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We report the first measurement of turbulent mixing developing from the convergent
Richtmyer–Meshkov (RM) instability using time-resolved planar laser-induced fluores-
cence in a semi-annular convergent shock tube. A membraneless yet sharp interface with
random short-wavelength perturbations, but controllable long-wavelength perturbations, is
created by an automatically retractable plate, enhancing the reproducibility and reliability
of RM turbulence experiments. The cylindrical air/SF6 interface formed is first subjected
to a convergent shock, then to its reflected shock and subsequently transits to turbulent
mixing. It is found that the mixing width after reshock has a linear growth rate more than
twice the rate in planar geometry. Also, the mixing width does not present power-law
growth at late stages as in a planar geometry. However, the scalar spectrum and transition
criterion obtained are similar to their planar counterparts. These findings indicate that the
geometric constraint greatly affects the large scales of the flow, while having a weaker
effect on the small scales. It is also found that the reflected shock significantly increases
both scale separation and Reynolds number, explaining the rapid transition to turbulence
following reshock.

Key words: shock waves, nonlinear instability, turbulent mixing

1. Introduction
When a corrugated interface separating two different fluids is accelerated by a shock
wave, initial perturbations on the interface grow first linearly, then nonlinearly over time,
potentially leading to a transition to turbulent mixing. This phenomenon is usually referred
to as Richtmyer–Meshkov (RM) instability (Richtmyer 1960; Meshkov 1969). A similar
yet distinct phenomenon is Rayleigh–Taylor (RT) instability, which occurs as the interface
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suffers continuous acceleration from a lighter fluid to a heavier one (Rayleigh 1883;
Taylor 1950). Turbulence induced by RM instability is a hot topic in fundamental research,
including compressible turbulence, and also plays an important role in applications such
as inertial confinement fusion (ICF) (Lindl et al. 2014).

The RM turbulence is unsteady, inhomogeneous and anisotropic, posing significant
challenges to flow diagnostics. Planar laser-induced fluorescence (PLIF) and particle
image velocimetry (PIV) have proven to be promising techniques for measuring the
RM turbulence (Sewell et al. 2021). The first application of PLIF diagnostic to RM
instability experiment was reported by Jacobs (1992). The results showed that PLIF
can not only capture fine-scale structures but also enable the quantitative measurement
of the gas concentration distribution. Later, simultaneous PLIF-PIV measurements were
achieved by Balakumar et al. (2008), which greatly facilitates the RM turbulence research
(Mohaghar et al. 2019). In recent years, advancements in high-frequency lasers and high-
speed cameras have led to the development of high-frequency PLIF, PIV and simultaneous
PLIF-PIV techniques. Carter et al. (2019) presented novel measurements of RM turbulence
using simultaneous PLIF-PIV photography at 60 kHz, enabling a detailed analysis on non-
stationary physics. Noble et al. (2020) conducted the 20 kHz PLIF measurement of RM
turbulence, and found that the statistical moments of the mole fraction are consistent
with the results of turbulent jet experiments. More recently, time evolutions of kinetic
and scalar energy spectra in RM turbulence were obtained using simultaneous PLIF-PIV
measurements at 20 kHz (Noble et al. 2023). However, existing experiments are limited to
the RM turbulence triggered by a planar shock.

The convergent RM instability, which involves an initial setting more relevant to ICF,
has become increasingly attractive in recent years. Several types of convergent shock tubes
have been developed to facilitate experiments on convergent RM instability (Hosseini &
Takayama 2005; Biamino et al. 2015; Luo et al. 2018). However, these convergent shock
tubes typically possess complex structures that hinder the implementation of PLIF and
PIV measurements, limiting existing experiments to schlieren and shadow diagnostics.
Therefore, a novel convergent shock tube optimized for PLIF or PIV diagnostics is highly
desired for RM turbulence experiments. In addition, the development of RM turbulence
is sensitive to initial conditions of the interface, indicating that the interface formation
is crucial. Generally, there are two types of interface formation technique. One is the
membraneless technique, which inevitably introduces uncontrollable long-wavelength
perturbations and a diffusion layer on the interface, both of which significantly influence
turbulence evolution (Wang et al. 2022). An alternative technique is using a membrane
or soap film to physically separate two different gases (Biamino et al. 2015). However,
membrane fragments or soap droplets generated by the shock impact can significantly
contaminate the turbulence field and also impede PLIF and PIV diagnostics. Due to
these limitations, quantitative measurements of convergent RM turbulence have not yet
been achieved in shock-tube experiments. So far, main characteristics of convergent RM
turbulence (such as statistics evolution and transition criterion), along with its differences
from the planar counterpart, remain unknown. These motivate the present study.

In this work, we will investigate the turbulent mixing arising from the convergent RM
instability in a semi-annular shock tube. A novel automatically retractable plate, controlled
by electromagnetic force, is designed to create a cylindrical, membraneless and sharp
interface. Time-resolved PLIF diagnostic is adapted to the convergent shock tube, realizing
the turbulence field measurement. Evolutions of statistics such as mixing layer width,
mixedness parameter, scalar energy spectrum and turbulent length scales are analysed to
show the characteristics of the convergent RM turbulence. Main differences between the
convergent RM turbulence and its planar counterpart are discussed.
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Figure 1. Schematic of the semi-annular shock tube, the time-resolved PLIF system and the interface
formation device.

2. Experimental methods
The experiments are performed in the semi-annular shock tube originally designed by
Luo et al. (2015). The reproducibility and reliability of the facility for generating
convergent shock waves have been thoroughly verified (Ding et al. 2017b). A schematic
diagram of the shock tube is given in figure 1. An incident planar shock is first formed in
the driven section by suddenly rupturing the polypropylene diaphragm between the driver
and driven sections. As the shock passes through the transformation section I and travels
in the inlet pipe, the circular shock transitions into a semi-circular one. Subsequently, the
shock passes through the transformation section II and moves in the semi-annular channel
as a semi-annular one. Finally, the shock propagates to the test section and turns into
a semi-cylindrical shock. Benefiting from the semi-cylindrical structure of the facility,
a silica glass panel can be installed on top of the test section, enabling the laser sheet
to enter for PLIF measurement. A lamp-pumped pulsed Q-switched Nd:YAG laser (SGR,
Beamtech limited) is used to create a pulse train (30 pulses) at a repetition rate of 12.5 kHz.
For each pulse, the fourth harmonic output at 266 nm with an average energy of 100 mJ is
used. The output beam is directed into mirrors and lenses, and finally becomes a diverging
laser sheet with a thickness of 0.5 mm at the beam waist. The laser sheet excites the acetone
premixed with SF6 (test gas) inside the test section, producing fluorescence with a peak
at 420 nm. The fluorescence is captured by a high-speed camera (TMX7510, Phantom
Limited), synchronized with the laser timing at a frequency of 12.5 kHz. The camera has
a spatial resolution of 0.17 mm per pixel and a shutter time of 1 µs. The ambient pressure
and temperature are 101.3 ± 0.1 kPa and 297.4 ± 0.2 K, respectively.

Initial imperfections on the interface, such as diffusion layers, membrane fragments
and soap droplets, could significantly affect RM turbulence. To mitigate these
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undesired factors, an automatically retractable plate is designed to create a cylindrical,
membraneless, sharp interface with random short-wavelength perturbations and
controllable long-wavelength perturbations. As depicted in figure 1, a semi-cylindrical
device, which consists of a retractable plate, an electromagnet and two springs, is inserted
into the test section from the inner side. When the electromagnetic coil is energized,
an electromagnetic force is generated, causing the plate to come into contact with the
viewing glass on the outer side. The extension length of the plate is 5.0 mm, matching
the inner height of the test section. Its leading edge is equipped with a soft rubber
seal, enabling a gentle contact between the plate and the glass while also preventing gas
diffusion. Later, the binary mixture of SF6 and vapourized acetone is injected into the
region enclosed by the protruding plate through an inflow hole, while air is exhausted
through two outflow holes. When the incident shock is about to reach the test section
(detected by a pressure transducer), the electromagnetic force is deactivated, allowing the
plate to retract under the pulling force of the springs. This process creates a membraneless
air/SF6 interface with a relatively sharp profile. Note the plate moves at an average speed
of 0.4 m s–1, which is negligible compared with the shock-induced velocity. Therefore, the
shear flow in the spanwise direction has a negligible effect on the perturbation growth.
The retraction introduces random short-wavelength perturbations at the interface, serving
as initial seeds for the RM turbulence in this study. More importantly, this technique
avoids the uncontrollable long-wavelength perturbations and diffusion layers present in
previous experiments (Noble et al. 2023), significantly enhancing the reproducibility and
reliability of the RM turbulence experiments. The long-wavelength perturbations on the
interface can be accurately controlled by changing the plate shape. As the first experiments,
a cylindrical plate is utilized in this work to create a cylindrical air/SF6 interface with
random short-wavelength perturbations.

3. Results and discussion
Three experimental runs (corresponding to cases 1–3) are performed in this work. Initial
conditions are listed in table 1. The Atwood number (A) is defined as A = (ρ2 − ρ1)/
(ρ2 + ρ1) with ρ1 (ρ2) being the gas density on the exterior (interior) side of the interface,
and the mass fraction of SF6 is calculated based on one-dimensional (1-D) gas dynamics
theory. The main steps for converting PLIF images from intensity to mole fraction are
outlined below. First, the distortion caused by the camera system is corrected using a
circular calibration plate. Next, background images (taken without the injection of the
SF6 and acetone mixture into the test section) are subtracted from the PLIF images. Then,
the divergence and spatial variation of the laser sheet are taken into account. Also, Beer’s
law attenuation is iteratively calibrated under the assumption of adiabatic mixing. Finally, a
notch filter is applied to remove striations caused by interface refraction. After this process,
the mole fraction of the gas mixture, rather than just SF6, enclosed by the interface is
obtained.

The initial interface formed in the present experiments is relatively sharp, enabling the
extraction of the isoline where the mole fraction of the interior gas is 0.5, as depicted
in figure 2(a), where the dash-dotted lines represent the average position of the initial
interface. The perturbations in cases 1 and 3 are nearly identical, which explains the similar
growth rate of mixing width observed later. In contrast, the amplitude of case 2 is relatively
smaller, but its phase aligns with those of cases 1 and 3. For spherical RM instability,
spherical harmonics are typically employed to initialize interfacial perturbations, as they
effectively avoid the pole singularity problem on a spherical interface (Lombardini, Pullin
& Meiron 2014). However, for RM instabilities in cylindrical geometries, which are
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Case Ma h0 (mm) R (mm) mfra(SF6) A χacetone (%)

1 1.26 2.98 54.9 0.88 0.53 4.5
2 1.25 2.51 54.7 0.89 0.54 4.4
3 1.26 2.93 54.9 0.88 0.53 4.4

Table 1. Initial conditions for cases 1–3. Ma: Mach number of the incident shock when it arrives at the
interface; R: radius of initial interface; h0: initial width of the mixing layer; mfra(SF6): SF6 mass fraction;
A: Atwood number; χacetone: acetone volume fraction.
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Figure 2. (a) The radial position of the initial interface plotted against the azimuthal angle. The dash-dotted
lines indicate the average position of the initial interface. (b) The power spectra of the initial perturbations. The
black line serves as a reference for a scaling law.

simpler than spherical geometries, a linear superposition of Fourier harmonics is more
commonly recommended (Ge et al. 2020). In the present experiments, the initial interface
is measured on a 2-D plane using PLIF diagnostics, and thus the amplitude of the initial
perturbations can be expanded as

f (θ) =
N∑

m=0

fmeikm Rθ , (3.1)

where the amplitude coefficients fm are determined by the variance σ 2
m =

(1/2π)((P(km)/km))Δk with P(km) being the power spectrum. Figure 2(b) displays the
power spectra of the initial perturbations for cases 1–3. It is evident that the retractable
plate generates a specific multi-mode perturbation characterized by small amplitudes
across a broad range of high wavenumbers. The perturbation spectrum exhibits an
approximate scaling law of -4/3, similar to observations in ICF capsules (Barnes et al.
2002).

Evolutions of mole fraction field for cases 1–3 are displayed in figure 3. Time origin
is set at the moment when the incident shock encounters the interface. The first row of
images illustrates the initial interface, while the second row displays the interface after
the shock impact. Fine-scale interface structures at every stage are clearly captured by the
PLIF diagnostic. Unlike previous experiments, the interface here maintains a distinct and
sharp morphology during both the linear and nonlinear stages, indicating the elimination
of diffusion layer on the initial interface formed. Moreover, large-scale perturbations
along the cylinder axis caused by the retracting plate are effectively excluded in the
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Figure 3. Temporal evolutions of mole fraction distribution for cases 1–3. II, initial interface; SI, shocked
interface; TS, transmitted shock; RTS, reflected transmitted shock; RI, reshocked interface. Numbers at the top
left of the images in the first column are in time (unit: ms).

present experiments. According to our previous study (Ding et al. 2017a), if large-scale
perturbations are present along the cylinder axis, the longitudinal interface will evolve
rapidly with the roll-up of vortices following shock impact, resulting in significant mutual
penetration of flow structures between planes perpendicular to the cylinder axis. However,
the present experimental results show no such mutual penetration, providing evidence
against the presence of large-scale perturbations. As the shocked interface moves inward,
the short-wavelength perturbations produced by the retracting plate grow rapidly. Later, the
transmitted shock focuses at the convergence centre, immediately generating a diverging
reflected shock (0.27 ms). Subsequently, this reflected shock re-impacts the evolving
interface, leading to a rapid transition to turbulent mixing (t > 0.59 ms). The laminar
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Figure 4. (a) Trajectories of the interface and shock waves and (b) the mixing layer width vs. time for cases
1–3. Dashed lines in (b) indicate the linear fits of data. IS, incident shock; TS2, second transmitted shock. The
other symbols are the same as those in figure 3.

boundary layer in the post-shock flow has a maximum thickness of 0.11 mm, indicating that
it has a negligible influence on the interface development. If the laminar boundary layer
transitions to turbulence after reshock (similar to the main flow), the turbulent boundary
layer is not expected to be an order of magnitude thicker than the laminar boundary layer
(i.e. 1.1 mm) during the short experimental period. The PLIF diagnostic captures the flow
information at the centre plane of the test section (2.5 mm from either wall). Therefore,
the flow field captured by PLIF cannot be significantly affected by the boundary layer.

An r−t diagram illustrating the trajectories of the interface and shock waves is
given in figure 4(a). The wave motions are calculated with 1-D gas dynamics theory,
which can approximately represent the actual shock propagation process. The interface
position is extracted from the mole fraction image where 〈ξ〉 = 0.5, with 〈·〉 denoting
the circumferential averaging. In general, the interface trajectories for cases 1–3 are
similar. Impacted by the incident shock, the interface moves inwards at an initial velocity
of approximately 110.0 m s–1. Then, it experiences evident deceleration, consistent with
previous schlieren results (Ding et al. 2017b). Following reshock, the interface first
undergoes a short period of outward motion, then decelerates and even moves inwards
gradually due to mass conservation of the fluid enclosed by the interface. This confirms
the numerical results of Lombardini et al. (2014). Visible oscillations in the interface
trajectory are observed, which is ascribed to the subsequent waves reverberating between
the interface and geometric centre.

The growth of the mixing layer width is plotted in figure 4(b). The mixing width is
defined as h = rs − rb with rs being the radius where the average mole fraction of heavy
gas 〈ξ〉 = 0.05 and rb being the radius where 〈ξ〉 = 0.95. After the incident shock impact,
the mixing width exhibits a rapid growth (t < 0.2 ms ). Later, the growth rate suffers a
continuous drop and even becomes negative due to the RT stabilization effect caused by
interface deceleration (Ding et al. 2017b). After reshock, the mixing width first suffers a
sudden drop due to shock compression, then presents a period of quasi-linear growth with
time. Such a quasi-linear growth is qualitatively consistent with the behaviour of reshocked
RM instability in planar geometry (Leinov et al. 2009). Mikaelian (1989) has proposed an
empirical model to predict the mixing width growth for RM turbulence

dh

dt
= CM	V

∣∣A+
r

∣∣ , (3.2)
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where 	V is the interface jump velocity caused by reshock, A+
r is the post-reshock

Atwood number and CM is an empirical coefficient. Performing a linear fit of the
present data, CM is found to be 0.99, 0.83 and 0.98 for cases 1–3, respectively. Note
that CM = 0.28 is suggested by Mikaelian (1989), and CM = 0.28∼0.39 is suggested by
experiments on planar RM instability with reshock (Leinov et al. 2009). This means that
the present growth rate in the convergent geometry is more than twice the rate in planar
RM turbulence. The explanation is as follows. The interface experiences unsteady motion
in a convergent geometry, triggering RT instability or stability, which may be a key factor
for the quicker growth of perturbations. As we know, the RT instability occurs when
the acceleration vector is directed from a light fluid toward a heavy fluid. To identify
these periods in our experiment, we calculate the interface acceleration by taking the
second derivative of the interface trajectory given in figure 4(a). While our experimental
time resolution limits precise quantification of instantaneous interface acceleration,
qualitative analysis reveals that, following reshock (t > 0.35 ms), the outward-moving
interface experiences deceleration due to mass conservation of the fluid enclosed by the
interface. This deceleration triggers RT instability, which remains active until t = 0.83 ms,
coinciding with the period of rapid quasi-linear growth observed in figure 4(b) between
0.43 and 0.83 ms. Additionally, geometric contraction enhances instability growth at an
inward-moving interface, leading to a larger perturbation amplitude prior to reshock.
This can also contribute to faster instability growth after reshock. Furthermore, unlike
in previous planar experiments, the interface here lacks a diffusion layer, allowing it to
retain a sharper morphology at the reshock moment. As noted by Ukai, Balakrishnan &
Menon (2011), in such cases, more baroclinic vorticity is generated at the interface, further
accelerating the instability growth. It is also found that, unlike the planar counterpart, the
mixing width here does not exhibit a power-law growth at late stages. One major reason
for this discrepancy is that the geometric centre restricts the mixing width growth. Also,
subsequent waves reverberating between the interface and geometric centre also influence
the mixing width growth.

The normalized mixed mass, defined as Ψ = (
∫ 〈ρξ(1 − ξ)〉dr)/(

∫ 〈ρ〉〈ξ〉〈1 − ξ〉dr)

(Zhou, Cabot & Thornber 2016), is calculated to quantify the mixing degree within the
mixing zone. Here, Ψ = 1 represents a homogenized molecular mixing, while Ψ = 0
represents a completely entrained flow. As seen in figure 5(a), there exists only a minor
difference among the three cases, demonstrating high reproducibility of the present
experiments. After the shock impact, Ψ experiences a rapid decay due to the growth of
the mixing width. Later, RT stabilization effect begins to act, which suppresses the mixing
width growth (i.e. erases the large-scale intrusion between the two gases), leading to a
continuous rise in Ψ . It is seen that Ψ reaches a peak at the time of reshock. After reshock,
nonlinearity becomes strong and bubble merging dominates the instability development,
generating shorter-wavelength structures (see figure 3). This process leads to a continuous
drop of the mixedness parameter to a valley. At late stages, turbulent transport becomes
strong, causing Ψ to rise to the range 0.8–0.9. Other mixedness parameters including
molecular mixing fraction Θ and mixing parameter Ξ (Cook & Dimotakis 2001) are also
calculated, and they present a similar variation trend as Ψ .

The scalar energy spectra at moments after reshock are given in figure 5(b). They are
calculated as follows. First, scalar fluctuations are obtained as ξ∗ = ξ − 〈ξ〉. Then, these
fluctuations are Fourier transformed and multiplied by their Fourier conjugates to derive
the scalar energy spectrum across different radii

E (k) = F
(
ξ∗) Fconj (

ξ∗) . (3.3)
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Figure 5. (a) Variations of mixedness with time for cases 1–3 and (b) the scalar energy spectra at times after
reshock for case 1.

Finally, the scalar energy spectrum is obtained by spatially averaging within the inner
mixing zone. It is important to note that the limited height of the test section introduces
geometric constraints that become significant as the mixing width approaches the test
section height. This confinement effect is characterized by the suppression of vortex
stretching due to the narrow test section height, which potentially causes an inverse transfer
of energy from small to large scales (Thornber & Zhou 2015). However, as depicted in
figure 5(b), immediately following reshock, only a minor amount of energy is transferred
to the long-wavelength region (between 0.43 and 0.75 ms). Subsequently, the scalar energy
in the long-wavelength region undergoes a continuous decay, indicating the dominance of
energy transfer to smaller scales in the present experiments. This phenomenon explains
the sustained increase in mixedness observed at later stages in figure 5(a). Additionally,
a distinctive feature of 2-D turbulence is the presence of an inertial subregion with a –3
scaling law at high wavenumbers (Boffetta & Ecke 2012). In contrast, the present results
exhibit an inertial subrange with a −7/3 power law. According to Noble et al. (2023), for
planar RM turbulence with Sc = 0.7 (the Schmidt number in the present experiments),
the power-law slope ranges between −2.0 and −2.5. The similarity between the present
power-law slope and the planar counterpart suggests that the dynamics of small scales
is not fundamentally affected by the limited test section and the layer’s curvature. It is
noteworthy that the scalar energy spectrum after reshock undergoes a slight change and
displays a partial temporal similarity, but lacks strict self-similarity due to reverberating
waves and geometric constraints. This behaviour, also observed in planar reshock RM
turbulence (Tritschler et al. 2014), is interpreted as the rapid destruction of the initial
conditions and large-scale structures following reshock. The present analysis indicates that
although geometric constraints influence the flow evolution, they do not fundamentally
alter the underlying mixing dynamics.

Turbulent length scales are measured within the mixing zone based on the mole fraction
field. Because the turbulent length scales of cases 1–3 are similar, only the results for
case 1 are shown here (the remaining results can be found in the Supplemental file). The

Taylor microscale is calculated by λT =
√
λ2

T,r + λ2
T,θ with the radial Taylor microscale

λT,r and the circumferential Taylor microscale λT,θ obtained from the spatial variance
and gradients of the mole fraction fluctuation (Pope 2000). The Liepmann–Taylor scale,
λL , is estimated based on the Taylor microscale as λL � 2.17λT (Dimotakis 2000). The
Batchelor scale λB cannot be obtained directly from experiment due to the limited image
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Figure 6. Evolutions of (a) turbulent length scales and (b) Reynolds numbers.

resolution, and is estimated from the dissipation layer thickness, i.e. λ20 % � 5.0λB (Weber
et al. 2014). In this work, λ20 % is calculated from the scalar dissipation rate field,
representing the characteristic dissipation scale with the highest probability density. Since
the Schmidt number Sc ≈ 0.7 in the present experiments, λB is nearly equivalent to the
Kolmogorov scale. Thus, the inner viscous scale, λν , can be estimated based on Batchelor
scale as λν � 50λB . For evaluating the flow transition, Dimotakis (2000) has proposed
a criterion: λL/λν > 1. Later, Zhou et al. (2003b) proposed a new transition criterion,
min(λD, λL) > λν , for unsteady flow transition which additionally requires a sufficiently
long evolution time. Here, the diffusion layer scale is λD = 5(νt)1/2 + W r+

0 , with ν

being the kinematic viscosity and W r+
0 being the post-reshock mixing width (Groom &

Thornber 2021). As shown in figure 6(a), both λL and λD are slightly larger than λν after
reshock, indicating the establishment of an inertial subrange (i.e. the occurrence of mixing
transition) after reshock. The present result illustrates that reshock causes a rapid flow
transition to turbulent mixing by enhancing the scale separation.

The transition criterion in terms of Reynolds number is Re > 1 − 2 × 104 (Dimotakis
2000). An outer-scale Reynolds number is calculated based on scale separation: λL/λν =
(1/10)Re1/4

1 . Another definition of outer-scale Reynolds number is Re2 = hḣ/ν. Notably,
Re2 is larger than Re1, as Re2 is more sensitive to the evolution of large-scale structures,
while Re1, calculated on the turbulent integral scale, remains largely unaffected. As
plotted in figure 6(b), both Reynolds numbers experience a rapid growth after reshock.
This observation is consistent with the enhancement of scale separation caused by reshock.
The present finding explains the quick transition after reshock seen in both previous and
current experiments. It is found that both Re1 and Re2 are greater than 1 × 104 after
reshock, indicating that the transition criterion of Dimotakis (2000) is also suitable for
the convergent RM turbulence. One physical explanation is that small turbulent scales
cannot feel the effect of geometric curvature.

The scaling-law exponents of the p-order structure functions, defined as Sp(rθ ) =
〈(|ξ(x + rθ ) − ξ(x)|)p〉, at moments after reshock for case 1 (results for cases 2
and 3 can be found in the Supplemental file), are depicted in figure 7, where
the Kolmogorov–Obukhov–Corrsin (KOC) exponent ζp = p/3 is also provided for
comparison. The exponents are obtained by linearly fitting the experimental data (see
inset of figure 7) near Taylor microscale. For a short time after reshock (0.43 ms),
the low-order exponents match the KOC prediction well, while the high-order ones
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Figure 7. Scaling-law exponents of p-order structure functions.

present an evident discrepancy. As time progresses, the exponent of each order structure
function increases, which we interpret as an indication of RM turbulence decay.
Specifically, following reshock, fluid mixing becomes more homogeneous and thus
turbulent fluctuations are reduced, especially at smaller scales, resulting in larger structure
function exponents. Kraichnan (1994) proposed an anomalous scaling theory, given by
ζp = 1/2

√
6p(2 − ζ ) + (1 + ζ )2 − ((1/2)(1 + ζ )), where the parameter ζ ranges from 0

to 2. The present data match well with Kraichnan’s theory provided appropriate values
of ζ . It is found that flow homogenization correlates with an increased ζ parameter,
reflecting the physical meaning of the model. While Kraichnan’s theory was developed
for isotropic turbulence at very high Reynolds numbers, there are several important
considerations that support the partial applicability of this theory to our case. First, the RM
turbulence, although globally inhomogeneous and anisotropic, exhibits local isotropy in
the mixing plane perpendicular to the shock propagation direction (Zhou 2001; Zhou et al.
2003a). This local isotropy provides a basis for applying theories developed for isotropic
turbulence. Second, during turbulent transition in RM instability, a significant decoupling
occurs between the energy-containing range and the dissipation range, establishing an
inertial subrange. This decoupling reduces Reynolds number dependence, although higher
Reynolds numbers do yield a broader inertial subrange (Dimotakis 2000; Zhou et al.
2019). Despite these, we acknowledge the necessity of cautious interpretation of these
comparisons due to the fundamental differences between idealized homogeneous isotropic
turbulence (HIT) and the experimental conditions in our study.

The PLIF diagnostics can only capture 2-D data, and thus the energy spectrum and
structure function reported in this work are calculated in a direction parallel to the mixing
layer rather than using 3-D data. This raises the question of whether turbulent fluctuations
in the spanwise direction differ statistically from those in the azimuthal direction. As far as
we know, this issue has not been addressed through experiments since measuring the flow
in the spanwise direction is challenging. However, previous numerical studies (Ge et al.
2020) on convergent RM turbulence have shown that after reshock, the azimuthal and
spanwise energy spectra become nearly identical, as the reflected shock can effectively
eliminate initial interface features. This supports the analyses in this work.
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4. Conclusions
This work realizes the first quantitative measurements of the convergent RM turbulence in
a semi-annular shock tube using time-resolved PLIF diagnostics. This is achieved by using
the semi-structured shock tube, which greatly facilitates the arrangement of optical path
required for PLIF measurement, along with a novel interface formation technique that
significantly enhances the reproducibility and reliability of RM turbulence experiment.
Evolutions of fine-scale structures from linear to turbulent mixing stages are clearly
captured by PLIF. It is found that geometric curvature produces a significant influence
on the evolution of large-scale structures. Specifically, after reshock, the mixing width has
a linear growth rate more than twice the rate in a planar geometry. Also, due to geometric
constraint, the mixing width does not present a power-law growth at late stages as in
planar RM turbulence. However, the small-scale dynamics seems to be independent of the
geometric curvature. Therefore, the transition criterion for planar RM turbulence is also
suitable for the convergent counterpart. The reshock greatly enhances the scale separation
level and also increases the flow Reynolds number, thereby leading to a quick transition
to turbulent mixing. The present findings demonstrate that turbulence models could be
developed for the RM turbulence, irrespective of the flow geometry. We emphasize that
the present findings are specific to the parametric space explored in this work. In future
studies, we plan to expand the universality of these results by investigating convergent RM
turbulence under various initial conditions. Particularly, we are developing a convergent
shock tube with adjustable test section heights, which will enable us to systematically
study the dimensional transition from 3-D to 2-D turbulent mixing and examine mixing
characteristics under enhanced 2-D conditions.

Supplementary materials. To view supplementary material for this article, please visit http-
s://doi.org/10.1017/jfm.2025.59.
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