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We study the occurrence and dynamics of rogue waves in three-dimensional deep
water using phase-resolved numerical simulations based on a high-order spectral
(HOS) method. We obtain a large ensemble of nonlinear wave-field simulations
(M = 3 in HOS method), initialized by spectral parameters over a broad range,
from which nonlinear wave statistics and rogue wave occurrence are investigated.
The HOS results are compared to those from the broad-band modified nonlinear
Schrödinger (BMNLS) equations. Our results show that for (initially) narrow-band and
narrow directional spreading wave fields, modulational instability develops, resulting
in non-Gaussian statistics and a probability of rogue wave occurrence that is an order
of magnitude higher than linear theory prediction. For longer times, the evolution
becomes quasi-stationary with non-Gaussian statistics, a result not predicted by the
BMNLS equations (without consideration of dissipation). When waves spread broadly
in frequency and direction, the modulational instability effect is reduced, and the
statistics and rogue wave probability are qualitatively similar to those from linear
theory. To account for the effects of directional spreading on modulational instability,
we propose a new modified Benjamin–Feir index for effectively predicting rogue wave
occurrence in directional seas. For short-crested seas, the probability of rogue waves
based on number frequency is imprecise and problematic. We introduce an area-based
probability, which is well defined and convergent for all directional spreading. Based
on a large catalogue of simulated rogue wave events, we analyse their geometry using
proper orthogonal decomposition (POD). We find that rogue wave profiles containing a
single wave can generally be described by a small number of POD modes.

Key words: surface gravity waves, waves/free-surface flows

1. Introduction
Rogue waves are extraordinarily large surface waves that appear infrequently in

the ocean. A common definition of rogue waves is waves whose heights exceed
twice the significant wave height. Occurrences of such large waves have been
reported worldwide from ships, offshore platforms and radars (Lawton 2001; Kharif &
Pelinovsky 2003; Forristall 2005). Collisions with such waves have caused catastrophic
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damage to ships and offshore structures (Kharif & Pelinovsky 2003; Toffoli et al.
2005). Recent reviews of the rogue wave problem may be found in Kharif &
Pelinovsky (2003), Dysthe, Krogstad & Muller (2008), Kharif, Pelinovsky & Slunyaev
(2009) and Slunyaev, Didenkulova & Pelinovsky (2011).

The prediction of the occurrence probability of rogue waves is of central interest.
In linear random wave theory, the wave field is considered as a superposition of
sinusoidal wave components with different frequencies and directions of propagation,
and the surface is described by a Gaussian distribution. Under this assumption,
Longuet-Higgins (1952) shows that, for unidirectional waves that are narrow-band in
frequency, wave height and thus rogue wave occurrence follow a Rayleigh distribution.
This linear theory is extended to include second-order bound wave effects (Tayfun
1980; Forristall 2000). The inclusion of second-order nonlinearity leads to sharper
crests and flatter troughs, with improved statistical comparison to field measurements,
although the crest-to-trough wave height remains the same. Significantly, observations
indicate that the classical linear and second-order theories do not properly describe the
occurrence of large waves with heights greater than twice the significant wave height
(Skourup, Hansen & Andreasen 1997; Stansell 2005).

The enhanced occurrence probability of large waves can be due to a number of
physical mechanisms (Kharif & Pelinovsky 2003). In addition to superposition of
dispersive waves with proper frequency and phase combinations, linear mechanisms
associated with wave refraction by variable current or bottom topography have been
proposed (Lavrenov 1998). When nonlinearity is present, significant interactions occur
at the third order, and it is postulated that nonlinear focusing due to modulational
instability (MI) is an important generation mechanism of rogue waves. It is known that
an initially periodic Stokes wave train is unstable to sideband modulations (Benjamin
& Feir 1967), causing the wave train to disintegrate into wave groups within which
large waves could form. This type of Benjamin–Feir MI also occurs in narrow-band
irregular wave fields (Alber 1978), and its relationship to rogue wave formation has
been studied theoretically, experimentally and numerically.

For unidirectional narrow-band seas, Janssen (2003) shows theoretically that MI can
cause an exponential growth of the central wave mode, leading to the formation of
large waves, and the importance of MI can be measured by the Benjamin–Feir index
(BFI), which is the ratio of the wave-field steepness to the spectral bandwidth. By
including the third-order nonlinearity of MI, the wave height follows the modified
Edgeworth–Rayleigh (MER) distribution, which involves the fourth-order moment
or kurtosis of the surface elevation (Mori & Yasuda 2002; Mori & Janssen 2006).
The MER distribution deviates from the Rayleigh distribution and predicts increasing
probability of rogue waves with increasing kurtosis. In the special case when the wave
field is described by a very narrow-band Gaussian spectrum, kurtosis is specified
by the value of the BFI (Mori & Janssen 2006). In wave flume experiments,
strongly non-Gaussian values of kurtosis and enhanced occurrence of large waves
are observed in wave fields with large wave steepness and narrow-band initial wave
spectrum (corresponding to large BFI), which supports the suggestion that MI plays
an important role in the occurrence of large waves during nonlinear wave evolution
(Onorato et al. 2004; Shemer & Sergeeva 2009; Shemer, Sergeeva & Liberzon 2010a).

For computational efficiency, many existing numerical studies use model equations
based on the wave envelope approximation (assuming narrow-band waves), such as
nonlinear Schrödinger (NLS) or modified nonlinear Schrödinger (MNLS) equations
and their extended forms, to allow slightly broad-band spectrum (broad-band modified
nonlinear Schrödinger equations, BMNLS) (Dysthe 1979; Trulsen & Dysthe 1996).
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Using one-dimensional NLS simulations, the possible connection between MI and
rogue wave occurrence is confirmed by Onorato et al. (2001). Another type of weakly
nonlinear model is the one based on Zakharov’s integro-differential equation, which
includes broad-band wave interactions (Shemer, Kit & Jiao 2002; Annenkov & Shrira
2009a). A few attempts have also been made to obtain fully nonlinear simulations
for the evolution of unidirectional waves (Zakharov, Dyachenko & Vasilyev 2002;
Chalikov 2009; Slunyaev & Sergeeva 2011). In particular, Chalikov (2009) also finds a
strong correlation between the kurtosis and rogue wave occurrence.

For general three-dimensional (3D) wave fields with broad directional spreading,
statistical theory accounting for nonlinearity is difficult to obtain, and much of the
investigation is based on experimental and numerical simulations. It is found in wave
basin experiments that the increase of spreading angles can lead to a significant
reduction of kurtosis and occurrence of rogue waves (Stansberg 1994; Onorato et al.
2009; Waseda, Kinoshita & Tamura 2009). This is confirmed by numerical simulations
based on NLS-type models, where it is found that the importance of MI is reduced
with decreasing crest length, and, for broad directional wave fields, the probability
of rogue wave occurrence is close to Gaussian statistics and nearly independent of
BFI (Onorato, Osborne & Serio 2002; Gramstad & Trulsen 2007). To account for
the effect of directional spreading on rogue wave occurrence in 3D wave fields,
different modified BFI parameters are proposed based on wave tank experiments
(Waseda et al. 2009) and NLS simulations (Mori, Onorato & Janssen 2011). Fully
nonlinear simulations are also developed, but are generally applied in a small wave
field (Bateman, Swan & Taylor 2001; Ruban 2011).

NLS-type simulations are potentially limited by the inherent assumptions of
narrow-band spectrum and slowly varying spatial and temporal modulations. These
assumptions may not hold in general, since it is known that even an initially
narrow-band spectrum may become broad-band due to nonlinear evolution (Dysthe
et al. 2003). For steep waves (which might be expected in rogue wave events), the
assumption of slowly varying modulation may also be invalid locally. One of the
objectives of the present work is to assess the range of validity of wave envelope
models for rogue wave predictions in directional wave fields over the MI scales.
This is addressed in the recent study of Toffoli et al. (2010), where BMNLS theory
simulation is compared with direct simulation using a high-order spectral (HOS)
method (Dommermuth & Yue 1987; West et al. 1987). Toffoli et al. (2010) show
that the BMNLS equations and the HOS method give qualitatively similar results,
which compare reasonably with the wave tank experiments of Onorato et al. (2009).
The simulations are, however, limited to relatively short evolution time (suggested by
the scale of the tank experiments) and small computational domains.

In the present work, we apply direct numerical simulations to study the generation
mechanisms and occurrence probability of rogue waves in 3D wave fields based on
the HOS method developed in Dommermuth & Yue (1987). Our focus is on the
importance of MI as a generation mechanism of rogue waves over space and time
scales L × L and T , with L /λp,T /Tp ∼ O(ε−2), where λp and Tp are the peak
wavelength and period of the (initial) spectrum. Here ε = Hskp/2 is the steepness of
the wave field, where Hs is the significant wave height and kp is the peak wavenumber.
Note that T /Tp ∼ O(ε−2) is still shorter than the kinetic scale O(ε−4). Longer
evolution up to the kinetic scale is considered in Annenkov & Shrira (2009a,b) and
Slunyaev & Sergeeva (2011). Our objectives are to obtain the occurrence probability,
mechanisms and geometry of rogue wave events and their quantification in terms of
statistical and spectral parameters. To achieve this, we perform a significant number
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of large-scale nonlinear 3D HOS simulations covering a broad range of spectral
parameters. The spatial and temporal scales of the simulations are commensurate
with those of quartet resonance interactions, including Benjamin–Feir type instabilities;
and sufficient realizations are obtained where needed to obtain convergent statistics.
The simulations are performed on massively parallel high-performance computing
(HPC) platforms. To account for natural dissipation due to wave breaking during
the evolution, we implement a robust phenomenologically based model in HOS, which
obtains satisfactory wave breaking dissipation for 2D and 3D breaking compared to
laboratory measurements. For the spatial–temporal scales considered in this study, the
growth of waves due to wind input is practically insignificant (Dysthe et al. 2003;
Janssen 2003). We thus ignore the wind effect. In this initial study, we further assume
deep water, and ignore the bottom and current, although these effects have been
included in HOS (Dommermuth & Yue 1988; Liu & Yue 1998). For comparison, we
also implement BMNLS and compare HOS and BMNLS model predictions over the
large-scale space–time domains we consider.

For this study, a total of O(200) 3D HOS wave fields are obtained (in
the ‘MIT-Wave’ database). The HOS wave fields are initially described by a
Joint North Sea Wave Project (JONSWAP) spectrum with cosine-squared spreading
function, with wave steepness ε = 0.06–0.14, spectral bandwidth (controlled by peak
enhancement parameter) γ = 1–10 and spreading angle Θ = 20–120◦. Using the
MIT-Wave database, we characterize the nonlinear wave-field evolutions, and identify
and collect the large wave events from which occurrence probabilities, rogue wave
geometries (as well as rogue wave kinematics and dynamics, not presented here) are
obtained, all as functions of spectral parameters.

In quantifying the dependence of nonlinear wave statistics and rogue wave
probability on spectral parameters, we elucidate the similarities and differences
between HOS and BMNLS predictions and the range of validity of the latter in
terms of the spectral frequency bandwidth and directional spreading. For initially
narrow-band and narrow directional spreading wave fields, MI leads to significant
frequency and directional broadening, non-Gaussian statistics and enhanced rogue
wave occurrence over a time scale t/Tp . O(ε−2). This is observed in both HOS
and BMNLS, although BMNLS appreciably overpredicts the frequency and directional
broadening as well as the kurtosis, probably related to the narrow-band assumption
in BMNLS. After longer evolution, t/Tp & O(ε−2), the HOS wave field obtains a
quasi-stationary state (without significant further spreading in frequency and direction)
that is distinctly non-Gaussian (as measured by, say, the kurtosis). This is not predicted
by BMNLS, in which spectral broadening in frequency and direction continues, and
the wave field eventually reaches an asymptotic almost-Gaussian state within which
nonlinearity plays a minimal role. For an initially broad directional spreading spectrum,
MI plays a minor role over these time scales, and relatively small spectral evolution
and almost-Gaussian statistics obtain. These are predicted by both HOS and BMNLS,
although the latter still generally overpredicts the frequency and directional broadening.
Since our interest is in rogue wave occurrence, and specifically deviations from
Gaussian–Rayleigh predictions due to MI, the above findings suggest the importance
and usefulness of HOS over the MI time scale (t/Tp = O(ε−2)) considered in this
study.

Using HOS simulations, we confirm the close correlation between rogue wave
occurrence probability and kurtosis (Mori & Janssen 2006) for a broad range of
spectral steepness, frequency bandwidth and directional spreading. For unidirectional
narrow-band waves, kurtosis is in turn closely correlated with the BFI of the (initial)
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spectrum (Mori & Janssen 2006). For broad directional spreading wave fields, BFI
is no longer a sufficient measure of the importance of MI. We propose a new
modified Benjamin–Feir index (MBFI) for general 3D wave fields, as a useful spectral
parameter for predicting the effect of MI on kurtosis and the occurrence of rogue
waves.

Occurrence probability has traditionally been defined as the ratio of the number
of rogue waves to the total number of waves in a given wave field. This number
probability (PN) definition is less useful in broad-band and broad directional spreading
seas where the estimation of the number of waves becomes problematic. The situation
is exasperated since initially narrow-band, narrow-spreading seas tend towards spectra
broad in frequency and direction due to MI. We introduce an area probability (PA) for
rogue wave occurrence for general directional seas. Probability PA approaches PN for
waves narrow in frequency and spreading angle, but obtains meaningful estimates of
the likelihood of rogue waves for broad directional spreading wave fields.

HOS simulations not only indicate the presence of rogue wave events but also
provide the detailed geometry and kinematics of such waves. Thus MIT-Wave can
be used to catalogue and study the geometric structures of rogue waves and
their dependence on the underlying wave spectra. We obtain dominant geometrical
structures of rogue waves using proper orthogonal decomposition (POD). We find that
2D and 3D rogue waves containing a single main wave can generally be represented
using only a few POD modes.

The paper is organized as follows. In § 2, a phase-resolved numerical model for
large-scale nonlinear wave-field evolution based on HOS is described. In § 3 we
compare the spectral evolution and nonlinear wave statistics calculated from HOS and
BMNLS simulations. The number and area probability of rogue waves as functions
of statistical and spectral parameters are quantified and shown in § 4. In § 5, we
analyse the geometrical structures of rogue waves identified and collected from MIT-
Wave using POD. Conclusions and discussions are given in § 6.

2. Numerical simulation of nonlinear wave fields
We consider three-dimensional deep-water wave fields described by spectral

parameters covering a broad range of frequency, spectral bandwidth, directional
spreading angle and wave steepness. We simulate large spatial domains L × L
and evolution times T given by L /λp,T /Tp ∼ O(ε−2). These scales are consistent
with those required for significant third-order MI effects to change the wave fields.
Selective simulations are performed using both HOS and BMNLS models, which allow
us to obtain direct quantitative comparisons.

2.1. Direct simulation using high-order spectrum method (HOS)

2.1.1. Formulation and numerical approach
We perform phase-resolved simulations of large-scale nonlinear wave fields in the

context of potential flow based on an HOS method (Dommermuth & Yue 1987; West
et al. 1987). HOS directly solves the field equation with the kinematic and dynamic
boundary conditions on the free surface in the Zakharov form:

ηt −Φz =−ηx ·ΦS
x + (ηx · ηx)Φz at z= η(x, t), (2.1a)

ΦS
t + gη =− 1

2(Φ
S
x ·ΦS

x )− 1
2(1+ ηx · ηx)Φ

2
z at z= η(x, t), (2.1b)
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where x = (x, y) and z are the horizontal and vertical coordinates, Φ(x, z, t) is the
velocity potential and ΦS(x, t)≡Φ(x, z= η(x, t), t) is the value of the potential on the
free surface η(x, t).

In HOS, nonlinear interactions among a large number of wave components,
N = Nx × Ny, are accounted for up to arbitrary order M in wave steepness. The
computational effort is approximately linear in N and M, with exponential convergence
with M and N for waves up to ∼80 % of Stokes limiting steepness. The validity and
efficacy of this method have been demonstrated extensively for nonlinear wave–wave
interactions (Dommermuth & Yue 1987), and the method has been extended to include
atmospheric forcing (Dommermuth & Yue 1988), variable finite depth (Liu & Yue
1998) and effects of energy dissipation (Wu, Liu & Yue 2006). In this work, a
robust phenomenologically based model is implemented in HOS to account for energy
dissipation due to wave breaking (§ 2.1.2).

For the present study involving very large-scale (N = O(107–8)) simulations, we
develop a parallelized version of HOS optimized for modern massively parallel
HPC platforms, using Message Passing Interface (MPI) functions (Wu 2004). Our
experience with parallelized HOS using up to P = O(103) Cray XT3 and XT4
processors indicates near linear scaling of HPC time with P−1. For simulations with
N = O(107) and M = O(4), for example, the required time on HPC with P processors
is O(0.5)/P hours per HOS time step.

In this study, we typically use a computational domain Lx×Ly = 128λp× 128λp with
doubly periodic boundary conditions; Nx × Ny = 4096× 4096 free wave modes (before
de-aliasing); fourth-order Runge–Kutta time integration with 1t = Tp/32; and order
of nonlinearity M = 3 to capture the third-order nonlinearity in the MI. We perform
extensive convergence tests varying the values of Lx,y/λp, Nx, Ny, 1t and M. With
the parameters we choose, the statistics we report of a given nonlinear wave field are
converged to ∼0.5 % for total energy, and to ∼1 % for skewness and kurtosis. In many
of our results, we further perform ensemble averaging over multiple (typically O(10))
realizations (of the same conditions) to obtain statistically useful results of the extreme
events. Aggregating these realizations, we obtain typically Nrogue = O(102) rogue wave
events from which extreme statistics are obtained.

2.1.2. Modelling energy dissipation due to wave breaking
For the large-scale long-time simulations that we consider, it is important to account

for energy loss associated with wave breaking dissipation in the evolution. The
detailed mechanism and dynamics of different types of (2D and 3D) breaking events is
a big topic beyond the scope of this study. It is however possible to capture the effect
of wave breaking dissipation on the overall wave-field evolution using relatively simple
phenomenological models in HOS.

For different types of spilling or plunging breaking waves in the laboratory and field,
it is observed that the energy dissipation is generally confined in the high frequency
or wavenumber range of the wave spectrum (Rapp & Melville 1990; Gemmrich &
Farmer 1999). Based on this, we propose an energy dissipation model in HOS, where
a low-pass filter in the wavenumber space is applied at every time step on the free
surface elevation and velocity potential. An example of such a filter is

Λ(k | kp, β1, β2)= exp

(
−
∣∣∣∣ k

β1kp

∣∣∣∣β2
)
, (2.2)

where k = |k| with k= (kx, ky) and β1 and β2 are filter parameters.
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FIGURE 1. (Colour online) Loss of energy due to wave breaking as a function of steepness
of the dispersive wave packet akc. Experiments (Rapp & Melville 1990): fc = 0.88 ( ) and
1.08 (M). HOS: fc = 0.88 ( ) and 1.08 (N). Here fc and kc are the central frequency and
wavenumber of a dispersive wave packet. Results are obtained using HOS with (2.2) with
β1 = 8, β2 = 30.
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FIGURE 2. (Colour online) Spatial variation of significant wave height Hs scaled by its initial
value for wave fields initially given by the JONSWAP spectrum with ε = 0.16, γ = 6, with
a range of spreading angles. Experiment (Onorato et al. 2009): Θ = 12◦ ( ), 21◦ (O) and
62◦ (©). HOS: Θ = 12◦ ( ), 21◦ ( ) and 62◦ (•). Results are obtained using HOS with (2.2)
with β1 = 8, β2 = 30.

The model (2.2) is found to be robust for a variety of 2D and 3D wave fields in that
the estimate of energy dissipation is found to be somewhat insensitive to the choice
of parameter values β1 and β2 (or in some sense the specific form of (2.2)). This
is confirmed by repeated simulations varying (the parameters of) (2.2), for example,
varying β1 = 7–8 and β2 = 20–35, the total energy variation is within 2 % at evolution
time t = 150Tp.

The efficacy of this modelling has been confirmed by direct comparisons against
2D and 3D measurements – see Wu (2004) and Xiao (2013) for details. Based on
these validations, we typically use (2.2) with fixed values of β1 = 8 and β2 = 30 in
all large-scale HOS simulations. For an example of two-dimensional breaking waves,
figure 1 shows the energy loss measured from laboratory breaking dispersive wave
packets as a function of wave packet steepness (Rapp & Melville 1990) compared with
HOS predictions. An acceptable quantitative agreement is found over a broad range of
steepnesses (and corresponding breaking types). Figure 2 shows an example from 3D
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breaking waves where the spatial variation of significant wave height Hs (=4σ , where
σ is the standard deviation of the wave surface) due to breaking in a 3D random
wave field is measured (Onorato et al. 2009). The HOS simulations (using the same
dissipation model and parameters) again obtain satisfactory agreements over the range
of directional spreading reported.

2.2. Modified nonlinear Schrödinger equations
We implement the modified nonlinear Schrödinger equations, which allow slightly
broader bandwidth (BMNLS) (Dysthe 1979; Trulsen & Dysthe 1996) to assess the
range of validity in describing nonlinear wave statistics and rogue wave probability
over the present large-scale spatial and temporal domains L /λp,T /Tp ∼ O(ε−2). The
BMNLS model (to fourth order in wave steepness) describes the evolution of the
wave envelope B(x, t), which is slowly varying with space and time. Wave breaking
is generally not considered in NLS-type models (Dysthe et al. 2003; Socquet-Juglard
et al. 2005), although the effect of dissipation can be included (see e.g. Segur et al.
2005). After B(x, t) is solved, the surface elevation is reconstructed as

η(x, t)= η + 1
2(Beiθ + B2e2iθ + B3e3iθ + · · · + c.c.), (2.3)

where B2, B3 and η, obtained from B, represent corrections of second and third
harmonics and the mean surface elevation associated with the radiation stress, and
θ = kp · x− ωpt is the phase of the peak wave.

We solve the BMNLS model numerically using the split-step Fourier method
described in Lo & Mei (1985). The envelope function B(x, t) is solved in the
modulational wavenumber space K = (Kx,Ky)= (k− kp)/kp and only the modes within
|Kx| 6 1 and |Ky| 6 1 are used. This is slightly different from Socquet-Juglard et al.
(2005), in which the modes within |K | 6 1 are used. The computational domain is
128λp × 128λp, over which a uniform grid size Nx = Ny = 512 is applied. To resolve
the rapidly oscillating surface elevation, η(x, t), a uniform grid size of 4096 × 4096
is used. These computational parameter values result in identical spatial and spectral
discretization with the HOS simulations. For all the BMNLS simulations, the energy
is verified to be conserved to within ∼0.5 %. The present BMNLS solver has
been systematically validated through convergence tests (see figure 8) and direct
comparisons with various existing results in the literature (Lo & Mei 1985; Dysthe
et al. 2003; Socquet-Juglard et al. 2005; Toffoli et al. 2011) and the HOS simulations.

2.3. Specifying the initial random directional wave field
The initial wave field is specified by the JONSWAP spectrum with a directional
spreading function

S(ω, θ)= αpg2

ω5
exp

[
−5

4

(
ω

ωp

)−4
]
γ exp[− (ω−ωp)2 /(2σ2ω2

p)]D(θ), (2.4)

where ω is the wave frequency, ωp the peak wave frequency, αp the Phillips parameter,
γ the peak enhancement factor specifying the spectral bandwidth, and σ = 0.07 for
ω 6 ωp and σ = 0.09 for ω > ωp.

The directional spreading is given by a cosine-squared function:

D(θ)=


2
Θ

cos2

(
πθ

Θ

)
for |θ |6Θ/2,

0 for |θ |>Θ/2,
(2.5)
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where θ is the wave propagation direction and Θ is the directional spreading
width. The corresponding directional wavenumber spectrum is given by Ψ (k) =
g2/(2ω3)S(ω, θ), where k= (kx, ky) is the wavenumber vector.

To elucidate the case of a very narrow-band Gaussian spectrum considered by Alber
(1978) and Dysthe et al. (2003), we also perform HOS and BMNLS simulations for
wave fields specified by a Gaussian wavenumber spectrum:

Ψ (k)= σ 2

2πδ2
k

exp

[
− 1

2k2
p

(
(kx − kp)

2

δ2
k

+ k2
y

δ2
k

)]
, (2.6)

where σ = (∫ Ψ (k) dk
)1/2

is the standard deviation of the surface elevation, kp the
peak wavenumber, and δk the spectral bandwidth in the x and y directions.

For HOS realization, the initial wave field is constructed from linear superposition
of wave components with amplitude

a(k)= Re
{√

2Ψ (k)1kx1ky exp(iψ)
}
, (2.7)

where the phase ψ is a random variable uniformly distributed over [0, 2π]. To
minimize initial transients in the numerics, the nonlinear terms in (2.1) are ramped
up smoothly from zero over several (∼O(5)) Tp (Dommermuth 2000). Similarly,
BMNLS computations are initialized by specifying the complex amplitude of the
wave envelope:

B(K)=√2Ψ (K)1Kx1Ky exp(iψ). (2.8)

3. Spectral evolution and nonlinear wave statistics
3.1. Spectrum evolution: HOS versus BMNLS

We first consider the very narrow-band Gaussian spectrum (2.6), which is unstable
if δk < 2ε, where ε = √2σkp (Alber 1978). This is assessed in Dysthe et al.
(2003) using BMNLS simulations, where they report a spectral broadening during
wave-field evolution regardless of the initial spectral bandwidth for three-dimensional
wave fields. We investigate the evolution of the very narrow-band Gaussian spectrum
using HOS simulations, comparing it to BMNLS predictions. Figure 3 shows the
spectral evolution from BMNLS and HOS simulations for the very narrow-band
Gaussian spectrum with ε = 0.1 and δk = 0.1. The spectra presented, which are
obtained by ensemble averaging over five realizations, are smoothed by the use
of five-point smoothing in both the kx and ky directions. HOS and BMNLS give
similar predictions for the features of spectral change, including significant spectral
widening and spectral peak downshifting. At longer times t > 100Tp, and especially
for the short waves, however, BMNLS simulations obtain slightly broader directional
spreading. The spectral evolution for ε = 0.1 and δk = 0.2 is shown in figure 4. A
similar broadening of the spectrum is observed in both BMNLS and HOS simulations,
although the overall broadening process is slower and less significant in this case.
BMNLS simulations again predict a broader spectrum at large times in comparison
with HOS simulations. Based on both simulations, the Gaussian spectrum changes in
three-dimensional wave field and more significantly so when the instability condition
δk < 2ε is satisfied. These are reasonably well predicted by both HOS and BMNLS
simulations with minor quantitative differences.
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FIGURE 3. Evolution of the wavenumber spectrum Ψ (k) of initially very narrow-band
Gaussian spectrum (2.6) with ε = 0.1 and δk = 0.1: (a–c) BMNLS; (d–f ) HOS; (a,d) t =
50Tp; (b,e) t = 100Tp; (c,f ) t = 150Tp. The contour values are logarithmic, ranging from
1× 10−6 to 1× 10−4.
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FIGURE 4. Evolution of the wavenumber spectrum Ψ (k) of initially very narrow-band
Gaussian spectrum (2.6) with ε = 0.1 and δk = 0.2: (a–c) BMNLS; (d–f ) HOS; (a,d) t =
50Tp; (b,e) t = 100Tp; (c,f ) t = 150Tp. The contour values are logarithmic, ranging from
1× 10−6 to 1× 10−4.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

37
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.37


Rogue wave occurrence and dynamics 367

–0.5

0

0.5

(a)

–0.5

0

0.5

(d)

–0.5

0

0.5

–1.0

1.0(b)

–0.5

0

0.5

–1.0

1.0(e)

–0.5

0

0.5

–1.0

1.0(c)

–0.5

0

0.5

–1.0

1.0( f )

–1.0

1.0

–1.0

1.0

10 3210 3210 32

10 3210 3210 32

FIGURE 5. Evolution of the wavenumber spectrum Ψ (k) of an initial JONSWAP spectrum
with Hs = 0.08 m, Tp = 1 s, γ = 6 and Θ = 12◦: (a–c) BMNLS; (d–f ) HOS; (a,d) t = 50Tp,
(b,e) t = 100Tp, (c,f ) t = 150Tp. The contour values are logarithmic, ranging from 1× 10−6 to
1× 10−4.

Turning to the evolution of the (more realistic) JONSWAP spectrum, we are
particularly interested in the effect of directional spreading on the spectral change.
We consider initial spectra with the same steepness ε but different spreading angles Θ .
These spectra have been used to generate random directional wave fields in the wave
basin (Onorato et al. 2009). The spectral evolution of the wave field with small initial
Θ is shown in figure 5. Again, the features of the spectral change are captured by both
HOS and BMNLS, showing the significant directional broadening and spectral peak
downshift. At large times t > 100Tp, and especially for shorter waves, BMNLS appears
to overpredict the directional spreading. Similar results are observed in the case with
large Θ (figure 6), although the spectral change is slower and less significant.

The spectral change is described more quantitatively through the omnidirectional
spectrum and mean directional spread. The omnidirectional spectrum is defined as

S(k)=
∫
θ

kΨ (k, θ) dθ, (3.1)

where k = |k|. The mean directional spread θm = θ2(k) is defined as the average of
the second-order moment of the directional distribution function D(k, θ) (Hwang et al.
2000; Toffoli et al. 2010):

θ2(k)=
(∫ π/2

0
θ 2D(k, θ) dθ

)1/2(∫ π/2
0

D(k, θ) dθ
)−1/2

. (3.2)

Evolution of the omnidirectional spectra for the directional JONSWAP spectra is
shown in figure 7. Both BMNLS and HOS predict the spectral peak downshift. The
two models, however, differ qualitatively in the spectral tail. In the HOS predictions,
the tail of S(k) is nearly time-invariant and remains very close to the k−2.5 power law
for large k, for both narrow and broad spreading (figure 7a,b). This is not predicted by
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FIGURE 6. Evolution of the wavenumber spectrum Ψ (k) of an initial JONSWAP spectrum
with Hs = 0.08 m, Tp = 1 s, γ = 6 and Θ = 62◦: (a–c) BMNLS; (d–f ) HOS; (a,d) t = 50Tp,
(b,e) t = 100Tp, (c,f ) t = 150Tp. The contour values are logarithmic, ranging from 1× 10−6 to
1× 10−4.
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FIGURE 7. (a,b) Evolution of the omnidirectional spectrum of the wave fields with
Hs = 0.08 m, Tp = 1 s and γ = 6 for (a) Θ = 12◦ and (b) Θ = 62◦. HOS: t/Tp = 50 ( ),
100 ( ), 150 ( ). BMNLS: t/Tp = 50 ( ), 100 ( ), 150 ( ); initial spectrum ( ); k−2.5

power law of spectral tail ( ). (c) Temporal variation of mean directional spread θm. HOS:
Θ = 12◦ (—), 62◦ (- · -). BMNLS: Θ = 12◦ (– – –), 62◦ ( ).

BMNLS, which shows continuous energy accumulation in time for short waves (owing
to the absence of short-wave dissipation). Another measure of the spectral change is
the evolution of the mean directional spread θm (figure 7c). For the initially narrow
spread case, Θ = 12◦, HOS and BMNLS predict a similar increasing θm with evolution
time up to t/Tp ≈ 50. For large times, BMNLS overpredicts θm in comparison with
HOS. For the initially broader spreading case, BMNLS overpredicts θm relative to
HOS over the entire evolution. Comparing the two spreading cases, we see that the
rate of change in θm is greater for smaller Θ as observed in figure 5. Note that
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FIGURE 8. (Colour online) Convergence tests of maximum kurtosis by BMNLS ( ) and HOS
( ) as a function of (a) grid size and (b) number of realizations. The initial wave field is
specified by a JONSWAP wave spectrum with Hs = 0.08 m, Tp = 1 s, γ = 6 and Θ = 12◦.
For the results in panel (b), Nx = Ny = 512 and 4096 in BMNLS and HOS, respectively.

the difference between HOS and BMNLS predictions shown in these cases is related
to directional spreading of the waves. For unidirectional waves, the difference in
the predictions by the two models is generally smaller (Lo & Mei 1985; Stocker
& Peregrine 1999; Shemer et al. 2002; Clamond et al. 2006; Shemer, Sergeeva &
Slunyaev 2010b; Slunyaev & Sergeeva 2011).

3.2. Statistics of nonlinear waves: direct comparisons to experiments
We directly compare nonlinear statistics of directional random wave fields from HOS
and BMNLS simulations with wave basin experiments (Onorato et al. 2009). The
initial wave fields have identical steepness (ε) but a range of spectral bandwidths
(γ ) and spreading angles (Θ). To compare temporal BMNLS and HOS results with
spatial records from experiments, a relation x = cgt, where cg is the group velocity
of the peak wave, is used to convert from temporal variation to spatial variation. A
discussion on the validity of this transformation can be found in Toffoli et al. (2010).
In the computations, we use 4096 × 4096 grid points for the free surface in HOS
and 512 × 512 grid points for the wave envelope in BMNLS. The wave statistics are
obtained by ensemble averaging over five realizations. The values of these numerical
parameters are chosen based on the convergence tests of the maximum kurtosis in the
nonlinear evolution of a directional wave field, which are shown in figure 8.

3.2.1. Exceedance probability of wave crests
In HOS simulations the wave crests are defined as the local maxima of the wave

surface, and in BMNLS simulations the wave crests are estimated as the third-order
upper surface envelope ηc = η + |B1| + |B2| + |B3|. Figure 9 shows the exceedance
probability of crests from experiments (Onorato et al. 2009) compared with BMNLS
and HOS simulations, for wave fields with a range of spreading angles. Predictions
from the Rayleigh distribution and second-order theory (Tayfun 1980) are also shown
for reference. At location x/λp (= t/2Tp) = 15.9, where kurtosis reaches its maximum
in the experiment, significant deviations of probability of large crests from both
linear (Rayleigh) and second-order predictions are observed in both BMNLS and
HOS, especially for small Θ . For initially broadly spreading seas, e.g. the Θ = 62◦

case, second-order theory provides a good prediction. In all cases, HOS appears to
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FIGURE 9. (Colour online) Exceedance probability of wave crests for JONSWAP wave fields
with Hs = 0.08 m, Tp = 1 s, γ = 6 and three spreading angles: (a,d,g) Θ = 12◦, (b,e,h) 21◦
and (c,f,i) 62◦, corresponding to exponents s = 840, 200 and 24 in the Mitsuyasu spreading
function cossθ : (a–c) x/λp = 15.9, (d–f ) x/λp = 28.7 and (g–i) x/λp = 50. Theory: HOS
( ); BMNLS ( ); Rayleigh distribution (—–); second-order theory of Tayfun (1980) (– – –).
Compared to experiment (Onorato et al. 2008, 2009) for: unidirectional (M) and s = 840,
200, 24 (N). (Experimental values for Θ = 12◦ at x/λp = 28.7 are not published.) HOS and
BMNLS results are averaged over five realizations.

achieve a better overall comparison to measured values. At x/λp (= t/2Tp) = 28.7, the
farthest location from the wavemaker in the experiment, the exceedance probability
(somewhat reduced now relative to x/λp = 15.9) remains significantly different from
linear and second-order theory, especially for Θ = 12 and 62◦. HOS agrees very
well with measurements, while BMNLS predictions tend towards those from second-
order theory. For useful rogue wave predictions, our interest is in even longer
evolution times, in particular after wave-field statistics have reached quasi-steady
state (t/Tp = 2x/λp & O(100)) predicted by HOS (see § 3.2.2). Figure 9(g–i) shows
the results for t/2Tp = x/λp = 50. In this case, BMNLS predictions remain close to
second-order theory, while HOS predicts considerably higher probability of large crests
for all Θ and especially for small initial spreading angles.
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FIGURE 10. (Colour online) Spatial variation of kurtosis for JONSWAP directional wave
fields with Hs = 0.08 m, Tp = 1 s (ε = 0.16), γ = 6 (a–c) and 3 (d–f ), and spreading angles
Θ = 12◦ (a,d), 21◦ (b,e) and 62◦ (c,f ). Experiment (Onorato et al. 2009): (experimental
results for ε = 0.16, γ = 3 are not available). Theory: HOS (——), BMNLS (– – –). HOS and
BMNLS results are averaged over five realizations. The results from Toffoli et al. (2010) are
also shown: BMNLS (©) and HOS (+).

3.2.2. Kurtosis of surface elevation
Kurtosis of the wave elevation, defined as Kur ≡ 〈η4〉/〈η2〉2, is found to be an

important indicator for rogue wave occurrence (Mori & Janssen 2006). Figure 10
shows comparisons of the evolution of kurtosis for wave fields with a range of
γ and Θ , obtained from experiments (Onorato et al. 2009), HOS and BMNLS
simulations. In BMNLS simulations, kurtosis is calculated based on the third-order
reconstruction of surface elevation (2.3). Similar results have been obtained in Toffoli
et al. (2010), and their results are included in figure 10 for comparison. Our BMNLS
results agree completely with those of Toffoli et al. (2010). For the HOS results,
there is a noticeable difference between the present prediction and that of Toffoli
et al. (2010). This is due to the lower HOS resolutions used in Toffoli et al. (2010)
(corresponding to Nx,Ny = 256 in figure 8a). For both BMNLS and HOS, for wave
fields with small spreading angles, we find that kurtosis increases from initial value
of Kur ≈ 3, coinciding with the initial rapid spectral broadening observed in figure 5
due to MI. BMNLS overestimates kurtosis during this time. At large times, in BMNLS
simulations, kurtosis reduces to the Gaussian value or below. This continuous decrease
of kurtosis in BMNLS at long times is also observed in the model simulations
of Socquet-Juglard et al. (2005). From our BMNLS simulations, we find that the
continuous decrease of kurtosis results from the fact that, in the large-time evolution,
the contribution to kurtosis from free waves continues to decrease while that from
bound waves remains almost unchanged. This is probably due to the incomplete
accounting for quartet wave interactions in BMNLS (see e.g. Janssen 2003).
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FIGURE 11. Kurmax versus Kur+ for ∼200 wave fields with a range of spectral parameters ε,
γ and Θ from MIT-Wave: ε = 0.06 (×); 0.08 (4); 0.1 (O); 0.12 (�); 0.14 (©).

In HOS simulations, kurtosis decreases slowly to a quasi-stationary value, which
is nearly invariant over time 100 6 t/Tp (= 2x/λp) 6 150 (and beyond). The quasi-
stationary kurtosis obtained from HOS is considerably non-Gaussian. There is some
evidence to suggest that the value of kurtosis may eventually become Gaussian at
long time evolution (see Annenkov & Shrira 2009a). For wave fields with large
spreading angles (e.g. Θ = 62◦), both BMNLS and HOS predict slower variations of
kurtosis over time, consistent with the slower spectral change observed in figure 6.
Overall, HOS consistently obtains greater values of kurtosis for longer times. HOS
also appears to achieve better comparisons to measurements over the different wave
fields considered.

For later reference, we define the maximum value, ( )max , say, of kurtosis, attained
during the entire HOS simulation (up to t/Tp = 150), as well as the average value,
( )+, obtained over the quasi-steady phase of the HOS evolution (100 6 t/Tp 6 150).
The values of Kurmax and Kur+ can be readily observed graphically from figure 10.
The deviation of Kurmax from the Gaussian statistics (Kur = 3) becomes more
significant as the initial Θ decreases. For given Θ , Kurmax is greater in wave
fields with narrower spectral bandwidth (larger γ ). In BMNLS simulations, Kurmax

is significantly overpredicted for small Θ , and generally obtained at an earlier
time relative to experiments and HOS predictions. This is also observed in Toffoli
et al. (2010). Note that the evolution of kurtosis in HOS simulations is found to
be insensitive to the initial period of ∼5Tp over which the nonlinear terms in the
free-surface boundary conditions are smoothly ramped up.

Aggregating O(200) HOS simulations in the MIT-Wave database for a broad range
of initial spectral parameters, figure 11 plots the predicted values of (Kurmax,Kur+)
for these cases. We see a clear relationship between Kur+ and Kurmax . For smaller
Kurmax (6 Kura ≈ 3.2), Kur+ ≈ Kurmax ; while for greater Kurmax , Kur+ remains almost
constant (≈3.2) with increasing values of Kurmax . These suggest that, for evolutions
with Kurmax . Kura, Kurmax is reached in the asymptotic quasi-steady state; while for
evolutions with Kurmax & Kura, Kurmax is reached at an early phase of the evolution,
which then decreases towards the longer-time average value Kur+. The latter case
is indicative of significant MI resulting in rapid change of the (initial) spectra and
strongly nonlinear/non-Gaussian wave statistics, while the former case corresponds
to the absence of significant MI, resulting in a slowly varying wave field and
slowly developing non-Gaussian statistics. An estimation of kurtosis using second-
order theory gives Kur2 = 3 + 24 (kpσ)

2 (Longuet-Higgins 1963; Onorato et al. 2009).
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For the wave fields in figure 11, the largest (initial) steepness is ε = 0.14, which gives
Kur2 = 3.12. This value is considerably smaller than Kura. This underestimation of
kurtosis by Kur2 is related to the narrow-band assumption in the derivation of Kur2, as
discussed in Janssen (2009).

4. Probability of rogue wave occurrence
We investigate the occurrence probability of rogue waves and its dependence

on (initial) wave spectral parameters. To do this, we use the HOS model to
simulate a large number (O(200)) of nonlinear three-dimensional ocean wave fields
(the MIT-Wave dataset) with initial JONSWAP spectra covering a broad range of
spectral steepness ε = Hskp/2, frequency bandwidths (controlled by the peakedness
enhancement factor γ ), and spreading angles Θ . In the MIT-Wave dataset, ε ranges
from 0.06 to 0.14 with increment 0.2, γ varies over 1, 3.3, 5, 6 and 10, and
Θ = 20, 30, 40, 60, 80, 100 and 120◦. For unidirectional wave fields, a measure of
the importance of MI is BFI ≡ ε/(1k/kp) > 1/

√
2 (Janssen 2003). The corresponding

value of BFI for the MIT-Wave dataset ranges from 0.1 to 1.1 (the spectral bandwidth
1k is calculated as the half-width at half-maximum of the wavenumber spectrum).

4.1. Identification of rogue waves
For the purpose of identifying a large rogue wave (group), we use the criterion that
the crest-to-trough wave height H exceeds H/Hs > α. In this study, we use α = 2.0. In
the context of long-crested waves, the identification of a wave (or wave group), and
hence its crest-to-trough height, is obtained readily in terms of, say, zero crossings.
For short-crested seas, this is problematic. Nevertheless, for the identification of rogue
waves, large wave events are generally isolated from the ambient small waves, which
allows us to obtain a meaningful identification and definition.

The precise definition of the extent of the rogue wave event (within which H > αHs

holds) is not unique, however, the final results and conclusions are not very sensitive
to the specific procedure used (Xiao 2013). For the present study, we use the following
procedure (the results below are unaffected if ‘crest’ and ‘trough’ are interchanged). At
any given time, for every local maxima (‘crest’) located at, say, xc = (xc, yc), in the
wave field, we define a rectangular region R centred on xc, given by |x − xc| 6 λp

and |y − yc| 6 Cy, where Cy = λy/2 is the average crest length and λy is the average
wavelength in the y direction (defined in (4.2)). Within each R we search for all
the minima (‘trough’) points to evaluate the corresponding H. If the maximum H
thus obtained satisfies H/Hs > α, a rogue wave is identified associated with the
corresponding crest–trough pair xc and xt. In the case where an xt is shared by two
or more xc (centred on different R), only the xc, xt pair that obtains the maximum H
among these (and the corresponding R) is counted. Note that, in the above procedure,
the result is invariant if crest and trough are interchanged. This is in contrast to
identification of rogue waves based on one-dimensional time series of wave elevation,
where the number of rogue waves is different depending on the use of zero up- or
down-crossing (Guedes Soares, Cherneva & Antão 2003; Pinho, Liu & Ribeira 2004).

4.2. Number probability of rogue waves
The number probability of rogue waves at a given time, denoted as PN , can be
defined as

PN = Nrogue/Nw, (4.1)
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FIGURE 12. (Colour online) Evolution of the number probability of rogue waves PN for
JONSWAP wave fields Hs = 0.08 m, Tp = 1 s, γ = 6 (a–c) and 3 (d–f ), and spreading angles
Θ = 12◦ (a,d), 21◦ (b,e) and 62◦ (c,f ). HOS ( ); BMNLS (×). The standard deviations of
the statistic, ±PN/

√
Nrogue, are indicated as error bars. Results are scaled by the Rayleigh

distribution PR = 3.35 × 10−4 for H/Hs > α, α = 2. HOS and BMNLS results are averaged
over five realizations.

where Nrogue is the number of rogue waves identified, and Nw the total number of
waves in the wave field. For a general short-crested wave field, the precise value of Nw

can be difficult to obtain (or define). For specificity, we set Nw = LxLy/ā, where ā is
the average area of a wave, estimated by Piterbarg (1996) and Socquet-Juglard et al.
(2005) as

ā= λxλy/
√

2π and λx,y = 2π/〈k2
x,y〉1/2, 〈k2

x,y〉 =
∫

k2
x,yΨ (k) dk

/∫
Ψ (k) dk. (4.2)

Note that, with this definition, Nw varies in time as the spectrum changes, and
generally increases with directional spreading.

Figure 12 shows the evolution of PN from HOS and BMNLS simulations. The
convergence of the PN statistic, estimated by the standard deviation PN/

√
Nrogue, is

indicated as error bars. For small (initial) spreading angles (figure 12a,d), from both
BMNLS and HOS simulations, PN increases initially over a time scale corresponding
to the rapid spectral change (see figure 5), reaching values of Pmax

N that are an order of
magnitude greater than the linear prediction. During this time, BMNLS overestimates
PN . At larger times, PN decreases, with BMNLS predictions approaching the Rayleigh
prediction PR, where, for HOS, PN approaches a quasi-stationary non-Gaussian value,
which is many times greater than PR and the BMNLS predictions. Contrasting figures
12(a) and 12(d), it is clear that the magnitude of PN is greater for narrower (initial)
frequency bandwidth (larger γ ) corresponding to stronger MI.
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For greater spreading angles, the qualitative trends remain, although the
amplification of PN relative to PR is progressively less significant. For the very broadly
spreading case Θ = 62◦, PN in HOS generally increases slowly with time (towards
the quasi-stationary value); while in BMNLS, PN monotonically decreases with time,
eventually becomes smaller than PR.

In summary, we see that PN generally increases with decreasing Θ and increasing γ ,
with Pmax

N many times greater than PR for narrow spreading wave fields, and generally
reached over a relatively small time scale corresponding to the initial strong MI of the
wave field. In all cases, HOS obtains a nonlinear quasi-static state after a long time,
with P+N still many times greater than PR (and BMNLS predictions).

Comparing figures 12 and 10 corresponding to the same (initial) spectral parameters,
the qualitative resemblance between PN and kurtosis is quite apparent, suggesting that
the latter is a good indicator/predictor of the likelihood of rogue waves. To better
understand the quasi-stationary probability of rogue waves at large time predicted
by HOS, we plot P+N versus Pmax

N for ∼200 wave fields in the MIT-Wave dataset
(figure 13). Similar to figure 11, the ensemble of wave cases fall into two relatively
distinct categories. For cases with relatively small Pmax

N (.4PR), P+N ≈ Pmax
N , indicating

that Pmax
N is obtained in the quasi-stationary state. For greater Pmax

N , P+N shows some
scatter but is aggregated around P+N/PR ∼ 4. These latter cases correspond to situations
where Pmax

N is achieved due to strong initial MI before the quasi-stationary state.

4.3. Area probability of rogue waves
As we pointed out earlier, the number probability of rogue waves in terms of relative
frequency of number of (rogue) waves is problematic for (very) broad directional
spreading waves. For short-crested seas, Nrogue does not distinguish between events of
different sizes, while the validity of (4.2) for estimating the total number of waves Nw

may be questioned. The problem is exacerbated by the fact that even initially narrow
spreading spectra tend to evolve towards broader spreading (see e.g. figure 7c); and
furthermore, as the spectrum evolves, Nw is a time-varying (but a priori unknown)
function (for instance, for the case of figure 12a, Nw at t = 150Tp is over four times its
initial value).

To overcome these problems, we introduce a general and robust area probability of
rogue waves, denoted by PA, as a useful measure of the likelihood of rogue waves for
general directional spread wave fields. This probability PA is defined as

PA = Arogue/Aw, (4.3)

where Arogue is the total area of rogue waves, and Aw = LxLy is the total area of the
wave field under consideration (which, unlike Nw, is invariant). After a rogue wave
event is identified (see § 4.1), its area arogue is defined as the sum of the zero elevation
contours enclosing the crest point xc and trough point xt associated with the rogue
wave. Clearly PA is applicable for any general directional spread sea.

Note that, while both PN,PA ∈ [0, 1] are well defined as probabilities, their
quantitative values can differ substantially for short-crested wave fields. In general,
PA and PN are related by

PA/PN = ārogue/ā, (4.4)

where ārogue = Arogue/Nrogue is the average area of a rogue wave. For unidirectional seas,
PA ≈ PN for very narrow-band wave fields; while for broad(er) band waves, PA and PN

are expected to be of comparable magnitudes. In § 5.1.1, we find λrogue ≈ λp, so that
PA/PN = λ̄rogue/λx & 1 (since λp > λx for the JONSWAP spectrum). For short-crested
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FIGURE 13. Plot of Pmax
N versus P+N for ∼200 wave fields with a range of ε, γ and Θ from

MIT-Wave: ε = 0.06 (×); 0.08 (4); 0.1 (O); 0.12 (�); 0.14 (©).

wave fields, the value of ārogue/ā is not generally known. In § 5.1.2, we find that
ārogue/ā≈ O(5) (depending on wave-field parameters, see figure 22).

Figure 14 shows the evolution of PA for the same cases considered in § 4.2.
Comparing figures 14 and 12, we observe that the qualitative trends of PN and PA

are somewhat similar, except that the magnitude of PA is several times (∼5) greater
than PN , indicative of ārogue much greater than ā, characteristic of short-crested seas.
The notable difference between PA and PN is seen in the initially narrow spread cases
(Θ = 12 and 21◦), where BMNLS now consistently underestimates PA throughout
the evolutions. As observed earlier, PA predicted by HOS again displays the quasi-
stationary state after t/TP & O(100); while the BMNLS-predicted PA diminishes
monotonically with increasing time.

Figure 15 shows the relation between P+A and Pmax
A for the ∼200 wave fields that we

used in the MIT-Wave dataset. We observe a very similar pattern relative to those for
kurtosis and PN (figures 11 and 13). In this case, the threshold value beyond which P+A
departs from Pmax

A , and MI is significant in the (initial) evolution, is P+A /PR ≈ 20. With
the more valid definition of rogue wave occurrence in terms of area, the scatter in
P+A /PR ≈ 20 obtained in the quasi-stationary state is substantially reduced. Despite the
range of Pmax

N /PR spanning over an order of magnitude, the quasi-stationary value of
P+A /PR ≈ 20 has a remarkably narrow range, suggesting that this might be a somewhat
(more) common value of probability of occurrence of rogue waves (H/Hs > α = 2)
under a broad range of ocean wave-field conditions for which MI is relevant. For
greater (smaller) values α, this threshold (quasi-stationary) value of P+A /PR is expected
to increase (decrease), which we verify (details are not presented; see Xiao (2013)).

4.4. Dependence of rogue wave probability on kurtosis, and on BFI
The probability of rogue wave occurrence has been found to be closely related to the
kurtosis of the wave field at a given time. Figure 16 plots Pmax

N and Pmax
A as functions

of Kurmax for the ∼200 wave fields from the MIT-Wave dataset. For comparison, we
also include the MER distribution for the ‘number’ exceedance probability of wave
heights, wherein the third-order wave nonlinearity effects related to MI are included
(Mori & Yasuda 2002; Mori & Janssen 2006).

We see that both Pmax
N and Pmax

A have almost linear correlations with Kurmax for the
full range of Kurmax that we obtained from broad ranges of (initial) spectral parameters
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FIGURE 14. (Colour online) Evolution of the area probability of rogue waves PA for
JONSWAP wave fields Hs = 0.08 m, Tp = 1 s, γ = 6 (a–c) and 3 (d–f ), and spreading
angles Θ = 12◦ (a,d), 21◦ (b,e) and 62◦ (c,f ). HOS ( ); BMNLS (×). The standard deviations
of the statistic, ±PA/

√
Nrogue, are indicated as error bars. Results are scaled by the Rayleigh

distribution PR = 3.35 × 10−4 for H/Hs > α, α = 2. HOS and BMNLS results are averaged
over five realizations.
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FIGURE 15. Plot of Pmax
A versus P+A for ∼200 wave fields with a range of ε, γ and Θ from

MIT-Wave: ε = 0.06 (×); 0.08 (4); 0.1 (O); 0.12 (�); 0.14 (©).

in the MIT-Wave cases considered. For Pmax
N , MER substantially underestimates the

occurrence probability and appears to be relevant only for small Kur values (above
Kur= 3). Comparing figures 16(a) and 16(b), it is evident that Pmax

A has a better linear
correlation (with higher R2 value) relative to Pmax

N (especially for greater Kurmax). This
is not surprising, since many of the MIT-Wave wave fields are (eventually) broadly
spread. Clearly, PA is a preferred measure of rogue wave probability for general
wave-field conditions.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

37
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.37


378 W. Xiao, Y. Liu, G. Wu and D. K. P. Yue

10

20

30

40

50

2

4

6

8

10

3.53.43.33.23.13.0 3.6

3.53.43.33.23.13.0 3.6

0

12

0

60

(a)

(b)

FIGURE 16. Plots of (a) Pmax
N versus Kurmax and (b) Pmax

A versus Kurmax for ∼200
directional wave fields from MIT-Wave. HOS (©); MER (Mori & Janssen 2006) (——).
Linear regression lines ( ): Pmax

N /PR = 1 + 18.64(Kurmax − 3) (coefficient of determination
R2 = 0.82); Pmax

A /PR = 5.06+ 90.30(Kurmax − 3) (R2 = 0.89).

The dependence of kurtosis on BFI has been investigated theoretically, numerically
and experimentally. For unidirectional wave fields with very narrow-band Gaussian
spectra, Mori & Janssen (2006) show that Kur = 3 + 2πBFI2/

√
3, where BFI =

ε/(1k/kp) (ε = kpHs/2). The direct dependence of Kur on BFI for unidirectional seas
with more general spectra has also been observed in wave flume experiments (Onorato
et al. 2004). For short-crested wave fields, however, it is found from experiments
and NLS-type simulations that the dependence of kurtosis on BFI is greatly reduced
(Gramstad & Trulsen 2007; Onorato et al. 2009; Waseda et al. 2009).

Figure 17 plots Kurmax versus (initial) BFI-squared for MIT-Wave wave fields
varying over a range of Θ (and ε and γ ). The effect of direction spreading on
the correlation between Kur and BFI-squared is clearly seen, especially for large
BFI. For the very narrow spreading cases, Kurmax has a clear linear correlation with
BFI2, especially for Kurmax > 3.2. For large Θ , a linear (trend) correlation between
Kurmax and BFI2 is still seen; however, the slope with which Kurmax depends on
BFI2 decreases with increasing Θ , so that, for very broad spread cases, Kurmax is
almost independent of BFI, although, for a given Θ , we observe linear-like correlation
between kurtosis and BFI2. For given BFI, the value of kurtosis is still unknown if the
influence of spreading angle is not considered. Using just BFI without Θ information
creates huge scatter because of different rate of dependences on BFI.
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FIGURE 17. (Colour online) Dependence of Kurmax on the initial BFI2 for wave fields with a
range of ε, γ and Θ in MIT-Wave: Θ = 20◦ ( ); 30◦ ( ); 40◦ (+); 80◦ ( ); 120◦ ( ).

4.5. MBFI for predicting rogue wave occurrence
The above findings suggest the need for a more general MI spectral parameter,
applicable to wave fields with arbitrary directional spreading, that measures the
probability of extreme waves. Different forms of modified BFI have been proposed
by Waseda et al. (2009) and Mori et al. (2011). The parametrization in Waseda et al.
(2009), which is obtained based on a limited number of wave basin experiments,
does not reflect the general feature of monotonic reduction of kurtosis with increasing
spreading angle. The modified BFI in Mori et al. (2011) is obtained by numerical
fitting to the results from NLS simulations.

We introduce a modified Benjamin–Feir index (MBFI) defined as

MBFI=
[

1+ tan2(Θ/2)
1+ 4 tan2(Θ/2)

]
ε

1k/kp
, (4.5)

i.e. MBFI = F(Θ)BFI, where F(Θ) is the quantity in the square brackets in (4.5).
For unidirectional wave fields F(0) = 1 and MBFI = BFI; while for very broadly
directional spread seas, MBFI/BFI= F(180◦)= 0.25.

This definition of MBFI (4.5) is derived based on a generalization of the result
of Alber (1978), who considered the effect of three-dimensional disturbance on the
stability of the very narrow-band Gaussian spectrum (2.6). In this case, the wave field
is unstable for

2
√

2kpσ

1k/kp
G(Kx,Ky) > 1, G(Kx,Ky)=

[
1− 2 (Ky/Kx)

2

1+ (2Ky/Kx)
2

]1/2

, (4.6)

where Kx and Ky are the modulation wavenumbers in the x and y directions, and 1k
is the spectral bandwidth in the x direction. The effect of the presence of transverse
disturbance G(Kx,Ky) can be related to the directional spreading Θ by taking, say,
Θ = 2 tan−1(Ky/Kx) and writing

G(Kx,Ky)=
[

1− 2 (Ky/Kx)
2

1+ (2Ky/Kx)
2

]1/2

'
[

1− 2 tan2(Θ/2)
1+ 4 tan2(Θ/2)

]1/2

≈ 1+ tan2(Θ/2)
1+ 4 tan2(Θ/2)

≡ F(Θ), (4.7)
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FIGURE 18. (Colour online) Dependence of Kurmax on BFI2 and MBFI2 for ∼200
wave fields from MIT-Wave: BFI (+); MBFI ( ). Linear regression line ( ): Kurmax =
0.48MBFI2 + 3.04 (R2 = 0.82).

where the last approximation, valid for small Θ , is used to make F(Θ) defined for
general values of Θ ∈ [0, 180◦].

Figure 18 shows the dependence of Kurmax on MBFI and BFI for the MIT-
Wave data. With MBFI, the scatter in the data is greatly reduced, resulting in a
clear and almost linear parametrization of Kurmax and MBFI2 over the broad range
of initial spectral parameters that we considered, especially in the range Kurmax & 3.2.
This indicates that F(Θ) (4.7) is a reasonable description of the influence of the
spreading angle on the maximum value of kurtosis.

Given the known dependence of rogue wave occurrence on kurtosis, it is expected
that MBFI would also be the (single) metric for the occurrence probability. This
is shown in figure 19, where we see a remarkable correlation between occurrence
probability and MBFI especially for PA. Indeed, a linear fit holds:

PA/PR ≈ b1 ×MBFI2 + b0, (4.8)

where, over a broad range of spectral parameters, b0 and b1 are functions of the
rogue wave criterion H/Hs > α only. For figure 19, α = 2, and we obtain b0 = 8.60
and b1 = 43.88 with R2 = 0.76. A similar fit obtains for PN/PR with a somewhat
smaller R2 = 0.67. Considering the broad range of wave-field conditions represented in
figure 19, the surprisingly simple result (4.8) is noteworthy.

Figure 20 shows the (colour) contours of the number and area probabilities of rogue
wave occurrence, as functions of F2(Θ) and BFI2, compiled from the O(200) large-
scale simulations in MIT-Wave. Also included in the figure are the hyperbolic contour
lines corresponding to MBFI2 = BFI2 F2(Θ) = constant. We see a strong dependence
on Θ , suggesting that prediction of the occurrence using BFI alone is inadequate
(except for the special case of very small Θ , i.e. large F(Θ)). The general dependence
on both BFI and Θ is generally captured by MBFI, with the suggested fit (4.8) clearly
shown in the comparison between the computed probabilities and the MBFI2 contours.
Comparing PN/PR and PA/PR, it appears that PA/PR is better parametrized by MBFI,
especially for greater values of directional spreading Θ (smaller values of F(Θ) and
MBFI), as expected.
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FIGURE 19. (Colour online) Dependence of (a) Pmax
N /PR and (b) Pmax

A /PR on BFI2 and
MBFI2 for ∼200 wave fields from MIT-Wave for α = 2: BFI (+); MBFI ( ). Linear
regression line ( ), equation (4.8) with b0 = 8.60, b1 = 43.88 (R2 = 0.76) for PA/PR; and
b0 = 1.51, b1 = 9.80 (R2 = 0.67) for PN/PR.
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FIGURE 20. (Colour online) Contour plots (greyscale/colours) of (a) Pmax
N /PR and (b)

Pmax
A /PR as a function of BFI2 and F2(Θ). The dashed lines are the contours of MBFI2.
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FIGURE 21. (Colour online) (a) Average rogue wavelength λrogue as a function of spectral
bandwidth for wave fields ε = 0.14, and Θ = 20◦ (©), 40◦ ( ) and 80◦ ( ). (b) Average rogue
wave crest length Crogue relative to the average crest length Cy of the initial wave field as a
function of spreading angle Θ for wave fields ε = 0.14, and γ = 1 (B), 5 ( ) and 10 ( ).
Average crest length Cy = λy/2= π/〈k2

y〉1/2. The error bars indicate one standard deviation.

5. Geometric characteristics of rogue waves
Not only does the identification of rogue waves from MIT-Wave give their

occurrence probability, but also the HOS direct simulations provide detailed
information on the geometry and kinematics (surface elevation, velocity and pressure
fields) of such events. As a preliminary investigation, we consider the geometric
features of rogue waves and wave groups in terms of their wavelength, crest length,
area size and group structure, and dependence of these on the (initial) spectral
parameters.

5.1. Geometric features of rogue waves
Once a rogue wave, in particular the crest and trough pair associated with H (> αHs)

(hereafter referred to as the ‘main’ wave), is identified in a general directional wave
field (§ 4.1), we define the wavelength of the rogue wave λrogue as the distance between
the two adjacent zero up-crossing points along a line parallel to the dominant direction
containing the crest point xc. Similarly, a crest length Crogue is defined as the distance
between two adjacent zero crossing points along a line perpendicular to the dominant
direction containing the crest point xc. Rogue waves are reported to appear as an
isolated large wave or as a dominant wave within a large wave group (Kharif &
Pelinovsky 2003). To characterize this, we repeat § 4.1 but now use a new ‘group’
threshold H/Hs = αG (<α, typically), identifying all the R = RG for this threshold
value. For given α and αG, a rogue wave group is identified if any of the RG

overlaps and the union of the RG contains a main wave satisfying H/Hs > α. In
this case, we say that this is a rogue wave group of ‘n’ waves (hereafter Gn) if
n overlapping RG are involved. Note that this definition/procedure is general for
arbitrary directionally spread wave fields, and the number n does not distinguish
among the different configurations (or positions) of RG in such groups.

5.1.1. Wave length and crest length of rogue waves
For the rogue waves identified in MIT-Wave (with α = 2), figure 21(a) shows

the average wavelength of rogue waves over the evolution time 0 6 t/Tp 6 150 as
a function of spectral bandwidth (γ ) for wave fields with a range of spreading
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FIGURE 22. (Colour online) The average rogue wave area arogue, (a) scaled by the average
area of initial wave fields ā0, and (b) relative to the average wave area ā = λxλy/

√
2π of

the wave fields, as a function of spreading angles, for directional wave fields with ε = 0.14,
and γ = 1 ( ), 5 ( ) and 10 ( ). The error bars indicate one standard deviation during the
evolution time considered.

angles. We observe that, for the broad range of spreading angles considered, λrogue
is comparable to the peak wavelength λp. This gives further support to the suggestion
that the dominant mechanism is MI around the peak wavenumber over slowly varying
space/time. For wave fields with broad-band frequency spectrum (small γ ), the average
rogue wavelength λ̄rogue is slightly longer than λp, especially for small spreading angle,
where λ̄rogue ≈ 1.1λp. With increasing spectral bandwidth, the standard deviation of
λrogue increases. The dependence of λrogue on the spreading angle is rather subtle.
There is a tendency for λrogue to be slightly greater in wave fields with large
spreading angles, although the difference is much smaller than the standard deviation.
Figure 21(b) shows the average crest length of rogue waves C̄rogue over the time
considered relative to the average crest length Cy of the initial wave fields as a
function of spreading angles. For wave fields with small spreading angles, C̄rogue/Cy

increases with increasing Θ . As the spreading angle becomes large, C̄rogue/Cy is nearly
constant. Given the spreading angle, C̄rogue/Cy increases as the spectral bandwidth
increases. For short-crested wave fields with Θ > 60◦, the average crest length of
rogue waves is considerably greater than the average crest length of the initial wave
fields (C̄rogue/Cy > 2).

5.1.2. Area size of rogue waves
Figure 22(a) shows the average size of rogue waves ārogue (§ 4.3), scaled by the

average wave size of the initial wave field ā0, as a function of spreading angle and
spectral bandwidth. In the range of relatively small Θ . 60◦, ārogue/ā0 increases as
Θ increases. For larger Θ , ārogue/ā0 slowly decreases as Θ increases. For given Θ ,
ārogue/ā0 increases as the spectral bandwidth increases (γ decreases). As the wave field
evolves, the average size of waves ā varies with time. Figure 22(b) shows ārogue/ā,
which is the average of arogue/ā(t) over time 0 6 t 6 150Tp, as a function of Θ and γ .
Comparing figures 22(a) and 22(b), ārogue/ā behaves similarly to ārogue/ā0 but with a
larger value. The large standard deviation in the range of small Θ is associated with a
significant change of the underlying spectrum due to the MI effect.

5.1.3. Grouping of rogue waves
For given α = 2 and αG = 1.8, we catalogue the rogue wave groups Gn obtained

from MIT-Wave. Figure 23 shows the percentages of G2 and G3 rogue wave groups,
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FIGURE 23. (Colour online) Percentage of rogue wave groups, G2 % (· · · · · ·) and G3 %
(——), as functions of spreading angle for wave fields with steepness ε = 0.14, and γ = 1
(×), 5 (B) and 10 (©). Results are obtained using αG = 1.8 and α = 2.

denoted as G2 % and G3 %, among the rogue wave populations. For a given spectral
bandwidth, both G2 % and G3 % decrease with increasing Θ for Θ . 60◦, while they
are nearly independent of Θ for larger Θ . For a fixed Θ , both G2 % and G3 % increase
as γ increases. These observations are consistent with the effect of MI on rogue wave
development.

5.2. Analysis of rogue wave shapes using proper orthogonal decomposition
A large number of rogue waves obtained for a broad range of spectral parameters
are found to have surprisingly similar geometric features. To identify these salient
features, and to see if they can be represented by a relatively small number of
parameters, we analyse rogue wave surface profiles in MIT-Wave by applying the
proper orthogonal decomposition (POD), which provides a statistical method to obtain
a compact representation of the data to extract the dominant structures.

The general analysis of rogue wave groups that contain large n waves involving
different possible configurations is complex. As a preliminary investigation, we focus
on the relatively simple case of G1, i.e. a single large (3D) wave satisfying H > αHs.

We first consider unidirectional waves and write the POD expansion of the rogue
wave as

ηrogue(x̂)/Hs = ηPOD(x̂)=
Mx∑

m=1

CmUm(x̂; ε, γ ), 06 x̂6 1, (5.1)

where x̂ = x/Λr, and Λr is the length of the rogue wave defined as the distance
between the down-crossing of the up-wave trough and the up-crossing of the down-
wave trough around the rogue wave crest. In (5.1), Um(x̂; ε, γ ) is the mth POD mode
for wave fields with spectral parameters ε and γ ; Cm is the coefficient of the mth POD
mode; and Mx the total mode number. The Um, m = 1, 2, . . . , form orthogonal basis
vectors that characterize the ensemble of rogue wave shapes. The rogue wave profiles
are selected from HOS simulations with time interval 1T = 10Tp. To compute Um,
we typically use O(1000) rogue wave profiles from MIT-Wave (the difference in Um

obtained using a larger ensemble is less than 1 %). Note that, unlike the rogue wave
probability, POD shapes are not invariant if crest and trough are interchanged in the
above procedure. For uniqueness of POD shapes, we have chosen to describe rogue
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FIGURE 24. (a) Plot of U1(x) for unidirectional wave fields with γ = 6, and ε = 0.07
(· · · × · · ·) and ε = 0.14 (· · · M · · ·). The autocovariance function ρ(x) is also shown (——).
(b) Plot of Um for unidirectional wave fields with ε = 0.14 and γ = 6 for m= 2 (——), m= 3
(- · - · -) and m= 4 (· · · · · ·). Waves propagate from left to right.

waves in the ‘crest-centred’ profile. To obtain POD shapes of rogue waves described in
the ‘trough-centred’ profile, similar approaches can be applied.

Figure 24(a) shows the leading POD mode U1 of G1 rogue waves for unidirectional
wave fields with different spectral steepness ε. We observe that U1 has a sharp
crest and two shallow troughs, indicating the nonlinearity of the wave. In addition,
U1 is asymmetric with respect to the crest and the crest is skewed to the up-wave
trough (i.e. right trough in the figure with wave propagation to the right). The down-
wave trough is slightly deeper than the up-wave trough, which suggests that more
rogue waves may be identified if the up-crossing approach is used in analysing time
series. This is consistent with the observations in Pinho et al. (2004). With increasing
steepness, U1 becomes more asymmetric and skewed, suggesting more significant
nonlinearity of the rogue waves. This mode profile can be contrasted to the average
profile around a local extreme crest for linear Gaussian waves, which is proportional to
the autocovariance function, ρ(x) = ∫k cos(kx)Ψ (k) dk/

∫
k Ψ (k) dk, where Ψ (k) is the

wavenumber spectrum (Lindgren 1970; Boccotti 1983). In comparison with ρ(x), U1

has shallower up-wave trough and deeper down-wave trough, while ρ(x) is symmetric
with respect to the wave crest. Figure 24(b) plots the profile of the higher-order POD
modes Um, m = 2, 3, 4. These Um describe the perturbations of rogue wave profiles
around the leading mode U1. Higher POD modes are more oscillatory, describing
perturbations with successively shorter scales.

It is more interesting to distinguish the rogue waves with crest greater (less) than
trough, i.e. a ‘wall of water’ (‘deep hole’), and to name them as crest-dominant
(trough-dominant) rogue waves. We find that crest-dominant rogue waves generally
occur more frequently than trough-dominant rogue waves. The first POD modes of
crest- and trough-dominant rogue waves are shown in figure 25. For the trough-
dominant rogue waves, a trough-centre profile is used. Similarly to figure 24(a), U1

becomes more asymmetric and skewed for both crest- and trough-dominant rogue
waves as the wave steepness increases.

Figure 26(a) shows the coefficients of POD modes Cm for wave fields with a
range of spectral bandwidths. The magnitudes of the coefficients decrease rapidly and
only the first mode has a non-zero mean. The standard deviation of the coefficients
decreases for the higher modes. This suggests that the dominant geometry of the rogue
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FIGURE 25. Leading POD mode U1(x) for (a) crest-dominant and (b) trough-dominant rogue
waves. Unidirectional wave fields with γ = 6, and ε = 0.07 (· · · × · · ·, 710 crest- and 290
trough-dominant rogue waves) or ε = 0.14 (· · · M · · ·, 914 crest- and 86 trough-dominant
rogue waves). Waves propagate from left to right.
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FIGURE 26. (Colour online) (a) Coefficients of POD modes Cm, m = 1, . . . , 8, for
unidirectional wave fields with γ = 5, and ε = 0.07 ( ), 0.1 ( ) and 0.14 ( ). The error
bars indicate one standard deviation. (b) The average error of POD approximations 1EPOD
using Mx POD modes: Mx = 1 (C), 2 ( ), 3 ( ) and 4 ( ).

wave profile η/Hs can be reasonably approximated using only U1. The representation
error of POD is defined as 1EPOD = |EPOD − ER|/ER, where ER =

∫
η2

rogue dx and
EPOD =

∫
η2

POD dx. Figure 26(b) shows the average representation error of POD modes
for wave fields with a broad range of steepness. For relatively small steepness ε < 0.1,
the errors are within 20 % using only U1. For wave fields with greater steepness, more
modes are needed to achieve a satisfactory accuracy. The error decreases as more POD
modes are used. For a broad range of wave-field steepness, when Mx = 4 POD modes
are used, the mean representation error 1EPOD is less than 5 %.

The foregoing can be extended to 3D large waves in a straightforward manner. For
directional wave fields, the POD representations of rogue waves ηrogue are written in
the form

ηrogue(x̂, ŷ)/Hs = ηPOD(x̂, ŷ)=
My∑
n

Mx∑
m

Cm,nUm(x̂)Vn(ŷ), (5.2)
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FIGURE 27. (Colour online) (a) POD modes in the y direction, Vn, with n = 1 ( ), 2 ( )
and 3 (- · -), for directional wave field ε = 0.1, γ = 5 and Θ = 60◦. (b) Average error of
POD representations 1EPOD using Mx = 1, My = 1(©), Mx = 2, My = 2 (×) and Mx = 3,
My = 3 ( ).
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FIGURE 28. (a) Leading POD mode U1(x̂)V1(ŷ) in (5.2), (b) W1(x̂, ŷ) in (5.3) and
(c) W1(x̂, ŷ) − U1(x̂)V1(ŷ) for rogue waves in the directional wave field ε = 0.1, γ = 5 and
Θ = 60◦. The POD modes are obtained based on a sample size of 200. Waves propagate from
left to right.

where x̂ = x/Λr and ŷ = y/Crogue; Um(x̂) and Vn(ŷ) are the POD modes in the x
and y directions; and Mx and My are the number of POD modes in the two
horizontal directions. For simplicity, we assume that Um(x̂) in (5.2) is given by
(5.1), and we focus on the transverse modulations Vn(ŷ). Plots of Vn, n = 1, 2, 3,
obtained from O(200) 3D rogue waves (collected from HOS simulations with time
interval 1T = 10Tp) are shown in figure 27(a). We can see that V1, the leading-order
along-crest modulation (scaled by Crogue), is positive definite and quite symmetric
(after Nrogue = 200) with respect to yc. The higher-order transverse POD modes V2,3

describe successively shorter modulations with both positive and negative values and
are generally not symmetric (relative to yc). Figure 28(b) shows the average accuracy
of the POD expressions of rogue waves for wave fields with different initial spreading
angles. The error of the POD representation decreases as the spreading angle increases.
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Over the broad range of Θ , the average errors of POD representation using only the
three leading-order POD modes in each direction (Mx =My = 3) are less than 20 %.

To assess the assumptions inherent in (5.2), we can alternatively represent ηrogue
using 2D POD modes as

ηrogue(x̂, ŷ)/Hs = ηPOD(x̂, ŷ)=
Mxy∑
m=1

CmWm(x̂, ŷ; ε, γ,Θ), (5.3)

where Mxy is the number of 2D POD modes and Wm(x̂, ŷ; ε, γ,Θ) is the mth 2D
POD mode for directional wave fields specified by ε, γ and Θ . Figure 28 plots the
contours of W1(x̂, ŷ) as compared to U1(x̂)V1(ŷ) from (5.2) and (5.3), respectively.
Qualitatively, W1 and U1V1 are very similar; however, W1 is less asymmetric than U1V1

in both the longitudinal and transverse directions. The quantitative differences between
W1 and U1V1 (figure 28c) are mainly in the shallower up-wave and down-wave troughs
of U1V1 relative to W1, which are consistent with the reduction effect of directional
spreading on the nonlinearity of wave fields.

We remark that the efficacy of POD with only a few modes in describing the rogue
wave geometries that we obtain is partly because only G1 rogue waves (containing
a single main wave) are considered, for which our finding might indeed be expected.
With sufficiently large ensembles of rogue wave groups in MIT-Wave, the overall
methodology applies equally to general Gn, but is not undertaken here.

6. Conclusion
We study the occurrence and dynamics of rogue waves in three-dimensional

nonlinear deep-water wave fields using direct simulations based on a high-order
spectral (HOS) method. Consistent with modulational instability (MI) of nonlinear
waves, which is our main focus, we consider spatial domains L ×L and evolution
times T , where L /λp,T /Tp ∼ O(ε−2) for our simulations. A large number O(200)
of 3D nonlinear HOS wave fields (MIT-Wave dataset) are generated using initial
(JONSWAP) spectra with a broad range of spectral parameters. The accuracy and
reliability of using HOS simulations in describing the nonlinear wave statistics are
demonstrated by direct comparisons with wave basin experiments.

To assess the range of applicability of the NLS-type approach, we obtain results
using the slightly broad-band modified NLS (BMNLS) model and compare and
contrast these with HOS results. In general, BMNLS and HOS give qualitatively
similar results for the initial time. For L /λp,T /Tp ∼ O(ε−2) and initially narrow
frequency and directional spread wave fields, however, HOS obtains statistically quasi-
stationary nonlinear non-Gaussian states after the broadening of the spectra. This is
not predicted by BMNLS, which in general obtains monotonic spreading of energy
to shorter and more directionally spreading waves, and almost Gaussian asymptotic
statistics. As a result, BMNLS generally underpredicts the occurrence of rogue waves
for longer times.

We elucidate the importance of MI in the evolution of directional wave fields
using extensive HOS simulations. For wave fields with small spreading angles, MI
leads to significant spectral broadening, strongly non-Gaussian wave statistics and
enhanced probability of rogue waves. For wave fields with large spreading angles, the
importance of MI is less significant, and the wave statistics are closer to Gaussian.
For general directional spread wave fields, the occurrence probability based on the
number of rogue waves PN becomes problematic as crest lengths become short. The
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problem is exacerbated since even initially narrowly spread seas become directionally
broadened in the nonlinear evolution. To overcome this, we introduce the definition of
area probability of rogue wave occurrence PA, which is well defined and convergent
for arbitrary 3D wave fields. We confirm the general correlation between both PN

and PA and kurtosis. For relatively narrow spread seas, kurtosis, and hence occurrence
probability, can be reasonably well predicted by the (initial) BFI of the wave field.
This is no longer true for broad directionally spreading wave fields. We propose a
modified Benjamin–Feir index (MBFI) that accounts for directional spreading and
show that kurtosis, PN and PA are well predicted by MBFI over a broad range of
spectral nonlinearity, frequency bandwidth and directional spreading. HOS not only
obtains the rogue wave events but also provides the detailed geometry and kinematics
within the wave field. Using the substantial catalogue of rogue waves in MIT-Wave,
we investigate the geometric structures of such waves and their dependence on the
underlying wave spectra. We analyse the shapes of 2D and 3D rogue waves using
proper orthogonal decomposition (POD) and find that, in general, for rogue waves
containing a single main wave, the wave profile can be well represented using a few
leading POD modes.

As an initial study, our main focus is on the effects of MI on the formation of rogue
waves. Based on this, we conduct direct HOS simulations covering the requisite spatial
and temporal scales using nonlinear order M = 3. While the simulation scales are
already large, these do not address how mechanisms and significant interactions over
even greater scales (e.g. McLean 1982) might modify our findings. At these greater
scales, effects ignored in the present study such as input from wind (at even moderate
speeds) (Lavrenov 1998; Abdalla & Cavaleri 2002; Dysthe et al. 2003; Kharif et al.
2007) could also play appreciable roles.
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