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Abstract. We say that the geometric dimension of a countable group G is equal to n if any
free Borel action of G on a standard Borel probability space (X, µ), induces an equivalence
relation of geometric dimension n on (X, µ) in the sense of Gaboriau. Let B be the set of
all finitely generated amenable groups all of whose subgroups are also finitely generated,
and let A be the subset of B consisting of finite groups, torsion-free groups and their finite
extensions. In this paper we study finite free products K of groups in A. The geometric
dimension of any such group K is one: we prove that also geom-dim(G f (K ))= 1 for any
finite extension G f (K ) of K , applying the results of Stallings on finite extensions of free
product groups, together with the results of Gaboriau and others in orbit equivalence theory.
Using results of Karrass, Pietrowski and Solitar we extend these results to finite extensions
of free groups. We also give generalizations and applications of these results to groups
with geometric dimension greater than one. We construct a family of finitely generated
groups {Kn}n∈N,n>1, such that geom-dim(Kn)= n and geom-dim(G f (Kn))= n for any
finite extension G f (Kn) of Kn . In particular, this construction allows us to produce, for
each integer n > 1, a family of groups {K (s, n)}s∈N of geometric dimension n, such that
any finite extension of K (s, n) also has geometric dimension n, but the finite extensions
G f (K (s, n)) are non-isomorphic, if s 6= s′.

1. Introduction
The notion of a countable measure-preserving equivalence relation was introduced by
Feldman and Moore [12] in their investigations of the orbit properties of actions of
countable groups on a standard Borel space. The case of amenable equivalence relations
was studied in the fundamental work of Connes et al [7], and Ornstein and Weiss [32]. For
some recent applications, see [9, 10].

Recently, new results have been obtained in the study of non-amenable equivalence
relations, see the review of Shalom [40]. If each almost-everywhere connected component
of a Borel equivalence relation does not have loops, then this equivalence relation
is called treeable: we present a more precise definition in §2.5 below. The study of
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treeable equivalence relations is important in the theory of measure-preserving equivalence
relations. The basic results in this area were obtained by Adams [1, 2], Gaboriau [13,
15, 16], Hjorth [18, 19], Jackson et al [21], Kechris and Miller [25], and Pemantle and
Peres [33].

A countable group is called strongly treeable if each free Borel action of G on a standard
Borel space with G-invariant probability measure induces a treeable equivalence relation.
This definition was introduced by Gaboriau [13], who also gave examples of treeable non-
amenable groups. The simplest amongst them are free products of countable amenable
groups, in particular, free groups and free products of finite groups.

In [8] we considered finite extensions of strongly treeable groups, and showed that
there are many examples where these finite extensions are again strongly treeable groups.
In particular, we showed that any strongly treeable group has such finite extensions. It is
natural to conjecture that any finite extension of a strongly treeable group is again strongly
treeable: we showed in [8] that this conjecture holds for free groups Fn with n <∞.

In this paper, we consider analogous problems for finite extensions of free countable
groups with any number of generators and free products of a finite number of finitely
generated (f.g.) amenable groups. We develop another approach to this problem in §§3
and 4, independent of results and methods of [8].

Finite extensions of free groups were considered in combinatorial group theory in
relation to Serre’s conjecture [38]: a torsion-free group with a free subgroup of finite index
is again free. This problem was solved by Stallings [41] for f.g. groups, and by Swan for
the general case [43]. Their methods are a combination of algebraic and topological ideas.
Subsequently, Karrass et al [22], using some constructions from [42], gave the general
construction of any finite extension of a free group. They showed that it is given by a
special HNN (Higman–Neumann–Neumann) extension of a tree product of finite groups
(see §3.3). We refer to these as KPS groups. They also proved that any finite extension
of a free group Fn with finitely many generators is KPS. Cohen [4] proved similar results
for any group which is a finite extension of a free group with countably many generators,
applying Serre’s theory of graphs of groups [39] together with results from [41] and [43]
(see also [6]). The general case was treated by Scott and Wall [36, 37].

In §3 we prove that if a countable group is KPS, then it is strongly treeable
(Theorem 3.1). In order to prove this, we need to develop methods due to Gaboriau [13]
and Kechris and Miller [25]. In particular, we apply the theory of free products of Borel
equivalence relations and their HNN extensions [13, 25]. As any finite extension of a free
group is KPS, we can conclude that they are all strongly treeable groups.

Note that if a countable group G is a finite extension of a free group, then any finite
extension H of G is again an extension of that free group, and hence H is again strongly
treeable. We use this simple observation in Lemma 3.16 to show that the free product of
abelian groups with uniformly bounded orders is a finite normal extension of a free group.
We prove a similar assertion in §4 for any free product of a finite number of f.g. groups.

Let B be the subset of all f.g. amenable groups all of whose subgroups are also
f.g., and let A be the subset of B containing all finite groups, torsion-free groups from
B and their finite extensions. In §4 we consider strongly treeable groups of the form
K = K1 ∗ · · · ∗ Kt where each Ki ∈A and t <∞. Let G f (K ) be an extension of K
by a finite group G f .
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We prove that G f (K ) is a strongly treeable group in Theorems 4.3 and 4.4.
Furthermore, if the group K has torsion then it is a finite normal extension of a group of the
form N1 ∗ · · · ∗ Ns where each Ni is a torsion-free group from A and s <∞. To prove this
result, we need a different approach than in §3, applying some results due to Stallings [42]
on the structure of finite extensions of free products of groups and the Neumann subgroup
theorems. Free products K = K1 ∗ · · · ∗ Kt , where Ki = Zni for ni ∈ N are used in §5.

In §5, we discuss Gaboriau’s [14, 15] notion of geometric dimension of a measure-
preserving Borel equivalence relation R on a standard Borel probability space (X, µ),
denoted by geom-dim(R) ∈ N ∪ {∞}. We give the definition and some properties of this
concept in §5.1: it turns out that the equivalence relation R is treeable if and only if
geom-dim(R)= 1.

It is natural to extend the notion of a strongly treeable group in the following way. We
say that a countable group H has geometric dimension equal to n if any measure-preserving
free Borel action of G on a standard Borel probability space (X, µ) induces an equivalence
relation E X

G of geometric dimension n.

It is easy to see that G is a strongly treeable group if and only if the geometric dimension
of G is one. Examples of groups G with geometric dimension greater than one are given
in [14]; we review and extend these examples in §5.

The geometric dimension of a countable group K is related to Gaboriau’s notion
[14, Definition 6.4] of ergodic dimension of this group K , erg-dim(K ) ∈ N ∪ {∞}, an
analogue of Serre’s cohomological dimension of a group [3, Ch. VIII, §2].

It is easy to see that if geom-dim(K )= n, then erg-dim(K )= n. One can prove further
that erg-dim(G f (K ))= n for any finite extension of G f (K ) of K . However, it is not
known whether any Borel action of G f (K ) on a Borel space (X, µ) as above must induce
an equivalence relation E X

G f (K )
of geometric dimension n. This problem is not simple even

for the case n = 1, as one can see from §§3 and 4.

It is thus natural to ask to what extent the results §§3 and 4 hold for finite
extensions of groups K with geometric dimension n > 1. We provide an answer to
these questions in §5. In particular, we construct a family {F(n) | n ∈ N, n > 1} of f.g.
groups such that geom-dim(F(n))= n and if G f (F(n)) is a finite extension of F(n), then
geom-dim(G f (F(n))= n, see Theorem 5.11. This construction is based on the results
of §4. We also can produce an infinite family of non-isomorphic groups with this property
for any n > 1 (Theorem 5.13).

2. Preliminaries

2.1. Relations. A relation R on a set X is a set of ordered pairs from X, R ⊂ X2. If R
is a relation we write

x Ry⇔ (x, y) ∈ R.

If Y ⊆ X, the restriction of R to Y, R|Y is defined by R|Y = R ∩ Y 2.

A graph G with vertex set X is a non-reflexive (i.e. (x, x) 6∈ G for all x ∈ X), symmetric
(i.e. G = G−1) relation on X . A G-path from x to y is a finite sequence of vertices
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x = x0, x1, . . . , xn = y such that (xi , xi+1) ∈ G, for all i < n, and xi 6= x j if i 6= j .
Consider the equivalence relation on X given by

x Ey⇔ there exists a G-path from x to y.

Its equivalence classes are the connected components of G. A cycle is a G-path
x0, x1, . . . , xn = x0, starting and ending at the same point. A graph G is acyclic if it
contains no G-cycles. An acyclic graph containing only one connected component is called
a tree.

2.2. Countable Borel equivalence relations. Let X be a standard Borel space. An
equivalence relation E on X is called Borel if it is a Borel subset of the product space
X × X . A Borel equivalence relation E is countable if every equivalence class [x]E ,
x ∈ X, is countable.

If 0 is a countable group 0 and (g, x) 7→ g · x is a Borel action of 0 on X , then the
orbit equivalence relation

x E X
0 y⇔ there exists g ∈ 0 such that g · x = y

is countable. The converse assertion is also true. This well-known result is due to Feldman
and Moore [12], see also [25, Theorem 15.1].

A Borel subset S of X is called a complete section if it meets every equivalence class.

We denote by [E] the set of all Borel isomorphisms f of X with f (x)Ex for all x ∈ E,
and by [[E]] the set of all partial Borel isomorphisms f : A→ B, where A, B are Borel
subsets of X , with f (x)Ex , for all x ∈ A.

Let µ be a measure on a standard Borel space X and E a countable Borel equivalence
relation on X . As usual, we say that µ is a finite measure if µ(X) <∞ and a probability
measure if µ(X)= 1.

We say that µ is E-invariant if there is a countable group 0 and a Borel action of 0
on X with E X

0 = E, such that µ is 0-invariant. Properties of E-invariant measures are
given in [25, §16].

2.3. Graphings. A graph on a standard Borel space (X, B) is a graph G on the set X ,
such that G ⊆ X2 is Borel, and every x ∈ X has at most countably many neighbours. Let E
be a countable Borel equivalence relation. A Borel graphing of E is a graph G such that
the connected components of G are exactly the E-equivalence classes. This notion was
introduced by Adams [1].

In this paper we use another equivalent concept of a graph which is called an L-graph (L
stands for Levitt). This is a countable family8= {ϕi }, i ∈ I, of partial Borel isomorphisms
ϕi : Ai → Bi where Ai , Bi are Borel subsets of X, ϕi ∈ [[E]]. We say that 8 is an
L-graphing of E if 8 generates E, i.e. x Ey means that x = y or there is a sequence
i1, . . . , ik ∈ I and ε1, . . . , εk ∈ {±1} such that x = ϕε1

i1
· · · ϕ

εk
ik
(y).

The connection between these two notions is explained in [25, §17].
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2.4. Cost of an equivalence relation. Let E be a countable Borel equivalence relation
on X and µ a finite E-invariant measure. If 8= {ϕi }i∈I , ϕi ⊆ [[E]] is an L-graphing,
define its cost by

Cµ(8) =
∑
i∈I

µ(dom(ϕi ))

=

∑
i∈I

µ(rng(ϕi ))

=
1
2

∫ ∑
i∈I

(χAi (x)+ χBi (x)) dµ(x)

where Ai = dom(ϕi ), Bi = rng(ϕi ) and χA is the indicator function of A.
Now we can define the cost of E as

Cµ(E) = inf{Cµ(G) | G is a graphing of E a.e.}

= inf{Cµ(8) |8 is an L-graphing of E a.e.}.

This important notion was introduced by Levitt [28]. It is clear that 0≤ Cµ(E)≤∞.

2.5. Treeings of an equivalence relation. An L-graphing 8= {ϕi } of E is called an
L-treeing [1, 2] if for each non-empty reduced word w = ϕε1

i1
· · · ϕ

εn
in
(εi = {+1,−1}), in

the symbols {ϕi }, the set {x | x ∈ dom w and w(x)= x} is empty.
8 is called an L-treeing almost everywhere if µ({x | x ∈ dom(w) and w(x)= x})= 0.
The importance of treeing to costs is demonstrated by the following key result of

Gaboriau [13, Proposition I.11] or [25, Proposition 19.1].

THEOREM 2.1. Let E be a countable equivalence relation,µ an E-invariant measure with
Cµ(E) <∞. If8 is an L-graphing of E which attains the cost of E, i.e. Cµ(E)= Cµ(8),
then 8 is an L-treeing of E almost everywhere.

An equivalence relation E is called treeable if E admits an L-treeing.
Note that for each α ∈ [1,∞], there exists a treeable equivalence relation E with

E-invariant probability measure µ such that Cµ(E)= α (see [13]).

2.6. Treeable and strongly treeable groups. A countable group G is called treeable
[25, Proposition 3.1] if there is a measure-preserving free Borel action of G on a standard
Borel probability space such that the induced equivalence relation E X

G is treeable µ-almost
everywhere.

This notion was introduced by Pemantle and Peres [33]. Another related notion was
introduced by Gaboriau [13]. A countable group G is called strongly treeable if for every
free measure-preserving Borel action of G on a standard Borel probability space (X, µ),
the induced relation E X

G is treeable.
Note that here we use the terminology of Kechris and Miller [25], which differs from

that of Gaboriau [13].
Interesting examples of treeable groups were given in [13], specifically the fundamental

group π1(6g) of an orientable surface of genus g ≥ 2. Some generalizations of these were
given in [8].

https://doi.org/10.1017/S014338570800093X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570800093X


1794 A. H. Dooley and V. Ya. Golodets

The simplest examples of strongly treeable groups are countable amenable groups,
SL(2, Z), any free group and any free product of these groups. These and other
examples were presented in [13]. In this paper we give some new examples of strongly
treeable groups.

In [8], we observed that if G is strongly treeable and H is a subgroup of G of finite
index, then H is also strongly treeable. It is interesting to consider the dual situation
when H is a strongly treeable subgroup of G and [G : H ]<∞, and ask whether G is also
strongly treeable. In [8] we presented many examples when this is the case. We showed
in particular that if G is strongly treeable and K is any finite group then the direct product
G × K is again strongly treeable.

However, the general problem turned out to be rather complicated, and we treated only
the case where H is a free subgroup: we were able to prove the conjecture in the case
where H is f.g. We develop this theory further in §§3 and 4.

2.7. Free product with amalgamation and HNN extensions. We recall from [29] and [6],
some basic constructions of combinatorial group theory which we use in the following.

Let K and H be two countable groups. We say that G = K ∗ H is a free product of K
and H if each element g of G has the form g = k1h1k2h2 · · · knhn , n <∞, ki ∈ K , hi ∈ H ,
1 5 i 5 n.

Let A be a subgroup of K and B a subgroup of H and suppose that there is
an isomorphism ϕ : A→ B. Consider the group G = 〈a ∈ K ∗ H ; a = ϕ(a), a ∈ A〉,
where G is the quotient of the free product of K ∗ H by the normal subgroup of K ∗ H
generated by {aϕ(a)−1

| a ∈ A}. We call G a free product with amalgamation of K and H ,
or amalgamated free product of K and H with A amalgamated: G = K ∗A H . This
construction was introduced by Schreier [35] in 1926.

Let G be a group, A and B be subgroups of G with ϕ : A→ B an isomorphism. The
HNN extension of G relative to A, B and ϕ is the group G∗ = 〈G, p : p−1ap = ϕ(a),
a ∈ A〉.

The group G is called the base of G∗ and p is called the stable letter, A and B are
called associated subgroups. Again, G∗ is the quotient of the free product P ∗ G, where P
is generated by p, by the normal subgroup of P ∗ G generated by {p−1apϕ(a)−1, a ∈ A}.

This construction was introduced by Higman, Neumann and Neumann [17] in 1949.
Note that these two constructions are parallel and there is a single axiomatization of both
constructions given by Stalling’s concept of a bipolar structure [29, Ch. IV, §.6].

The structure of a HNN extension is described by the normal form theorem, which we
present below.

Definition 2.2. The sequence g0, pε1 , g1, . . . , pεn , gn, ε =±1, n > 0, where gi ∈ G, is
said to be reduced, if there is no consecutive subsequence of the form p−1, gi , p with
gi ∈ A or p, gi , p−1 with gi ∈ B.

Definition 2.3. A normal form is a sequence g0, pε1 , g1, . . . , pεn , gn(n ≥ 0) where:
(i) g0 is an arbitrary element of G;
(ii) if εi =−1, then gi is a representative of a coset of A in G;
(iii) if εi =+1, then gi is a representative of a coset of B in G;
(iv) there is no consecutive subsequence of the form pε, 1, p−ε.
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THEOREM 2.4. (See [29, IV.2.1]) Let G∗ = 〈G, p; p−1ap = ϕ(a), a ∈ A > be a HNN
extension. Then we have the following results.
(i) (Britton’s lemma) The group G is embedded in G∗ by the map g 7→ g. If

g0 pε1 · · · pεn gn = 1, εi =±1, 1≤ i ≤ n in G∗,where n ≥ 1, then g0, pε1 , . . . , pεn ,

gn is not reduced.
(ii) Every element w of G∗ has a unique representation as w = go pε1 · · · pεn gn where

g0, pε1 , . . . , pεn , gn is a normal form (see Definition 2.3).

Note that there are also constructions of free product, free product with amalgamation
and HNN extension for Borel equivalence relations on a standard Borel space introduced
by Gaboriau [13], see also [25]. In particular, if a countable group G = K ∗ H has a
measure-preserving free Borel action on a standard Borel probability space (X, µ) with
induced Borel equivalence relation E X

G , then E X
G = E X

K ∗ E X
H where E X

K and E X
H are the

Borel equivalence relations on (X, µ) induced by K and H , respectively. Similar results
hold for amalgamated free products and HNN extensions (see [13, §IV], [20] and [25,
§§27, 37]).

Now let G be a countable group, {(Ai , Bi )} a collection of pairs of subgroups of G and
ϕi isomorphisms ϕi : Ai → Bi . Then one can construct the HNN extension of the base
group G with associated subgroups (Ai , Bi ) and stable letters pi , i = 1, 2, . . . , by

G∗ = 〈G, p; p−1
i ai pi = ϕi (ai ), ai ∈ Ai 〉.

Again G∗ is the quotient of the free product P ∗ G where P is a free product of
pi , i = 1, 2, . . . , by the normal subgroup N of P ∗ G generated by p−1

i ai pi (ϕi (ai ))
−1,

i = 1, 2, . . . . The reader may find the details in [6].

3. Finite extensions of free groups
Karass et al [22] presented a construction of a group which contains a free subgroup
of finite index. We refer to their construction as the KPS construction, and to groups
constructed by it as KPS groups. The exact definition is given in Definition 3.14.

In this section we prove the following assertion.

THEOREM 3.1. Every countable KPS group is strongly treeable.

To prove this theorem we apply methods of orbit equivalence theory.

COROLLARY 3.2. Any countable group G, which is a finite extension of a f.g. free group,
is strongly treeable.

Proof. Indeed, it was proved in [22] that any group G as in the statement is KPS. 2

Note that we gave a proof of this result in [8] which did not use the KPS construction.

COROLLARY 3.3. Any countable group G, which is a finite extension of a free group, is
strongly treeable.

Proof. Cohen [4] proved that any such group G is KPS, using the theory of graphs of
groups [39]. One can find a more recent proof of this result in [5, Theorem 8.55]. 2
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We use Corollary 3.3 twice in this paper, specifically in Proposition 3.15 and
Theorem 5.9, where we deal with the free group of infinite rank. The remainder of the
paper is devoted to f.g. groups.

Note also that the KPS construction allows one to find interesting examples of finite
extensions of free groups, see also Remark 3.17.

3.1. HNN extensions of strongly treeable groups. In this section we prove the following
assertion, which is a step towards the proof of Theorem 3.1.

PROPOSITION 3.4. Let G be a strongly treeable group, {(Ai , Bi )} a set of pairs of finite
subgroups of G and {ϕi } a set of isomorphisms ϕi : Ai → Bi . Then the HNN extension G∗

with the base G, associated subgroups Ai , Bi and stable letters pi , i = 1, 2, . . . , is
strongly treeable.

We first prove several auxiliary lemmas.

LEMMA 3.5. Let {Ri : i = 1, 2}, be countable treeable equivalence relations on a
standard Borel space (X, µ) and R = R1 ∗ R2. Suppose that µ is a finite R-invariant
measure on X. Then R is also treeable, and if T (Ri ) is an L-treeing of Ri then
T (R)= T (R1) ∪ T (R2) is an L-treeing of R.

Proof. The proof is a consequence of the definition of the free products (or free joins [25])
of equivalence relations of R1 and R2 and the definition of an L-treeing of an equivalence
relation (see [13, 25]). 2

COROLLARY 3.6. [13] Let G1 and G2 be strongly treeable groups. Then G1 ∗ G2 is also
strongly treeable.

LEMMA 3.7. Let Ri , i = 1, 2, be countable treeable equivalence relations on a standard
Borel space (X, µ), and suppose that R3 = R1 ∩ R2 is a finite equivalence relation. Let
R = R1 ∗R3 R2. Suppose further that µ is an R-invariant finite measure.

Then R is also treeable. If, moreover, T (R1) is an L-treeing of R1, then there is an
L-treeing T (R) of R such that T (R)⊃ T (R1).

Proof. Let D be a fundamental Borel set of R3. This means that D meets every R3-orbit
in exactly one point. Consider R′2 = R2 |D . Then R = R1 ∗ R′2 (see [13, Example IV.11]).
Let T (R1) be an L-treeing of R1 and T (R′2) an L-treeing of R2 |D (see [13, §II.6(1)]). It
is clear that T (R)= T (R1) ∪ T (R′2). 2

COROLLARY 3.8. [13] Let G1 and G2 be strongly treeable groups and K a finite group.
Then the amalgamated free product G1 ∗K G2 of G1 and G2 over K is also a strongly
treeable group.

LEMMA 3.9. Let G be a strongly treeable group, A, B finite subgroups of G and ϕ an
isomorphism ϕ : A→ B. Then the HNN extension

G∗ = 〈G, p; p−1ap = ϕ(a), a ∈ A〉

with the base G, associated subgroups (A, B) and stable letter p, is also strongly treeable.
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Moreover, suppose that G∗ has a measure-preserving free action on a standard Borel
probability space (X, µ). If T (E X

G ) is an L-treeing of E X
G , then there is an L-treeing

T (E X
G∗) of E X

G∗ such that T (E X
G∗)⊃ T (E X

G ).

Proof. We use the bipolar construction from [13], see also [25, §37]. Let x 7→ g· x , g ∈ G∗

be a free Borel action of G∗ on X , and µ a G∗-invariant probability measure on X . Let X1

and X2 be two copies of X with h̄ : x1 7→ x2 = h̄x1 the identification map from X1 to X2.
Let µ1 and µ2 be two copies of µ for X1 and X2, respectively.

There are also two copies of the action of G∗ on X : (g, xi )→ g· xi where xi ∈ X i ,
i = 1, 2. Note that g· h̄x1 = h̄g· x1, x1 ∈ X1, g ∈ G∗.

Define the isomorphism f̄ : X1→ X2 as follows:

f̄ (x)= h̄ p · x = p · h̄x, x ∈ X1, (1)

where p is the stable letter from G∗.
As G is strongly treeable, it follows that E X1

G and E X2
G are strongly treeable equivalence

relations on X1 and X2, respectively. Let 81 be an L-treeing of E X1
G . Then 82 = h̄81h̄−1

is an L-treeing of E X2
G .

Let X̄ = X1 t X2 and ν = µ1 + µ2. Consider the following equivalence relations on X̄ :
• R1, the equivalence relation generated by E X1

G and h̄;

• R2, the equivalence relation generated by E X2
A and x→ f̄ (x), where x ∈ X1;

• R3 = E X2
A ∪ E X1

ϕ(A);

• R, the equivalence relation on X̄ generated by R1 and x→ f̄ (x), x ∈ X1.
It follows from the definition of an amalgamated join of two equivalence relations

[25, §27] and Theorem 2.4 above that R = R1 ∗R3 R2.
Note that X1 and X2 are complete Borel sections for R, R1, R2, respectively. Hence,

ν|X1 = µ1, ν|X2 = µ2 and

R|X1 = E X1
G∗ , R1|X1 = E X1

G , R2|X2 = E X2
A .

Now it follows from our assumption on G that E X1
G is treeable, and hence that R1 is

treeable by [13, §II.6(1)]. As A is a finite subgroup of G, it follows that E X2
A and R2 are

finite equivalence relations. Thus, R = R1 ∗R3 R2 is treeable by Lemma 3.7.
We now develop some properties of L-treeings of R. As R3 = E X2

A ∪ E X1
B is a finite

equivalence relation on X̄ , it follows that R3 has a fundamental Borel set D ∈ X̄ . Let
D = D1 ∪ D2 where Di = D ∩ X i and D1 (respectively D2) is the fundamental set of E X1

B

(respectively E X2
A ). Then the restriction of f̄ to D1 defines an isomorphism f̄ |D1 : D1

→ D2.
Note that R′2 = R2|D is generated by f̄ |D1 , and furthermore R = R1 ∗ R′2 (see the proof

of Lemma 3.7). Recall that we denoted an L-treeing of R1|X1 by 81 . Hence,

8̄1 =81 ∪ h̄

is an L-treeing of R1. As R = R1 ∗ R′2, then

8̄=81 ∪ h̄ ∪ f̄ |D1
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is an L-treeing of R. However, f̄ = h̄ p by (1) and, hence, we can take an L-treeing of R
of the following form:

9 =81 ∪ p|D1 ∪ h̄.

As9|X1 =81 ∪ p|D1 , we see that9|X1 is an L-treeing of RX1 = E X1
G∗ . Thus, we obtain

81 ⊂9|X1 .

Hence, the last assertion of our lemma is also proved. 2

The next lemma is well known. It describes the universal property of HNN extensions
(see [6, Proposition 1.30]).

LEMMA 3.10. Let A and B be subgroups of a group G and let ϕ be an isomorphism
ϕ : A→ B. Suppose that there is a homomorphism j from G to a group K , and that K
has an element k such that k−1 j (a)k = j (ϕ(a)). Let H be the HNN extension of G with
stable letter p and associated subgroups A and B. Then there is a unique homomorphism
ψ : H → K such that ψ |G = j and ψ(p)= k.

LEMMA 3.11. Suppose that a countable group G has two pairs of subgroups {Ai , Bi |

i = 1, 2}, and that there exist isomorphisms ϕi : Ai → Bi , i = 1, 2. Consider the following
groups:

G∗ = 〈G, p1, p2; p−1
i ai pi = ϕi (ai ), ai ∈ Ai 〉,

G∗1 = 〈G, p̌1; p̌−1
1 a1 p̌1 = ϕ1(a1), a1 ∈ A1〉,

G∗2 = 〈G
∗

1, p̌2; p̌−1
2 a2 p̌2 = ϕ2(a2), a2 ∈ A2〉.

Then G∗ is isomorphic to G∗2.

Proof. Let H1 be a subgroup of G∗ generated by p1 and G. It is clear that there is an
isomorphism j : G∗1→ H1. In order to simplify the notation, we suppose that j is the
identity map from a subgroup G of G∗1 onto the subgroup G of H1 and j p̌1 = p1. Then
we have the following relations:

jϕ1(a1)= ϕ1 j (a1), a1 ∈ A1

and
jϕ2(a2)= ϕ2 j (a2), a2 ∈ A2.

Hence, we obtain the following equality:

jϕ2(a)= ϕ2 j (a)= p−1
2 j (a)p2, a ∈ A2.

Now one can apply Lemma 3.10 to G∗1, G∗ and j . It follows from this lemma that there is
a unique homomorphism ψ : G∗2→ G∗ such that ψ |G∗1 = j and ψ( p̌2)= p2.

Thus, the homomorphism ψ has the following properties:

ψ( p̌1)= p1,

ψ(g)= g, g ∈ G, (2)

ψ( p̌2)= p2.

https://doi.org/10.1017/S014338570800093X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570800093X


Geometric dimension 1799

It follows from (2) that ψ is a homomorphism onto G∗ and that there is a normal subgroup
Ň of G∗2 such that G∗2/Ň ≈ G∗.

Equation (2) also shows that we may identify p̌1, g, p̌2 with p1, g, p2 respectively,
for any g ∈ G. Recall that the group G∗ has the form P2 ∗ G/N , where P2 is a free
group generated by p1, p2, and N is the smallest normal subgroup of P2 ∗ G generated
by the relations p−1

i ai piϕi (ai )
−1
= 1, ai ∈ Ai , i = 1, 2. This is a consequence of the

definition of a HNN extension G∗ of G. As G∗ is also generated by p1, p2, and g ∈ G, then
G∗ ≈ P2 ∗ G/M , where M is a normal subgroup of P2 ∗ G. Since ψ is a homomorphism
from G∗2 onto G∗ we see that M ⊆ N .

Now it follows from the definition of G∗2 that p̌−1
i ai p̌i = ϕi (ai ), ai ∈ Ai ,

i = 1, 2. Hence, our identification of p̌1, p̌2, g with p1, p2, g shows that the relations
p−1

i ai piϕi (ai )
−1, ai ∈ Ai , i = 1, 2, also belong to M . Thus, M ⊇ N , and we obtain

M = N . 2

We are now ready to complete our proof of Proposition 3.4.

Proof of Proposition 3.4. Let G and G∗ be as in the statement of the proposition. Let
G0 = G and Gi be a subgroup of G∗ generated by G and p1, p2, . . . , pi . Suppose that
we have a measure-preserving free Borel action of G∗ on a standard Borel probability space
(X, µ). Let E X

Gi
be the Borel equivalence relation on X generated by Gi , for i = 0, 1, . . . .

Then E X
G0

is treeable by our assumptions on G, and E X
G1

is also treeable by Lemma 3.9 and

our assumptions on the subgroups A1, B1 of G. Moreover, if T0 is an L-treeing of E X
G0

,

then there is an L-treeing T1 of E X
G1

such that T0 ⊂ T1.
As G2 is isomorphic to a HNN extension with base G1, stable letter p2 and associated

subgroups A2, B2, it follows, again from Lemma 3.9, that E X
G2

is treeable and there is an

L-treeing T2 of E X
G2

such that T1 ⊂ T2.

Thus, by induction we see that E X
Gi

is treeable and there is an L-treeing Ti of E X
Gi

such
that Ti−1 ⊂ Ti .

We claim that T =
⋃

i Ti is an L-treeing of E X
G∗ . First, observe that G∗ =

⋃
i Gi .

Hence, if x, y ∈ X and (x, y) ∈ E X
G∗ , then there is g ∈ Gi for some i such that y = g · x .

As Ti is an L-treeing of E X
Gi

, then there is a unique reduced word w of the form

w = ϕ
ε1
j1
· · · ϕ

εn
jn
, n <∞, εi =±1, (3)

where ϕi ∈ Ti , such that y = w · x . Hence, T is an L-graphing of E X
G∗ .

In order to prove that T is an L-treeing of E X
G∗ , observe that Ti is an L-treeing of E X

Gi

for each i , E X
G∗ =

⋃
i E X

Gi
and T1 ⊂ T2 ⊂ T3 ⊂ . . . . Hence if x, y and w are as above,

w will be a unique reduced word of the form (3) for each L-treeing T j of E X
G j

for j ≥ i .
Thus, w is the unique reduced word of the form (3) for T such that y = w · x . This means
that T is an L-treeing of E X

G∗ . 2

3.2. Tree products of strongly treeable groups. In this section, we consider some
properties of a tree products of groups, introduced in [23]. In the next section, we use
these in the construction of KPS groups.
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We recall some properties of trees. A graph G consists of two disjoint sets: the set V (G)
of vertices of G and the set E(G) of edges of G. We have a start function σ : E(G)→ V (G),
an inverse mapping e 7→ ē : E(G)→ E(G) and the end function τ : E(G)→ V (G).

These mappings have the properties that e 6= ē, e = ¯̄e and σ(ē)= τ(e).
A path of length n > 0 in G is a finite sequence e1, . . . , en of edges with τ(ei )

= σ(ei+1) for i < n. A loop is a path which ends at the point at which it starts i.e.
σ(e1)= τ(en).

A path is called reducible if there is some i such that ei+1 = ēi , otherwise it is called
irreducible. A tree is a connected graph all of whose loops of positive length are reducible.

We now present a simple lemma.

LEMMA 3.12. Let T be a tree with countable vertex set V (T ). Then there is a sequence
of finite subtrees Ti of T such that

⋃
i Ti = T and the sequence Ti has the following

properties:
(i) T0 = (v0) where v0 ∈ V (T );
(ii) V (Ti )= (v0, v1, . . . , vi ), vs ∈ V (T ), 0≤ s ≤ i ;
(iii) E(Ti )= (e1, e2, . . . , ei ), where σ(es), τ (es) ∈ V (Ti ), 1≤ s ≤ i .
In particular, V (Ti+1)= V (Ti ) ∪ vi+1 and E(Ti+1)= E(Ti ) ∪ (ei+1) and σ(ei+1)

∈ V (Ti ), τ (ei+1)= vi+1.

The proof follows easily from the definition of a tree.
We now present the notion of a tree product of groups, introduced in [23]. First, a tree

of groups G, consists of:
(i) a tree T ;
(ii) a group Gv for each vertex v ∈ E(T ) and a group Ge for each edge e ∈ E(T ) such

that Ge = G ē for all e ∈ E(T );
(iii) monomorphisms τ(e) : Ge→ Gτ(e) and σ(e) : Ge→ Gσ(e).

The tree product of groups is the group

π(G)= (5∗v∈V (T )Gv)/N

where N is the normal subgroup of 5∗
v∈V (T )

GV generated by (σ (e)a)(τ (e)a)−1, a ∈ Ge,
e ∈ E(T ).

PROPOSITION 3.13. Let T be a tree of groups such that the vertex group Gv is a strongly
treeable for each v ∈ V (T ) and Ge is a finite group for each e ∈ E(T ). Then the tree
product of groups G = π(T ) is also a strongly treeable group.

Proof. We use the notation of Lemma 3.12. Let 0i be a tree product of groups
corresponding to a finite subtree Ti . Then 0i ⊆ 0i+1 and G =

⋃
i 0i . Moreover, it follows

from Lemma 3.12 that
0i+1 = 0i ∗Gei+1

Gvi+1 . (4)

This means that 0i+1 is the free product of the 0i and Gvi+1 , by amalgamating the
subgroup τ(ei+1)Gei+1 of Gvi+1 and the subgroup σ(ei+1)Gei+1 of 0i .

Let Hi+1 be the subgroup of 0i+1, elements h of which have the form h = σ(ei+1)(g)
= τ(ei+1)(g) where g ∈ Gei+1 .
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A free measure-preserving action of G on a standard Borel probability space (X, µ).
Then G induces a Borel equivalence relation E X

G on (X, µ). We consider the following
equivalence relations on (X, µ):

E X
0i
, E(vi )= E X

Gvi
, E(ei )= E X

Hi
. (5)

It follows from (4) that

E X
0i+1
= E X

0i
∗E(ei+1) E(vi+1). (6)

Recall that each E(vi ), i = 0, 1, 2, . . . is treeable and E(ei ), i = 1, 2, . . . is finite by
assumption. As E X

00
= E(v0), by our construction (see Lemma 3.12), it follows from (6)

and Lemma 3.7 that E X
01

is also treeable and there is an L-treeing T1 of E X
01

such that

T0 ⊂ T1 where T0 is an L-treeing of E(v0). Suppose that Ti is an L-treeing of E X
0i

, then

(6) and Lemma 3.7 show that there is an L-treeing Ti+1 of E X
0i+1

such that Ti ⊂ Ti+1. Let
T =

⋃
i Ti . The argument of the end of the proof of Proposition 3.4 now allows one to

conclude that T is an L-treeing of E X
G =

⋃
i E X

0i
. 2

3.3. Construction of Karrass, Pietrowski and Solitar

Definition 3.14. We say that a group G is a KPS group if it is a HNN extension of a
tree product of a countable set of finite groups with uniformly bounded orders, whose
associated subgroups are contained in vertices of the tree product base.

This class of groups was introduced in [22], where it was also proved that each KPS
group is a finite extension of a free group.

Now we are ready to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Since G is countable, it follows from Propositions 3.13 and 3.4 that
G is a strongly treeable group. 2

We now give some applications of Theorem 3.1.

PROPOSITION 3.15. Let K be a free product of a countable collection of a finite abelian
groups {Ai | i ∈ N} with uniformly bounded orders. Then any finite extension of K is a
strongly treeable group.

The proof of this proposition is based on the following lemma.

LEMMA 3.16. Let K be as in the statement Proposition 3.15. Then K is a finite normal
extension of a free group.

Proof. Let H ≤ K be the centralizer subgroup, generated by xyx−1 y−1, x, y ∈ K . It is
well known that H is a free normal subgroup of K and K/H is abelian.

Suppose first that Ai = {1} for i > m ∈ N. Let Am
=×

m
i=1 Ai , and write Ai =

{ai
1, . . . , ai

pi
} for i = 1, . . . , m, pi <∞. Then {ai

j | 1≤ i ≤ m, 1≤ j ≤ pi } are
generators for K and also for Am . This allows us to conclude that K/H and
Am are isomorphic. (In fact, further analysis shows that H is a f.g. free group,
see Corollary 4.6 below.)
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Suppose now that {Ai | i ∈ N}, is such that Ai 6= {1} for sufficiently large i . Consider
firstly the case when each Ai is a copy of a fixed finite abelian group A, and let
L =×i∈NAi . Then we have two canonical maps ϕ1 : K → L and ϕ2 : L→ A, defined
by ϕ1(ai1 , . . . , air )= (ai1 , . . . , air ),where ai ∈ Ai , ai1 . . . , air ∈ K , (ai1 , . . . , air ) ∈ L ,
and ϕ2((ai1 , . . . , air ))= ai1 , . . . , ai2 · · · · · air , where ai1 · · · · · air ∈ A.

Since Ai → ϕ1(Ai ) is an isomorphism, for any i , we put ϕ1(Ai )= Ai . Similarly, we
put ϕ2(Ai )= A, and let H1 = ker ϕ1 and H2 = ker ϕ2.

It is clear that H2 is a normal subgroup of L . We claim that L = Ai H2 for any i .
To see this, we first describe the structure of H2. Let A = {a1, . . . , at } and write
Ai = {ai

1, . . . , ai
t }. Suppose that (ai1

1 , ai2
2 , . . . , ais

s ), s <∞, belongs to L . Then

ϕ2(a
i1
1 , . . . , ais

s )= a1, . . . , as ∈ A. It is now obvious that ϕ2 is a homomorphism from
L onto A, and that

H2 = {(a
i1
1 , . . . , ais

s ) ∈ L | ϕ2((a
i1
1 , . . . , ais

s ))= a1 · · · · · as = e}.

This shows that, for any i , L = Ai H2, as claimed. Now define N = ϕ−1
1 (H2). Then N

is a normal subgroup of K , and since ϕ1 is a surjective homomorphism from K onto L ,
K/N is isomorphic to L/H2 ≈ Ai ≈ A by [27, Ch. I, §4(v)]. Thus, N is a normal subgroup
of finite index in K and K/N ≈ A.

We now show that N is a free group. As N is a normal subgroup of K we see that
Ai/(Ai ∩ N )≈ Ai N/N by [27, Ch. I, §4(iv)]. Recall that H1 ⊂ N is also a normal
subgroup of K : hence we obtain Ai N/N ≈ ϕ1(Ai N )/ϕ1(N ) by [27, Ch. I, §4(iii)].
But ϕ1(Ai N )= ϕ1(Ai )ϕ1(N )= Ai H2 = L and ϕ1(N )= H2, hence Ai N/N ≈ L/H2

≈ A. Thus, we see that Ai/Ai ∩ N ≈ A. This is possible if and only if

Ai ∩ N = {1}.

Further, for each k ∈ K ,

k Ai k
−1
∩ N = k(Ai ∩ N )k−1

= {1}.

On the other hand, the Kurosh subgroup theorem [29] implies that there is a free group F
so that

N = F ∗ (∗i,k(k Ai k
−1
∩ N ))

for some i ∈ N and some k ∈ K . One can conclude the relations above that N = F, i.e. the
group K is a finite normal extension of a free group.

Now we consider the general case. As the groups Ai have uniformly bounded orders,
there is only a finite number of them which are pairwise non-isomorphic. Denote these
groups as {Bi | 1≤ i ≤ t}.

To study this case we apply the same approach as above. Thus, let L =×∞i=1 Ai and
B =×t

i=1 Bi . Consider the canonical maps ϕ1 : K → L and ϕ2 : L→ B defined as above.
Again we see that N = ϕ−1(H2) is a free subgroup of finite index in K with K/N ≈ B. 2

Now we are ready to complete the proof of Proposition 3.15.

Proof of Proposition 3.15. Let K be as in the statement of Proposition 3.15, and N be a free
subgroup of K with [K : N ]<∞, the existence of which was proved in Lemma 3.16. If
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G f (K ) is a finite extension of K , then [G f (K ) : K ]<∞. Thus, [G f (K ) : N ] = [G f (K ) :
K ]· [K : N ]<∞, and G f (K ) is a finite extension of N . It follows by Corollary 3.3 that
G f (K ) is a strongly treeable group. 2

Remark 3.17. The KPS construction allows us to give many examples of finite extensions
of free groups. There is a similar method of constructing extensions using finite groups
of outer automorphisms of a free group. Let F be a free group, Aut F the group of all
automorphisms of F, and G a finite subgroup of Aut F . Then one can construct a finite
extension of F , for example, as a semi-direct product of F and G. Finite subgroups of
Aut F have been considered by different authors, see the review of Roman’kov [34]. In
particular, interesting examples of periodic automorphisms of free groups can be found in
articles of Dyer and Scott [11], McCool [30] and Meskin [31].

4. Finite extensions of free products of f.g. amenable groups.
In this section, we consider free products of groups K = K1 ∗ K2 ∗ · · · ∗ Kk, k <∞,
where each Ki is a f.g. amenable group all of whose subgroups are also f.g. These groups K
are strongly treeable (see §2.6).

In §4.1 we consider the case when each Ki is a torsion-free group and prove that any
finite extension G f (K ) of K is also a strongly treeable group, see Theorem 4.4. This result
is important in §5.

Let B be the set of all f.g. amenable groups all of whose subgroups are also f.g., and
let A be the subset of B consisting of finite groups, all torsion-free groups and their finite
extensions.

The simplest example of an amenable torsion free f.g. group all of whose subgroups
are f.g. is Zn, n <∞, so we have Zn

∈A. Another interesting examples is the solvable
group of all n × n quasi-triangular matrices over Z with determinant equal to one. It is
easy to construct semi-direct products of Z and (

⊕
Z)Z which is a f.g. amenable group

not belonging to A.
In §4.2, we extend the results of §4.1 to show that if Ki ∈A for any i , then G f (K )

is again strongly treeable, see Theorem 4.5. Furthermore, if the group K has a torsion,
then K is a normal finite extension of a free product of torsion-free groups Ki from A, see
Corollary 4.6.

4.1. Free products of f.g. torsion-free amenable groups. We first consider the subclass
consisting of free products of Zn in detail, i.e. the groups F(n1, n2, . . . , nk)= Zn1 ∗ · · · ∗

Znk , where k <∞, and each ni is an integer. We use these groups also in §5.
Recall the rank of a group H (rank(H)) is the minimum number of generators of H .

LEMMA 4.1. Let K be a subgroup of the group F(n1, . . . , nk) as above, of finite rank.
Then K is isomorphic to a group of the form F(n′1, . . . , n′l) this subclass, where k ≤ l
<∞. Furthermore, for any n′j , 1≤ j ≤ l, there exists ni , 1≤ i ≤ k such that n′j ≤ ni .

Proof. Recall that the subgroup K has the form

K = F ∗ (∗s
j=1 K j )
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where F is a free group, and each K j is the intersection of K with a conjugate of some
factor Zni of F(n1, . . . , nk) by the Kurosh subgroup theorem [29]. Furthermore,

rank(K )= rank(F)+
s∑

j=1

rank(K j ),

by the Grushko–Neumann theorem [29, Ch. IV, Corollary 1.9]. Hence, s ≤ rank(K ) <∞,
and since K j = K ∩ gZn j g−1 for some g ∈ F(n1, . . . , nk) and j ≤ s it follows that K j ≈

Zm j where 1≤ m j ≤ n j . Thus, K is isomorphic to a group of the form F(m1, . . . , ml),
where l <∞, 1≤ m j ≤ ni , and 1≤ j ≤ l, 1≤ i ≤ k. 2

LEMMA 4.2. Let G = F(n1, . . . , nk) be as in the statement of Lemma 4.1, and K be
a normal subgroup of G of finite index. Then rank(K ) <∞, and K is isomorphic to
F(m1, . . . , ml) where l <∞. Furthermore, any j = 1 f . . . , l, m j is equal either to one
or to ni , 1≤ i ≤ k. For any ni there is at least one j such that m j = ni . Thus, K is
isomorphic to F ∗ (∗k

i=1(∗(Z
ni ))pi ) where pi > 0 is an integer, and F is a free group of a

finite rank.

Proof. Let d =
∑k

i=1 ni <∞, and let Fd denote the free group of rank d . We have
the canonical surjective homomorphism ϕ : Fd → G. Let H = ϕ−1(K ). Then [27, I,
§4(v)] H is normal in Fd , and the quotient group Fd/H is isomorphic to G/K . Hence,
[Fd : H ] = [G : K ]<∞, and as H is a subgroup of finite index in the free group Fd , we
have rank(H) <∞ (see [29, Ch. I, Proposition 3.9]). As K = ϕ(H) we must also have
rank(K ) <∞.

It follows from Lemma 4.1 that K has the form F(m1, . . . , ml), where l ≤∞.
We apply the Kurosh subgroup theorem [29] (version of [23, Introduction] or
[6, Ch. 7, Theorem 8]). It follows that K = F ∗ (∗i,g Ki,g), where F is a free group of
finite rank, K j,g = K ∩ g(Zn j )g−1 and there is a free subfactor Ki,g in K for each i ,
1≤ i ≤ k, and each g in a given set of representatives of the (K , Zni ) double cosets of G.

As K is normal in G:

g(Zn j )g−1/K j ≈ g(Zn j )g−1 K/K ⊆ G/K

by [27, Ch. I, §4(iv)]. However, [G : K ]<∞, and it follows that K j is isomorphic to
g(Zn j )g−1.

Indeed take a subgroup of g(Zn j )g−1 of the form W = g(Z)g−1. Then K ∩W is a
normal subgroup of W , and [W : K ∩W )] ≤ [G : K ]<∞. Hence, K ∩W is isomorphic
to mZ for some m ∈ N. Thus, K j is a subgroup of g(Zn j )g−1 with the same number of
generators as g(Zn j )g−1 and, hence, K j,g ≈ Zn j . 2

Now we are ready to prove the following theorem.

THEOREM 4.3. A finite extension of the group H = F(n1, . . . , nk) is also a strongly
treeable group.

Proof. We use induction on the rank of H . Note that the statement holds for H of rank one
since in this case H = Z. If rank(H)= 2 then either H = Z2 or H = F2. However, Z2 is
abelian and our statement holds for Z2. The case H = F2 was proved in §3 above.
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Suppose that the statement holds for all H = F(n1, . . . , nk) with rank(H)
=

∑k
i=1 ni = m, and consider a group H of the form H = F(n1, . . . , nk) with rank(H)

= m + 1. As rank(H) is finite, H has an infinite number of ends [5, §2, Example 2]. Since
[G : H ]<∞, it follows by [42], see [5, Proposition 2.1] that G is also a f.g. group with an
infinite number of ends. Now by [42] either:
(i) G = A ∗C B, where A, B are subgroups of G, C is a finite group, and A 6= C 6= B;

or
(ii) G = 〈t, K ; tCt−1

= ϕ(C)〉, where C is a finite subgroup of K , ϕ is an isomorphism
from C to ϕ(C)⊂ K .

First suppose that (i) holds. If A and B are finite, the conclusion follows (see
Lemma 3.7). Assume, therefore, that A is infinite. Since H has trivial intersection with
any conjugate of C in G, we may apply the Neumann subgroup theorem [23, 24, 29,
Ch. IV, Theorem 6.6] to deduce that H = (H ∩ A) ∗ (H ∩ B) ∗ · · · . As [G : H ]<∞ and
[G : A] =∞ it follows that H ∩ A 6= H .

By the Grushko–Neumann theorem [29], we have rank(H ∩ A) < rank(H) <∞, and
as above, H ∩ A is isomorphic to the group F(n′1, . . . , n′s), s <∞ by Lemma 4.1.

We claim that H ∩ A 6= {1}. As [G : H ]<∞, there is a normal subgroup H ′ of
G such that H ′ ⊂ H and [G : H ′]<∞. If H ∩ A = {1}, then also H ′ ∩ A = {1}, and
A = A/(H ′ ∩ A)≈ AH ′/H ′ ⊂ G/H ′. As [G : H ′]<∞, this means that A is a finite
group, which contradicts our assumption on A, and hence proves our claim.

We thus have {1} 6= (H ∩ A) 6= H . Furthermore, because [A : (H ′ ∩ A)] ≤ [G : H ′]<
∞ and [A : (H ∩ A)] ≤ [A : (H ′ ∩ A)]<∞, we see that A is a finite extension of H ∩ A.
As rank(H ∩ A) < rank(H) <∞ and H ∩ A has the same form as H (Lemma 4.1), one
can apply the inductive hypothesis to conclude that A is a strongly treeable group. The
same argument shows that B is also strongly treeable. Now G = A ∗C B is strongly
treeable by Corollary 3.8.

Now suppose that (ii) above holds. If K is a finite group, then the conclusion follows
from Lemma 3.9. Assume therefore that K is infinite. As H and K both have finite index
in G, it follows K ∩ H 6= H . As [G : H ]<∞ we can use the argument of (i) to prove
that K ∩ H 6= {1}. Thus, we have, as above, {1} 6= (H ∩ K ) 6= H . Since H intersects the
conjugates of C in G trivially, the Neumann subgroup theorem gives H = (H ∩ K ) ∗ · · · ,
and hence rank(H ∩ K ) < rank(H). Moreover, as in (i), H is a finite extension of H ∩ K ,
and H ∩ K has the same form as H by Lemma 4.1. Hence, one can apply the inductive
hypothesis to K and H ∩ K to conclude that K is a strongly treeable group. It now follows
from Lemma 3.9 that G is strongly treeable. 2

It is not too hard to generalize Theorem 4.3 to a free product of elements in A.

THEOREM 4.4. Let G be a finite extension of a group H of the form H = ∗k
i=1 Hi , k <∞,

where Hi is a torsion free f.g. amenable group from A. Then G is a strongly treeable group.

Proof. Note first that each amenable group Hi is strongly treeable. Thus, H is a f.g. group,
and it has infinitely many ends in the sense of Stallings [42]. Hence, G also has this
property, and we can apply results of [42] to G and use induction on rank(H) as in the
proof of Theorem 4.3. It is easy to see that a lemma analogous to Lemma 4.1 holds.
Hence, it is easy to modify the approach of Theorem 4.3 to this more general case. 2
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4.2. Free products of f.g. amenable groups with a torsion. In this section, we extend
Theorem 4.4 to a free product of f.g. amenable groups with torsion.

THEOREM 4.5. For k ∈ N, choose groups {Hi ∈A : 1≤ i ≤ k}. Let G be a finite extension
of the group H = ∗k

i=1 Hi . Then G is strongly treeable.

Proof. To simplify the proof, we suppose that each Hi is a f.g. abelian group. The general
case has some obvious technical complications, which are left to the reader. Then each
Hi has the form Hi = Zni × Ai , where ni is an integer and Ai is a finite abelian group by
[27, Ch. I, §10, Theorem 8].

Let K be the normalizer subgroup of H generated by elements xyx−1 y−1, x,
y ∈ H . As is well known, H/K u×k

i=1(Z
ni × Ai ). If Z =×k

i=1Zni and
A =×k

i=1 Ai , then the homomorphism ϕ : H → Z × A is defined as follows:
ϕ(z1a1 · · · zkak)= (

∏k
i=1 zi ,

∏k
i=1 ai ) where zi ∈ Zni , ai ∈ Ai , z1a1 · · · zkak ∈ H and∏

i zi ∈ Z ,
∏

i ai ∈ A.
This definition of ϕ shows that ϕ is surjective and ker ϕ = K . Since Z is a normal

subgroup of finite index in Z × A, it follows from [27, Ch. I, §4(v)] that N = ϕ−1(Z) is a
normal subgroup of finite index in H .

It is obvious that N is a torsion-free subgroup of H . Indeed, K ⊂ N ⊂ H , where K is
a free subgroup of H . Choose a family {γi }i∈N of coset representatives of N/K , where
γi ∈ Z, and let n be an element of a finite order t from N .

Then n = γsk where γs ∈ {γi }, k ∈ K . Now we have ϕ(nt )= (ϕ(n))t = γ t
s = e, and

hence γs = e, because Z is torsion free. Therefore, n = k ∈ K and, hence, n = e as K is a
free group.

Since N is torsion free, we obtain

N ∩ (Zni × Ai )= N ∩ Zni ,

and since N is a normal subgroup of H then for any h ∈ H ,

Ni,h = N ∩ h(Zni × Ai )h
−1
= h(N ∩ Zni )h−1.

It follows from the Kurosh subgroup theorem that

N = F ∗ (∗i,h Ni,h),

for some h ∈ H, 1≤ i ≤ k, k <∞.
Now we have assumed that d = rank(H) <∞. Hence, as above, we have the

canonical surjective homomorphism ψ : Fd → H where as usual Fd is a free group of
rank d . Let N ′ = ψ−1(N ): then N ′ is a normal subgroup of Fd and Fd/N ′ ≈ H/N by
[27, Ch. I, §4,(v)]. As [H : N ]<∞ by construction, N ′ is a finite index subgroup of
Fd , and hence rank(N ′) <∞ by [29, Ch. I, Proposition 3.9]. It follows that rank(N )=
rank(ψ(N ′)) <∞ also. As N is a free product of groups F and Ni,h as above, we have by
the Grushko–Neumann theorem

rank(N )= rank(F)+
∑
i,h

rank(Ni,h) <∞.

It follows from this equality that rank(F) <∞ and only a finite number of terms
rank(Ni,h) in this sum differ from the zero. This means that N is a free product of a
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finite number of groups of the form Zni , ni ∈ N. Finite extensions of these class of groups
were studied in Theorem 4.3.

Now, if G is a finite extension of H, then G is also a finite extension of N , because
[G : N ] = [G : H ]· [H : N ]<∞. It now follows from Theorem 4.3 that G is strongly
treeable. 2

The proof of Theorem 4.5 has the following corollaries.

COROLLARY 4.6. Let H be as in the statement of Theorem 4.5. If H has an element
of finite order, then H is a finite normal extension of a torsion free group N of the
form N = ∗k

i=1 Ni where k <∞, and each Ni is a f.g. torsion-free amenable group
(cf. Theorem 4.4). In particular, if H is a free product of finite groups, then N is a f.g.
free group.

COROLLARY 4.7. Let H = ∗k
i=1 Hi be as in the statement of Theorem 4.5. If each Hi is a

f.g. abelian group, then H is a strongly treeable group.

5. The geometric dimension of an equivalence relation and finite extensions of groups
In this section we give some applications of results of §§3 and 4. We consider free actions
of groups and their finite extensions on the standard Borel space (X, µ) which define
equivalence relations with geometric dimension (see [14, 15]) greater than one. We present
a generalization of results of §§3 and 4 for such groups: Theorems 5.9, 5.11 and 5.13.

5.1. Geometric dimension. We recall Gaboriau’s definition of the geometric dimension
of a measure-preserving equivalence relation R on a standard Borel probability space
(X, µ), see §2.2.

Definition 5.1. [14, 15]. A simplicial complex with standard left R-action, or more briefly
an R-simplicial complex 6, consists of following data.
• A discrete left R-space 6(0)→ X (space of vertices);
• For each n ∈ N, a Borel subset 6(n) ⊂6(0) ∗ · · · ∗6(0) (n + 1 times) called the

space n-simplices (possible empty for large n), satisfying the following four
conditions:
(i) (permutation) 6(n) is invariant under permutation of the coordinates;
(ii) (non-degeneracy) if (v0, v1, . . . , vn) ∈6

(n) then v0 6= v1;

(iii) (boundary conditions) (v1, v2, . . . , vn) ∈6
(n−1)
;

(iv) (invariance) R ·6(n) =6(n).

The data in the fiber of each x ∈ X is just an ordinary (countable) simplicial complex,
denoted by 6x .

The R-simplicial complex 6 is n-connected, respectively contractible, respectively
n-dimensional if for almost all x in X, the simplicial complex 6x has corresponding
properties. For some examples, see [14, 15].

Definition 5.2. [14, 15]. The geometric dimension of an equivalence relation R
(geom-dim(R)) is the smallest dimension of a contractible R-simplicial complex.
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Examples 5.3. We give several examples which will be crucial in what follows.
(i) Choose a finite sequence of integers {p1, . . . , pl}. Let

Gl = Gl(p1, . . . , pl)= Fp1 × · · · × Fpl ,

where Fpi is a free group with pi generators. It follows from [14] that if pi > 1 for
i = 1, 2, . . . , l then each free Borel action of Gl on a standard Borel space (X, µ)
with Gl -invariant probability measure µ induces an equivalence relation E X

Gl
such

that geom-dim(E X
Gl
)= l. In particular, if l = 1, then G1 = Fp1 is a free group and,

as is well known, geom-dim(E X
G1
)= 1.

(ii) Let A be a countably infinite amenable group and Gl as in (i). It is shown in [14]
that geom-dim(E X

A )= 1 and geom-dim(E X
A×Gl

)= l + 1.
(iii) Let F(n)= F(1, 1)× F(2, 2)× · · · × F(n, n), n ∈ N, where the groups F(i, i)

= Zi
∗ Zi were introduced in §4. It follows from [13, §VII] and [14, §3.5], that

any free Borel action of F(n) on (X, µ) as above induces an equivalence relation
E X

F(n) such that geom-dim(E X
F(n))= n.

Definition 5.4. Let G be a countably infinite group and let n ∈ N. We say that the
geometric dimension of G is equal to n, geom-dim(G)= n, if any free measure-preserving
Borel action of G on a standard Borel probability space (X, µ), induces an equivalence
relation E X

G with geom-dim(E X
G )= n.

In Examples 5.3, we have geom-dim(Gl)= l, geom-dim(Fp)= 1, geom-dim(A)= 1,
geom-dim(A × Gl)= l + 1, and geom-dim(F(n))= n.

Recall [13] that if l > 1, then C(Gl)= 1, and C(A × Gl)= 1, where C(H) is the
cost of a group H . On the other hand, [13, 14] if p > 1, then C(Gl ∗ Fp)= p + 1, and
geom-dim(Gl ∗ Fp)= l.

Gaboriau [14, Definition 6.4] introduced the notion of ergodic dimension for a more
general class of groups than in Definition 5.4. This definition was introduced as an
analogue of the notion of cohomological dimension (cd) from the theory of infinite groups,
and has deep relations with l2 Betti numbers. A theorem of Serre [3, Ch. VIII, §3] states
that if K is a torsion-free group and K ′ is a subgroup of finite index, then cd(K )= cd(K ′).

Note that if K ′ is a finite extension of K , then erg-dim(K )= erg-dim(K ′). This
is easy to see from [14, Definition 6.4], and properties of induced actions of groups
[25, §34.1]. We use similar arguments in the proof of Lemma 5.5. If geom-dim(K )
= n ∈ N, and K ′ is again a finite extension of K and if K ′ has finite geometric dimension,
then geom-dim(K ′)= geom-dim(K ).

In §§3 and 4, we discussed this question for groups K , where geom-dim(K )= 1. We
showed the existence of many groups K such that geom-dim(K ′)= geom-dim(K )= 1
for any finite extension K ′ of K . We show below that for any natural number n > 1,
there exists a group Kn with geom-dim(Kn)= n such that geom-dim(G f (Kn))= n for
any finite extension G f (Kn) of Kn .

5.2. Finite extensions of groups Gl and A × Gl . In this section we consider the
geometric dimensions of finite extensions of the groups Gl . The main results are
Lemma 5.8 and Theorem 5.9.
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LEMMA 5.5. Let G be a countable group with geom-dim(G)= l ≥ 1, and let H be a
subgroup of G of finite index. Then geom-dim(H)= l.

Proof. Given a free measure-preserving action of H on a standard Borel probability space
(X, µ), we construct the induced action of G on the space Y = X × (G/H), see [25,
§34.1]. Consider the equivalence relations EY

G and E X
H . It follows from the construction of

induced actions that EY
G |X = E X

H , see [25, §34.1]. Thus, EY
G and E X

H are stably orbit equiv-
alent (SOE) equivalence relations (see [14, §5.1] and [15, §1.4]). Hence, geom-dim(E X

H )

= geom-dim(EY
G)= l, see [14, §5.2]. Thus, any free action of H on any standard Borel

space (X, µ) defines an equivalence relation E X
H with geom-dim(E X

H )= l. 2

Definition 5.6. If H is a group, we denote by G f (H) a finite extension of H .
If H has one of the forms from Examples 5.3:

• H = Gl ;
• H = A × Gl where A is a countably infinite amenable group;
• H = F(n);
then we say that a finite extension G f (H) of H has standard form if it has one of the three
forms (respectively):
• G f (H)⊆ G ′f (Gl)= G f (Fp1)× · · · × G f (Fpl );
• G f (H)⊆ G ′ f (A × Gl)= G f (A)× G ′f (Gl);
• G f (H)⊆ G ′f (F(n))= G f (F(1, 1))× · · · × G f (F(n, n)).
Let G f n(G) be a finite normal extension of a group G, i.e. G is a normal subgroup of
G f n(G) and [G f n(G) : G]<∞.

COROLLARY 5.7.
(i) We have geom-dim(G ′f (Gl))= l, and geom-dim(G ′f (A × (Gl))= l + 1.
(ii) Moreover, if K is a finite extension of Gl (respectively A × Gl ) in standard form,

then geom-dim(K )= l (respectively geom-dim(K )= l + 1).
(iii) If K is a finite extension of F(n) in standard form, then geom-dim(G f (F(n))

= geom-dim(G f (F(1, 1))× · · · × G f (F(n, n))= geom-dim(F(n))= n.

Proof. (i) It follows from Corollary 3.2 and Corollary 3.3 that geom-dim(G f (Fp))

= 1. Thus we have that geom-dim(G ′f (Gl))= l and geom-dim(G ′f (A × Gl))= l + 1 by
[14, §3.5]. For (ii), Lemma 5.5 shows that geom-dim(K )= l (respectively geom-dim(K )
= l + 1).

(iii) This follows from Theorem 4.3, [14, §3.5] and Lemma 5.5. 2

A natural question arising from this corollary is to understand whether there is a group
of the form Gl or A × Gl such that its finite extensions all have standard form. We show
below the existence of such groups. We need the following lemma.

LEMMA 5.8. Let Gl = Fp1 × · · · × Fpl be as above, p1 < p2 < · · ·< pl , and let A be
countably infinite amenable group with trivial centre.

Then G f n(Gl) (respectively G f n(A × Gl)) has standard form. Hence, geom-dim
(G ′f n(Gl))= l (respectively geom-dim(A × G ′f n(Gl))= l + 1).
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Proof. Consider the case G2 = Fp1 × Fp2 , p1 < p2. The general case is completely
similar. For s ∈ G f n(G2), s /∈ G2, let Ad(s)= α. Then α(G2)= G2. Note that α(Fp1)

= Fp2 is impossible because p1 6= p2.
We claim that α(Fpi )= Fpi , i = 1, 2. Indeed, if x ∈ Fp1 then the centralizer Cx of x in

G2 coincides with (xn, n ∈ Z)× Fp2 . As the centralizer Cα(x) of α(x)must be isomorphic
to Cx then a simple analysis shows that α(x) belongs to Fp1 . Thus, α(Fp1)= Fp1 and
α(Fp2)= Fp2 . Hence, α = α1 × α2 where αi ∈ Aut Fpi , i = 1, 2. Since the Fpi , i = 1, 2
are free groups, it follows from the basic properties of normal extensions of groups that
G f n(G2) is a subgroup of G f n(Fp1)× G f n(Fp2) where G f n(Fpi ) is a finite normal
extension of Fpi . In fact, it is easy to describe G f n(Fpi ) explicitly: it is isomorphic to
G f n(G2)/Z Fpi

where Z Fpi
is the centralizer of Fpi in G f n(G2).

Thus, the extension G f n(G2) has standard form, and geom-dim(G f n(G2))

= geom-dim(G2)= 2 by Corollary 5.7. 2

THEOREM 5.9. Let A be a countably infinite amenable group and assume that any normal
subgroup B E A of finite index has trivial centre. Consider the following groups:
• K1 = A × Fn, 1< n ≤∞;
• K2 = Fn × F∞, n <∞;
• K3 = A × Fn × F∞, n <∞.
Then each finite extension G f (Ki ) of Ki has standard form, and in partic-
ular, geom-dim(G f (Ki ))= geom-dim(Ki )= 2 if i = 1, 2, and geom-dim(G f (K3))

= geom-dim(K3)= 3.

Proof. If H and K are subgroups of G, we let NK denote the normalizer of K in G.
Recall that if H ≤ NK , then there is a surjection ϕ : H → H K/K , with kernel H ∩ K ,
and H/(H ∩ K )≈ H K/K , see [27, Ch. I, §4].

We consider in detail only the group K2, and let G = G f (K2). The other cases are
similar. As is well known, there exists a normal subgroup N of G such that N ⊂ K2

and [G : N ]<∞. Consider the subgroups Fn ∩ N and F∞ ∩ N of G, and note that the
normalizer of N is G. It follows from the remark above that
• [Fn : Fn ∩ N ] = [Fn N : N ]< [G : N ]<∞,
• [F∞ : F∞ ∩ N ]< [G : N ]<∞.
Hence, if N ′ = (Fn ∩ N )× (F∞ ∩ N ), then [G : N ′] = [G : K2]· [Fn × F∞ : N ′]<∞.

Let us show that N ′ is also a normal subgroup of G. Note first that N ∩ Fn is a free
normal subgroup of Fn, where [Fn : (Fn ∩ N )]<∞ (see [29, Ch. I, §3]). Moreover, as
rank(Fn ∩ N )− 1= (rank(Fn)− 1)· [Fn : (Fn ∩ N )]<∞, see also [29, Ch. I, §3], we
must have rank(Fn ∩ N ) <∞. The same argument shows that N ∩ F∞ is a free normal
subgroup of F∞. It is clear that rank(N ∩ F∞)=∞; otherwise, rank(F∞) <∞ which is
impossible. Thus, Fn ∩ N is not isomorphic to F∞ ∩ N for any n <∞.

It follows from the construction that N ′ is a normal subgroup of K2 = Fn × F∞. As
above, we take α = α(s)= Ads for s ∈ G, s /∈ K2. It follows from our assumptions on
N that Ad(s) ∈ Aut N . If a ∈ N , a /∈ N ′, then a must have the form a = a1a2, where
a1 ∈ Fn, a2 ∈ F∞, and a1, a2 6= e. Hence, the centralizer Ca of a in N contains only
elements of the form an

1 am
2 , n, m ∈ Z. This means that Ca is an abelian subgroup of N .
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On the other hand, if x ∈ Fn ∩ N , then the centralizer Cx of x in N has the form
{xn
| n ∈ Z} × (F∞ ∩ N ). Hence, the centralizer Cα(x) of α(x) must be isomorphic to Cx .

This observation shows that α(x) cannot have the form α(x)= a1a2, where a1 ∈ Fn,

a2 ∈ F∞, and a1, a2 6= e, nor can it have the form α(x)= a2 ∈ F∞, a2 6= e. There remains
only one possibility, that α(x)= a1 ∈ Fn ∩ N , and hence α(Fn ∩ N )= (Fn ∩ N ). The
same argument shows that α(F∞ ∩ N )= F∞ ∩ N . It follows from these observations that
N ′ = (Fn ∩ N )× (F∞ ∩ N ) is a normal subgroup of G = G f (Fn × F∞) of finite index.
Hence, G has the form G = G f n(N ′), and we are in the situation of Lemma 5.8. It follows
from this lemma and Lemma 5.5 that geom-dim(G)= geom-dim(N ′)= geom-dim
(Fn × F∞)= 2.

Let us show that G f (K2) has standard form. Indeed, we have that G f (K2)= G f n(N ′),
but G f n(N ′) has standard form by Lemma 5.8, and hence G f n(N ′)⊂ G f n(Fn ∩ N )
× G f n(F∞ ∩ N ). As Fn ⊂ G f n(Fn ∩ N ) and F∞ ⊂ G f n(F∞ ∩ N ) then G f n(Fn ∩ N )
⊆ G f (Fn) and G f n(F∞ ∪ N )⊆ G f (F∞. Hence, G f (K2)⊆ G f (Fn)× G f (F∞). 2

Remark 5.10. One can prove that geom-dim(K )= geom-dim(Z× Fn)= 2 for any finite
extension K of Z× Fn . We do not present a proof of this assertion because we do not
apply it below. This proof uses other methods than those in Lemma 5.8 and Theorem 5.9.
(See [26, Part I, §2, 2.4].)

5.3. Finite extensions of groups F(n). In Theorem 5.9, we showed that we cannot
use only free groups to produce a group Kn, n ∈ N, with geom-dim(Kn)= n such that
geom-dim(G f (Kn))= n for all finite extensions G f (Kn) of Kn for any n > 1.

In this section we consider the groups F(n), n > 1, introduced in §5.1. We showed
that geom-dim(F(n))= n. In this section, we show that any finite extension of F(n) has
the same geometric dimension as F(n). This generalizes results of §§3 and 4 where we
investigated a class of groups with geometric dimension equal to one. The section is mostly
based on results of §4. Recall that F(i, i)= Zi

∗ Zi , F(n)= F(1, 1)× · · · × F(n, n),
and an extension of F(n) is of standard for if it has the form G f (F(1, 1))× · · · ×
G f (F(n, n)).

THEOREM 5.11. Any finite extension K = G f (F(n)) of the group F(n) is of standard
form, in particular, geom-dim(K )= geom-dim(F(n))= n.

We need the following lemma.

LEMMA 5.12. We have the following results.
(i) The groups F(i, i) and F( j, j) are not isomorphic for i 6= j .
(ii) Let N (i) E F(i, i) be a normal subgroup of finite index. Then N (i) is not isomorphic

to N ( j) for i 6= j .

Proof. (i) Let Cx be the centralizer of x ∈ F(i, i), and Ai = {Cx | x ∈ F(i, i)}. It is evident
that Ai contains centralizers Cx non-isomorphic to centralizers Cx ′ from A j if i 6= j .
Hence, F(i, i) is not isomorphic to F( j, j) if i 6= j .

(ii) It follows from Lemma 4.2 that N (i) is isomorphic to F ∗ (∗(Zi ))m for some
m ∈ Z, 2≤ m <∞, where F is a free group of a finite index. Hence, N (i) is not
isomorphic to N ( j) if i 6= j by (i). 2
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Proof of Theorem 5.11. Consider first the case F(2)= F2 × F(2, 2). Let K = G f (F(2))
be a finite extension of F(2). Then there exists a normal subgroup N ⊂ F(2) of finite
index in K . Now N ∩ F2 is a normal subgroup of finite index in F2, and N ∩ F(2, 2)
is a normal subgroup of finite index in F(2, 2), see the proof of Theorem 5.9. Hence,
N ′ = (N ∩ F2)× (N ∩ F(2, 2)) is a subgroup of finite index in K .

Furthermore, from Lemma 5.12 and the argument on centralizers of elements of N
∩ F2, N ∩ F(2, 2) and N in the proof of Theorem 5.9, it follows that k(N
∩ F(n, n))k−1

= N ∩ F(2, 2) for k ∈ K . This means that N ∩ F(2, 2) is a normal
subgroup of K . Hence, both N ∩ F2 and N ′ = (N ∩ F2)× (N ∩ F(2, 2)) are
normal subgroups of K . Now it follows from Lemma 5.8 that K ⊆ G f n(N
∩ F2)× G f n(N ∩ F(2, 2)). As F2 ⊆ G f n(N ∩ F2) and F(2, 2)⊆ G f n(N ∩ F(2, 2)),
we have K ⊆ G f (F2)× G f (F(2, 2)). Hence, geom-dim(K )= geom-dim(G f (F2)

× G f (F(2, 2))= geom-dim(F(2))= 2, by Lemma 5.5 and Corollary 5.7.
The general case is proved similarly. Consider more explicitly the case F(3). Let

K = G f (F(3)), and choose N ⊂ F(3), a normal subgroup of finite index in K . Let
Ki = N ∩ F(i, i), i = 1, 2, 3, and Ki j = Ki × K j , i < j , i, j = 1, 2, 3.

As before, we can show that Ki is a normal subgroup of K . To see this note that Ki j

and Ki ′ j ′ are not isomorphic if (i, j) 6= (i ′, j ′). Indeed, one can see this by comparing sets
of centralizers of elements in Ki j and Ki ′ j ′ , respectively. It is obvious they are different
unless (i, j)= (i ′, j ′).

Now the centralizer of any element x from Ki1 in N is a group of the form A × Ki2i3

where A is an abelian subgroup of Ki1 , and i1 6= i2, i3. Hence, for k ∈ K , kxk−1, belongs
to N : but it cannot belong to Ki2 or Ki3 . Further, kxk−1 cannot have the form f p fq ,

where f p ∈ F(p, p), fq ∈ F(q, q), because the centralizer of f p fq in N has the form
A × F(r, r), where A is an abelian subgroup of F(p, p)× F(q, q) and r 6= p, q . By the
same reasoning kxk−1 cannot have the form fi f2 f3 where fi ∈ Ki . Thus, there is the only
one possibility, namely that for all x ∈ Ki1 , kxk−1

∈ Ki1 . This means that kKi k−1
⊆ Ki for

i = 1, 2, 3, and Ki E K . Recall that Ki is a subgroup of finite index in F(i, i), i = 1, 2, 3.
Thus N ′ = K1 × K2 × K3 is a normal subgroup of finite index in F(3), and hence in K .
The result is now clear. 2

The following theorem summarizes the results of this subsection.

THEOREM 5.13. We have the following results.
(i) For any integer n the group F(n) has geom-dim(F(n))= n, and if G f (F(n)) is any

finite extension of F(n) then also geom-dim(G f (F(n)))= n.
(ii) There exists a countable family of pairwise non-isomorphic groups {F(k, n) | k, n

∈ N}, such that geom-dim(F(k, n))= n, and if G f (F(k, n)) is a finite extension of
F(k, n) then also geom-dim(G f (F(k, n)))= n. Moreover, no group G f (F(k, n))
is isomorphic to any group G f (F(k′, n)) if k 6= k′.

Proof. Part (i) follows from Theorem 5.11. Let F(k, n)=×n
i=1 F(k + i, k + i) where

F(m, m) is a group as at the beginning of this section. It follows, again from Theorem 5.11,
that geom-dim(F(k, n))= n. Let us show that the group F(k, n) is not isomorphic
to F(k′, n) if k 6= k′. Indeed, let A = {Cx , x ∈ F(k, n)} and A′ = {Cx , x ∈ F(k′, n)},
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where Cx is the centralizer of x ∈ F(k, n) in F(k, n), or the centralizer of x ∈ F(k′, n)
in F(k′, n). Now it follows from Lemma 5.12(i) that A and A′ contain non-isomorphic
groups Cx if k 6= k′, hence F(k, n) and F(k′, n) are not isomorphic in this case.

Now suppose that K = G f (F(k, n)) is isomorphic to K ′ = G f (F(k′, n))where k 6= k′.
It follows from the proof of Theorem 5.11 and the remark on normal subgroups given
at the beginning of the proof of Theorem 5.9 that there exist a normal subgroup N of
finite index in K , N ⊂ F(k, n), and an isomorphic normal subgroup N ′ of finite index in
K ′, N ′ ⊂ F(k′, n). Furthermore, N and N ′ have the following structure

N =×n
i=1 Ni ,

where Ni is a normal subgroup of finite index in F(k + i, k + i), and

N ′ =×n
i=1 N ′i ,

where N ′i is a normal subgroup of finite index in F(k′ + i, k′ + i). We claim that N is not
isomorphic to N ′. To see this, we assume the contrary.

Recall that Ni ≈ F ∗ (∗(Zk+i ))mi for some integer mi , where F is a free group,
by Lemma 5.12(ii) and Lemma 4.2. Now any element x from N has the form
x = (x1, . . . , xn), where xi ∈ Ni . Suppose that xi 6= {1} for all i . Then the centralizer
Cx of x in N has the form Cx =×

n
i=1C ′xi

where C ′xi
is the centralizer of xi in Ni . Since

C ′xi
is isomorphic to Zsi , 1≤ i ≤ k + i, it follows that Cx ≈ (×

n
i=1Zsi )≈ Zs(x), where

s(x)=
∑n

i=1 si and s(x)≤ kn + n(n + 1)/2. As Ni ≈ (F ∗ (∗Zk+i )mi ) as above, there
exists y ∈ N such that s(y)= kn + n(n + 1)/2. As N and N ′ are isomorphic it follows
that k = k′. However, this contradicts our assumption. Hence, N is not isomorphic to N ′. 2
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