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The flow-induced vibration of square cylinders under flow is known to be caused by
two distinct mechanisms of interaction: vortex-induced vibrations and galloping. In the
present paper we address the issue of the apparent suppression of galloping when the
mass ratio between the solid and the fluid is low enough. By using a reduced-order
model that we validate on pre-existing results, we show that galloping is actually not
suppressed, but delayed to higher values of the flow velocity. This is explained using a
linear stability analysis where the competition between unstable modes is related to the
transition between vortex-induced vibration and galloping. Direct numerical simulations
coupled with a moving square cylinder confirm that galloping can be found even at very
low mass ratios.

Key words: flow-structure interactions

1. Introduction

Flow-induced vibration (FIV), a typical fluid–structure interaction phenomenon, may have
important consequences for structural safety, but is also a potential means of harvesting
energy from flows. FIV of bluff bodies that can oscillate transversely to the incoming flow
are mainly caused by two distinct mechanisms of interaction between the flow and the
structure: vortex-induced vibration (VIV) and galloping (Blevins 2001). VIV is caused
by the interaction of the structural motion with shed vortices and is of limited amplitude,
typically the cross-flow dimension of the bluff body. The frequency of the oscillatory
motion of the solid, in VIV, is in most cases that of vortex shedding, which is given by
Strouhal law and is proportional to the flow velocity. When this frequency is close to that
of the free motion of the solid, a synchronization occurs, usually referred to as lock-in, and
the amplitude of motion increases (Williamson & Govardhan 2004). Numerous models

† Email address for correspondence: peng@ladhyx.polytechnique.fr

© The Author(s), 2021. Published by Cambridge University Press 931 A27-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

97
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:peng@ladhyx.polytechnique.fr
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.975&domain=pdf
https://doi.org/10.1017/jfm.2021.975


P. Han and E. de Langre

have been developed for VIV, that represent both the unsteady fluid mechanics and solid
dynamics aspects of the phenomenon, as well as the coupling between them. Among them
reduced-order models (ROMs), such as those where the wake dynamics is modelled by a
van der Pol equation, have allowed us to capture qualitatively and often quantitatively a lot
of the main features of VIV (Païdoussis, Price & de Langre 2010). They have been mostly
applied and validated on VIV of circular cylinders, but applications to square sections have
also been tested, with success (Parkinson & Wawzonek 1981; Han et al. 2021a).

As noted above, one of the important features of VIV is lock-in. There, the dynamics of
the coupled fluid–solid system deviates from the classical Strouhal that gives a frequency
of vortex shedding proportional to the flow velocity. Several approaches, using the linear
stability analysis (LSA) of the equations of the models, have shown that lock-in originates
from the coupling between the linear modes of the solid and the wake mode (de Langre
2006; Meliga & Chomaz 2011; Zhang et al. 2015; Navrose & Mittal 2016; Yao & Jaiman
2017; Negi, Hanifi & Henningson 2020). Indeed, these linear analyses cannot yield the
amplitude of motion in the lock-in region of parameters. Yet, a subtle effect such as ‘VIV
forever’, as labelled by Govardhan & Williamson (2002), Williamson & Govardhan (2004)
and Navrose & Mittal (2017), where lock-in with light solids occurs without an upper limit
in the flow velocity, could be predicted by LSA of ROM (de Langre 2006). Moreover, in
more complex systems, such as flexible cables under cross-flow, the switch from one solid
mode to another in the VIV response, as the flow velocity is varied, could be related to
the switch in the most unstable mode in the LSA of the coupled equations (Violette, de
Langre & Szydlowski 2010).

Galloping is another form of FIV of bluff bodies, not related to vortex shedding.
It is caused by a coupling between the mean flow and the motion of the bluff body,
which modifies the instantaneous angle of attack on the bluff body, and the resulting
lift force (Blevins 2001; Païdoussis et al. 2010). It may result in very large amplitudes
of motion, much larger than the typical cross-flow dimension. It is not limited to a specific
range of velocity, unlike VIV: above a critical velocity the amplitude of motion increases
indefinitely with the flow velocity. In galloping, the frequency of motion is generally that of
the solid mode, regardless of the flow velocity, while for VIV the frequency increases with
the flow velocity at high velocities, following the Strouhal law (Blevins 2001; Govardhan
& Williamson 2002; Williamson & Govardhan 2004; Navrose & Mittal 2017). A cylinder
with a circular cross-section is not prone to galloping as the lift and drag forces are
independent of the angle of attack. A square cylinder at zero angle of attack is prone
to galloping, and is used as a generic configuration in work on galloping.

As VIVs also occur on this square geometry, the combined VIV–galloping motion of a
square cylinder has been studied by experiments and simulations in several aspects, see
for instance Joly, Etienne & Pelletier (2012); Nemes et al. (2012); Zhao et al. (2014)
and Bhatt & Alam (2018). In the case of light structures, characterized by a low mass
ratio between the solid and fluid, a particular behaviour in terms of combined galloping
and VIV has been found, which we detail now. Joly et al. (2012), using direct numerical
simulation (DNS) coupled with an oscillating square, found that the amplitude of motion at
a given flow velocity reduced strongly when the mass ratio between the fluid and the solid
was decreased. This was interpreted as an absence of galloping, the response being then
only due to VIV. Later, this low mass ratio behaviour was confirmed by several numerical
studies (Jayatunga, Tan & Leontini 2015; Sen & Mittal 2015; Li et al. 2019; Sourav & Sen
2019, 2020). Among them, Sen & Mittal (2015) simulated an undamped square cylinder
under flow, with the mass ratio varying among 1, 5, 10 and 20. They found that the cylinder
moved due to VIV only at the mass ratio of 1, and due to both VIV and galloping otherwise.
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Galloping of square cylinders

From these results, they concluded that there is a critical mass ratio between 1 and 5 below
which galloping disappears. Recently, Sourav & Sen (2019) found this critical mass ratio
to be approximately 3.4. Another recent work by Li et al. (2019) provided an explanation
for this low mass ratio behaviour considering mode competition as was done for VIV of a
circular cylinder (Zhang et al. 2015), and obtained a critical mass ratio of approximately
4. However, all these studies were limited in terms of dimensionless flow velocity because
of the computational costs involved: the maximum reduced velocity Ur, defined later, is
30 in the Li et al. (2019) work. Moreover, in Sen & Mittal (2015) as well as Sourav & Sen
(2019), both the Reynolds number Re and reduced velocity Ur were varied simultaneously,
although Re is known to affect galloping (Barrero-Gil, Sanz-Andrés & Roura 2009; Joly
et al. 2012). Keeping Re fixed, Sourav & Sen (2020) confirmed that their value of the
critical mass ratio converged to 3.4, at least for a reduced velocity of Ur = 60. They
also suspected that galloping would occur if the reduced velocity was further increased,
even at these small mass ratios. Zhao et al. (2019) also found in experiments at higher
Reynolds numbers an effect of mass ratio and observed galloping at a mass ratio of 2.64.
Additionally, Sourav & Sen (2019) raised the question of the effect of structural damping
on these behaviours at low mass ratio. This is an important issue, as damping is known
to affect the interaction between VIV and galloping (Parkinson & Smith 1964; Han et al.
2021a). Moreover, in the applications in the field of energy harvesting from vibrations, the
low mass ratio case is of practical interest, and damping is then a key parameter (Jayatunga
et al. 2015; Han et al. 2021b).

In this paper, we aim to understand VIV and galloping of a square cylinder at a low
mass ratio, and try to answer two questions: Does galloping occur at low mass ratios, and
therefore is there a critical mass ratio? Is this affected by the level of damping? For this we
shall use a ROM, in both its nonlinear and linear versions, and DNS. In § 2, we recall the
ROM for VIV and galloping of Han et al. (2021a), present the DNS we use and show their
validation in the present range of parameters. In § 3, we use the ROM to explore the effect
of mass ratio on the response and confirm our findings by DNS. Finally, a discussion is
proposed and conclusions are summarized in § 4.

2. Methodology

2.1. A ROM for VIV and galloping
In this section, we recall the ROM proposed by Han et al. (2021a). Considering a
two-dimensional elastically supported square cylinder under flow, see figure 1(a), the
cross-flow displacement Y satisfies a simple oscillator equation

mŸ + csẎ + kY = Fv + Fg, (2.1)

where m represents the total mass, including the mass ms of the body and the added
mass ma, and cs and k represent the structural damping and stiffness, respectively. The
added mass ma can be expressed as ma = CMρD2π/4 following Blevins (2001), where
CM , ρ and D are the added mass coefficient, fluid density and the edge length of the
square, respectively. In (2.1), ( ˙ ) denotes the time derivation. The right-hand force term
includes the lift force related to the unsteady vortex shedding Fv and the galloping force Fg.
Following Facchinetti, de Langre & Biolley (2004), the vortex force Fv can be expressed
as

Fv = ρU2DCv
L/2 = ρU2DqCL0/4, (2.2)

where U is the incoming flow velocity and CL0 represents the unsteady lift coefficient over
a fixed cylinder. The parameter q/2 can be interpreted as a reduced vortex (or ‘fluctuating’)
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Figure 1. Elastically supported square cylinder under flow, with a representation of the wake oscillator
variable q(t) and of the relative flow velocity that causes galloping.

lift coefficient that represents the ratio between the unsteady vortex-induced lift coefficient
of an oscillating cylinder Cv

L and that of a fixed one CL0. The dimensionless wake variable
q therefore directly determines the unsteady lift coefficient caused by vortex shedding,
which can be modelled by a van der Pol nonlinear wake oscillator equation, coupled to the
displacement Y

q̈ + εωf

(
q2 − 1

)
q̇ + ω2

f q = (B1/D)Ÿ + ωf (B2/D)Ẏ. (2.3)

Here, ωf is the vortex-shedding angular frequency defined as 2πStU/D, where St is the
Strouhal number for flow over a stationary cylinder. In this equation, ε = 0.3, B1 = 10 and
B2 = 0.1 are constant coefficients derived from experimental data, see Han et al. (2021a),
and Appendix A for more details on the derivation of these values. The left-hand side of
(2.3) is a van der Pol equation with a reference frequency ωf and a growth rate ε. It is able
to represent a linearly unstable (or self-excited) oscillator at this frequency, as well as a
self-limited oscillation near q = 2 (Nayfeh 2011). As such, it was found to be well adapted
to model the oscillating lift force mentioned above (Facchinetti et al. 2004; Zanganeh &
Srinil 2016). The right-hand side forcing term of this equation expresses the influence of
the solid motion on the wake dynamics. We use here the more general form where both
the solid velocity and the solid acceleration have an influence: this was shown in Han et al.
(2021a) to be necessary for modelling VIV of square cylinders.

The other force term in (2.1), the galloping force Fg, is represented using the
quasi-steady model of Parkinson & Smith (1964), see also Barrero-Gil et al. (2009). We
use a seventh-order polynomial, following the above references,

Fg = 1
2
ρU2D · [A1(Ẏ/U) − A2(Ẏ/U)3 + A3(Ẏ/U)5 − A4(Ẏ/U)7]. (2.4)

The main assumption of the classical quasi-steady theory is that the moving bluff body
experiences the same instantaneous transverse force Fg as the stationary body which would
be placed at the same incidence angle in a steady flow. Based on this, the galloping force
in (2.4) depends on the solid cross-flow velocity through the ratio (Ẏ/U), which is an
approximation of the effective angle of attack of the flow, α, see figure 1. The polynomial
coefficients Ai of the model are obtained by experiments or simulations from lift data of
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Galloping of square cylinders

flow over a stationary square cylinder with varying angle of incidence. The first term of
the polynomial in (Ẏ/U) in (2.4), with a positive coefficient A1, brings a negative damping
force to the structural oscillator, leading to a linearly unstable galloping mode. The other
higher-order terms have been introduced to model the rich behaviour in terms of a limit
cycle with nonlinear geometrical effects. The coefficients Ai will be further discussed in
Appendix A.

We now introduce the dimensionless time t, amplitude y, structural mass ratio m∗
s ,

total mass ratio μ, structural angular frequency ωs, reduced velocity Ur, reduced angular
frequency δ and damping ratio ξ , defined as

t = Tωf , y = Y/D, m∗
s = ms/ρD2, μ = (ms + ma)/ρD2,

ωs =
√

k/m, Ur = 2πU/(ωsD), δ = ωs/ωf = 1/(StUr), ζ = cs/(2mωs).

}

(2.5)
Substituting (2.4)(2.5) into (2.1)(2.3), yields the coupled equations governing the

dynamics of the displacement y(t) and the wake variable q(t)

ÿ + (2ζ δ)ẏ + δ2y

= 1
8π2S2

t μ
·
{

qCL0

2
+ [A1(2πStẏ) − A2(2πStẏ)3 + A3(2πStẏ)5 − A4(2πStẏ)7]

}
, (2.6)

q̈ + ε
(

q2 − 1
)

q̇ + q = B1ÿ + B2ẏ. (2.7)

This full nonlinear ROM will be further referred to as ROM-NL. Numerically solving
the above two equations with a second-order finite difference scheme in time and an initial
small perturbation in y results in a limit cycle on y and q. The simplicity of this set of
equations allows us to model the dynamics in an extremely low computational time, while
reproducing quantitatively well the effect of the parameters (Han et al. 2021a).

2.2. LSA of the ROM
Following de Langre (2006), Meliga & Chomaz (2011), Zhang et al. (2015), Navrose &
Mittal (2016), Yao & Jaiman (2017), Li et al. (2019) and Negi et al. (2020), we also perform
a LSA of the model given above in § 2.1. The linear version of the ROM, and the associated
LSA will be referred to as ROM-LSA in the following, as opposed to ROM-NL which
refers to the full nonlinear model. Removing all nonlinear terms in (2.6) and (2.7), there
remains only

ÿ + (2ζ δ)ẏ + δ2y = 1
8π2S2

t μ

(
qCL0

2
+ 2πA1Stẏ

)
, (2.8)

q̈ − εq̇ + q = B1ÿ + B2ẏ. (2.9)

Assuming (y, q)=(y0eλt, q0eλt) yields the frequency equation on λ

D(λ) = λ4 +
(

2ζ δ − ε − A1

4πStμ

)
λ3 +

(
1 + A1ε

4πStμ
− 2εζδ − B1CL0

16π2S2
t μ

+ δ2
)
λ2

+
(

2ζ δ − εδ2 − A1

4πStμ
− B2CL0

16π2S2
t μ

)
λ+ δ2 = 0. (2.10)

The roots of this fourth-order polynomial as a function of the dimensionless parameters
give the ROM-LSA results, where the imaginary part, i.e. λi, is the frequency, while the
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ratio of the real part to the imaginary part yields the normalized growth rate G = λr/λi.
Note that we use here the normalized growth rate and not the growth rate λr itself, for
consistency with previous work on the topic (de Langre 2006; Violette et al. 2010; Meliga
& Chomaz 2011; Grouthier et al. 2013). The polynomial has two pairs of conjugate
solutions, of which only the roots with a positive imaginary part are of interest. For a
given root, the ratio of the structural amplitude y0 to the wake amplitude q0 is obtained
from (2.8) and (2.9)

y0

q0
= λ

2 − λε + 1
λ2B1 + λB2

= CL0

16π2S2
t μ

[
λ2 + λ (2ζ δ − A1/4πStμ) + δ2

] . (2.11)

By letting the numerator equal zero, we can derive the root for the case where the square
is fixed (y = 0), corresponding to a pure wake mode (PW)

λPW = ε ± √
ε2 − 4
2

, GPW = ε√
4 − ε2

. (2.12a,b)

This particular solution will be used to identify in the roots for the coupled problem, the
mode where the dynamics is mainly in the wake variable q. Conversely, the pure structural
mode is defined by letting the denominator in (2.11) equal to zero.

The ROM-LSA will give two modes, as two degrees of freedom are involved. Three
configurations may occur: (a) two stable modes, (b) one stable and one unstable and (c)
two unstable modes. The first case is of little interest as no motion is expected. If only one
mode is unstable we assume that the nonlinear response of the coupled system will occur
following this mode. If the mode shape is dominant in q we shall label it as a wake mode
(W) and conversely a solid mode (S) if dominant in y. When both modes are unstable,
we assume, following Violette et al. (2010), that the most unstable one will eventually
dominate the response.

2.3. Direct numerical simulations
For further validation, we also numerically solve the incompressible Navier–Stokes
equations, coupled with a fluid–structure interaction solver, as in Han, Pan & Tian
(2018); Han et al. (2020). The entire computational domain is 45D in length and 30D in
width, split into several sub-regions to adopt the block dynamic mesh technique. In each
sub-domain, structured grids are generated independently, with a total of 100 300 nodes.
The distance between the first layer grid and the square surface is set to 0.005D. For the
boundary conditions, numerical scheme and the mesh generation strategy, see Han et al.
(2020). The coupled structural motion is described by a classic mass–damper–stiffness
(MCK) equation as (2.1), and solved with the second-order Newmark-beta method (Han
et al. 2021b). We set the time step at 	t = 0.01, and apply 20 iterations in each step.

2.4. Validations
The ROM recalled above has already been validated against experimental data, for pure
VIV, pure galloping and VIV–galloping interactions of a square cylinder in Han et al.
(2021a), showing good agreement between computed and experimental amplitudes of
motion. Further validations are nevertheless needed as we apply the model here to
investigate the low mass ratio behaviour at low Reynolds numbers. For this purpose, we
consider the data from Zhao, Cheng & Zhou (2013), Bhatt & Alam (2018) and Li et al.
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ŷ f ∗
vac
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Figure 2. (a) Amplitude and (b) frequency of motion of an elastically supported square cylinder under flow
as a function of the dimensionless flow velocity. Comparison between the models used in the paper (nonlinear
ROM and DNS) and other DNS results (Zhao et al. 2013; Bhatt & Alam 2018; Li et al. 2019). Dimensionless
parameters: Re = 100; m∗

s = 3; ζ = 0.

(2019) who performed DNS to compute the motion of a square cylinder at Re = 100, with
a small mass ratio of m∗

s = 3 and a zero damping ratio ζ = 0. We use here a reduced
velocity defined with the structural frequency in vacuum as in Zhao et al. (2013), Bhatt &
Alam (2018) and Li et al. (2019). Our DNS and our ROM-NL model are applied to this
case. The added mass coefficient is set to its standard value for a square using potential
flow theory, CM = 1.51, see Blevins (2001) and Pettigrew, Taylor & Kim (1989). Note that
this differs from the value of 3.3 given in Li et al. (2019) at Re = 100 and 3.5 given in
Joly et al. (2012) at Re = 200, which were those of their effective added mass coefficient,
not the added mass coefficient. A discussion on the difference between these two forms of
added mass coefficient and their use in our ROM can be found in Facchinetti et al. (2004).
The lift coefficient CL0 = 0.24 and Strouhal number St = 0.15 are taken from Bhatt &
Alam (2018). The polynomial coefficients A1 = −0.98 and A2 = 14.4 are taken from Joly
et al. (2012). Figure 2 shows the comparison between the models used in the present
paper and the reference DNS cited above. A fast Fourier transformation (FFT) analysis of
the displacement obtained by ROM-NL and DNS yields the dominant frequency fosc. In,
figure 2(b), the dimensionless frequency f ∗

vac is defined as the ratio of oscillation frequency
fosc to the natural frequency in vacuum 2π

√
k/ms. The results indicate that the present

ROM can capture the important variations with the flow velocity at low Reynolds number
and mass ratio. In addition, our DNS results show very good agreement with the other
DNS data.

As mentioned in the Introduction, Joly et al. (2012) reported a specific low mass ratio
behaviour for a square cylinder under flow, at a reduced velocity of Ur = 40. Figure 3(a)
shows the comparison between our results using ROM-NL and DNS and those taken
from Joly et al. (2012). The data obtained by Joly et al. (2012) using DNS showed a
strong decrease of amplitude at low mass ratios, while at high mass ratios their results
converged to their quasi-steady model solution, which corresponds to (2.1) using only the
quasi-steady force model, (2.4). Using the same parameters, the results with our ROM-NL
give the same behaviour both quantitatively and qualitatively. The results of our DNS
simulation also show the same evolution. This confirms that both our ROM-NL and DNS
can capture the effects of mass ratio on amplitude, which is the object of present paper.

Joly et al. (2012) also used a ROM in comparison with their results. It differs from our
ROM-NL by the model of the vortex Fv which they defined by an amplitude F0 and a
time oscillation at the Strouhal frequency. They fit the amplitude F0 to their DNS result
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s

Figure 3. (a) Mass ratio effect on the amplitude of motion of a square cylinder under flow. The results of both
our ROM-NL and DNS are compared with those of Joly et al. (2012). (b) Magnitude of the vortex-induced lift
as defined by Joly et al. (2012). Comparison between the value fitted by Joly et al. (2012) on their DNS results
and that resulting from our ROM-NL. Dimensionless parameters: Re = 200; ζ = 0.

yielding F0 = 0.66. In our model, the amplitude of the vortex force needs not to be fitted
but results from the computation of the limit cycle in q(t) and is given by

F0 = qmax − qmin

4
CL0. (2.13)

Figure 3(b) shows that our ROM-NL gives a good approximation of the vortex lift
magnitude, without any fit.

The validations represented in figures 2, 3(a), and 3(b), where our ROM-NL is compared
with existing DNS results, show that the model is able to qualitatively and in some aspects
quantitatively represent several aspects of VIV and galloping of a square cylinder, even
at low mass ratio and low Reynolds number. This confirms and widens the validation
obtained in Han et al. (2021a). In fact, more accurate fits with the DNS results can probably
be obtained if the coefficients used in our ROM-NL were modified. This would not be
illegitimate as, for instance, the lift coefficient CL0 and Strouhal numbers St at Re = 200
have been found to be in the range of 0.45–0.78 and 0.151–0.172, respectively, depending
on the authors (Singh et al. 2009; Joly et al. 2012; Bhatt & Alam 2018). A sensitivity
analysis on these parameters is given in Appendix B. For the sake of consistency we have
chosen to use for the subsequent analysis the same parameters as in Joly et al. (2012):
CL0 = 0.59, St = 0.151, CM = 1.51, A1 = 1.45 and A2 = 79.44. In the following, we take
advantage of the simplicity of the ROM, both in its nonlinear (ROM-NL) and linearized
(ROM-LSA) forms, to derive results in large ranges of flow velocity, mass and damping
ratio.

2.5. Linear and nonlinear models and comparison with DNS
In the following, we seek to establish that the LSA of the ROM, referred to as ROM-LSA
and defined in § 2.2, can effectively be used to describe the nonlinear behaviour predicted
by ROM-NL and DNS in combined VIV and galloping of the square cylinder. It has been
shown in Mannini, Massai & Marra (2018) and Han et al. (2021a) that, depending on
the damping of the system, VIV and galloping may occur in separate ranges of flow
velocity or in overlapping ranges, in which case they are said to be ‘coupled.’ The criterion
to distinguish these two cases is based on the comparison between the critical reduced
velocity for galloping, Ug, and the resonance velocity for VIV, Uv . These two velocities
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can be derived from (2.8) and (2.9). At Ug the linearized galloping force balances the
structural damping, and at Uv the frequencies of the two oscillator equations are equal.
They read respectively

Ug = 8πμζ/A1, Uv = 1/St. (2.14a,b)

The ratio between them only depends on St, A1 and a combined mass–damping
parameter generally referred to as the Scruton number S∗

c which includes here the added
mass

Ug/Uv = 2StS∗
c/A1, S∗

c = 4πμζ. (2.15a,b)

We consider a high mass ratio case, μ = 100, with S∗
c being equal to 5, 15 and 30.

Note that we use here the total mass ratio μ as a variable rather than m∗
s , (2.5), because

it is directly a coefficient of the ROM, (2.6). The limit cycle in amplitude of a heavy
body undergoing VIV–galloping motion has been relatively well understood (Parkinson &
Smith 1964; Barrero-Gil et al. 2009; Mannini et al. 2018; Han et al. 2021a), and therefore
it becomes a good candidate to verify whether the present linear model can explain the
instabilities and show the mechanisms of VIV–galloping interaction. The selected S∗

c
numbers (5, 15 and 30) correspond to Ug/Uv = 1.04, 3.12 and 6.25, which include both
the coupled and separate VIV–galloping cases. In figure 4(a,c,e) the amplitude of the limit
cycle in terms of displacement, obtained by the ROM-NL, is plotted as a function of the
reduced velocity for the three values of S∗

c . The corresponding results of the ROM-LSA
are plotted in figure 4(b,d, f ), in terms of growth rates which are the roots of (2.10). One
root can be attributed to a wake mode (W) by its proximity to the pure wake mode (PW)
in (2.12a,b). The other one is referred to as the solid mode (S). Note that in our linearized
model, (2.12a,b), the PW mode is always unstable, as will the W mode be. This means that
a wake instability will always develop on q.

At S∗
c = 30, the ROM-LSA predicts an unstable solid mode at Ur = 40.8, which

is consistent with galloping starting at Ur = 40 by the ROM-NL. VIV is seen in the
ROM-NL by a peak of amplitude near Ur = 7, corresponding well to the peak in growth
rate of the wake mode in the ROM-LSA. When the Scruton number is set to 15,
figure 4(c,d), galloping and VIV get closer in ranges, but the scenario is identical. At
S∗

c = 5, the separation between the two mechanisms of interaction is not so strong. In fact,
S∗

c = 5 corresponds to Ug/Uv = 1.04, which means that VIV and galloping are expected
to occur almost at the same velocity. In the ROM-NL result, it is found that galloping
actually starts just after VIV is ended. This is also seen in the ROM-LSA, where the
S mode is unstable only at Ur = 11.6. Such a delay in the onset of galloping caused by
the interaction with VIV was also observed by Parkinson & Wawzonek (1981). From these
results we see that the ROM-LSA allows us to describe with some accuracy the appearance
of VIV and galloping, and their interactions.

For further comparison, we show some results using our DNS model in figure 4(c,e)
for coupled and separate VIV–galloping motions, at S∗

c = 5 and S∗
c = 15, respectively.

Clearly, the ROM-NL and the ROM-LSA models give predictions that are consistent with
DNS results. We also plot the corresponding oscillation frequencies obtained by ROM-NL,
ROM-LSA and DNS in figure 5. For ROM-LSA, we consider the imaginary part of the
roots of (2.10) and plot that of the solid mode (S) when unstable, and that of the wake mode
(W) otherwise, consistently with figure 4(b,d, f ). A dimensionless ratio f ∗ of frequency fosc
to the natural frequency fs = ωs/2π is used. Figure 5 shows reasonable agreement between
frequencies obtained by our ROM-NL, ROM-LSA and DNS models.
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ŷ

ŷ
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Figure 4. Effect of the mass–damping parameter S∗
c on the amplitude of response ŷ obtained by ROM-NL and

DNS, and on the growth rates G of the modes obtained by ROM-LSA, as a function of the reduced velocity.
Dimensionless parameter: total mass ratio μ = 100; structural mass ratio m∗

s = 98.8.
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Figure 5. Comparisons of frequency of response obtained by ROM-NL, ROM-LSA and DNS, as a function
of the reduced velocity, at (a) S∗

c = 5 for coupled and (b) S∗
c = 15 for separate VIV–galloping motion.

3. Results

We may now use the models presented above to study the questions raised in the
Introduction on the existence of a critical mass ratio for galloping and on the potential
influence of damping on the answer. We focus on two particular configurations, separate
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ŷ ŷ

(a) (b)

(c) (d )

(e) ( f )

Gpw

GPW

G

G G

GPW

GPW

G

Ur Ur

μ = 100

μ = 5, ROM-NL
μ = 100, ROM-NL

μ = 100, DNS
μ = 5, DNS

μ = 500, ROM-NL

μ = 5 μ = 5

μ = 100

Ur = 1/St

Ur = 1/St

Ur = 1/St

Ur = 1/St Ur = 11.6

Ur = 21

Ur = 33.1
Ur = 18.9

Ur = 15.1

Ur = 22.5

W
S

W
S

Galloping

Delayed

galloping

Delayed

galloping

Neither VIV nor galloping

Extended VIV

Extended VIV

Kink

Figure 6. Effect of mass ratio μ and of mass–damping parameter S∗
c on the amplitude of response ŷ and on the

growth rates G of modes obtained by ROM-LSA, as a function of the reduced velocity. (a,c,e) High damping,
S∗

c = 15 corresponding to separate VIV and galloping. (b,d, f ) Low damping, S∗
c = 5, corresponding to coupled

VIV and galloping. Top line, amplitude of response using the ROM-NL and DNS. Middle and bottom lines
growth rates of modes for large and small mass ratios, respectively. Dimensionless parameter: total mass ratio
μ = 5, 100 and 500; structural mass ratio m∗

s = 3.8, 98.8 and 498.8.

VIV–galloping at S∗
c = 15 (corresponding to Ug/Uv = 3.12) and coupled VIV–galloping

at S∗
c = 5 (corresponding to Ug/Uv = 1.04). We use the ROM-NL, as above, to compute

the amplitude ŷ, for a reduced velocity varying from 1 to 45. We consider low and high
values of the total mass ratio μ = 5 and μ = 500, and recall the results for μ = 100
already given in figure 4. The responses for the two configurations, separate and coupled,
are given in figures 6(a) and 6(b), respectively. The amplitudes for the large mass ratios,
μ = 100 and 500, are almost identical in the two configurations. This is consistent with the
results obtained at high Ur by Jayatunga et al. (2015) using only the quasi-steady model
for galloping and shows that the vortex force Fv does not contribute to the response at high
reduced velocity with large mass ratios.

The amplitude of motion is quite different at low mass ratios in the two configurations.
The VIV range is extended, and galloping is delayed to larger velocities when compared
with the responses for higher mass ratios. Moreover, figure 6(a) shows that a high S∗

c will

931 A27-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

97
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.975


P. Han and E. de Langre

further widen the VIV range and delay galloping. DNS results in figure 6(a,b) support our
results obtained by ROMs.

These results lead us to investigate the relation between the delay in the onset of
galloping and the apparent extension of the range of VIV in this low mass ratio range.
We use the linear stability analysis (ROM-LSA), focusing first on the configuration of
large S∗

c where VIV and galloping are well separated at high mass ratios.

3.1. Low mass ratio behaviour in the case of separate VIV and galloping
Figure 6(c,e) shows the ROM-LSA results at large S∗

c = 15, with a high (μ = 100) and
a low (μ = 5) mass ratio, respectively. Contrary to the high mass cases, in the ROM-NL
response for μ = 5, figure 6(a), a large range of VIV was observed, with delayed galloping.
This phenomenon can be now interpreted through the ROM-LSA results in figure 6(e). The
growth rate for the wake mode is still larger than Gpw in a large range of velocity, indicating
that the wake instability is enhanced by the presence of a solid mode close to instability.
In addition, since the solid mode becomes unstable only above Ur = 22.5, we can state
that the motion below this critical value is induced exclusively by the wake instability.
Moreover, in this case, the square cylinder does not start galloping immediately when
the solid mode becomes unstable. This is because, see figure 6(e), there is a range after
Ur = 22.5, where not only is the growth rate for the solid mode positive, but also the wake
mode is larger than Gpw, and both are unstable. In this range, a competition exists between
VIV and galloping. First, just above Ur = 22.5, the wake mode is still sufficiently unstable
to overcome the unstable solid mode, which explains why VIV still occurs. At larger
velocities, the growth rate of the solid mode keeps increasing and eventually dominates.
The motion switches to galloping, but the onset has been delayed. As shown here by the
ROM-LSA, the delay in galloping is caused by the presence of extended VIV. The range
of flow velocity where VIV occurs is extended because of the total damping level which is
reduced by the effect of the galloping forces.

3.2. Low mass ratio behaviour in the case of coupled VIV and galloping
For the more complex configuration of coupled VIV and galloping, we now apply the
same approach. We show the ROM-LSA results for S∗

c = 5 with high μ = 100 and low
μ = 5 mass ratios, respectively in figure 6(d, f ). For the low mass ratio case, figure 6( f ),
a scenario comparable to figure 6(e) is found, with a competition between the wake mode
instability, giving VIV, and the solid mode instability, giving galloping. This results also
in a delayed galloping. Still, a significant difference can be seen with the configuration
analysed above where VIV and galloping were well separated: here, the wake mode is
still largely unstable when the solid mode becomes unstable. This results in a higher VIV
response, and therefore an extended VIV domain. Note that, in figure 6(b), the amplitude
variation in the grey area is caused by the 3:1 synchronization between the vortex-shedding
frequency and the oscillation frequency of the body (Zhao et al. 2014).

3.3. No critical mass ratio for galloping
We have just seen that, even though a low mass ratio does enhance the wake instability that
causes VIV, the solid mode involved in galloping always becomes unstable at higher flow
velocities. More importantly, as the reduced velocity Ur is increased, the growth rate for
the solid mode keeps increasing whereas the growth rate for the wake mode approaches
Gpw continuously, see figure 6(c–f ). We now state that, in a more general case, the solid
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mode giving galloping will always, at high reduced velocity, become more unstable than
the wake mode giving VIV. Therefore, although galloping can be delayed at low mass ratio,
by the mechanism shown above of mode competition, it will not disappear. The concept
of a critical mass ratio below which galloping does not exist is therefore not appropriate:
there is no critical mass ratio but simply a delay effect. Moreover, our results show that the
domain of reduced velocity where VIV occurs can be extended at low mass ratio, but that
the corresponding growth rate always decreases for higher velocities. We state that ‘VIV
forever’, which was thought to be related to the suppression of galloping, see Li et al.
(2019), Sourav & Sen (2020), actually does not occur here.

We now use our DNS model to confirm whether galloping can actually be found, for
low mass ratios, at higher reduced velocities. Figure 7(a) shows that, even at a mass ratio
of m∗

s = 2, a high amplitude of motion can be found provided the reduced velocity is
increased up to Ur = 90. To confirm that this motion is caused by galloping, we show in
figure 7(b) the evolution in time of the response at Ur = 66 and at Ur = 98. At Ur = 98
the motion is of larger amplitude and a much lower frequency than at Ur = 66. In fact the
oscillation frequency, fosc, is close to that of the MCK oscillator without flow, fs. A FFT
analysis of the response yields a frequency such that fosc/fs = 0.7. Large amplitudes and
low frequencies are typical signs of galloping (Blevins 2001; Nemes et al. 2012; Li et al.
2019). To further support our conclusion that galloping is just delayed at a very low mass
ratio, we show the amplitude ŷ and frequency f ∗ responses via DNS at a low mass ratio
m∗

s = 2 with a wide range of Ur in figures 7(c) and 7(d), respectively. The parameters used
are the same as in figure 3(a) of Joly et al. (2012). For comparison, the case of high mass
ratio m∗

s = 20 is also added. Figure 7(c) shows that the increased amplitude corresponding
to galloping is delayed at low mass ratio. Consistently, in figure 7(d), the drop from the
VIV frequency to the lower galloping frequency does occur at high reduced velocity for
this low mass ratio. We can therefore confirm by DNS that galloping can be found even at
a low mass ratio, but at high reduced velocities.

4. Discussions and conclusions

In the present work we have used both the original nonlinear ROM for VIV and galloping
(ROM-NL) and its linearized version in view of a LSA (ROM-LSA). Consistently with
previous work on VIV (Violette et al. 2010; Grouthier et al. 2013) we found that the
use of ROM-LSA is relevant to the prediction of some aspects of the dynamics of
the limit cycle that arise in the nonlinear system. The frequency of motion, figure 5,
is generally well predicted. This is related to the fact that the linearly most unstable
mode in most cases remains the dominant mode in the limit cycle, as can be seen in
figures 4 and 6. Nevertheless, when two modes are unstable with comparable growth
rates, such as for instance in figure 6(e) in the range Ur = 30−40, nonlinear effects
influence the competition between modes: the ROM-LSA predicts a cross-over between
VIV and galloping at Ur = 33.1, figure 6(e), whereas it is observed later, at Ur = 36.9,
with the ROM-NL, figure 6(a). Because of its simplicity, the ROM-LSA can therefore
be considered as a useful tool for the qualitative and quantitative prediction of combined
VIV and galloping. Moreover, as most of the results on vibration responses we gave using
ROM-NL have been confirmed by DNS, see figures 2–7, both the linear and the nonlinear
versions of the ROM can be considered as reliable.

The particular effect of damping in the mechanisms presented above needs now to be
discussed. In most systems under VIV, increasing the damping of the structure reduces
the range of flow velocity where motion occurs (Païdoussis et al. 2010). Conversely, in
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Figure 7. (a) Effect of mass ratio on the amplitude of motion of a square cylinder. The results of Joly et al.
(2012) and our ROM-NL and DNS at Ur = 40 are those already given in figure 3(a). Our DNS results at
Ur = 66 and Ur = 90 show that there exists a transition to galloping at low mass ratio. (b) Time histories
of the displacement at Ur = 66 and Ur = 98, at m∗

s = 2, showing a VIV response and a galloping response,
respectively. Panels (c,d) are respectively the amplitude ŷ and the frequency f ∗ of a square cylinder for a high
m∗

s = 20 and low m∗
s = 2 mass ratios, as a function of the reduced velocity Ur.

the present case of very low mass ratios, the VIV range is indeed increased by damping,
as can be seen by comparing figure 6 panels (a) and (b), where S∗

c is respectively 15
and 5 and where the range of lock-in is larger in the first case. This is consistent with
Sourav & Sen (2019), where the responses of damped and undamped square cylinders
were compared. Here, we have related this particular effect of damping to the competition
in the evolution of the growth rates of the wake and solid modes. The enlarged VIV
range corresponded to a dominant wake mode, under the influence of the solid mode.
Here, an increase of the damping ratio results in a delay of the instability by galloping
of the solid mode: as a consequence, the only unstable mode left in that range is the
enhanced wake, resulting in VIV. To summarize, at low mass ratio and high damping,
VIV is allowed to extend by the delay of galloping. This is of importance when
considering the possible use of square cross-sections to harvest energy from flow, using
their cross-flow motion: the low mass ratio configuration is favourable to energy harvesting
because (a) there is always motion, either by VIV or by galloping and (b) damping, or
equivalently energy extraction, does not reduce the range of flow velocity where motion is
found.

Our results can also be used to give some insights into the range of applicability of
(2.14a,b), i.e. the classical quasi-steady model, which is generally used to derive the critical
flow velocity where galloping starts. The quasi-steady model is generally considered to be
valid at high reduced velocity Ur, where the incoming velocity U is much larger than
the vibration velocity Ẏ . In addition, as (2.14a,b) assumes that the only destabilizing
force is the galloping force, it ignores the possible interaction with VIV. Because of this
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interaction, the predicted onset of galloping by the quasi-steady model (2.14a,b) at large
mass ratio and low S∗

c number is less accurate than that at a high S∗
c number, where VIV and

galloping are well separated. In addition, we found here that at low mass ratio μ = 5 the
prediction is actually inaccurate for both low and high S∗

c , even at a high reduced velocity:
Ug = 20.69 instead of approximately 36.9 at S∗

c = 15, figure 6(a), and Ug = 6.89 instead
of approximately 18 at S∗

c = 5, figure 6(b). This is due to the strong interaction between
VIV and galloping, as discussed above. This shows that, for predicting oscillations of a
square cylinder at low mass ratio, such as underwater flow, a combined VIV and galloping
model is needed.

The analysis presented here considered a two-dimensional situation, which is generally
used for these problems. The ROM, ROM-NL, (2.6) and (2.7) can also be extended to
slender flexible or tensioned structures such as beams or cables (Violette, de Langre &
Szydlowski 2007; Païdoussis et al. 2010). Projecting the fluid forces onto the modes of
the structures then reduces the problem to a system of equations similar to (2.6)–(2.7). We
may therefore expect similar results in terms of the effect of the mass ratio on the existence
of galloping.

Our main result on the existence of galloping even at low mass ratio is probably
applicable to all cross-sections that experience galloping. In fact, our ROM, (2.6) and (2.7),
can be applied to any cross-section provided the coefficients for the vortex force and for the
galloping force are known. Sections prone to galloping such as rectangular or triangular
ones will have different sets of coefficients, but the mechanism of VIV and galloping, and
their interaction, is expected to be the same. Of course, for a section that is neutral to
galloping (such as the circular cylinder) or stable to galloping (such as the rotated square
cylinder), the issue is irrelevant, even if some low mass ratio effects exist on the wake
mode instability (Yao & Jaiman 2017). To explore the possibility that our conclusions
are also valid for other cross-sections and at higher Reynolds numbers, we consider
the case of a 3 : 2 rectangular cross-section. The experimental results of Mannini et al.
(2015, 2018) are shown in figure 8. As their mass ratio is high (μ = 785.2), the VIV and
galloping responses are well separated. The Reynolds number varies in their experiment
from 20 000 to 150 000. We first compute the response of our ROM-NL at this mass ratio,
using CM = 1.51 from Blevins (2001), the flow parameters (St, CL0 and Ai) and structural
parameters (ζ , S∗

c ) from Mannini et al. (2015, 2018) and B1 = 10, B2 = 0.1 as in our
previous computations on squares. As reported by Mannini et al. (2015, 2018), among the
tested Re range in their experiments, the Strouhal number St = 0.106 is almost not affected
by the Reynolds number, while the lift coefficient CL0 approximately varies from 0.659 to
1.113. We use here CL0 = 0.785, which is the mean of the measured points in Mannini
et al. (2018). The quasi-steady polynomial coefficients Ai are taken from the experiments
in Mannini et al. (2015) at Re = 146 800. The comparison with the experimental data,
figure 8 shows a good agreement for this high mass ratio case. Decreasing now the mass
ratio to μ = 10, without changing any other coefficients, we obtain with the ROM-NL a
response that shows an extended range of VIV and a delayed galloping. This is very similar
to our observations on the square section at low Reynolds number and confirms that the
scenario we described for the square section at low Reynolds number probably applies for
other sections and other Reynolds numbers.

To summarize and conclude: we have addressed the two questions raised at the end of
the Introduction on the existence of galloping at low mass ratio and on the role of damping
in that range of parameters. We have shown that, contrary to the statements in several
recent papers, there is no critical mass ratio for galloping of square cylinders under flow,
regardless of damping.
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Figure 8. Amplitude of motion of a 3 : 2 rectangular cylinder obtained by the present ROM-NL, as a function
of the reduced velocity for two mass ratios. Comparison with the experimental data of Mannini et al. (2018) for
high mass ratio. The low mass ratio case shows extended VIV and delayed galloping, as for the square cylinder.
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Appendix A. Estimations of parameters Ai and Bi in ROM-NL

For completeness, this appendix aims to provide guidelines for the derivation of
parameters used in the ROM-NL model. It summarizes elements from Han et al. (2021a).
For a given bluff body under a specific flow, the mass ratio μ including the structural
mass ratio m∗

s and the added mass coefficient CM , the damping ratio ζ , the natural angular
frequency ωs and the reduced velocity Ur are known. The Strouhal number St and lift
coefficient CL0 can be determined by experiments or simulations of flow over a fixed bluff
body.

As mentioned previously in § 2.1 and in (2.4), the parameters Ai coupled with Ẏ/U
(Ẏ/U ≈ α) are used to describe the incidence angle effects of the galloping force Fg
based on the quasi-steady theory. The values of Ai can be estimated by simulations and
experiments of flow over a fixed cylinder under different incidence angles. In this paper,
the parameters are directly taken from Joly et al. (2012) and Mannini et al. (2015). For
a square cylinder at low Reynolds numbers, Joly et al. (2012) computed DNS data of
the lift coefficient as a function of the incidence angle α, and they used a third-order
polynomial including A1 and A2 to fit their numerical data, giving A1 = −0.98 and
A2 = 14.4 at Re = 100 and A1 = 1.45 and A2 = 79.44 at Re = 200. In figure 8, for a
3 : 2 rectangular cylinder at high-Re flow, Mannini et al. (2015) conducted experiments
at Re = 146 800 of flow over the fixed rectangular cylinder with varying angles α from
0◦ to 16◦. An eleventh-order polynomial was used by (Mannini et al. 2015, 2018) to fit
the experimental data, resulting in A1 = 5.5, A2 = 318.2, A3 = 32 150, A4 = 1.231 × 106,
A5 = 1.798 × 107, A6 = 8.977 × 107.
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Galloping of square cylinders

The coupling parameters B1 and B2 are estimated by forced vibration experiments of a
square cylinder, see Han et al. (2021a). Considering a forced vibration at the amplitude y0
and forced frequency ω, with a first harmonic approximation, yields

y = y0cos(ωt) q = q0cos(ωt + θ), (A1a,b)

where θ represents the phase angle between q and the displacement y. Note that we
define here the frequency ω scaled by the vortex-shedding frequency, ωf . First, substituting
(A1a,b) into the wake oscillator (2.7) and considering only the main harmonic contribution
of the nonlinearities gives

q6
0 − 8q4

0 + 16

[
1 +

(
ω2 − 1

εω

)2]
q2

0 = 16
(

B1y0ω

ε

)2

+ 16
(

B2y0

ε

)2

, (A2)

θ = arctan
εω

ω2 − 1
(q2

0/4 − 1) + arctan
B2ω

−B1ω2 . (A3)

Solving the bi-cubic polynomial in (A2), we can have the unique positive real root q0
and therefore the instantaneous lift coefficient caused by vortices

Cv
L = qCL0/2 = q0CL0 cos(ωt + θ)/2. (A4)

Second, substituting (A1a,b) into the quasi-steady model (2.4) gives the galloping force
Fg and its dimensionless force coefficient Cg

L, which reads

Cg
L = 2Fg/ρU2D =

[
−2πSty0ωA1 + (2πSty0ω)3 3

4
A2

−(2πSty0ω)5 5
8

A3 + (2πSty0ω)7 35
64

A4

]
sin(ωt). (A5)

Now, the total lift coefficient Ct
L of a vibrating square cylinder can be built by

Ct
L = Cv

L + Cg
L − Ca

L, (A6)

where the coefficient Ca
L represents the added mass effects that can be computed by

substituting (A1a,b) into Ca
L = 2maŸ/ρU2D

Ca
L = −ω2CM2π3S2

t y0 cos(wt). (A7)

Then, after elementary algebra by combining (A2)–(A7), the total lift coefficient can be
given by a function as Ct

L = Rcos(ωt + Θ), of which R and Θ can be expressed by

R2 = (0.5CL0q0cosθ + ω2CM2π3S2
t y0)

2 +
[

− 0.5CL0q0sinθ − 2πSty0ωA1

+(2πSty0ω)3 3
4

A2 − (2πSty0ω)5 5
8

A3 + (2πSty0ω)7 35
64

A4

]2

, (A8)

tanΘ =
[
−0.5CL0q0sinθ − 2πSty0ωA1 + (2πSty0ω)3 3

4
A2 − (2πSty0ω)5 5

8
A3

+(2πSty0ω)7 35
64

A4

]/
(0.5CL0q0cosθ + ω2CM2π3S2

t y0). (A9)

Solving the above (A8) and (A9), the theoretical total lift coefficient amplitude, R, and
phase angle, Θ , can be obtained. Figure 9(a,b) shows the comparison of the theoretical
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Figure 9. (a) Amplitude of lift coefficient, R, and (b) phase angle, Θ , of a square cylinder under forced
vibrations (y0 = 0.1). Experimental data are taken from Carassale et al. (2015).
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Figure 10. A sensitivity analysis of the effects of the (a) lift coefficient, CL0, and (b) Strouhal number, St, on
the amplitude response ŷ obtained by ROM-NL.

predictions and experiments in terms of R and Θ , respectively. Note that the reduced
velocity for the forced vibrations is defined as Ur = 1/ωSt. The coefficients A1 = 3.01,
A2 = 110, A3 = 3037 and A4 = 26 515 are estimated by Freda, Carassale & Piccardo
(2015) via experiments, while other parameters are taken from Carassale, Freda & Banfi
(2015). The results indicate that B1 = 10 and B2 = 0.1 applied in the present work are
reasonable to capture the most important features of a vibrating square cylinder under
flow.

Appendix B. Sensitivity analysis of ROM-NL

The results obtained by our ROM-NL depend on the parameters in (2.6) and (2.7). The lift
coefficient CL0 and the Strouhal number St have values that are found to vary among
sources. For instance, at Re = 200, CL0 is given in the range 0.45–0.78 and St in the
range 0.15–0.172 in Singh et al. (2009), Joly et al. (2012) and Bhatt & Alam (2018).
For this reason we give a sensitivity analysis of CL0 and St for our ROM-NL in this
appendix, in order to investigate whether the sensitivity is a possible cause of differences
between ROM-NL and DNS in figure 3(a). Using the same parameters as figure 3(a),
we plot comparisons of the amplitude ŷ predicted by our ROM-NL and by DNS with
different values of CL0 and St in figure 10. In the reasonable range of CL0, a higher value
of CL0 will lower the minimum amplitude and increase the range of velocities for low
amplitude vibrations. The Strouhal number will significantly affect the predictions among
the resonance region around Ur = 1/St, however, the reduced velocity Ur = 40 here is
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Galloping of square cylinders

quite large; the results obtained by ROM-NL are not sensitive to St. One might notice
that St indeed affects the oscillations in the curves below M∗

s = 5. This phenomenon is
the ‘kink’ similar to figure 6(b), which occurs for light bodies when the vortex-shedding
frequency is in the vicinity of an odd-integer multiple of oscillation frequency (Zhao et al.
2014). The value of St determines the vortex-shedding frequency and therefore changes
the predictions and the oscillations at a low mass ratio. In a word, reasonably optimal
parameters could possibly be found by varying CL0 and St to improve the accuracy against
the DNS data. In the present work, however, we did not use such a fit and all the parameters
used in our ROMs are taken from Joly et al. (2012) for consistency. More importantly, a
different set of parameters will not change the mechanism of VIV–galloping behaviour
obtained by our ROM-LSA, and the present set of parameters are already ‘accurate
enough’ for our phenomenological and extremely-low-cost ROM.

REFERENCES

BARRERO-GIL, A., SANZ-ANDRÉS, A. & ROURA, M. 2009 Transverse galloping at low Reynolds numbers.
J. Fluids Struct. 25 (7), 1236–1242.

BHATT, R. & ALAM, M.M. 2018 Vibrations of a square cylinder submerged in a wake. J. Fluid Mech. 853,
301–332.

BLEVINS, R.D. 2001 Flow-Induced Vibration. Krieger Publishing Company.
CARASSALE, L., FREDA, A. & BANFI, L. 2015 Motion excited forces acting on a square prism: a qualitative

analysis. In The 14th International Conference on Wind Engineering. Porto Alegre, Brazil.
FACCHINETTI, M.L., DE LANGRE, E. & BIOLLEY, F. 2004 Coupling of structure and wake oscillators in

vortex-induced vibrations. J. Fluids Struct. 19 (2), 123–140.
FREDA, A., CARASSALE, L. & PICCARDO, G. 2015 Aeroelastic crosswind response of sharp-edge square

sections: experiments versus theory. In The 14th International Conference on Wind Engineering. Porto
Alegre, Brazil.

GOVARDHAN, R. & WILLIAMSON, C.H.K. 2002 Resonance forever: existence of a critical mass and an
infinite regime of resonance in vortex-induced vibration. J. Fluid Mech. 473, 147–166.

GROUTHIER, C., MICHELIN, S., MODARRES-SADEGHI, Y. & DE LANGRE, E. 2013 Self-similar
vortex-induced vibrations of a hanging string. J. Fluid Mech. 724, R2.

HAN, P., HÉMON, P., PAN, G. & DE LANGRE, E. 2021a Nonlinear modeling of combined galloping and
vortex-induced vibration of square sections under flow. Nonlinear Dyn. 103 (4), 3113–3125.

HAN, P., HUANG, Q., PAN, G., WANG, W., ZHANG, T. & QIN, D. 2021b Energy harvesting from
flow-induced vibration of a low-mass square cylinder with different incidence angles. AIP Adv. 11 (2),
025126.

HAN, P., PAN, G. & TIAN, W. 2018 Numerical simulation of flow-induced motion of three rigidly coupled
cylinders in equilateral-triangle arrangement. Phys. Fluids 30 (12), 125107.

HAN, P., PAN, G., ZHANG, B., WANG, W. & TIAN, W. 2020 Three-cylinder oscillator under flow: flow
induced vibration and energy harvesting. Ocean Engng 211, 107619.

JAYATUNGA, H.G.K.G., TAN, B.T. & LEONTINI, J.S. 2015 A study on the energy transfer of a square prism
under fluid-elastic galloping. J. Fluids Struct. 55, 384–397.

JOLY, A., ETIENNE, S. & PELLETIER, D. 2012 Galloping of square cylinders in cross-flow at low Reynolds
numbers. J. Fluids Struct. 28, 232–243.

DE LANGRE, E. 2006 Frequency lock-in is caused by coupled-mode flutter. J. Fluids Struct. 22 (6–7), 783–791.
LI, X., LYU, Z., KOU, J. & ZHANG, W. 2019 Mode competition in galloping of a square cylinder at low

Reynolds number. J. Fluid Mech. 867, 516–555.
MANNINI, C., MASSAI, T. & MARRA, A.M. 2018 Modeling the interference of vortex-induced vibration and

galloping for a slender rectangular prism. J. Sound Vib. 419, 493–509.
MANNINI, C., MASSAI, T., MARRA, A.M. & BARTOLI, G. 2015 Modelling the interaction of VIV and

galloping for rectangular cylinders. In The 14th International Conference on Wind Engineering, pp. 1–20.
Porto Alegre, Brazil.

MELIGA, P. & CHOMAZ, J.-M. 2011 An asymptotic expansion for the vortex-induced vibrations of a circular
cylinder. J. Fluid Mech. 671, 137–167.

NAVROSE & MITTAL, S. 2016 Lock-in in vortex-induced vibration. J. Fluid Mech. 794, 565–594.

931 A27-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

97
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.975


P. Han and E. de Langre

NAVROSE & MITTAL, S. 2017 The critical mass phenomenon in vortex-induced vibration at low Re. J. Fluid
Mech. 820, 159–186.

NAYFEH, A.H. 2011 Introduction to Perturbation Techniques. John Wiley & Sons.
NEGI, P.S., HANIFI, A. & HENNINGSON, D.S. 2020 On the linear global stability analysis of rigid-body

motion fluid–structure-interaction problems. J. Fluid Mech. 903, A35.
NEMES, A., ZHAO, J., LO JACONO, D. & SHERIDAN, J. 2012 The interaction between flow-induced vibration

mechanisms of a square cylinder with varying angles of attack. J. Fluid Mech. 710, 102–130.
PAÏDOUSSIS, M.P., PRICE, S.J. & DE LANGRE, E. 2010 Fluid–Structure Interactions: Cross-Flow-Induced

Instabilities. Cambridge University Press.
PARKINSON, G.V. & SMITH, J.D. 1964 The square prism as an aeroelastic non-linear oscillator. Q. J. Mech.

Appl. Maths 17 (2), 225–239.
PARKINSON, G.V. & WAWZONEK, M.A. 1981 Some considerations of combined effects of galloping and

vortex resonance. J. Wind Engng Ind. Aerodyn. 8 (1), 135–143.
PETTIGREW, M.J., TAYLOR, C.E. & KIM, B.S. 1989 Vibration of tube bundles in two-phase cross-flow: part

1—hydrodynamic mass and damping. Trans. ASME: J. Pressure Vessel Technol. 111 (4), 466–477.
SEN, S. & MITTAL, S. 2015 Effect of mass ratio on free vibrations of a square cylinder at low Reynolds

numbers. J. Fluids Struct. 54, 661–678.
SINGH, A.P., DE, A.K., CARPENTER, V.K., ESWARAN, V. & MURALIDHAR, K. 2009 Flow past a

transversely oscillating square cylinder in free stream at low Reynolds numbers. Intl J. Numer. Meth. Fluids
61 (6), 658–682.

SOURAV, K. & SEN, S. 2019 Transition of VIV-only motion of a square cylinder to combined VIV and
galloping at low Reynolds numbers. Ocean Engng 187, 106208.

SOURAV, K. & SEN, S. 2020 Determination of the transition mass ratio for onset of galloping of a square
cylinder at the least permissible Reynolds number of 150. Phys. Fluids 32 (6), 063601.

VIOLETTE, R., DE LANGRE, E. & SZYDLOWSKI, J. 2007 Computation of vortex-induced vibrations of
long structures using a wake oscillator model: comparison with DNS and experiments. Comput. Struct.
85 (11–14), 1134–1141.

VIOLETTE, R., DE LANGRE, E. & SZYDLOWSKI, J. 2010 A linear stability approach to vortex-induced
vibrations and waves. J. Fluids Struct. 26 (3), 442–466.

WILLIAMSON, C.H.K. & GOVARDHAN, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36 (1),
413–455.

YAO, W. & JAIMAN, R.K. 2017 Model reduction and mechanism for the vortex-induced vibrations of bluff
bodies. J. Fluid Mech. 827, 357–393.

ZANGANEH, H. & SRINIL, N. 2016 Three-dimensional VIV prediction model for a long flexible cylinder with
axial dynamics and mean drag magnifications. J. Fluids Struct. 66, 127–146.

ZHANG, W., LI, X., YE, Z. & JIANG, Y. 2015 Mechanism of frequency lock-in in vortex-induced vibrations
at low Reynolds numbers. J. Fluid Mech. 783, 72–102.

ZHAO, M., CHENG, L. & ZHOU, T. 2013 Numerical simulation of vortex-induced vibration of a square
cylinder at a low Reynolds number. Phys. Fluids 25 (2), 023603.

ZHAO, J., LEONTINI, J.S., LO JACONO, D. & SHERIDAN, J. 2014 Fluid–structure interaction of a square
cylinder at different angles of attack. J. Fluid Mech. 747, 688–721.

ZHAO, J., LEONTINI, J.S., LO JACONO, D. & SHERIDAN, J. 2019 The effect of mass ratio on the structural
response of a freely vibrating square cylinder oriented at different angles of attack. J. Fluids Struct. 86,
200–212.

931 A27-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

97
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.975

	1 Introduction
	2 Methodology
	2.1 A ROM for VIV and galloping
	2.2 LSA of the ROM
	2.3 Direct numerical simulations
	2.4 Validations
	2.5 Linear and nonlinear models and comparison with DNS

	3 Results
	3.1 Low mass ratio behaviour in the case of separate VIV and galloping
	3.2 Low mass ratio behaviour in the case of coupled VIV and galloping
	3.3 No critical mass ratio for galloping

	4 Discussions and conclusions
	A Appendix A. Estimations of parameters Ai and Bi in ROM-NL
	B Appendix B. Sensitivity analysis of ROM-NL
	References

