. Assume that Assumption 1 holds. Then the sequence (μd)d≥1 is tight in W .

Proof. The proof is adapted from [9]. By Kolmogorov’s criterion, it is enough to prove that
there exists a nondecreasing function γ : R+ → R+ such that, for all d ≥ 1 and all 0 ≤ s ≤ t ,

E[(Y d
t,1 − Yd

s,1)
4] ≤ γ (t)(t − s)2.

The inequality is straightforward for all 0 ≤ s ≤ t such that ds� = dt�. For all 0 ≤ s ≤ t

such that �ds� ≤ dt�,

Yd
t,1 − Yd

s,1 = Xddt�,1 − Xd�ds�,1 + dt − dt�√
d

�Zd
�dt�,1 1Ad�dt�

+�ds� − ds√
d

�Zd
�ds�,1 1Ad�ds�

.

Then, by the Jensen inequality,

E[(Y d
t,1 − Yd

s,1)
4] ≤ C((t − s)2 + E[(Xd

dt�,1 − Xd
�ds�,1)

4]),
where we have used

(dt − dt�)2

d2 + (�ds� − ds)2

d2 ≤ (dt − ds)2 + (�ds� − dt�)2

d2 ≤ 2(t − s)2.

The proof is completed using Lemma 7. �
Lemma 7. Assume that Assumption 1 holds. Then, there exists C > 0 such that, for all
0 ≤ k1 < k2,

E[(Xd
k2,1 − Xd

k1,1)
4] ≤ C

4∑
p=2

(k2 − k1)
p

dp
.

Proof. For all 0 ≤ k1 < k2,

E[(Xd
k2,1 − Xd

k1,1)
4] = �4

d2 E

[( k2∑
k=k1+1

Zd
k,1 −

k2∑
k=k1+1

Zd
k,1 1(Ad

k )
c

)4]
.
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Therefore, by the Hölder inequality,

E[(Xd
k2,1 − Xd

k1,1)
4] ≤ 24�4

d2 (k2 − k1)
2 + 8�4

d2 E

[( k2∑
k=k1+1

Zd
k,1 1(Ad

k )
c

)4]
. (24)

The second term can be written as

E

[( k2∑
k=k1+1

Zd
k,1 1(Ad

k )
c

)4]
=

∑
E

[ 4∏
i=1

Zd
mi,1 1(Ad

mi
)c

]
,

where the sum is over all the quadruplets (mi)
4
i=1 satisfyingmi ∈ {k1+1, . . . , k2}, i = 1, . . . , 4.

The expectation on the right-hand side can be upper bounded depending on the cardinality of
{m1, . . . , m4}. For all 1 ≤ j ≤ 4, define

�j = {(m1, . . . , m4) ∈ {k1 + 1, . . . , k2}; #{m1, . . . , m4} = j}.
Let (m1,m2,m3,m4) ∈ {k1 + 1, . . . , k2}4 and (X̃d

k )k≥0 be defined as

X̃d
0 = Xd

0 and X̃d
k+1 = X̃d

k + 1k /∈{m1−1,m2−1,m3−1,m4−1}
�√
d
Zd

k+11Ãd
k+1

,

with Ãd
k+1 = {Uk+1 ≤ exp(

∑d
i=1 �Ṽ d

k,i)}, where, for all k ≥ 0 and all 1 ≤ i ≤ d,�Ṽk,i is
defined by

�Ṽ d
k,i = V (X̃d

k,i) − V

(
X̃d

k,i + �√
d
Zd

k+1,i

)
.

Note that, on the event
⋂4

j=1{Ad
mj

}c, the two processes (Xk)k≥0 and (X̃k)k≥0 are equal. Let F
be the σ -field generated by (X̃d

k )k≥0.

(i) We have #{m1, . . . , m4} = 4, as the {(Umj
, Zd

mj ,1
, . . . , Zd

mj ,d
)}1≤j≤4 are independent

conditionally to F ,

E

[ 4∏
j=1

Zd
mj ,1 1(Ad

mj
)c

∣∣∣∣ F

]
=

4∏
j=1

E[Zd
mj ,1 1(Ãd

mj
)c | F ]

=
4∏

j=1

E

[
Zd

mj ,1ϕ

( d∑
i=1

�Ṽ d
mj−1,i

) ∣∣∣∣ F

]
,

where ϕ(x) = (1 − ex)+. Since the function ϕ is 1-Lipschitz, we have

∣∣∣∣ϕ
( d∑

i=1

�Ṽ d
mj−1,i

)
− ϕ

(
− �√

d
V̇ (X̃d

mj−1,1)Z
d
mj ,1 +

d∑
i=2

�Ṽ d
mj−1,i

)∣∣∣∣
≤

∣∣∣∣�Ṽ d
mj−1,1 + �√

d
V̇ (X̃d

mj−1,1)Z
d
mj ,1

∣∣∣∣.
Then ∣∣∣∣E

[ 4∏
j=1

Zd
mj ,1 1(Ad

mj
)c

]∣∣∣∣ ≤ E

[ 4∏
j=1

{Ad
mj

+ Bd
mj

}
]
,
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where

Ad
mj

= E

[
|Zd

mj ,1|
∣∣∣∣�Ṽ d

mj−1,1 + �√
d
V̇ (X̃d

mj−1,1)Z
d
mj ,1

∣∣∣∣
∣∣∣∣ F

]
,

Bd
mj

=
∣∣∣∣E

[
Zd

mj ,1

(
1 − exp

{
− �√

d
V̇ (X̃d

mj−1,1)Z
d
mj ,1 +

d∑
i=2

�Ṽ d
mj−1,i

})
+

∣∣∣∣ F

]∣∣∣∣.
By the inequality of arithmetic and geometric means and convex inequalities,

∣∣∣∣E
[ 4∏
j=1

Zd
mj ,1 1(Ad

mj
)c

]∣∣∣∣ ≤ 8E

[ 4∑
j=1

(Ad
mj

)4 + (Bd
mj

)4
]
.

By Lemma 3(ii) and the Hölder inequality, there exists C > 0 such that E[(Ad
mj

)4] ≤ Cd−2.
On the other hand, by [9, Lemma 6] since Zd

mj ,1
is independent of F ,

Bd
mj

=
∣∣∣∣E

[
�√
d
V̇ (X̃d

mj−1,1)G

(
�2

d
V̇ (X̃d

mj−1,1)
2,−2

d∑
i=2

�Ṽ d
mj−1,i

) ∣∣∣∣ F

]∣∣∣∣,
where the function G is defined in (22). By Assumption 1(ii) and since G is bounded, we have
E[(Bd

mj
)4] ≤ Cd−2. Therefore, |E[∏4

j=1 Zd
mj ,1

1(Ad
mj

)c ]| ≤ Cd−2, yielding

∑
(m1,m2,m3,m4)∈�4

∣∣∣∣E
[ 4∏
i=1

Zd
mi,1 1(Ad

mi
)c

]∣∣∣∣ ≤ C

d2

(
k2 − k1

4

)
. (25)

(ii) We have #{m1, . . . , m4} = 3, as the {(Umj
, Zd

mj ,1
, . . . , Zd

mj ,d
)}1≤j≤3 are independent

conditionally to F ,

∣∣∣∣E
[
(Zd

m1,1)
2 1(Ad

m1
)c

3∏
j=2

Zd
mj ,1 1(Ad

mj
)c

∣∣∣∣ F

]∣∣∣∣ ≤ E[(Zd
m1,1)

2 | F ]
∣∣∣∣

3∏
j=2

E[Zd
mj ,1 1(Ãd

mj
)c | F ]

∣∣∣∣
≤

∣∣∣∣
3∏

j=2

E[Zd
mj ,1 1(Ãd

mj
)c | F ]

∣∣∣∣.
Then, following the same steps as above, and using Hölder’s inequality yields

∣∣∣∣E
[ 3∏
j=2

Zd
mj ,1 1(Ad

mj
)c

]∣∣∣∣ ≤ CE

[ 3∑
j=2

(Ad
mj

)2 + (Bd
mj

)2
]

≤ Cd−1

and ∑
(m1,m2,m3,m4)∈�3

∣∣∣∣E
[ 4∏
i=1

Zd
mi,1 1(Ad

mi
)c

]∣∣∣∣ ≤ C

d

(
k2 − k1

3

)
≤ C

d
(k2 − k1)

3. (26)

(iii) If #{m1, . . . , m4} = 2, two cases have to be considered:

E[(Zd
m1,1)

2 1(Ãd
m1

)c (Z
d
m2,1)

2 1(Ad
m2

)c ] ≤ E[(Zd
m1,1)

2]E[(Zd
m2,1)

2] ≤ 1,

E[(Zd
m1,1)

3 1(Ad
m1

)c Z
d
m2,1 1(Ad

m2
)c ] ≤ E[|Zd

m1,1|3]E[|Zd
m2,1|] ≤ 4

π
.

https://doi.org/10.1017/jpr.2017.61 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.61


1250 A. DURMUS ET AL.

This yields

∑
(m1,m2,m3,m4)∈�2

∣∣∣∣E
[ 4∏
i=1

Zd
mi,1 1(Ad

mi
)c

]∣∣∣∣ ≤
(

3 + 4 · 4

π

)
(k2 − k1)(k2 − k1 − 1)

≤ C(k2 − k1)
2. (27)

(iv) If #{m1, . . . , m4} = 1 : E[(Zd
mi,1

1(Ad
mi

)c )
4] ≤ E[(Zd

m1,1
)4] ≤ 3, then

∑
(m1,m2,m3,m4)∈�1

∣∣∣∣E
[ 4∏
i=1

Zd
mi,1 1(Ad

mi
)c

]∣∣∣∣ ≤ 3(k2 − k1). (28)

The proof is completed by combining (24) with (25)–(28). �

4.4. Proof of reduction to the martingale problem (Proposition 2)

We preface the proof by a preliminary lemma.

Lemma 8. Assume that Assumption 1 holds. Let μ be a limit point of the sequence of laws
(μd)d≥1 of {(Y d

t,1)t≥0, d ∈ N
∗}. Then, for all t ≥ 0, the pushforward measure of μ by Wt is π .

Proof. By (8),
lim

d→+∞ E[|Yd
t,1 − Xddt�,1|] = 0.

Since (μd)d≥1 converges weakly to μ, for all bounded Lipschitz functions ψ : R → R,

E
μ[ψ(Wt)] = limd→+∞ E[ψ(Y d

t,1)] = limd→+∞ E[ψ(Xddt�,1)]. The proof is completed
upon noting that, for all d ∈ N

∗ and all t ≥ 0, Xddt�,1 is distributed according to π . �

Proposition 2. Assume that Assumptions 1 and 2 hold. Assume also that, for allφ ∈C∞
c (R,R),

m ∈ N
∗, g : R

m → R bounded and continuous, and 0 ≤ t1 ≤ · · · ≤ tm ≤ s ≤ t ,

lim
d→+∞ E

μd

[(
φ(Wt) − φ(Ws) −

∫ t

s

Lφ(Wu) du

)
g(Wt1 , . . . ,Wtm)

]
= 0. (29)

Then every limit point of the sequence of probability measures (μd)d≥1 on W is a solution to
the martingale problem associated with (9).

Proof. Let μ be a limit point of the sequence of laws (μd)d≥1 of {(Y d
t,1)t≥0, d ∈ N

∗}. It is
straightforward to show that μ is a solution to the martingale problem associated with L if, for
all φ ∈ C∞

c (R,R),m ∈ N
∗, g : R

m → R bounded and continuous, and 0 ≤ t1 ≤ · · · ≤ tm ≤
s ≤ t ,

E
μ

[(
φ(Wt) − φ(Ws) −

∫ t

s

Lφ(Wu) du

)
g(Wt1 , . . . ,Wtm)

]
= 0. (30)

Let φ ∈ C∞
c (R,R),m ∈ N

∗, g : R
m → R continuous and bounded, 0 ≤ t1 ≤ · · · ≤ tm ≤

s ≤ t , and WV̇ = {w ∈ W |wu �∈ DV̇ for almost every u ∈ [s, t]}. Note first that w ∈ W c

V̇
if

and only if
∫ t

s
1DV̇

(wu) du > 0. Therefore, by Assumption 2, Lemma 8, and Fubini’s theorem,

E
μ

[∫ t

s

1DV̇
(Wu) du

]
=

∫ t

s

E
μ[1DV̇

(Wu)] du = 0,
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showing that μ(W c

V̇
) = 0. We now prove that on WV̇ ,

�s,t : w 	→
{
φ(wt ) − φ(ws) −

∫ t

s

Lφ(wu) du

}
g(wt1 , . . . , wtm) (31)

is continuous. It is clear that it is enough to show that w 	→ ∫ t

s
Lφ(wu) du is continuous on WV̇ .

So let w ∈ WV̇ and (wn)n≥0 be a sequence in W which converges to w in the uniform topology
on compact sets. Then, by Assumption 2, for any u such that wu /∈ DV̇ , Lφ(wn

u) converges
to Lφ(wu) when n goes to ∞ and Lφ is bounded. Therefore, by Lebesgue’s dominated
convergence theorem,

∫ t

s
Lφ(wn

u) du converges to
∫ t

s
Lφ(wu) du. Hence, the map defined

by (31) is continuous on WV̇ . Since (μd)d≥1 converges weakly to μ, by (29),

μ(�s,t ) = lim
d→+∞μd(�s,t ) = 0,

which is precisely (30). �
4.5. Proof of Theorem 3

By Proposition 2, it is enough to check (29) to prove that μ is a solution to the martingale
problem. The core of the proof of Theorem 3 is Proposition 3, for which we need two technical
lemmata.

Lemma 9. Let X,Y, and U be R-valued random variables and ε > 0. Assume that U is
nonnegative and bounded by 1. Let g : R → R be a bounded function on R such that, for all
(x, y) ∈ (−∞,−ε]2 ∪ [ε,+∞)2, |g(x) − g(y)| ≤ Cg|x − y|.

(i) For all a > 0,

E[U|g(X) − g(Y )|]
≤ CgE[U|X − Y |]

+ osc(g){P[|X| ≤ ε] + a−1
E[U|X − Y |] + P[ε < |X| < ε + a]},

where osc(g) = sup(g) − inf(g).

(ii) If there exist μ ∈ R and σ,CX ∈ R+ such that

sup
x∈R

∣∣∣∣P[X ≤ x] − �

(
x − μ

σ

)∣∣∣∣ ≤ CX,

then
E[U|g(X) − g(Y )|]

≤ CgE[U|X − Y |]
+ 2 osc(g){CX +

√
2E[U|X − Y |](2πσ 2)−1/2 + ε(2πσ 2)−1/2}.

Proof. (i) Consider the following decomposition:

E[U|g(X) − g(Y)|]
= E[U|(g(X) − g(Y))| 1{(X,Y)∈(−∞,−ε]2}∪{(X,Y)∈[ε,+∞)2}]

+ E[U|g(X) − g(Y)|(1{X∈[−ε,ε]} + 1({X<−ε}∩{Y≥−ε}∪({X>ε}∩{Y≤ε})))].
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In addition, for all a > 0,

({X < −ε} ∩ {Y ≥ −ε}) ∪ ({X > ε} ∩ {Y ≤ ε})
⊂ {ε < |X| < ε + a} ∪ ({|X| ≥ ε + a} ∩ {|X − Y| ≥ a}).

Then using the fact that U ∈ [0, 1), we obtain

E[U|g(X) − g(Y)|] ≤ CgE[U|X − Y|] + osc(g)(P[|X| < ε + a] + a−1
E[U|X − Y|]).

(ii) The result is straightforward if E[U|X − Y|] = 0. Assume that E[U|X − Y|] > 0.
Combining the additional assumption and the previous result,

E[U|g(X) − g(Y)|]
≤ CgE[U|X − Y|] + osc(g){2CX + 2(ε + a)(2πσ 2)−1/2 + a−1

E[U|X − Y|]}.
As this result holds for all a > 0, the proof is concluded by setting

a =
√

E[U|X − Y|](2πσ 2)1/2

2
. �

Lemma 10. Assume that Assumption 1 holds. Let Xd be distributed according to πd and Zd be
a d-dimensional standard Gaussian random variable, independent of Xd . Then limd→+∞ E

d=
0, where

E
d = E

[∣∣∣∣V̇ (Xd
1 )

{
G

(
�2

d
V̇ (Xd

1 )
2, 2

d∑
i=2

�V d
i

)
− G

(
�2

d
V̇ (Xd

1 )
2, 2

d∑
i=2

bd
i

)}∣∣∣∣
]
,

where �V d
i and bd

i are given by (5) and (16), respectively.

Proof. Set, for all d ≥ 1, Ȳd = ∑d
i=2 �V d

i and X̄d = ∑d
i=2 bd

i . By (22), ∂bG(a, b) =
−G(a, b)/2 + exp(−b2/8a)/(2

√
2πa). As G is bounded and x 	→ x exp(−x) is bounded

on R+, supa∈R+; |b|≥a1/4 ∂bG(a, b) < +∞. Therefore, there exists C ≥ 0 such that, for all
a ∈ R+and (b1, b2) ∈ (−∞,−a1/4)2 ∪ (a1/4,+∞)2,

|G(a, b1) − G(a, b2)| ≤ C|b1 − b2|. (32)

By the definition of bd
i in (16), X̄d may be expressed as X̄d = σdS̄d + μd , where

μd = 2(d − 1)E[ζ d(Xd
1 , Z

d
1 )] − �2(d − 1)

4d
E[V̇ (Xd

1 )
2],

σ 2
d = �2

E[V̇ (Xd
1 )

2] + �4

16d
E[(V̇ (Xd

1 )
2 − E[V̇ (Xd

1 )
2])2], S̄d = (

√
dσd)

−1
d∑

i=2

βd
i ,

βd
i = −�Zd

i V̇ (Xd
i ) − �2

4
√
d
(V̇ (Xd

i )
2 − E[V̇ (Xd

i )
2]).

By Assumption 1(ii), the Berry–Essen theorem [13, Theorem 5.7] can be applied to S̄d . Then
there exists a universal constant C such that, for all d > 0,

sup
x∈R

∣∣∣∣P
[(

d

d − 1

)1/2

S̄d ≤ x

]
− �(x)

∣∣∣∣ ≤ C√
d
.
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It follows that

sup
x∈R

∣∣∣∣P[X̄d ≤ x] − �

(
x − μd

σ̃d

)∣∣∣∣ ≤ C√
d
,

where σ̃ 2
d = (d − 1)σ 2

d /d. By this result and (32), Lemma 9 can be applied to obtain a constant
C ≥ 0, independent of d , such that

E

[∣∣∣∣G
(
�2V̇ (Xd

1 )
2

d
, 2Ȳd

)
− G

(
�2V̇ (Xd

1 )
2

d
, 2X̄d

)∣∣∣∣
∣∣∣∣ Xd

1

]

≤ C

(
εd + d−1/2 +

√
2εd(2πσ̃ 2

d )
−1/2 +

√
�|V̇ (Xd

1 )|
2πd1/2σ̃ 2

d

)
,

where εd = E[|X̄d − Ȳd |]. Using this result, we have

E
d ≤ C{(εd + d−1/2 +

√
2εd(2πσ̃ 2

d )
−1/2)E[|V̇ (Xd

1 )|]
+ �1/2

E[|V̇ (Xd
1 )|3/2](2πd1/2σ̃ 2

d )
−1/2}. (33)

By Lemma 4, εd goes to 0 asd goes to ∞, and, byAssumption 1(ii), limd→+∞ σ 2
d=�2

E[V̇ (X)2].
Combining these results with (33), it follows that E

d goes to 0 when d goes to ∞. �

For all n ≥ 0, define F d
n = σ({Xd

k , k ≤ n}) and, for all φ ∈ C∞
c (R,R), let Md

n (φ) be the
discrete-time martingale

Md
n (φ) = �√

d

n−1∑
k=0

φ′(Xd
k,1){Zd

k+1,1 1Ad
k+1

−E[Zd
k+1,1 1Ad

k+1
| F d

k ]}

+ �2

2d

n−1∑
k=0

φ′′(Xd
k,1){(Zd

k+1,1)
2 1Ad

k+1
−E[(Zd

k+1,1)
2 1Ad

k+1
| F d

k ]}. (34)

Proposition 3. Assume that Assumptions 1 and 2 hold. Then, for all s ≤ t and all φ ∈
C∞

c (R,R),

lim
d→+∞ E

[∣∣∣∣φ(Y d
t,1) − φ(Y d

s,1) −
∫ t

s

Lφ(Y d
r,1) dr − (Md�dt�(φ) − Md�ds�(φ))

∣∣∣∣
]

= 0.

Proof. First, since dYd
r,1 = �

√
dZd�dr�,1 1Ad�dr�

dr ,

φ(Y d
t,1) − φ(Y d

s,1) = �
√
d

∫ t

s

φ′(Y d
r,1)Z

d�dr�,1 1Ad�dr�
dr. (35)

As φ is C3, using (8) and a Taylor expansion, for all r ∈ [s, t], there exists χr ∈ [Xddr�,1, Y
d
r,1]

such that

φ′(Y d
r,1) = φ′(Xddr�,1) + �√

d
(dr − dr�)φ′′(Xddr�,1)Z

d�dr�,1 1Ad�dr�

+ �2

2d
(dr − dr�)2φ(3)(χr)(Z

d�dr�,1)
2 1Ad�dr�

.
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Substituting this expression into (35) yields

φ(Y d
t,1) − φ(Y d

s,1) = �
√
d

∫ t

s

φ′(Xddr�,1)Z
d�dr�,1 1Ad�dr�

dr

+ �2
∫ t

s

(dr − dr�)φ′′(Xddr�,1)(Z
d�dr�,1)

2 1Ad�dr�
dr

+ �3

2
√
d

∫ t

s

(dr − dr�)2φ(3)(χr)(Z
d�dr�,1)

3 1Ad�dr�
dr.

As φ(3) is bounded,

lim
d→+∞ E

[∣∣∣∣d−1/2
∫ t

s

(dr − dr�)2φ(3)(χr)(Z
d�dr�,1)

3 1Ad�dr�
dr

∣∣∣∣
]

= 0.

On the other hand, I = ∫ t

s
φ′′(Xddr�,1)(dr − dr�)(Zd�dr�,1)2 1Ad�dr�

dr = I1 + I2 with

I1 =
∫ �ds�/d

s

+
∫ t

dt�/d
φ′′(Xddr�,1)

(
dr − dr� − 1

2

)
(Zd�dr�,1)

2 1Ad�dr�
dr,

I2 = 1

2

∫ t

s

φ′′(Xddr�,1)(Z
d�dr�,1)

2 1Ad�dr�
dr.

Note that

I1 = 1

2d
(�ds� − ds)(ds − ds�)φ′′(Xdds�,1)(Z

d�ds�,1)
2 1Ad�ds�

+ 1

2d
(�dt� − dt)(dt − dt�)φ′′(Xddt�,1)(Z

d�dt�,1)
2 1Ad�dt�

,

showing, as φ′′ is bounded, that limd→+∞ E[|I1|] = 0. Therefore,

lim
d→+∞ E[|φ(Y d

t,1) − φ(Y d
s,1) − Is,t |] = 0,

where

Is,t =
∫ t

s

{
�
√
dφ′(Xddr�,1)Z

d�dr�,1 + �2φ′′(Xddr�,1)(Z
d�dr�,1)2

2

}
1Ad�dr�

dr.

Write

Is,t −
∫ t

s

Lφ(Y d
r,1) dr − (Md�dt�(φ) − Md�ds�(φ)) = T d

1 + T d
2 + T d

3 − T d
4 + T d

5 ,

where

T d
1 =

∫ t

s

φ′(Xddr�,1)
(
�
√
dE

[
Zd�dr�,1 1Ad�dr�

∣∣∣∣ F ddr�
]

+ h(�)

2
V̇ (Xddr�,1)

)
dr,

T d
2 =

∫ t

s

φ′′(Xddr�,1)
(
�2

2
E

[
(Zd�dr�,1)

2 1Ad�dr�

∣∣∣∣ F ddr�
]

− h(�)

2

)
dr,

T d
3 =

∫ t

s

(Lφ(Y ddr�/d,1) − Lφ(Y d
r,1)) dr,

T d
4 = �(�dt� − dt)√

d
φ′(Xddt�,1)(Z

d�dt�,1 1Ad�dt�
−E[Zd�dt�,1 1Ad�dt�

| F ddt�])

+ �2(�dt� − dt)

2d
φ′′(Xddt�,1)((Z

d�dt�,1)
2 1Ad�dt�

−E[(Zd�dt�,1)
2 1Ad�dt�

| F ddt�]),
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and

T d
5 = �(�ds� − ds)√

d
φ′(Xdds�,1)(Z

d�ds�,1 1Ad�ds�
−E[Zd�ds�,1 1Ad�ds�

| F dds�])

+ �2(�ds� − ds)

2d
φ′′(Xdds�,1)((Z

d�ds�,1)
2 1Ad�ds�

−E[(Zd�ds�,1)
2 1Ad�ds�

| F dds�]).
It is now proved that, for all 1 ≤ i ≤ 5, limd→+∞ E[|T d

i |] = 0. First, as φ′ and φ′′ are bounded,

E[|T d
4 | + |T d

5 |] ≤ Cd−1/2.

Denote for all r ∈ [s, t] and d ≥ 1,

�V d
r,i = V (Xddr�,i ) − V (Xddr�,i + �d−1/2Zd�dr�,i ),

�d
r = 1 ∧ exp

{
−�Zd�dr�,1V̇ (Xddr�,1)√

d
+

d∑
i=2

bddr�,i
}
,

ϒd
r = 1 ∧ exp

{
−�Zd�dr�,1V̇ (Xddr�,1)√

d
+

d∑
i=2

�V d
r,i

}
,

where, for all k, i ≥ 0, bd
k,i = bd(Xd

k,i , Z
d
k+1,i ), and, for all x, z ∈ R, bd(x, y) is given by (16).

By the triangle inequality,

|T d
1 | ≤

∫ t

s

|φ′(Xddr�,1)|(A1,r + A2,r + A3,r ) dr, (36)

where
A1,r = |�√dE[Zd�dr�,1(1Ad�dr�

−ϒd
r ) | F ddr�]|,

A2,r = |�√dE[Zd�dr�,1(ϒ
d
r − �d

r ) | F ddr�]|,

A3,r =
∣∣∣∣�√dE[Zd�dr�,1�

d
r | F ddr�] + V̇ (Xddr�,1)h(�)

2

∣∣∣∣.
Since t 	→ 1 ∧ exp(t) is 1-Lipschitz, by Lemma 3(ii), E[|Ad

1,r |] goes to 0 as d goes to +∞ for
almost all r . So by Fubini’s theorem, the first term in (36) goes to 0 as d goes to +∞. For
Ad

2,r , by [9, Lemma 6],

E[|Ad
2,r |] ≤ E

[∣∣∣∣�2V̇ (Xddr�,1)
{
G

(
�2V̇ (Xddr�,1)2

d
, 2

d∑
i=2

�V d
r,i

)

− G

(
�2V̇ (Xddr�,1)2

d
, 2

d∑
i=2

bddr�,i
)}∣∣∣∣

]
,

where G is defined in (22). By Lemma 10, this expectation goes to 0 when d goes to ∞. Then
by Fubini’s theorem and the Lebesgue dominated convergence theorem, the second term of (36)
goes to 0 as d goes to +∞. For the last term, by [9, Lemma 6] again:

�
√
dE[Zd�dr�,1�

d
r | F ddr�]

= −�2V̇ (Xddr�,1)G
(
�2

d

d∑
i=1

V̇ (Xddr�,i )
2,

�2

2d

d∑
i=2

V̇ (Xddr�,i )
2 − 4(d − 1)E[ζ d(X,Z)]

)
,

(37)
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whereX is distributed according toπ , andZ is a standard Gaussian random variable independent
of X. As G is continuous on R+×R\{0, 0} (see [9, Lemma 2]), by Assumption 1(ii), Lemma 5,
and the law of large numbers, almost surely,

lim
d→+∞ �2G

(
�2

d

d∑
i=1

V̇ (Xddr�,i )
2,

�2

2d

d∑
i=2

V̇ (Xddr�,i )
2 − 4(d − 1)E[ζ d(X,Z)]

)

= �2G(�2
E[V̇ (X)2], �2

E[V̇ (X)2])
= h(�)

2
,

where h(�) is defined in (10). Therefore, by Fubini’s theorem, (37), and Lebesgue’s dominated
convergence theorem, the last term of (36) goes to 0 as d goes to ∞. The proof for T d

2 follows
the same lines. By the triangle inequality,

|T d
2 | ≤

∣∣∣∣
∫ t

s

φ′′(Xddr�,1)
(
�2

2

)
E[(Zd�dr�,1)

2(1Ad�dr�
−�d

r ) | F ddr�] dr

∣∣∣∣
+

∣∣∣∣
∫ t

s

φ′′(Xddr�,1)
((

�2

2

)
E[(Zd�dr�,1)

2�d
r | F ddr�] − h(�)

2

)
dr

∣∣∣∣. (38)

By Fubini’s theorem, Lebesgue’s dominated convergence theorem, and Proposition 1, the
expectation of the first term goes to 0 when d goes to ∞. For the second term, by [9, Lemma 6,
Equation (A.5)],(

�2

2

)
E

[
(Zd�dr�,1)

21 ∧ exp

{
−�Zd�dr�,1√

d
V̇ (Xddr�,1) +

d∑
i=2

bddr�,i
} ∣∣∣∣ F ddr�

]

= B1 + B2 − B3

2
, (39)

where

B1 = �2�

(
�2

d

d∑
i=1

V̇ (Xddr�,i )
2,

�2

2d

d∑
i=2

V̇ (Xddr�,i )
2 − 4(d − 1)E[ζ d(X,Z)]

)
,

B2 = �4V̇ (Xddr�,1)2

d

× G

(
�2

d

d∑
i=1

V̇ (Xddr�,i )
2,

�2

2d

d∑
i=2

V̇ (Xddr�,i )
2 − 4(d − 1)E[ζ d(X,Z)]

)
,

B3 = �4V̇ (Xddr�,1)2

d

(2π�2 ∑d
i=1 V̇ (Xddr�,i )2

d

)−1/2

× exp

{
−[−(d − 1)E[2ζ d(X,Z)] + (�2/(4d))

∑d
i=2 V̇ (Xddr�,i )2]2

2�2
∑d

i=1 V̇ (Xddr�,i )2/d

}
,

where � is defined in (23). As � is continuous on R+ × R \ {0, 0} (see [9, Lemma 2]), by
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Assumption 1(ii), Lemma 5, and the law of large numbers, almost surely,

lim
d→+∞ �2�

(
�2

d

d∑
i=1

V̇ (Xddr�,i )
2,

�2

2d

d∑
i=2

V̇ (Xddr�,i )
2 − 4(d − 1)E[ζ d(X,Z)]

)

= �2�(�2
E[V̇ (X)2], �2

E[V̇ (X)2])
= h(�). (40)

By Lemma 5, Assumption 1(ii), and the law of large numbers, almost surely,

lim
d→+∞ exp

{
−[−(d − 1)E[2ζ d(X,Z)] + (�2/(4d))

∑d
i=2 V̇ (Xddr�,i )2]2

2�2
∑d

i=1 V̇ (Xddr�,i )2/d

}

= exp

{
−�2

8
E[V̇ (X)2]

}
.

Then, as G is bounded on R+ × R,

lim
d→+∞ E

[∣∣∣∣
∫ t

s

φ′′(Xddr�,1)(B2 − B3) dr

∣∣∣∣
]

= 0. (41)

Therefore, by Fubini’s theorem, (39)–(41), and Lebesgue’s dominated convergence theorem,
the second term of (38) goes to 0 as d goes to ∞. Write T d

3 = (h(�)/2)(T d
3,1 − T d

3,2), where

T d
3,1 =

∫ t

s

{φ′′(Xddr�,1) − φ′′(Y d
r,1)} dr,

T d
3,2 =

∫ t

s

{V̇ (Xddr�,1)φ
′(Xddr�,1) − V̇ (Y d

r,1)φ
′(Y d

r,1)} dr.

It is enough to show that E[|T d
3,1|] and E[|T d

3,2|] go to 0 when d goes to ∞ to conclude the
proof. By (8) and the mean value theorem, for all r ∈ [s, t], there exists χr ∈ [Xddr�,1, Y

d
r,1]

such that

φ′′(Xddr�,1) − φ′′(Y d
r,1) = φ(3)(χr)(dr − dr�)

(
�√
d

)
Zd�dr�,1 1Ad�dr�

.

Since φ(3) is bounded, it follows that limd→+∞ E[|T d
3,1|] = 0. On the other hand,

T d
3,2 =

∫ t

s

{V̇ (Xddr�,1) − V̇ (Y d
r,1)}φ′(Xddr�,1) dr +

∫ t

s

{φ′(Xddr�,1) − φ′(Y d
r,1)}V̇ (Y d

r,1) dr.

Since φ′ has a bounded support, by Assumption 2, Fubini’s theorem, and Lebesgue’s dominated
convergence theorem, the expectation of the absolute value of the first term goes to 0 as d

goes to ∞. The second term is dealt with by following the same steps as for T d
3,1 and using

Assumption 1(ii). �
Proof of Theorem 3. By Lemma 6, Proposition 2, and Proposition 3, it is enough to prove

that, for all φ ∈ C∞
c (R,R), p ≥ 1, all 0 ≤ t1 ≤ · · · ≤ tp ≤ s ≤ t, and g : R

p → R bounded
and continuous function,

lim
d→+∞ E[(Md�dt�(φ) − Md�ds�(φ))g(Y

d
t1
, . . . , Y d

tp
)] = 0,

where, forn ≥ 1,Md
n (φ) is defined in (34). But this result is straightforward taking successively

the conditional expectations with respect to Fk for k = �dt�, . . . , �ds�. �
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5. Proofs of Section 3

5.1. Proof of Lemma 2

Lemma 11. Assume that Assumption 3 holds. Let μ be a limit point of the sequence of laws
(μd)d≥0 of {(Y d

t,1)t≥0, d ∈ N
∗}. Then, for all t ≥ 0, the pushforward measure of μ by Wt is π .

Proof. The proof is the same as in Lemma 8 and is omitted. �
Proof of Lemma 2. As, for all t ≥ 0 and d ≥ 1, Yd

t,1 ∈ � , for all d ≥ 1, μd(C(R+,� )) = 1.
Since C(R+,� ) is closed in W , we have, by the Portmanteau theorem, μ(C(R+,� )) = 1.
Therefore, we only need to prove that, for all ψ ∈ C∞(� ,R), the process (ψ(Wt)−ψ(W0)−∫ t

0 Lψ(Wu) du)t≥0 is a local martingale with respect to μ and the filtration (Bt )t≥0. Let
ψ ∈ C∞(� ,R).

Suppose first that, for all � ∈ C∞
c (� ,R), (�(Wt) − �(Wt) − ∫ t

0 L�(Wu) du)t≥0 is a
martingale. Then consider the sequence of stopping times defined for k ≥ 1 by τk = inf{t ≥
0 | |Wt | ≥ k} and a sequence (�k)k≥0 in C∞

c (� ,R) satisfying,

(i) for all k ≥ 1 and all x ∈ � ∩ [−k, k],�k(x) = ψ(x);

(ii) limk→+∞ �k = ψ in C∞(� ,R).

Since, for all k ≥ 1,(
ψ(Wt∧τk ) − ψ(W0) −

∫ t∧τk

0
Lψ(Wu) du

)
t≥0

=
(
�k(Wt∧τk ) − �k(W0) −

∫ t∧τk

0
L�k(Wu) du

)
t≥0

and the sequence (τk)k≥1 goes to +∞ as k goes to +∞ almost surely, it follows that (ψ(Wt)−
ψ(W0) − ∫ t

0 Lψ(Wu) du)t≥0 is a local martingale with respect to μ and the filtration (Bt )t≥0.
It remains to show that, for all � ∈ C∞

c (� ,R), (�(Wt) − �(W0) − ∫ t

0 L�(Wu) du)t≥0 is
a martingale under the assumption of the proposition. We only need to prove that, for all
� ∈ C∞

c (� ,R), 0 ≤ s ≤ t, m ∈ N
∗, g : R

m → R bounded and continuous, and 0 ≤ t1 ≤
· · · ≤ tm ≤ s ≤ t ,

E
μ

[(
�(Wt) − �(Ws) −

∫ t

s

L�(Wu) du

)
g(Wt1 , . . . ,Wtm)

]
= 0. (42)

Let (φk)k≥0 be a sequence of functions in C∞
c (� ,R) and converging to � in C∞

c (� ,R). First
note that, for all u ∈ [s, t], μ-almost everywhere,

lim
k→+∞φk(Wu) = �(Wu). (43)

By Lemma 11, for all u ∈ [s, t], the pushforward measure of μ by Wu has density π with
respect to the Lebesgue measure and μ-almost everywhere, limk→+∞ Lφk(Wu) = L�(Wu).
On the other hand, there exists C ≥ 0 such that, for all k ≥ 0, |Lφk(Wu)| ≤ C(1 + |V̇ (Wu)|).
Then

E
μ

[∫ t

s

(1 + |V̇ (Wu)|) du

]
≤ (t − s) +

∫ t

s

E
μ[|V̇ (Wu)|] du

≤ (t − s)

(
1 +

∫
�

|V̇ (x)|π(x) dx

)
.
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Therefore, μ-almost everywhere, byAssumption 3(ii) and the Lebesgue dominated convergence
theorem, we obtain

lim
k→+∞

∫ t

s

Lφk(Wu) du =
∫ t

s

L�(Wu) du. (44)

Therefore, (42) follows from (43) and (44), using again the Lebesgue dominated convergence
theorem and Assumption 3(ii) �
5.2. Proof of reduction to the martingale problem (Proposition 4)

Proposition 4. We assume that Assumptions 3 and 4 hold. Assume also that, for all φ ∈
C∞

c (� ,R),m ∈ N
∗, g : R

m → R bounded and continuous, and 0 ≤ t1 ≤ · · · ≤ tm ≤ s ≤ t ,

lim
d→+∞ E

μd

[(
φ(Wt) − φ(Ws) −

∫ t

s

Lφ(Wu) du

)
g(Wt1 , . . . ,Wtm)

]
= 0.

Then every limit point of the sequence of probability measures (μd)d≥1 on W is a solution to
the local martingale problem associated with (9).

Proof. Let μ be a limit point of (μd)d≥1. First, following the proof of Proposition 2, it
is straightforward to show that, for all t ≥ 0, the pushforward measure of μ by Wt is π .
By Lemma 2, we only need to prove that, for all φ ∈ C∞

c (� ,R), the process (φ(Wt) −
φ(W0) − ∫ t

0 Lφ(Wu) du)t≥0 is a martingale with respect to μ and the filtration (Bt )t≥0. Then
the proof follows the same line as the proof of Proposition 2 and is omitted. �
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