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We provide a new way of deriving a number of dynamic unobserved factors from a set of
variables. We show how standard principal components may be expressed in state space
form and estimated using the Kalman filter. To illustrate our procedure, we perform two
exercises. First, we use it to estimate a measure of the current account imbalances among
northern and southern euro area countries that developed during the period leading up to
the outbreak of the euro area crisis, before looking at adjustment in the post-crisis period.
Second, we show how these dynamic factors can improve forecasting of the euro
exchange rate.
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1. INTRODUCTION

There has been a long tradition of using either factor models (principal compo-
nents) or dynamic factor models to (i) derive measures of unobserved effects on
key economic indicators and (ii) to concentrate information for the purposes of
forecasting. These models have been applied, for example, to measure underly-
ing economic activity by Stock and Watson (1989) and Garratt and Hall (1996),
underlying inflation by Stock and Watson (1999) and González, Melo, Monroy
and Rojas (2009), global exchange-rate uncertainty by Henzel and Wieland
(2017), and financial-stress indicators by Ubilava (2019). Applications to fore-
casting include studies by Artis, Banerjee and Marcellino (2001), Zaher (2007),
and Ziegler and Eickmeier (2008). Key contributions to the development of fac-
tor models include Forni, Hallin, Lippi and Reichlin (2000), Stock and Watson
(2002a,b) and Giannone, Reichlin and Small (2008). Factor models have become
increasingly popular as a way of extracting information from data sets that con-
sist of a fairly large cross-sectional element as well as a time series dimension.
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Applications of these models include Barnett, Chauvet and Tierney (2009), who
use a factor model with a regime-switching model to separate the common move-
ments underlying monetary aggregate indices from idiosyncratic variations in
each series, and Fuleky and Bonham (2000), who use indicators observed at vari-
ous frequencies tied together by cointegration to pass high-frequency information
to low-frequency series.

In what follows, we focus on the two basic linear approaches to factor analysis
that have been used in the literature. One approach is based on principal compo-
nents and its variants. The second approach is based on the Kalman filter. Both
approaches have advantages and disadvantages. The advantage of the principal
component approach is that it is able to produce more than a single factor from
the original series. A disadvantage of the approach is that it is inherently static
in the sense that the component series at each point in time are only a function
of the data at that point in time. A key advantage of the Kalman filter approach
is that it is dynamic, in the sense that the factor produced will be smoothed since
it is a function of the data, not only in the current period but also both future and
past values. Its disadvantage is that it can only be used to produce a single factor
from a range of series. Hybrid approaches that start from principal components
and then apply the Kalman filters to the analysis to smooth the resulting factors
also exist; but these approaches are far from satisfactory.1

In this paper, we show (i) how principal components may be represented in a
state space form and (ii) how this representation generalizes to a dynamic multi-
factor model (DMFM). We apply this representation in two ways. First, we use it
to model the growing structural imbalances in the current account to GDP ratios
and their subsequent partial reversal which occurred between northern European
countries (Germany, Austria, and the Netherlands) and southern European crisis
countries (Greece, Ireland, Spain, and Portugal) during the periods 2003:Q1 to
2008:Q1 and 2008:Q2 to 2018:Q1, respectively. Using our method of represen-
tation, we derive an underlying measure of these imbalances. Second, we show
how these dynamic factors can improve our ability to forecast exchange rates; our
focus here is the *euro-U.S. dollar exchange rate.

The paper is structured as follows. Section 2 provides an overview of dynamic
factor models and of our proposed procedure. Section 3 applies the procedure to
the current accounts (relative to GDP) of the seven euro area countries mentioned
above over the two sub periods. Section 4 uses these dynamic factors to address
the issue of forecasting the euro-U.S. dollar exchange rate. Section 5 presents our
main conclusions. Finally, Appendix A provides a worked-out example that shows
the exact equivalence between principal components and the Kalman filter model.

2. A DYNAMIC MULTIFACTOR MODEL (DMFM)

2.1. Principle Components and Dynamic Factor Models

Let Yt be a vector of R variables of interest I = 1. . . R measured over T peri-
ods t = 1. . . T, that is, yit. The objective of factor models is to summarize the
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information in Yt in a smaller number of factors Ft, where Ft is a vector con-
taining fjt variables where j = 1. . . J, and where J is less than or equal to R.
Typically, we would want the number of useful factors to be considerably less
than R, although principal components can produce up to R factors. The assump-
tion we make throughout this paper is, therefore, that there exists a set of common
factors underlying the observed data such that

Yt = MFt (1)

Principal components proceeds by choosing the first factor to be a series that
explains as much of the variation in yit as possible. The second factor is then
derived as a series that explains as much of the remaining variation yit as possible,
subject to being orthogonal to the first factor. The third factor is chosen so that it
explains as much of the remaining variation as possible subject to being orthog-
onal to both of the first two factors, and so on. Formally, this is done by first
normalizing the variables in the vector yit so that they have a zero mean and unit
variance; call this vector Ȳ t. Then, the principal components, P, may be derived
in matrix form as

P = ȲW (2)

where W is an R×R matrix. To construct the first principal component, the idea
is that the first column of W is chosen so as to maximize the variance of the first
principal component p1 = Ȳw1. Such a linear combination is given by var(Ȳw1).
Hence, the problem that is solved by principal components is to maximize the
following equation with respect to the vector w1 (see Joliffe and Cadima, 2016).

max var(Ȳw1) = w′
1Sw1 (3)

where S is the sample covariance of Ȳ . The solution to this problem is not unique
because any linear scaling of w1will produce an equivalent answer, and so we
need to identify a unique set of weights. The usual way to address this issue is to
impose the constraint that w1w′

1 = 1. We may then go on to sequentially solve for
the remaining principal components, with the added constraint that each subse-
quent principal components is orthogonal to the ones that come before it. The full
W matrix is, in fact, given as the eigenvectors of Ȳ ′Ȳ . Typically, the information in
the R variable comprising the ȳit series2 is explained by a relatively small number
of factors, or principal components; as mentioned, these may be used either in
forecasting or as measures of some underlying concept, such as economic activ-
ity. The disadvantage of this approach is that the factors are inherently static. For
example, if we wished to model underlying economic activity, we might believe
that the economy evolves smoothly. If the data are erratic, or even seasonal, then
the principal components (or factors) will remain erratic or seasonal. Following
Doz, Giannone and Reichlin (2011), it has been common practice to regress time
series models on these factors in order to produce smoother versions of the factors
and to make them dynamic. Doz, Giannone and Reichlin (2012) give this proce-
dure a quasi-maximum likelihood interpretation. Our procedure, below, derives
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a full maximum likelihood estimator for the dynamic factors and, thus, should
achieve the Cramer-Rao lower bound. It is, of course, the case that deriving a
maximum likelihood estimator is not a necessary condition for achieving this
result.

The Kalman filter approach is inherently dynamic from the start. Following the
procedure originated by Stock and Watson (1989) and Garratt and Hall (1996),
a state space form is set up under which a set of R measurement equations are
specified as a function of an unobservable common factor. The R measurement
equations are

y1t = λ1 ft + ε1t

y2t = λ2 ft + ε2t

.

.

.
yRt = λR ft + εRt

εit ∼ N(0, σi) i = 1...R

(4)

where the ε’s are measurement errors, with zero means and constant variances,
and the state equation is given by

ft = φ(L) ft−1 + et

et ∼ N(0, � )
(5)

where et is the state equation error with zero mean and constant variance, and
where φ(L) is a lag polynomial. The Kalman filter smoothing algorithm produces
an optimal estimate of the factor f that explains as much of the movement in
yitas possible; the factor f is smoothed over time to allow for the dynamics of
the process. In contrast to the various extensions to principal components, which
produces smoothing in an ad hoc way, the Kalman filter produces the optimal
level of smoothing.3

As mentioned, the main disadvantage of this approach is that it has not been
possible to directly estimate more than one factor. Specifically, generalizing
equation (1) to many factors produces a system that is not identified and, thus,
cannot be estimated. It is possible to identify the model by imposing various con-
straints on the parameters of the model (see Harvey, 1989); indeed, this is, in
effect, what we do below in a way that allows us to replicate what happens in
principal components within the Kalman filter.

2.2. Principal Components as a Special Case of the Kalman filter

Before turning to the dynamic model, it will be useful to show how the Kalman
filter can exactly reproduce static principal components. That is, we will show
that the Kalman filter can be used to derive precisely the same factors as those
produced by principal components. To do this, we set up the following state space
form. The measurement equations are
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y1t = λ1 ft + ε1t

y2t = λ2 ft + ε2t

.

.

.
yRt = λR ft + εRt

ε1t . . . εRt ∼ N(0, 1)

(6)

where, in contrast to model (2), all the errors have the same constant variance.
The state equation is given by

ft = et

et ∼ N(0, σ 2)
(7)

where ft is the state variable, σ 2 is the variance of the state equation which is to
be estimated, y1 . . yR are the variables as before, which have been standardized
so that they have a zero mean and unit standard error, following the first stage of
principal components. We normalize the state variable on y1 using an identifica-
tion assumption (without loss of generality) and estimate the remaining λi. The
error terms in the state equation have the same variance which we normalize to 1;
this mimics the principle component approach of giving equal weights to all the
series;4 et is the error term in the state equation. Note that there are no dynamics
in the state equation, which is unusual, but permissible, under the Kalman filter.
The smoothed state variable will now give the maximum possible explanation
of the variation in all the variables, which, intuitively, is exactly the same thing
done by the first factor in the principal component procedure. More formally, the
problem which the Kalman filter solves is to minimize the squared errors in the
measurement equations (Jazwinski, 1970 or Harvey, 1989), that is, to

min z =
T∑

t=1

R∑

k=1

ε2
kt (8)

This is minimized with respect to the unknown parameters of the state space form,
in this case, λ2 . . . λR and σ 2.This is simply the dual of the principal components
problem (3)—if we maximize the variance of the factor, we minimize the variance
of the errors. We can see this is we define the sum of the squared normalized data
as � = ∑T

i=1

∑R
j=1 ȳ2

ij where ȳij are the elements of Ȳ(as defined above (2)) then
we can see that

� = w′
1Sw1 + ε′ε (9)

� is fixed from the data. Principal components maximizes the first term on the
right-hand side of (9), which, of course, minimizes the second term. The Kalman
filter minimizes the second term, which maximizes the first term.

Again, we have an identification problem in that the state variables are only
unique up to a multiplicative factor; and, again, we need an arbitrary normal-
ization. In this case, the normalization often takes the form of setting λ1 = 1.
Apart from this normalization scaling factor, the first principal component and
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the static state variable both contain the same information. Indeed, if the first
state equation is normalized to the value of the first principal component’s load-
ing weight, then the two will be identical. Further, if we regress the first principal
component on the first state variable, we will get an R2 of exactly 1. Appendix A
provides an example using artificial data that illustrates the equivalence between
principal components and the Kalman filter model outlined above.

Now, in order to derive the second state variable under model (3), we create a
set of variables based on the state variable as follows:

γ11t = λ1 ft
γ12t = λ2 ft
.
.
.
γ1Rt = λR ft

(10)

where γ11t, is the effect of the first state variable on y1t; that is, γ11t, is equal to the
component extracted for y1t Similarly, γ12t, is the component extracted for y2t, etc.
We now set up the following state space form to derive the second state variable:

y1t = f2t + γ11t + ε1t

y2t = λ2 f2t + γ12t + ε2t

.

.

.
yRt = λR f2t + γ1Rt + εRt

ε1t . . . εRt ∼ N(0, 1)

(11)

and the state equation is again given by:

f2t = et

et ∼ N(0, σ 2)
(12)

This formulation provides the best explanation of the variables after removing the
effect of the first state variable. Again, it will be identical to the second princi-
pal component except for the scaling given by the normalization. This process
may be repeated to derive as many state variables as required, thus demonstrating
the equivalence of the static Kalman filter approach and the principal component
procedure. But, of course, there is little reason to perform this procedure since
principal components are quicker and easier to perform than the iterated set of
Kalman filter models.

2.3. The Dynamic Multiple Factor Model (DMFM)

To briefly summarize, we have shown how a state space form can exactly repli-
cate principal components. The key restriction made to achieve this result is to
make the state equation static. To generate a dynamic factor model, we relax that
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restriction. That is, what we need to do to generate a succession of dynamic factors
is to repeat the process given above, but with a dynamic set of state equations.

To demonstrate, we begin by estimating the single factor Kalman filter, given
as model (2) above. We then create a set of new variables which are given by the
factor multiplied by its loadings:

γ11t = ft
γ12t = λ2 ft
.
.
.
γ1Rt = λR ft

(13)

where the λ’s are the loading weights. Then, we modify the Kalman filter state
equations by adding these variables to each state equation and perform a second
Kalman filter estimation to estimate a second factor. Thus,

y1t = f2t + γ11t + ε1t

y2t = λ22 f2t + γ12t + ε2t

.

.

.
yRt = λR2 f2t + γ1Rt + εRt

ε1t . . . εRt ∼ N(0, 1)

(14)

This procedure produces a second factor that explains as much of the variation in
the observed variables as possible not explained by the first factor. This produces
a set of components that is analogous to principal components, except that the
components are dynamic. That is, as in equation (3), the factors have a dynamic
structure.

We can then proceed to another iteration to extract a third dynamic factor by
again defining a new set of variables as:

γ22t = f2t

γ22t = λ22 f2t

.

.

.
γ2Rt = λR2 f2t

(15)

and then estimating a standard Kalman filter with these variables added.

y1t = λ13 f3t + γ11t + γ21t + ε1t

y2t = λ23 f3t + γ12t + γ22t + ε2t

.

.

.
yRt = λR3 f3t + γ1Rt + γ2Rt + εRt

ε1t . . . εRt ∼ N(0, 1)

(16)
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This will then produce a third dynamic factor and the process can be repeated as
many times as we wish.

An obvious way to choose between these models would be in terms of a like-
lihood ratio test; we should continue producing more factors until the final factor
produced does not produce a significant rise in the likelihood function following
the addition of the last factor. Given that we have the likelihood function, it would
also be straightforward to construct one of the standard information criteria, such
as the AIC or the SBC criteria.

3. A DMFM FOR THE CURRENT ACCOUNT POSITIONS OF
NORTHERN AND SOUTHERN EURO AREA COUNTRIES

We utilize the above multiple dynamic factor model to derive an indicator of the
degree of current account imbalance between the groups of northern and south-
ern euro area countries. We expect the first dynamic factor (as the dominant one)
to capture the growing imbalances that developed during the early part of the
euro period up to the onset of the 2008 financial crises. Specifically, we focus on
the current account to GDP ratios (CB) of three northern countries—Germany,
Austria, and the Netherlands—and four southern countries which experienced a
sovereign debt crises—Portugal, Spain, Greece, and Ireland.5 The data are quar-
terly; the sample period is 2003:Q1 to 2018:Q4. The source of the current account
and GDP data is Eurostat. Figure 1a and 1b illustrates the paths of the current
account balances in periods before and after the outbreak of the crisis in 2008. The
figures reveal several distinct patterns. First, during the sub period from 2003:Q1
to 2008:Q1, the current account positions of the three northern countries rose
sharply; for example, Germany’s surplus rose from 2% of GDP at the beginning
of the period to about 6% of GDP at the end of the period. Second, whereas the
current account surpluses of Austria and Germany exhibited steady rises in the
first sub period, the current account surplus of the Netherlands exhibited more
erratic behavior, rising from about 0% at the beginning of the period, peaking at 8
1/2% in 2006:Q3, and then falling to 6% in 2008:Q1. This circumstance is related
to its position as a producer of natural resources and an exporter of crude oil and
processed petroleum products. Its current account is heavily influenced by oil and
gas prices. Third, each of the four southern countries experienced large deteriora-
tions in their current account deficits in the first sub period. Fourth, in the second
sub period, the current account surpluses of the three northern countries evolve in
different ways—the current account surplus of Austria initially fell (from about
4% to about 2%) and then fluctuated around 2% in a steady way; that of Germany
rose from about 6% to about 8% steadily, while that of the Netherlands exhib-
ited erratic behavior, rising from 4% to over 10%, then falling to 4%, before
rising to 8%. Fifth, after 2008, the southern countries adjusted and reduced their
deficits considerably, typically moving either to a balanced current account or to
surpluses; the northern countries either maintained stable surpluses (Austria) or
increased their surpluses in either a steady way (Germany) or a somewhat erratic
way (the Netherlands).
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Data source: Eurostat.

FIGURE 1. (a) Current account balances as % GDP in the North. (b) Current account
balances as % GDP in the South.

Period from 2003:Q2 to 2008:Q1

We begin by examining the common factor structure underlying the seven coun-
tries over the first sub period when we believe the fundamental imbalances were
building up. To do this, we begin by seasonally adjusting the current account
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TABLE 1. Loading weights of the dynamic
factor for each country

Coefficient Z-Statistic R2

GE 1 − 0.82
AU 0.92 2.2 0.64
NL 0.41 1.9 0.01
IR −1.0 3.9 0.9
PT −0.75 3.2 0.6
GR −0.99 3.5 0.7
ES −1.0 1.5 0.96

Note: The R2 is derived from regressing the factor on the
current-account balance (relative to GDP) for each country’s
current-account balance.

balance data6 and standardising each variable. We then set up the following state
space form; the measurement equations are7:

CBGE = φ1 + ε1

CBAU = α1φ1 + ε2

CBNL = α2φ1 + ε3

CBIR = α3φ1 + ε4

CBPT = α4φ1 + ε5

CBES = α5φ1 + ε6

CBGR = α6φ1 + ε7

ε1 . . .ε7 ∼ N(0, σ )

(17)

where CB is the observed ratio of the current account position relative to GDP for
Germany (GE), Austria (AU), the Netherlands (NL), Ireland (IR), Portugal (PT),
Spain (ES), and Greece (GR). The state equation is

φ1t = φit−1 + et

et ∼ N(0, 1)
(18)

This produces the following state variable, or the first dynamic factor, which is our
index of structural imbalance (Figure 2). This shows a fairly smooth increasing
level of imbalance over the period. The coefficients on the measurement equa-
tions are given in Table 1, where the German coefficient is normalized to 1.0 as
an identification condition; hence, there is no Z-statistic available for Germany.
The key result here is that the loading weights on Germany, Austria, and the
Netherlands are positive while those of the other four countries are all nega-
tive. This result implies that as the dynamic common factor rises, the German,
Austrian, and Netherlands current balances move further into surplus while the
other four countries move further into deficit, demonstrating the growing diver-
gence of the external positions between the northern and the southern countries
during this period.
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FIGURE 2. The first dynamic factor.

We can see how much of each of the current balance for each country is
explained by this first dynamic factor by running a simple regression of the first
dynamic factor on the CB for each country. This is shown in the final column
of Table 1 as the R2 from this regression. The imbalance index has a very high
degree of explanatory power for all countries except the Netherlands. The low
(i.e., 0.01) R2 for the Netherlands reflects the nature of the procedure used to
obtain the factor. As discussed, the evolution of the current account-to-GDP ratio
of the Netherlands has little in common (in terms of a common factor) with the
other countries. Hence, the common factor found for the other countries has little
effect on the Netherlands, producing the low R2.

As mentioned, the first dynamic factor is identical to what is derived under
the standard factor model. We can now proceed to derive the second dynamic fac-
tor, which cannot be derived under the standard model. As described above, this is
done by adding the first factor multiplied by its coefficient to each of the measure-
ment equations and then re-running the Kalman filter. This procedure produces
the second dynamic factor shown in Figure 3. There is no clear trend in this factor,
as we would expect, since it should be orthogonal to the first factor. The coeffi-
cients on the second dynamic factor no longer have the clear pattern found for the
first factor. The coefficient on the second dynamic factor is again normalized to
unity on Germany (Table 2). The coefficients of three countries, Austria, Ireland,
and Portugal have the same (positive) sign as Germany while the other three coun-
tries have the opposite (negative) sign. This factor is, therefore, picking-up some
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TABLE 2. Loading weights of the second
dynamic factor for each country

Coefficient Z-Statistic Cumulated R2

GE 1 − 0.83
AU 0.8 2.3 0.83
NL −1.5 3.8 0.78
IR 0.17 0.3 0.9
PT 0.7 2.7 0.78
GR −0.37 1.0 0.71
ES −0.05 0.9 0.96

Note: The R2 is derived from a simple regression of the first
and second factor onto each country’s current-account balance.
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FIGURE 3. The scond dynamic factor.

differences among the countries rather than something they experience in com-
mon. The R2 rises substantially for three countries: the Netherlands (from 0.01 to
0.78), Austria (from 0.64 to 0.83), and Portugal (from 0.60 to 0.78). The loading
weight for the Netherlands also has a high Z statistic relative to most of the other
countries. This factor would then seem to be mainly picking up something that
is largely specific to the Netherlands and which does not have the same general
applicability as the first dynamic factor. In short, there is clear and strong evidence
that over this period there is an underlying common factor that links the rises in

https://doi.org/10.1017/S1365100520000619 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100520000619


A SUGGESTION FOR A DYNAMIC MULTIFACTOR MODEL 1435

–2.4

–2.0

–1.6

–1.2

–0.8

–0.4

0.0

0.4

0.8

1.2

1.6

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

First dynamic factor ± 2 RMSE

FIGURE 4. The first dynamic factor 2008–2018.

the current account surpluses of Germany and Austria, to the rising deficits in
Spain, Greece, and Ireland.

Period from 2008:Q2 to 2018:Q1

We now turn to the second sub period. During this period, the four crisis coun-
tries had to undertake sharp fiscal contractions, to eliminate their current account
deficits; the upshot of those measures were reductions in domestic demand and
sharp improvements in their current account positions. We would, therefore,
expect to see that their current accounts were moving in line with those of the
northern countries, which were not subjected to contractionary policies and which
tended to exhibit increases in their surpluses in the second period (Figure 1a).
Again by applying the dynamic factor analysis, we derive the first factor which
is presented in Figure 4. The first dynamic factor continues to have an upward
slope although it levels off after 2013. The difference between this and the earlier
period comes in the form of the loading weights shown in Table 3. In this case, all
the coefficients are positive with the exception of Austria, meaning that the cur-
rent balance to GDP ratios of all four crisis countries improve (i.e., move either
from deficits to surpluses or from relatively high deficits to lower deficits) over
this period—see Figure 1). However, as mentioned, the current account surplus of
Germany rose. The first dynamic factor has little explanatory power for Austria
and the Netherlands, which experienced either slowly falling surpluses (Austria)
or behaved somewhat erratically (the Netherlands) relative to the other countries.
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TABLE 3. Loading weights of the dynamic
factor for each country

Coefficient Z-Statistic R2

GE 1 – 0.68
AU −0.23 1.9 0.11
NL 0.04 1.7 0.14
IR 0.6 6.4 0.32
PT 1.0 3.1 0.93
GR 1.0 3.6 0.91
ES 0.96 4.0 0.92

Note: The R2 is derived from a simple regression of the factor
on each country’s current-account balance.

–2
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1
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3

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

± 2 RMSESecond dynamic factor

FIGURE 5. The second dynamic factor 20,082,018.

We now turn to the second dynamic factor presented in Figure 5. This fac-
tor seems to largely reflect differences among the three northern countries—the
erratic behavior of the Netherlands in 2014 and 2015 (see Figure 1) and the diver-
gence of Germany from Austria over the first half of the period. We can see from
the factor loadings in Table 4 that this factor almost exclusively explains devel-
opments in the north; this circumstance is evidenced in the sharp increases in
the (cumulated) R2 for each of the northern countries—from 0.68 (with a single
factor) to 0.81 (with two factors) for Germany; from 0.11 to 0.52 for Austria;
and from 0.14 to 0.60 for the Netherlands. All the crisis countries have very small
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TABLE 4. Loading weights of the second
dynamic factor for each country

Coefficient Z-Statistic Cumulated R2

GE 1 – 0.81
AU 0.74 4.5 0.52
NL −0.9 4.4 0.60
IR −0.002 0.01 0.33
PT −0.0001 0.002 0.94
GR −0.06 0.01 0.92
ES −0.1 0.4 0.92

Note: The R2 is derived from a simple regression of the first
and second factor on each country’s current-account balance.

loading weights which are insignificant; and, the cumulated R2 for these countries
hardly rises from the simple R2 in Table 3.

The broad conclusion from this section is that the first sub period was one of
growing imbalances in which the first dynamic factor dominated developments in
Austria and Germany in a positive way, while it also dominated in the four crisis
countries but in a negative way. This factor is then a good measure of the growing
imbalances which developed between the north and the south and could usefully
act as a summary variable of the phenomenon in econometric models. The second
sub period did not see a reversal of this imbalance in the sense that Germany con-
tinued to have a rising surplus, while the Netherlands and Austria did not reduce
their surpluses. The crisis countries turned around their current account deficits by
internal adjustments to economic activity and domestic prices; the surplus coun-
tries did not contribute to narrowing imbalances. In each of the sub periods, our
dynamic multifactor method substantially increased the explanatory power for
three countries—Austria, the Netherlands, and Portugal in the first sub period and
Austria, Germany, and the Netherlands in the second sub period—compared to
what was obtained under the standard method. Again, the factor could be used to
summarize current account adjustment during the crisis. In the following section,
we provide an example of just such a use.

4. FORECASTING THE EURO-DOLLAR EXCHANGE RATE

Since the seminal work of Meese and Rogoff (1983), who convincingly demon-
strated that a simple random walk model could outperform virtually all other
exchange rate models in forecasting accuracy, exchange rate forecasting has been
a notable area of forecast failure. This finding has been replicated many times
since the study by Meese and Rogoff—see, for example, the surveys by Rossi
(2013) and Caraiani (2017). Given this general failure, it seems appropriate to ask
if the dynamic factors generated above can provide useful information in a sim-
ple forecasting exercise for the euro exchange rate. To provide context, it seems
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TABLE 5. Forecasting the dollar-euro exchange rate

2003q2–2008q1 2008q3–2018q1

Period AR(2) One factor Two factors AR(2) One factor Two factors

constant 0.03(1.2) 0.09(2.44) 0.102(2.25) 0.037(2.3) 0.07(2.8) 0.093(4.2)
LEUROt−1 1.15(4.9) 1.03(4.55) 0.984(4.3) 1.24(8.44) 1.19(8.17) 1.07(8.06)
LEUROt−2 −0.24(1.1) −0.39(1.84) −0.386(1.6) −0.41(2.85) −0.49(3.23) −0.473(3.7)
DF1 – 0.027(2.07) 0.03(2.2) – −0.02(1.66) −0.035(3.1)
DF2 – – 0.02(1.2) – – −0.033(3.4)
RMSE 0.040623 0.043328 0.025974 0.036716 0.035343 0.0300568
MAE 0.032881 0.037143 0.022152 0.029788 0.028798 0.025673
Theil
inequality

0.087914 0.087297 0.051694 0.072202 0.06947 0.060017

Note: Dependent variable is the log of dollar-euro exchange rate. ‘t’ statistics are in parenthesis. Forecast diagnostics
are based on one step ahead static forecasts.
Data sources: Eurostat and ECB Statistical Data Warehouse.

reasonable that current account balances should influence the exchange rate. Yet,
it would not be sensible to enter the current-account balances of all euro area
members into a forecasting equation for the euro because such a model would be
highly overparameterized. By deriving the dynamic common factors, however, we
can concentrate the information contained in the large number of current account
variables into a much more parsimonious form.

To this end, we begin by estimating a simple autoregressive model of the log
of the euro exchange rate against the US dollar (dollars per euro) over the two
sub-periods specified above, and then we add the lagged dynamic factors derived
earlier (here called DF1 and DF2, respectively). We then undertake one step
ahead, static, forecasts, and assess the forecasting performances of three model
(discussed below) based on three criteria—the root mean square error (RMSE),
the mean absolute error (MAE), and Theil’s inequality coefficient—over the two
periods used above to derive the dynamic factors. The exchange rate data are from
the ECB’s statistical Data Warehouse.

The results of this exercise are reported in Table 5. For both periods, we start
from a simple AR(2) model that seems to be a good basic model, passing a range
of standard diagnostics.8 For the period from 2003 to 2008, when we add the
first dynamic factor alone, it is significant, but does not produce improvement in
the forecast diagnostics (in fact, it produces a small deterioration in the RMSE
and the MAE). We then add both dynamic factors; the first is significant, and the
second, while not significant (with a t-stat of 1.2), does improve the forecasting
performance of the equation; the RMSE, the MAE and the Theil inequality coef-
ficient all fall substantially, indicating that the second dynamic factor produces a
significant improvement in forecasting ability. The results are even stronger for
the 2008–2018 period, where the first factor alone is not significant and adds little
to the forecasting performance. When we include the two factors, however, both
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are highly significant and together produce a substantial improvement in forecast
performance. To sum up, for both periods, the inclusion of two dynamic fac-
tors improve forecasting performance on the basis of the three criteria considered
compared with both the baseline AR(2) model and with the single-factor model.

The intuition underlying this result is the following. While the first factor cap-
tures the broad, smooth, trend-like behavior in the current balances, this effect is
probably well captured by the AR(2) time series component of the model. Hence,
the first factor adds little to the explanation of the exchange rate. The second fac-
tor, however, picks up sharp, sudden movements in the current balances, which
would not be proxied by the simple time series model. Thus, this factor con-
tributes significantly to the forecast. This example, therefore, demonstrates the
importance of using more than one factor.

5. CONCLUSIONS

We have demonstrated that principle components can be generated from a state
space representation using the Kalman filter, thus making the generalization to a
DMFM straightforward. We illustrated this approach by looking at the underlying
dynamic factors for the current account balance to GDP ratios for seven euro area
counties, deriving an index of current-account imbalance based on this approach
for two sub periods. We then used these dynamic factors in a forecasting exercise
for the euro-dollar exchange rate and demonstrated that these factors enhance the
forecasting ability of a simple AR model. In addition, in both periods considered
it is the second dynamic factor—a factor which has previously not been possible
to calculate—that brings about the major improvement in the forecast diagnostics.

NOTES

1. Specifically, these approaches smooth the principal components in an arbitrary way—for
example, by filtering the components.

2. For simplicity of notation, we will henceforth drop the bar notation in ȳt and will simply note
when the variables are normalised.

3. See Cuthbertson, Hall and Taylor (1992).
4. If different variances are assigned to each measurement equation, then this is equivalent to

weighted principal components where variables can have unequal weights in the construction of the
principal components.

5. The specific countries were selected because the three “northern” countries had the largest
current-account surpluses relative to GDP in the euro area during 2001 and 2008, and the four “south-
ern” countries had the largest deficits. The four “southern” countries experienced self-fulfilling crises
between their banking systems and their sovereign-bond markets following the outbreak of the euro-
area crisis in 2010. See Gibson, Hall and Tavlas (2016, 2017, 2018), and Gibson, Hall, Petroulas and
Tavlas (2020).

6. It is critical to work with seasonally adjusted current account data, especially in the case of
the southern European countries where, because of the importance of tourism, inter alia, the current
account is highly seasonal.

7. We suppress the obvious time subscript for notational simplicity.
8. For each sub period, we lose two observations because of the AR(2) specifications. The

diagnostics are available from the authors.
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APPENDIX A: A STEP BY STEP APPLICATION
SHOWING THE EQUIVALENCE OF THE KALMAN

FILTER AND PRINCIPAL COMPONENTS

In this appendix, we give a worked example that shows the equivalence of our Kalman
filter model and principal components. We take an artificial data set of 1000 observations
and two variables where we construct the data in such a way that there is a common factor
underlying both series but also a considerable amount of noise in each series. The example
has been worked in EVIEWS, and the EVIEWS workfile is available from the authors upon
request.

We set up an EVIEWS workfile which is undated and has 1000 observations.

1. We generate three variables which are standard normal random numbers with N(0,1),
x1, x2, and x3.

2. We then generate two variables from these three random variables as follows:

y1 = x1 + x2

y2 = x1 + x3

which means that both variables have a common factor but also quite a large
idiosyncratic part.

3. We then apply standard principal components, using the EVIEWS procedure and derive
the first principal component, P1, which is graphed in Figure A1.

4. We now turn to the Kalman filter procedure. We begin by creating a state space object
(Sspace):
4.1 The first step is to create two new series which are normalized to have a zero mean

and unit variance. This is done simply as:

ysi = (yi − ȳi)/SEyi

This is important because we are trying to mimic what happens in PCA and the
first stage here is to normalize each variable.

4.2 We then set up the following state space form:

@signal y1s = sv1 + [var = 1]

@signal y2s = c(1)∗sv1 + [var = 1]

@state sv1 = [var = exp(c(2))]

There are two signal equations for the two observed variables. The variance for the
two signal equations is set to 1 to mimic what happens in principal components.
The coefficient of the first signal equation is normalized to 1. There is an estimated
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TABLE A1. Kalman Filter Estimation

Sspace: SS01
Method: Maximum likelihood (BFGS / Marquardt steps)
Included observations: 1000
Convergence achieved after 16 iterations
Coefficient covariance computed using outer product of gradients

Coefficient Std. Error z-Statistic Prob.

Estimated parameter, C(1) 1.000 0.219 4.566 0.00
Variance of state equation, C(2) −1.357 0.258 −5.254 0.00

Final State Root MSE z-Statistic Prob.

SV1 0.000 0.507 0.000 1.00

Log likelihood −2787.14 Akaike info criterion 5.58
Parameters 2 Schwarz criterion 5.59
Diffuse priors 0 Hannan-Quinn criter. 5.58

FIGURE A1. First Principal Component.

parameter (c(1)) in the second signal equation and we estimate the variance of the
state equation (c(2)). This is then estimated by maximizing the likelihood function
to produce the results in Table A1.

4.3 We then form the smoothed state series sv1, which we present in Figure A2.
4.4 This state variable now contains exactly the same information as the first principal

components. We can demonstrate this by regressing SV1 on P1.

Finally, we rescale the state variable by 1.2921020/0.310325 to make the first obser-
vation of SV1 equal the first principal component, see Table A2. We then graph the two
variables together. For clarity, we show the first 110 observations only in the Figure A3.

It is impossible to see any difference between the two scaled series. Looking at the
spread sheet, the two series are equivalent to at least the 4th decimal point.
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TABLE A2. Equivalence of Principal Components with Kalman Filter technique.

Dependent Variable: P1
Method: Least Squares
Included observations: 1000

Variable Coefficient Std. Error t-Statistic Prob.

C −1.88E-07 1.41E-07 −1.332 0.18
SV1 4.164 4.78E-07 8,711,630. 0.00

R-squared 1.00 Mean dependent var −3.86E-17
Adjusted R-squared 1.00 S.D. dependent var 1.231947
S.E. of regression 4.47E-06 Akaike info criterion −21.797
Sum squared resid 1.99E-08 Schwarz criterion −21.787
Log likelihood 10900.26 Hannan-Quinn criter. −21.793
F-statistic 7.59E+13 Durbin-Watson stat 1.003
Prob(F-statistic) 0.00

Note: It should be noted that the R-squared is exactly equal to 1 as stated in the main text of the paper.

FIGURE A2. Smoothed state series from Kalman filter estimation.

FIGURE A3. The Two Series Compared.
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