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Fines are smaller droplets produced from an auxiliary mechanism besides the
formation of the standard drops in a fragmentation process. We report their formation
in a controlled experiment which isolates an individual fragmentation protocol: the
collision of two rims bordering growing adjacent holes on a liquid sheet. The
standard drops come from the capillary breakup of the fused rims. Occasionally, the
rims collision is strong enough to trigger a new, splash-like mechanism, producing
an expanding lamellae perpendicular to the main sheet, which destabilizes into finer
drops. We quantify the threshold condition for the onset of this mechanism first
discovered by Lhuissier & Villermaux (J. Fluid Mech., vol. 714, 2013, pp. 361–392),
we document the resulting lamellae dynamics and explain why it affects the mean
drop size in the spray, broadening substantially the overall drop size distribution,
which we determine. Possible applications of these findings are mentioned.

Key words: thin films

1. Introduction
In many instances leading to the fragmentation of a liquid volume, a liquid sheet,

either occurring transitorily in a natural process or intentionally tailored by a dedicated
device, is the last but one step before the formation of drops. The last step is the
formation of ligaments, which may come from the destabilization of the sheet edge,
or may arise from the coalescence of holes piercing the sheet. These holes may
themselves nucleate spontaneously as a result of traces of impurities, or of defects in
the liquid; they may also be the result of the amplification of an instability, or of an
external action (see e.g. the review in Néel & Villermaux (2018)).

Overall, these intermediate steps, each suffering its own variability, both contribute
to broadening of the final drop size distribution by favouring the emergence of very
fine droplets in particular, with possible deterring consequences in some practical
situations: for instance, spray drift is a major concern in agriculture. Standard flat fan
atomizers (forming an expanding liquid sheet) used to spray fields with fertilizers and
pesticides produce broad size distributions of droplets, a notable fraction of which
have diameters below 100 µm (hence called ‘fines’) and are likely to be swept by
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the wind, reaching the neighbouring farmer’s field who may not like it, or the river
next to it (Hewitt 2000; Kooij et al. 2018). Strategies to reduce their relative number
are the subject of active research (Hilz et al. 2012; Vernay, Ramos & Ligoure 2015)
but a detailed knowledge of the microscopic processes at play in their formation is
still lacking.

One ingredient explaining the existence of fines lies in the ligament dynamics
itself, which, as it breaks up, may intrinsically produce droplets of different sizes,
called ‘satellites’. Capillary instabilities responsible for the ultimate breakup of an
initially smooth ligament may follow each other sequentially, as was already visible
in Plateau’s experiments with olive oil (Plateau 1873), a phenomenon which has
been since then identified in related contexts involving viscous fluids (Brenner, Shi &
Nagel 1994; Wong et al. 2004; Villermaux, Pistre & Lhuissier 2013), not to mention
viscoelastic fluids where the phenomenon is the rule (Oliveira & McKinley 2005).
The direct consequence of this scenario is the typically bimodal character of the drop
size distribution in the spray, which presents two broad but well separated peaks (see
e.g. Basaran, Gao & Bhat (2013) in the context of inkjet printing), and even a fractal
sequence of iterated peaks when the cascade has the chance to persist over multiple
steps (Tjahjadi, Stone & Ottino 1992). With water, however, the capillary breakup is
so fast that the phenomenon is virtually absent, unless altered by ad hoc perturbations
(Lafrance & Ritter 1977). Also, ligaments may not be smooth from the start, and it is
known that pre-existing random corrugations of their cross-section induce continuous,
positively skewed drop sizes repartitions (Eggers & Villermaux 2008).

Another ingredient was discovered by Lhuissier & Villermaux (2013) in the context
of sheet breakup, more precisely for sheets which nucleate multiple holes, a process
called ‘effervescent atomization’. Because surface tension forces are not balanced at
their rim, holes grow and eventually merge with neighbouring growing holes in the
sheet plane. The merging event may simply consist in an inelastic coalescence of the
rims or, if the collisional rims are sufficiently fast and thick, may trigger a splash,
as seen in figure 1. This is the cylindrical version of the binary impact of spherical
drops problem (Bradley & Stow 1978; Ashgriz & Poo 1990; Roisman 2004). The
phenomenon, also visible in the collapse of elongated sheets (Lejeune & Gilet 2019),
is very similar to the one known for drops impacting a solid (see Worthington (1876),
Riboux & Gordillo (2015) and the review in Josserand & Thoroddsen (2016)), or a
layer of the same liquid (Thoroddsen 2002; Agbaglah & Deegan 2014), as well as for
the water entry of a solid in a pool (Worthington 1908; Wagner 1932). It produces,
right upon impact, a thin fast lamella ejected from the impact point in the direction
perpendicular to the collision plane, at the edge of which small (compared with the
impacting rims diameter) droplets are formed; this is the way fines are produced by
this process.

The existence of this mechanism has not been mentioned by the early contributors
to the science of liquid sheet disintegration (Fraser et al. 1962; Dombrowski &
Johns 1963) nor in the more recent literature including the technical textbooks on
atomization processes (Lefebvre 1989; Bayvel & Orzechowski 1993), although the
spontaneous formation of holes on sheets was known (Dombrowski & Fraser 1954),
and although dispersing a minute fraction of a pressurized gas phase within the liquid
to be fragmented was known to decrease considerably the mean droplet size (Sovani,
Sojka & Lefebvre 2001).

The present work is an attempt at filling this gap, by the study of the impact
dynamics of two liquid rims receding towards each other, colliding and fragmenting.
The emergence of a transverse lamella at impact is first presented in § 3 and its
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4 mm

4 mm

(a)

(b)

FIGURE 1. Two examples of the phenomenon studied here: rims of two holes expanding
in a water film collide and eventually fragment into drops: (a) We = 51; (b) We = 120.
Note, in each case, the formation of a secondary sheet on the second frame, which may
itself breakup into finer droplets as in (b). Frames are separated by 1 ms.

dynamics, including its stability, is investigated in § 4. The fragmentation properties
of this protocol are discussed in § 5, finally offering a comprehensive description of
and explanation for the origin of the so-called fines in this context. We conclude in
§ 6 by suggesting possible applications.

2. Experiments

We investigate the collision of two liquid rims of individual radius a, driven towards
each other with relative velocity 2V . The experiments presented here are performed
with water at room temperature, and concern high velocity impacts of small objects:
surface tension and inertia dominate the dynamics. Other effects (gravity, viscosity)
are negligible, as seen from the corresponding values of the Reynolds number Re� 1,
Ohnesorge number Oh� 1 and Bond number Bo� 1 shown in table 1. The collision
is thus completely described by a single Weber number We comparing inertia with
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FIGURE 2. Symmetric collision of liquid rims connected by a thin film (liquid portions
are in darker shades). (a) Impact of toroidal rims, observed in the plane Oxz of the
film. Consecutive frames are separated by 0.37 ms. (b) Idealized view of the impact of
cylindrical rims, infinite in the z-direction. (c) Sketch of the emergence and destabilization
of the lamella after impact (see the text, §§ 4.1–4.4).

Number We Re Oh Bo

Expression
ρV2a
σ

ρVa
η

η
√
ρaσ

ρga2

σ

Range 10–200 102–103 10−2–10−1 10−4–10−2

TABLE 1. Typical expressions, orders of magnitude and ranges considered here of the
dimensionless numbers ruling the collisions, with velocity V , of an object of size a, under
a gravitational field g. The liquid has a density ρ, dynamic viscosity η and its interface
with air has surface tension σ .

surface tension forces

We=
ρ(2V)22a

σ
, (2.1)

with σ and ρ the liquid/air surface tension, and density, respectively. The collision
Weber number is typically larger than unity, suggesting that a large reservoir of
inertia is available to divide finely the liquid constitutive of the rims. Both rims
are connected to each other by an interstitial static film with thickness h (figure 2).
Mass and momentum balances applied to the rim impose its retraction to be made at
the constant Taylor (1959)–Culick (1960) velocity V =

√
2σ/ρh so that We in (2.1)

simply reads as the ratio of the only two geometrical parameters of the problem

We= 16
a
h
. (2.2)
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‘Fines’ from the collision of liquid rims 893 A16-5

2.1. Collision of toroidal rims
The impact configuration with two infinite liquid cylinders, which will be analysed in
§ 4, is of course an idealized view. Instead of cylinders, the experiment consists in
colliding two liquid tori, which constitute the edges of two circular holes opening in
the static film at the same Taylor–Culick velocity (figure 2a). The latter are nucleated
simultaneously, initially separated by a distance b. They thus travel for a time b/2V
from the film rupture to the rims impact. The volume of each torus 2π2a2b/2 is equal
to the liquid volume of the film filling the hole π(b/2)2h, so that, at leading order,
the Weber number can be written as

We=
8
√

π

√
b
h
. (2.3)

The intensity of the collision is therefore computed from directly accessible
experimental control parameters b and h, the latter being measured via the film
receding velocity. The higher-order contributions from the expanding, toroidal
geometry are given in § A.1.

The impact geometry exhibits at least two planes of symmetry, which are
independently monitored in two experimental configurations described in the
following. In the plane of the interstitial film, we denote by x the direction joining
the film puncture points, and z the orthogonal direction: invariant in the infinite
cylinders problem (see figure 2b for a three-dimensional representation). All liquid
reorganization during impact occurs in the direction perpendicular to that plane,
referred to as y. The transverse, or mid-plane Oyz, where O is the symmetry
mid-point between the two puncture points, is the second symmetry plane in that
binary symmetric configuration.

2.2. Controlled rim production
The first set-up observes the collision in the transverse plane Oyz, orthogonal to
the punctured interstitial film, with a slight inclination angle above the latter. By
symmetry, it embraces all the dynamics following the impact, from the initial
extension of a transverse lamella to the fragmentation later stages.

The film is a horizontal smooth Savart sheet, a radially expanding film resulting
from the impact and deflection of a laminar circular jet with diameter djet, on a slightly
larger target (Savart 1833). The velocity field in the suspended film is strictly radial,
with a constant speed U, uniform across the film thickness. It is essentially equal to
the jet velocity as soon as viscous dissipation on impact is negligible, which is the
case with water (Villermaux et al. 2013). At steady state and with water considered
incompressible, the volume flux 2πUrh(r), with h(r) the film thickness and r the
radial coordinate centred on the impinging jet axis, is constant throughout the jet and
the sheet so that the sheet thickness decreases with the distance r to the jet as

h(r)=
d2

jet

8r
. (2.4)

Holes in the sheet are punctured by two simultaneous electrical sparks transpiercing
the sheet by vaporizing the liquid locally. They are triggered on demand, by means
of two couples of electrodes connected to large capacitors which on discharge
produce the two simultaneous sparks. The electrodes are located on both sides of
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Rims impact

(in focus)

1 mm

y

z

Holes opening
(out of focus)

Simultaneous sparks
Film ruptures

Electrodes (foreground)

Electrodes (background)

Advected film, velocity U

U
U

r0
b ¡ r0 œ0

ƒdjet

(a)

(b)

FIGURE 3. Controlled rim production set-up. The impact transverse plane Oyz is
monitored, with a slight angle above the interstitial film plane. (a) Global view of the
experiment: a Savart sheet (see text) surrounded by two couples of electrodes (framed
detail). (b) Time lapse zoomed in downstream of the electrodes, from the simultaneous
sparks to the encounter of the holes and rim impact. Consecutive frames are separated by
0.57 ms.

the film, separated by approximately a millimetre (the film is thinner than 100 µm
there), at the same radial location r0 from the jet, and separated by an azimuthal
angle 2θ0 = 2 arcsin b/2r0 (b is the Euclidean distance between the puncture points,
figure 3a). As the holes grow and feed the rims, they are advected outwards, on
diverging radial trajectories (figure 3b). This way, rims travel a distance larger than
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3 mm
t < 0 t > 0

Fragments

d

x

U

z

(a) (b)

FIGURE 4. Random rim production set-up. Time lapse of a selected impact event,
observed in the interstitial film plane. (a) Holes opening and rim growth, impact,
destabilization and late fragmentation. Consecutive frames are separated by 1 ms. Grey
dashed lines are the radial trajectories of the rims centre, advected at the constant speed U.
(b) Fragment detection and area-based size measurement.

b/2 before they collide (see § 2.1), and hence have collected a priori more liquid
when they come into contact. On the other hand, due to the thickness decrease (2.4),
they experience an increasing opening velocity V , which now depends on the current

radial coordinate: V(r) =
√

16rσ/ρd2
jet. The impact Weber number is eventually

increased, when compared with the static and uniform film case. However, for
small angles 2θ0 ∼ b/r0, it simplifies back to the static film case (2.3). The exact
expression is derived in § A.2, along with the experimental deviations to the static
film approximation. Although the exact expression in (A 11) is preferred when
presenting the experimental results below, we use the approximate expression (2.3)
when comparing this set-up and the second one described in § 2.3.

The advected impact is observed in the laboratory fixed frame, with a high-speed
camera and backlighting. Within the range of Weber numbers investigated (from 40
to 200), the set-up is time and space resolved, thanks to frame rates up to 50 kHz
and spatial resolutions around 30 µm per pixel.

2.3. Random rim production
The second set-up allows us to observe the rims’ collision and subsequent fragmenta-
tion in the plane Oxz, the liquid film being a Savart sheet as before. Now, film
punctures are nucleated by internal defects, bubbles incorporated into the liquid prior
to the formation of the film (see Lhuissier & Villermaux (2013) for a complete
description of the set-up and method). Bubbles embedded in the sheet pop up at
some distance along their radial trajectory, making the film rupture location a random
variable. As a result, the location of the subsequent impact of neighbouring rims,
following the merging of two growing holes, is also a distributed random variable (a
single collision is illustrated in figure 4).

The monitored field of view is large (4 × 4 cm2, with a resolution of 40 µm per
pixel) and focuses on a restricted angular sector of the Savart sheet, around the
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U
1 mm

FIGURE 5. Snapshot of the transverse plane after a collision at We = 193, along with
droplet size and velocity detection. The uniform advection velocity U is substracted during
the data processing. The solid line is the axial centre line of the merged rim, the dashed
lines its initial upper and lower extents prior to the collision.

radius where most of the punctures take place. Together with a low acquisition frame
rate (1 kHz), it allows recording of a large number of impact events. The careful
selection and a posteriori characterization of some 560 hole openings constitutes a
batch of 280 rim impacts. The frame rate is high enough to enable the individual
tracking of the rims, from the moment they appear to the collision and, later, their
destabilization into drops (figure 4). However, most of hole openings and rim impacts
occur between two recorded frames. The respective time instants of the punctures
and of the collision are determined with a greater precision by a linear interpolation
between those two frames, on the basis of the following approximations. The film
thickness is considered uniform along each rim trajectory, so that the latter are
assumed to open circularly, at the constant Taylor–Culick velocity. Meanwhile, they
are advected outwards with the constant radial flow of the Savart sheet, so that
there is, for each couple of rims, a unique impact point. The computation of the
Weber from (2.3) is made under these approximations. As explained in § 2.1, it
underestimates the actual value of We, for which there is here no straightforward
expression, but enables the comparison with the first set-up when needed (§ 2.2). For
two slightly asynchronous hole punctures, resulting in an asymmetric impact, the
Weber number is based on the radius a of the smallest rim.

2.4. Fragments
Drops are individually detected, and calibrated. Sizes correspond to drops which
have relaxed to a spherical shape and are in focus only, in both set-ups (figures 4b
and 5). Their diameter d is based on the measurement of their projected area πd2/4,
the quality of the pictures allowing for a basic intensity thresholding. Discrepancies
between both set-ups are described in appendix B. Furthermore, the time-resolved
monitoring of the transverse plane in the controlled rim production set-up (§ 2.2)
provides extensive data about the ejection velocity of the fragments (figure 5).

3. Phenomenology
With the combination of the two set-ups depicted in the previous section, the Weber

number of the impact is varied from 10 to 200. In this range, for a single and well-
identified impact event, a variety of behaviours are observed. We describe the three
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3 mm

z

y

t = -22 µs t = 44 µs t = 111 µs

t = 0 µs t = 67 µs t = 133 µs

t = 22 µs t = 89 µs t = 156 µs

¶(t)

FIGURE 6. Lamella emergence and growth, in the transverse plane, for a We= 83
collision. Consecutive frames are separated by 22 µs (from top to bottom, then left

to right).

t = 0 t = 80 µs t = 160 µs t = 240 µs

t = 320 µs600 µm t = 400 µs t = 480 µs t = 560 µs

¬

z

y

FIGURE 7. Longitudinal destabilization of a transverse growing lamella, for a We= 102
collision. Consecutive frames are separated by 80 µs.

successive steps leading to the formation of fines, whose analysis will be made in §§ 4
and 5.

3.1. Unstable transverse lamella
The collision of two rims is inelastic. Even for an impact at low We leading ultimately
to a unique cylinder with section 2πa2 (mass conservation), most of the incident
kinetic energy is lost in internal irregular motions. We will come back to this
point in § 5.1. However, since Oh is low in the present case, the dissipation scale
(∼h × Oh, see Culick (1960)) is much smaller than a, and the collision gives rise
to an – essentially inviscid – dynamics involving large deformations of the merging
rims. Notably, the emergence of a thin lamella, in the direction orthogonal to the
impact direction (figure 6) is systematically observed for We greater than 50. This
expanding lamella is itself bordered by a rim at its extremity in y = `(t), which is
uniform along the rims’ axis in the z-direction. This secondary rim is pulled back
by surface tension conferring to `(t) an ever decelerated motion. The phenomenon
is particularly clear from the angle of view offered by the controlled rim production
set-up (see also figure 10).

The larger We, the larger the lamella maximal extension. As a consequence,
the overall extension–retraction time of the lamella, i.e. its oscillation period or
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600 µm

t = 0 µs t = 38 µs t = 76 µs t = 114 µs t = 152 µs t = 190 µs

t = 229 µs t = 267 µs t = 305 µs t = 343 µs t = 381 µs t = 419 µs

FIGURE 8. Formation of secondary transverse ligaments, and ejection of fine, fast droplets
from their tips, for a We= 193 collision. Consecutive frames are separated by 38 µs.

lifetime, increases when We is increased, as will be shown in § 4.1. Regularly spaced
indentations of the lamella rim (figure 7) are markedly apparent as We is increased.
This longitudinal destabilization (z-direction) features a wavelength λ. It is a signature
of the deceleration undergone by the lamella in the course of its development as will
be analysed in § 4.4.

3.2. Transverse ligaments and the production of fines
Above a critical Weber number of the order of Wec≈ 66, the longitudinal indentations
of the lamella rim give rise to regularly spaced, transverse ligaments (figures 8 and 14).
The breakup of these secondary ligaments eventually forms small droplets, the fines,
which are expelled, in continuation of the lamella transverse growth, in the direction
perpendicular to the main liquid sheet (figure 8). These objects substantially alter the
overall drop size distribution of the resulting spray, as will be seen in § 5.2.

Through this process of lamella expansion, indentation growth, ligament formations
and breakup, increasingly many, and smaller, droplets (relative to a) are formed as
We is increased. They are, since the colliding rims are more finely divided, not only
obviously all the more numerous (figure 9d–f ) but are also more distributed in size
relative to their mean, as will be seen in § 5.2.

4. Collision
The impact of identical rims is considered in the infinite cylinder limit (figure 2b).

Apart from the two planes of symmetry already identified – the plane of the interstitial
film and the transverse mid-plane between the rims, see § 2.1 – the situation is
invariant along the rims’ axis and consequently all reasonings involving mass, force,
energy, etc. are made per unit length in this direction.
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0 125 250

0.03

0.02

0.01

We

¯≈
2 ˘/

¯a
˘2

Rims before impact

Fragmentation after impact

We = 62

We = 113

We = 193

(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIGURE 9. Snapshots of the rims before (a–c) and after (d–f ) impact, at time t= 40 a/V ,
for three increasing We= 62 (a,d), 113 (b,e) and 193 (c, f ). All pictures are scaled on the
colliding rim radius a, with dimensions 30 × 15 (a,b,c,g) and 60 × 30 (d–f ). Scale bar
width is 1 mm. (g) Rim corrugations before impact, as a function of We. The solid line
is the best linear fit (see (5.3)).

4.1. Global collision dynamics, the long time and length scales
Let two parallel cylinders aligned along z and travelling at relative speed 2V along x
collide, thus adding up their mass and deflecting the momentum they carry along the
transverse y-axis (equally split in both positive and negative directions). The fused
cylinders expand along y until the unbalanced surface tension force at the surface
of the ensemble limits its growth. The phenomenon is reminiscent of the oscillatory
dynamics of jets issuing from a non-circular orifice undergoing peristaltic pulsations
studied by Rayleigh (1879) and others (see § 6 in Eggers & Villermaux (2008) for a
historical perspective).

In all inertial fluid mechanics problems, the displacement of the fluid particles
reflects the structure of the pressure field. The pressure might be viewed as the
source of the motion (Cooker & Peregrine 1995; Antkowiak et al. 2007), or a
consequence of it (Birkhoff et al. 1948; Riboux & Gordillo 2014), but in each case
both are linked.
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Ignoring first the fine details of the collision at short times, it is easy to anticipate
the time scale (oscillation period T), and length scale (maximal extension of the
ensemble L) of the collision coarse-grained motion after the fusion of the cylinders
(figures 6 and 10a). We sketch the deforming fused ensemble as a lamella expanding
in the y-direction with length `(t) and width w so that 2πa2

= ` × w. The liquid
velocity in the y-direction is v(y, t)= y ˙̀/`. Integration of the Euler equation

ρ(∂tv + v∂yv)=−∂yp (4.1)

between y= 0 and y= `(t) with p the liquid pressure (see Villermaux & Bossa (2009)
for the axisymmetric version of the problem) provides

1
2ρ`
῭ = p(0)− p(`). (4.2)

The pressure at the expanding extremity is p(`) ≈ σ/w while the pressure at the
contracting location is, in this coarse-grained description,

p(0)≈ ρaV d(t). (4.3)

The Dirac delta contribution ρV2 d(t)× (a/V) stands for the pressure impulse caused
by the impact of the cylinders at the collision location y = 0 and time t = 0. The
momentum transfer giving rise to this pressure surge lasts in fact for the crushing
time a/V , which is safely taken as zero provided the resulting motion of the fused
ensemble lasts for a time much larger than a/V , as will be checked a posteriori. With
`(0)= a, equation (4.2) amounts to

῭ + 2
σ

ρa2
≈ V d(t), (4.4)

or `≈ a+ Vt−
σ

ρa2
t2. (4.5)

The initial velocity of the lamella is V (see also (4.12)). The period T (obtained for
`(T)= a) and maximal extension L≡ `(T/2) of the motion are

T ∼
a
V

We, (4.6)

L− a
a
∼We. (4.7)

The relative maximal extension of the expanded fused cylinders (L − a)/a is a
measure of the ratio of the motion period T to the crushing time a/V . It is equal to
We, a quantity larger than unity, justifying a posteriori our impulse treatment of the
pressure surge. Figures 10(b) and 10(c) demonstrate the validity of the above scaling
relations, up to numerical factors. The expanding lamella fragments for large We,
that we describe next, explaining why the measurement of T is meaningless above
We≈ 100.
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Eq. (4.5)
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FIGURE 10. Lamella dynamics. (a) Space–time diagram of a slice in the transverse
y-direction. The lamella extension `(t) is underlined with (+) markers and (4.5) is shown
as a solid line. (b) Lamella global expansion period T and (c) maximal extension L as a
function of the collision parameters in (4.6) and (4.7). Solid lines are best linear fit with
numerical factors: (a) 0.17 and (b) 0.027.

4.1.1. A note on scalings
In the present one-dimensional collision process, both L/a and VT/a are proportional

to We, while the same quantities are proportional to
√

We for the impact of a drop
expanding radially in two dimensions. Although mechanical energy is definitely
not conserved in these problems, equating the initial kinetic energy to the surface
energy of the deformed lamellae at maximal extension picks up nevertheless the
correct scaling (because the amount of dissipated energy is the fraction of the initial
energy, see Villermaux & Bossa (2011), Gelderblom et al. (2016) and Planchette
et al. (2017) for more refined descriptions of equivalent problems, and comments
on the energy conservation approach). For a drop, we have ρa3V2

∼ σL2 which is
indeed compatible with the

√
We scaling, while here we have ρa2V2

∼ σL, leading
to (4.7). Finally, let us also note that these scalings describe large deformations of
the impacting objects (L/a � 1). Small oscillations about the reference state like
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` ∼ a(1 + ε) and w ∼ a/(1 + ε) with ε � 1 lead to ε̈ + ω2ε = (2V/a) d(t) with
ω=

√
4σ/ρa3 so that VT/a∼ L/a∼

√
We in that limit.

4.2. Early time lamella formation
We have explained in § 3.1 that because viscous dissipation is made at a very small
scale in the rims when Oh � 1, the momentum transfer at collision leads to the
formation of tiny objects, which may be formed before the rim fusion is completed
(i.e. for t< a/V), hence the early emergence of a thin transverse lamella. We analyse
this fine-grained aspect of the phenomenon here, exploring what happens ‘inside’ the
Dirac Delta of the previous section. Two regimes are distinguished.

We describe the sudden collision at velocity 2V of two liquid cylinders of radius a.
The cylinders are first considered independent, moving in a dynamically inert ambient
medium, contacting along their generatrix (the same reasoning holds for two spheres
impacting at a point); their geometrical interpenetration radius is initially r ∼

√
Vat

(figure 2c). The induced flow v(x, t) ruled by ∂tv + v · ∇v = −∇p/ρ and ∇ · v = 0
obeys initially, when the velocity amplitude |v| is small enough to neglect the
convective term v · ∇v (see Lamb (1932), Art. 11 and Cooker & Peregrine (1995))

∂tv =−
1
ρ
∇p, (4.8)

and thus ∇2p= 0. (4.9)

In other words, if the liquid has moved over a distance r in the y-direction, then
it has moved over the same distance in the x-direction. The consequence of the
Laplacian character of the pressure is that, since r is the only initial length scale of
the problem (besides a� r), the net volume of liquid whose motion is slowed down
(per unit cylinder length) is of order r2, setting its mass m∼ ρ r2 (not to be confused
with the deflected volume Vt r, feeding the ejected lamellae). The cancellation of
the corresponding momentum initially carried in the x-direction gives rise to a force
f = Vṁ, and therefore to an isotropic pressure at the impact point given by

p(0) ∼
f
r

(4.10)

∼ ρV2

√
a
Vt
, (4.11)

an early time divergence familiar in impact problems (Wagner 1932; Cointe &
Armand 1987; Philippi, Lagrée & Antkowiak 2016), holding both in one and two
dimensions (for the impact of a spherical drop on a solid, for instance).

The pressure gradient ∂yp in the symmetry plane of the impact (figure 2c) is of
order p(0)/r so that, from the dynamics in (4.8), v/t∼ V/t, giving simply

v ∼ V. (4.12)

The mass in motion m increases proportionally to time as the driving force p(0)× r is
constant, so that the velocity is constant. With this estimate for v, the amplitude of the
discarded nonlinear term |v ·∇v| in the Euler equation above is of order V2/r∼ 1/

√
t,

indeed smaller than 1/t as t→ 0. The intensity of this induced flow is smaller than
the geometrical expansion velocity of the interpenetration region ṙ ∼

√
Va/t as long
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as t< a/V , consistent with the empirical observation that a lamella is seen to emerge
from the impact region when the interpenetration distance is a fraction of a, and that
the ejection velocity of the resulting lamella (and detached droplets), is of order V
when complications with liquid viscosity, ambient medium and substrate roughness
are negligible (see Xu, Barcos & Nagel (2007), Riboux & Gordillo (2015) for drops
impacts).

4.3. Very early dynamics: the tiniest ejecta
The linear pressure impulse dynamics in (4.8) does not, however, apply everywhere in
the interpenetration region. Close to the contact line between the cylinders (the same
remark applies to a drop impacting a solid), the velocity v in the symmetry plane of
the impact is itself of order ṙ, making the nonlinear term |v · ∇v| of order v2/δ(t)
where δ(t) is a length scale setting the width of the pressure and velocity gradients
close to the contact line. If δ(t) is itself initially zero and an increasing function of
time, the nonlinear term is more singular than V/t, suggesting that the early time
dynamics balances inertia with pressure, at least in a small region of size δ. Writing
p ∼ f /δ so that ∂yp ∼ f /δ2, the balance between |v · ∇v| and |∇p|/ρ at the contact
line can be written

v2

δ
∼

1
ρ

f
δ2
, or v ∼ V

√
a
δ
, (4.13a,b)

providing δ ∼ Vt, (since v ∼ ṙ) (4.14)

so that the local pressure in the contact line region (Mandre, Mani & Brenner 2009)
is now of order f /δ ∼ ρVa/t, indeed more singular than p(0) in (4.11). Detailed
calculations (Birkhoff et al. 1948; Riboux & Gordillo 2014) show that the contact
line velocity is closer to v= 2ṙ (see also Philippi et al. (2016) for a fully self-similar
description), albeit affected by viscous corrections when a no-slip condition applies.
Expressing that the deflected mass ρVt r all enters the ejected lamella which carries
its momentum provides the lamella thickness w as V∂t(ρVtr) ∼ ρv2w, that is
w∼ (V/a)r2/ṙ∼ t3/2 (and consistently w< δ as t→ 0).

Note on dimensionality: the reasoning above also applies to a drop of radius a
impacting a solid or another identical drop, expanding in two dimensions with now
m∼ ρr3 leading, from f ∼ Vṁ, to v ∼ V(a/δ) and p∼ f /(rδ)∼ ρV2(a/δ), identically
to the one-dimensional case (see e.g. Riboux & Gordillo 2014).

We now consider the case of cylinders initially linked by a quiescent film of
thickness h< a relevant to the present situation (the thickness h is in practice related
to the velocity V =

√
2σ/ρh by the Taylor–Culick relation). The presence of the film

de-singularizes the pressure at contact since it is both uniform and finite over a region
of order h. The above reasoning thus starts to apply as soon as δ = h, suggesting,
given v∼V

√
a/δ in (4.13), that the ejection speed of the lamella at very short times,

possibly fragmented into very fine droplets above a critical Weber number Wec to be
determined (next § 4.4), will be of order

Ve ∼ V
√

a
h

(4.15)

∝ V
√

We−Wec, (4.16)

a dependence to which the observations reported in § 5.4 below give some support.
This very early dynamics holds as long as δ < r, that is t< a/V , then leaving place

to the one in § 4.2.
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FIGURE 11. Longitudinal instability. (a) Growth time τ and (b) wavelength λ are plotted
against their expected scalings h/V and h, respectively from (4.19), collapsing data from
impacts at different We. Solid lines are best linear fits with factors: (a) 47 and (b) 3.9.

4.4. Lamella deceleration and instability
Once ejected from the interpenetration region with a thickness of order h, the lamella
expands ballistically, only arrested at its border by capillary retraction, thus giving rise
to an ever decelerated regime. The corresponding dynamics for `(t) then simply reads

῭ ∼ −
σ

ρh2
, (4.17)

featuring a negative and constant acceleration. The lamella border is a density interface
which separates a dense liquid from a dynamically inert medium. Being decelerated,
this interface is unstable in the sense of Rayleigh–Taylor, a fact which is commonplace
for slowing (Villermaux & Bossa 2011), retracting (Lhuissier & Villermaux 2011) or
spinning sheets (Fraser, Dombrowski & Routley 1963; Eisenklam 1964), explaining
the origin of the developing longitudinal indentations observed in the z-direction
(figure 7). The characteristic time of growth τ , and wavelength λ of this instability
are

τ ∼

√
λ

| ῭|
; λ∼

√
σ

ρ| ῭|
, (4.18a,b)

which translate, given ῭ in (4.17), to

τ ∼
h
V
; λ∼ h. (4.19a,b)

These relationships are relatively convincing at the scaling level (they offer a good
collapse for different We, in particular), with however large pre-factors, as seen from
figure 11.

4.5. Transition to splashing
The global oscillation period of the fused cylinders T given in (4.6), and the lamella
instability time scale τ in (4.19) both written in units of a/V depend on the Weber
number as

T ∼
a
V

We; τ ∼
a
V

We−1. (4.20a,b)
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FIGURE 12. Onset of the instability. Lamella oscillation period T (hollow circles) and
instability growth rate τ (plain triangles), in units of the crushing time scale a/V versus
We. Dashed and solid lines are the predicted scalings from (4.20), along with best fit
amplitudes. They cross at the instability threshold and define Wec ' 66.

One is longer (namely T) and the other shorter (namely τ ) when We increases.
Obviously, a cross-over occurs whose meaning is the following: at moderate We, the
expansion–recoil period of the fused rims is too short for the expanded lamella to
destabilize given its slow pace; destabilization is faster and has also more time to
develop at larger We, and is thus now favoured. Both trends are visible in figure 12.
The instability growth time cannot, de facto be measured below the cross-over
threshold at the intersection of the two curves, which occurs for Wec ≈ 66, a value
which was qualitatively anticipated by Lhuissier & Villermaux (2013).

The onset of this instability (explaining the formation of the ‘arms’ of Worthington
(1876)), whose outcome is the production the fines analysed in the next section,
is very similar to the so-called ‘splashing’ transition in drop impact (i.e. the
production of disjointed fragments besides the recoil of the main drop, see Josserand
& Thoroddsen (2016)) for which we have given here a mechanistic interpretation.

5. Fragmentation: the fines and their distribution
The ultimate fragments are produced from the capillary destabilization of the

merged rims which are, above the splashing transition, indented into transverse
ligaments. There are thus two potential sources of variability in the drop sizes, one
associated with the unevenness of the fused rim cylinder due to the inelasticity of
the collision, the other with the noisy capillary breakup of the secondary ligaments.
We document both variabilities below over a broad range of Weber number, in order
to describe the overall drop size distribution for any We in this range.
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FIGURE 13. Corrugated rim fragmentation at low We. (a) Drop sizes distribution for a
We= 58 impact, normalized by dPR= 1.89× 2

√
2 a. The solid line is a gamma distribution

obtained from (5.1) with m= 5, or with (5.8) for n→∞ and m= 5. (b) Mean drop size
〈d〉/h for increasing Weber number We/16= a/h, for both experimental set-ups. The solid
line is the Plateau–Rayleigh prediction 〈d〉/a=1.89×2

√
2 We/16 holding below Wec while

〈d〉 tends to saturate at a value proportional to h.

5.1. Capillary breakup with corrugations (We<Wec)
For collisions with We below the critical splashing Weber number Wec, drops
simply form the breakup of the fused rim cylinder, whose mean radius is

√
2a

(see e.g. figure 1a). In that case, we know that the outcome is a droplet distribution
of sizes d given by

p(ζ )=
mm

Γ (m)
ζm−1e−mζ , with ζ = d/〈d〉 (5.1)

in units scaled by their mean 〈d〉, a mean approximately given by the standard
Plateau–Rayleigh expectation dPR ≈ 1.89 × 2

√
2a (see figure 13a,b) modulo a weak

correction on m, whose value reflects the initial relative corrugations of the cylinder
(Eggers & Villermaux 2008). If, right after the collision, the cylinder radius is
√

2a + ξ(z), with ξ(z) a longitudinal modulation with zero mean and variance 〈ξ 2
〉,

then

m∼
a2

〈ξ 2〉
. (5.2)

As seen in figure 9(a–c), the corrugations are mostly reminiscent of the state of
the rims prior to the collision, and the variance 〈ξ 2

〉 may be interpreted from an
energy balance (see the Appendix in Bremond, Clanet & Villermaux (2007)). Only
half of the kinetic energy is used for the rim recess, the other half, ultimately
dissipated by viscosity, being at the origin of turbulent-like motions, the cause of
the rim interface corrugations (see the Appendix in Villermaux & Bossa (2011)).
Balancing the available kinetic energy with the (transient) surface energy excess in
the corrugated state 2πaσ 〈

√
1+ ξ ′2 − 1〉 where ξ ′ = dξ/dz, we have, at lowest order

and up to (large) prefactors,

aσ 〈ξ ′2〉 ∼ a2ρV2, or 〈ξ ′2〉 ∼We. (5.3a,b)
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s3

d

FIGURE 14. Transverse ligament mediated fragmentation, at We = 193. The sequence
shows the emergence and destabilization of the lamella (left panel, from top to bottom),
then its retraction into transverse ligaments with volume s3 (central picture) which finally
fragment into droplets with individual size d (right picture).

Corrugations are injected at the scale of the incoming rims radius a which sets the
fluctuation scale of ξ so that 〈ξ ′2〉 ≈ 〈ξ 2

〉/a2 (see figure 9) and

m∼We−1, (5.4)

indicating that more violent collisions lead to broader size distributions [remember that
p(ζ )−−−→

m→∞
d(ζ − 1)], such as that shown in figure 13(a) at We= 58 for which m= 5.

5.2. Above the splashing transition (We>Wec)

Above the splashing transition described in § 4.5, the transverse indentations produce
ligaments which fragment into increasingly many smaller drops as We is increased.
Consequently, the mean drop size deviates from the Plateau–Rayleigh prediction
(figure 13b) because the drops now come from the fused rim cylinder chopped off into
smaller pieces, namely the finer transverse ligaments (figure 14). An estimation of the
mean size of these fine droplets is as follows: assume the fused rims convert entirely
(this is all the more true when We is larger) into an assembly of transverse ligaments
each with length L∼ a We and spaced by λ∼ h (see § 4). Volume conservation gives
π(
√

2a)2λ∼πL〈d〉2 with 〈d〉 the transverse ligament mean diameter, also setting that
of the fines after capillary breakup (Plateau 1873; Rayleigh 1879). We thus expect,
when the conversion is complete, that 〈d〉 will saturate at a value of order

〈d〉 ∼ h (5.5)

above Wec, a very different trend than the one prevailing below (for which 〈d〉/h ∼
We, see figure 13b). Note that it is precisely because the set-up with random hole
production misses the finest drops (see appendix B) that this transition is delayed
compared with that observed with the controlled set-up, and which indeed occurs at
Wec.
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FIGURE 15. Size distribution, at We = 193. (a) Ligament size s distribution, measured
before (u) and after (?) fragmentation (respectively expressions (5.6) and (5.7)), along with
a gamma distribution (5.1) with order m = 40 (solid line). (b) Drop size d distribution,
resulting from the transverse ligament fragmentation: (u) 322 drops, for which origin
ligaments are unspecified; (?) 117 drops issued from the ligaments in (a). The solid line
is the distribution (5.8) with orders m = 40, n = 5. Data come from the controlled rim
production set-up.

5.3. Distributions
Having understood the origin of the fines and why they indeed feature small sizes,
we now turn to their distribution. Each transverse ligament fragments into a variable
number i of droplets with mean 〈i〉 ∼ L/〈d〉, with 〈d〉 the mean droplet size (typically
〈i〉 = O(10) at We = 193). The volume of a ligament can be obtained either at its
greatest extension L, prior to its fragmentation by measuring its diameter, or by
summing the droplet volumes produced after its fragmentation (sizes di), leading to
an equivalent ligament size s given by

s3
=

π

4
Ld2

L (5.6)

=
π

6

∑
i

d3
i , (5.7)

a size which is distributed among the ligament population, with mean 〈s〉. The
fluctuation of s reflects the one of the fused cylinder corrugations, which are
themselves described by the distribution in (5.1), so that we expect the normalized
size as ζ = s/〈s〉 averaged over several realizations, involving several ligaments
at a given We, to be distributed according to (5.1) with the parameter m possibly
depending on We as in (5.4).

Figure 15 reports measurements of s made both before (41 ligaments over 6
impacts) and after (subset of 22 ligaments) their fragmentation, together with the
resulting drop sizes d obtained in the transverse instability region. The distribution
of s is very narrow (m = 40), suggesting that an efficient size selection by the
instability mechanism operates, which not only sets the inter-ligament distance λ
deterministically, but also the volume embarked in each of them, thus screening the
corrugations of the rims. In this two-stage fragmentation scenario, the transverse
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FIGURE 16. Orders n of the gamma distribution (5.1) for We<Wec, and n and m of the
Bessel-compound distribution (5.8) for We>Wec. The expectation n∼We−1 from (5.4) is
plotted as a solid line. Data come from the random rim production set-up.

ligaments are corrugated, for the same reason the fused cylinder below Wec is, and
we call n their corrugation index. When restricted to this relatively homogeneous
ligament population (large m), the width of p(d/〈d〉) is thus essentially given by
that of the intrinsic ligament breakup with n = 5, as for We < Wec (see figures 13a
and 15b).

The random hole production set-up is better suited to appreciating the different s in
the overall spray content. Small ligaments will produce smaller droplets than larger
ligaments. The overall distribution of sizes d has thus two sources of variability, the
one coming from the distribution of s, and the one coming from the distribution of
d for a given s. Since these two factors are independent of each other, we expect the
final fine droplet distribution to be given by a linear superposition of the two effects
as (Villermaux & Bossa 2009)

p
(
ζ =

d
〈d〉

)
=

2(mn)(m+n)/2

Γ (m)Γ (n)
ζ (m+n)/2−1Km−n(2

√
mnζ ), (5.8)

where Km−n is a modified Bessel function of the second kind of order m − n
(Abramowitz & Stegun 1964), and where m reflects the roughness of the distribution
in ligament sizes s, while n reflects that of the ligament corrugations in this
construction. In the final expression (5.8), the roles of m and n are interchangeable
(the distribution is unchanged by the permutation m↔ n), both variabilities adding up
in an additive fashion, by construction: indeed, the square of the standard deviation
〈ζ 2
〉/〈ζ 〉2 − 1 of p(ζ ) in (5.8) is

1+m+ n
mn

, (5.9)

meaning, for instance, that the width of the final drop size distribution relative to its
mean is given by that of the ultimate ligament breakup (1/

√
n) when the ligaments are
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FIGURE 17. Drop size d distribution, for increasing Weber number, along with the
predicted distributions (right column, solid lines). (a) Dimensional distributions P(d) for
We= 28, 74, 135. Distributions p(ζ = d/〈d〉) for (b) We= 28, with gamma distribution (5.1)
(order n= 12); (c) We= 74 with Bessel-based distribution (5.8) (indices m= 10, n= 12);
(d) We = 135 with rain distribution (5.10). All data (hollow symbols) come from the
random rim production set-up.

all alike (m→∞), either because they have been sorted as such as above, or because
they are naturally produced as such (as in effervescent atomization, see Lhuissier &
Villermaux (2013)). Figures 15(b) and 17 show that this double-index distribution is
a fair fit to the final drop size distribution, obtained here with moderate statistics
(322 drops produced by 4 impacts in figure 15b); much better fits are achieved in
less controlled situations offering no analytical clues about the precise origin of the
drops, but which on the other hand involve many more droplets and thus offer better
converged distributions (Kooij et al. 2018, 2019).

The precise value of the indices m and n depend, in general, on the way the
ligaments providing the final drops are formed through various sequential instabilities,
possibly coupled to each other, or not. In the present case, both m and n follow the
trend anticipated in (5.4) as We is varied, with m (related to the source ligament size)
being always larger than n (related to the ligament breakup), as seen in figure 16.

The distribution in (5.8) presents two limit cases: when the fused cylinder transverse
instability is not too noisy, it selects a unique transverse wavelength λ, corresponding
to a unique ligament size s and in that case m→∞. In that limit, which suits gentle
collisions with We close to Wec, or even below (hence with no secondary instability),
the distribution (5.8) is simply the gamma distribution in (5.1) with order n and ζ =
d/〈d〉, as seen in figure 17(b), identically to figures 13 and 15(b). The other limit suits
ligaments which are broadly distributed in size, and also very corrugated themselves
(with, say, m= n= 4), a case describing strong collisions at high Weber number for
which

p(ζ )= 215

9 ζ
3K0(8

√
ζ ), (5.10)
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FIGURE 18. Fine ejection velocity. (a) Velocity of the 10 % fastest droplets (circle symbol,
dashed line), compared with the square root law (5.11) (solid line, with adjusted amplitude
0.15) and droplet mean velocity (square symbol, dotted line). (b–d) Two-dimensional
histograms of droplet size and velocity, for increasing Weber number: (b) We = 62;
(c) We= 112; (d) We= 193.

as seen in figure 17(d). The general form in (5.8) interpolates smoothly between these
two limits across the whole We range (figure 17c).

Because it involves two successive processes, the drop generation mechanism in this
rim collision scheme thus not only produces finer droplets in the mean, but it produces
broader size distributions than when only one process is at play – a distinct feature
of the fines, which are called so because they coexist with much bigger droplets.

5.4. Ejection speed of the early fines
Above Wec and for times of the order of its instability onset τ = h/V in (4.19), fines
are ejected in the transverse lamella plane. Given that there are, at least, two different
mechanisms responsible for the formation of these tiny drops (§§ 4.2 and 4.3), their
ejection velocities are, not surprisingly, broadly distributed.

The mean ejection speed Ve is found (figure 18a) to be typically smaller than, or of
the order of, the collision speed V at large We, a fact already observed in Thoroddsen,
Takehara & Etoh (2012) and Riboux & Gordillo (2015) or Wang & Bourouiba (2018),
for instance, consistent with the early dynamics described in § 4.2. Of course, to the
size distribution of fines corresponds a distribution of speeds Ve and a clear correlation
exists for different sizes d (of order h) at a given We, and for different We: the
smallest, because they are the earliest, are also the fastest (figure 18b–d). As opposed
to the mean speed, these tiny droplets are faster (once their velocity is normalized
by V) as We is increased. The ejection velocity of the 10 % fastest drops can be
approximately described by (figure 18a)

Ve ∼ V
√

We−Wec, (5.11)
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where the offset Wec is of the order of the lamella transverse instability threshold, a
trend not incompatible with the one anticipated by the very early dynamics described
in (4.15) of § 4.3.

This early time detachment process involves a comparatively small fraction of
the liquid to be fragmented after the crushing time a/V , but it does contribute to
broadening of the final drop size distribution.

6. Conclusion

The adjectives ‘fine’ as opposed to ‘coarse’, or ‘small’ versus ‘big’ have no concrete
reality in the absence of an absolute reference scale. Their use reflects more a personal
appreciation. For instance, the drops emitted from the jet sparking at the collapse of a
cavity (the so-called Worthington jet, that he himself found ‘exquisite’ and ‘graceful’,
see Worthington (1908), p. 78 and which is usually qualified as ‘fast’ (Gordillo &
Rodríguez-Rodríguez 2019)) are sometimes considered as ‘tiny’ (Ghabache & Séon
2016) while Blanchard (1953) considered them as ‘giant’ nuclei. It is true that, when
the cavity is that of a bubble at the surface of a liquid pool, the jet drops are larger
than those formed from the disruption of the bubble cap (Spiel 1994). Similarly, the
threshold size of 100 µm defining fine droplets for spray drift in agriculture relates
to normal wind, humidity, temperature conditions and typical field dimensions. These
may vary, and hence will the threshold. Interestingly, a similar 100 µm threshold has
been identified in human exhalations like sneezing (Wells 1955), a fact which clearly
underlines its anthropomorphic nature. If the concept of ‘fines’ is ill founded when
attached to a rigid size threshold, it is nevertheless universal, and it is certainly useful
to study the emergence of tiny fragments from a general perspective: in a different,
but related, context, fungi reproduce by ejecting encapsulated seeds of different sizes,
down to a few microns (Ingold 1971). These airborne spores, like pollen, can be
carried over long distances, the finest crossing oceans (Hirst, Stedman & Hogg 1967).

The present work has clarified what fines mean in the context of liquid sheet
breakup: they are these droplets which are produced from an auxiliary mechanism
besides the formation of the standard drops. By standard we mean drops coming
from the capillary breakup of fused adjacent liquid rims in sheets puncturing holes at
random. Occasionally, the rim collision is strong enough to trigger a new, splash-like
mechanism, producing finer drops. We have quantified the threshold condition for
the onset of this mechanism and have explained why it affects the mean drop size
in the spray by broadening considerably the overall drop size distribution, thus
rationalizing the discovery by Lhuissier & Villermaux (2013). Drops are ultimately
formed from the breakup of ligaments, and the final spray size distribution is a
compound distribution which incorporates two sources of variability, the one coming
from the intrinsic ligament breakup, and the one associated with the ligament sizes.
This construction was known (Villermaux & Bossa 2011), has proven to provide
adequate fits in a variety of situations (Kooij et al. 2018, 2019) and may serve in
re-appreciating other configurations which have received an alternative interpretation
(Lhuissier et al. 2013), although other mechanisms may lead to other constructions.

Interestingly, sparser holes are likely to produce fines through this mechanism, while
denser holes prevent them, because the rims in the latter case are too light to splash
(in the language of § 4, We<Wec), an observation made earlier for sheets expanded by
an explosive chemical reaction (see figure 12 and § 6.1 in Vledouts et al. (2016)). This
observation is fortunately in line with the present strategies devised to limit the fines
in the agricultural spray context: it has been found that nucleating holes the instability
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early in the development of the expanding sheet issuing from flat fan atomizers by
feeding the liquid with various additives (see e.g. Vernay et al. (2015)) is a means to
obtaining larger droplets (which are thus less sensitive to drift). The present findings
suggest that a denser fraction of holes will be even more effective at reducing the
fraction of fines, if rim splashing is suppressed. The future will tell if that was a
relevant conclusion for the present work.
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Appendix A. Weber number corrections
A.1. Toroidal expansion

Two holes are simultaneously punctured at a distance b in a static liquid film with
constant and uniform thickness h. Each hole opens as a circle, at the constant
Taylor–Culick velocity V =

√
2σ/ρh, with ρ and σ the liquid density and surface

tension, respectively. The liquid is progressively collected from the inner disk with
radius R(t)= Vt+ b/2 into a toroidal rim with volume 2π2R(t)a2(t)=πR2(t)h, where
a(t) is the slowly growing rim radius. Time t is chosen so that the rim collision
initiates at t= 0. This is strictly the only instant when the Weber number equates to
its leading-order expression (2.3)

We0 =
8
√

π

√
b
h
. (A 1)

Later on, for t > 0, both values of a(t) and the facing component of the velocity
V cos ϕ(t) have changed, so that

We(t)=
ρ(2V cos ϕ(t))22a(t)

σ
=We0(cos ϕ(t))3/2, (A 2)

where ϕ(t) is the angle made by the radius of the rim running impact point, when
compared with the initial segment connecting the hole centres (figure 19). Immediately,

cos ϕ(t)=
b

2R(t)
=

1
1+ 2Vt/b

, (A 3)

and the equivalent We0 (A 1) is valid up to the order 2 in ϕ or 1 in t

We
We0
' 1−

3
4
ϕ2
' 1− 3

Vt
b
. (A 4)
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R(t)

Ç(t) b

V

V cosÇ

FIGURE 19. Snapshot of the punctured interstitial film during rim impact. The toroidal
correction takes into account the normal component of the rim velocity and growing radius
after initial impact (see the text).

A.2. Savart sheet
In the Savart sheet, some technical complications arise from the fact that the liquid
is in motion, diverging and thinning, although with known velocity and thickness
evolutions. The sheet is circular, any point is thus naturally located by its polar
coordinates, namely its radius r and angle θ . By symmetry, the origin of angles θ is
chosen so that the holes are nucleated at (r = r0, θ = ±θ0), at a time t = −tc, with
t = 0 being the rim impact initial time instant (figure 20a). The full resolution of
the velocity composition applied to the rim – the radial transport and the normal
retraction – although numerically tractable, is not necessary, as the colliding point
in each hole is, at any time t, tangent to some radius of the sheet. At this point,
with time-dependent coordinates (r(t), ±θ(t)), retraction and transport velocities
(respectively V(r) and U) are orthogonal and the composition simply reads

ṙ=U, (A 5a)
r(t)θ̇ =−V(r(t)). (A 5b)

With the opening hole conditions given above, (A 5) solves into

r(t)= r0 +U(t+ tc), (A 6a)

θ(t)= θ0 −
2V0

U

(√
1+

U
r0
(t+ tc)− 1

)
, (A 6b)

with V0 = V(r = r0). The time delay tc between film simultaneous ruptures and rim
impact is obtained by cancelling the angle θ(t= 0)= 0 on impact

U
r0

tc =−1+
(

1+ θ0
U

2V0

)2

= ε +
ε2

4
, with ε = θ0

U
V0
. (A 7)

The impacting velocity 2Vc is then evaluated at the current thickness rc = r(t= 0)

Vc = V(rc)= V0

√
1+ ε +

ε2

4
. (A 8)
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FIGURE 20. Weber number in the Savart sheet configuration. (a) Sketch of the impact,
with notation used in the text. Four successive instants from the hole puncture to the rim
collision are drawn. (b) Evaluation and comparison of the exact (A 11) and approximate
(A 1) expressions of We in the controlled rim production set-up.

The rim radius ac on impact is the result of the feeding of the film edge by the
film. It must take into account the contributions of both the flow divergence and the
slow thickness decrease. For a ring torus with respectively minor and major radii a(t)
and A(t), mass and momentum conservations write (Villermaux & Bossa 2011)

πρ
d
dt
(a2A)= ρhA(t)

dA
dt
, (A 9a)

πρ
d
dt

(
a2A

dA
dt

)
= 2σA(t). (A 9b)

The trajectory A(t) = r(t)(θ0 − θ(t)) is that of the tangent point (A 5), and the
integration of (A 9a) results in

ac =

√
h0r0θ0(24+ 32ε + 9ε2)

12π(2+ ε)2
, (A 10)

which in turn gives an explicit expression for the impact Weber number in the Savart
sheet configuration

We=
ρ(2Vc)

22ac

σ
=

16
√

π
(2+ ε)

√
1+

4
3
ε +

3
8
ε2

r0
√
θ0

d
. (A 11)

With ε = θ0U/V0 = θ0
√

R/r0, where R is the maximal sheet expansion (Gordillo,
Lhuissier & Villermaux 2014), both exact and approximate Weber numbers are directly
computed from the relative location of electrodes and the sheet properties (figure 20b).
With no surprise, the static film approximation is retrieved as soon as ε� 1, i.e. for
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FIGURE 21. Comparison of drop size distributions N(d), at We= 113, for both controlled
(plain circles) and random (hollow triangles) rim production set-ups: (a) linear and
(b) logarithmic x-scale.

a small Cartesian distance b∼ 2r0θ0 between the electrodes. The computation of this
Weber number (A 11), carried out in the symmetric situation, was only possible in
the controlled rim production set-up, not on the random rim production one. For the
sake of comparison between the set-ups, the fallback expression (A 1) is used as soon
as they are put side by side, although it underestimates the actual value of the impact
Weber number, with potentially large relative errors (figure 20b).

Appendix B. Comparison of experimental set-ups

Data, and notably drop sizes, were acquired thanks to two complementary
experimental set-ups detailed in § 2, each having its own limitations.

The first set-up features a controlled rim production and observes the spray
generation in the plane orthogonal to that of the initial, interstitial film. This view
makes the complete tracking and counting of the drops ejected out of the film plane,
including the fines, possible. It leads to the family of drop size distributions described
and documented in § 5.2. However, the field of view of the camera is fixed while the
inertial reference frame is moving with the film, so that some of the biggest drops
are not totally formed when they leave the field of view: this set-up thus tends to
underestimate the proportion of bigger drops.

The second set-up features a random rim production and monitors the sheet
fragmentation on a larger field of view. Drops are tracked at greater distances from
and longer times after the rim impact, so that the bigger drops are correctly measured.
Yet, the observation plane is that of the interstitial film, so that this set-up misses the
transverse dynamics outside of the optical depth of field and therefore the production
of the fines.

Figure 21 compares drop size distributions N(d), in number of drops per impact
and bin size, for the two set-ups at We= 113. Differences are to be seen at the two
extremities of the measurement ranges, because of the discrepancies in detecting the
big drops and the fines.
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