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A swimming micro-organism is modelled as a squirming sphere with prescribed
tangential surface velocity and referred to as a squirmer. The centre of mass of
the sphere may be displaced from the geometric centre, and the effects of inertia
and Brownian motion are neglected. The well-known Stokesian dynamics method
is modified in order to simulate squirmer motions in a concentrated suspension.
The movement of 216 identical squirmers in a concentrated suspension without any
imposed flow is simulated in a cubic domain with periodic boundary conditions, and
the coherent structures within the suspension are investigated. The results show that
(a) a weak aggregation of cells appears as a result of the hydrodynamic interaction
between cells; (b) the cells generate collective motions by the hydrodynamic interaction
between themselves; and (c) the range and duration of the collective motions depend
on the volume fraction and the squirmers’ stresslet strengths. These tendencies show
good qualitative agreement with previous experiments.

1. Introduction
Continuum models for suspensions of swimming micro-organisms have been

proposed for the analysis of phenomena such as bioconvection (Childress et al. 1975;
Pedley & Kessler 1990; Hillesdon et al. 1995; Bees & Hill 1998; Metcalfe & Pedley
2001). The continuum models proposed so far are restricted to dilute suspensions, in
which cell–cell interactions are negligible. In practice, however, one cannot assume
diluteness for all suspensions of importance, such as the dense falling plumes that
form part of bioconvection patterns (Kessler et al. 1994; Metcalfe & Pedley 2001),
oceanic plankton blooms, harmful red tides in coastal regions, industrial bioreactors
and so on. In order to deal with non-dilute suspensions of micro-organisms, it is
necessary to consider the interactions between cells. Then the particle stress tensor,
the velocities of the micro-organisms and the diffusion tensor in the continuum model
will need to be replaced by improved expressions.

Dombrowski et al. (2004) have reported mesoscale coherent structures in a
concentrated suspension of Bacillus subtilis. In a concentrated suspension, a B. subtilis
cell apparently tends to swim in the same direction as its neighbours, generating a
flow pattern larger than the scale of an individual cell but smaller than the scale of
the container used in the experiment. The mesoscale structure changes its direction
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randomly in a manner reminiscent of turbulence, so Dombrowski et al. named this
phenomenon ‘slow turbulence.’ Mendelson et al. (1999) also observed a mesoscale
motion of whorls and jets generated by B. subtilis. In this experiment, concentrated
populations of B. subtilis are put on a thin water film above an agar gel. The
collective motions dramatically change the trajectories of cells and the probability
density function of the relative positions and orientations of the cells. Since coherent
structures will affect the rheological and diffusive properties of a suspension, we
will here numerically investigate the coherent structures that arise in a concentrated
suspension of model cells, interacting purely hydrodynamically. One of the objectives
of our work is to see whether hydrodynamics is enough to explain the coherent
structures that arise in concentrated suspensions of swimmers, or whether some
biological interaction must be postulated.

A significant amount of work has been done to analyse the micro-structure,
or spatial distribution of particles, in concentrated suspensions of inert spheres,
bubbles or droplets in a Stokes flow regime, because the micro-structure has a
considerable influence on suspension rheology and diffusion, as found by Brady
& Morris (1997) for a concentrated suspension of Brownian spheres in a simple
shear flow. Acrivos (1995) investigated the self-diffusion of non-Brownian spheres in
concentrated suspensions both experimentally and analytically. Though he explained
three kinds of diffusive phenomena that may lead to aggregation of particles, strong
aggregation was not observed in a suspension of uniform concentration under a
constant applied shear rate. A concentrated suspension of deformable droplets has
been investigated numerically by Loewenberg & Hinch (1996) and by Zinchenko
& Davis (2000, 2002) in a vanishing Reynolds number (Re) regime. The suspension
rheology is strongly affected by the micro-structure, but strong aggregation of droplets
again has not been reported. Therefore, earlier research on the micro-structure of a
suspension of inert particles cannot be simply extended to study that of active
micro-organisms.

The model micro-organism used in this paper is the same as the one used by
Ishikawa, Simmonds & Pedley (2006) and will be referred to as a ‘squirmer’. Details
of a squirmer will be briefly explained in § 2.1. The authors have already investigated
the effect of cell–cell interaction on the rheology and self-diffusivity of a suspension of
squirmers (Ishikawa & Pedley 2007a, b). The simulation methods employed in those
studies are, however, restricted to ‘semi-dilute’ suspensions, because they are based
on pairwise additivity in constructing the grand mobility matrix for the suspension
as a whole. The error associated with this approximation in many-body interactions
is O(c3) for the rheological properties, where c is the volume fraction of particles.
Since an error O(c3) is not acceptable in the case of concentrated suspensions, it is
necessary to improve the numerical method for such cases.

There are some methods that can efficiently simulate a concentrated suspension of
particles, such as a lattice Boltzmann method (Ladd 1994a, b, 1997), a fast multipole
method (Sangani & Mo 1996) and a modified boundary element method (Zinchenko &
Davis 2000, 2002). The method to be used in this study is that of Stokesian dynamics,
introduced by Brady & Bossis (1988). In the case of a spherical squirmer, the Faxén
laws are simple (cf. equations (2.10)–(2.12)), so it is efficient to apply Stokesian
dynamics to a suspension of squirmers. Details of the numerical method will be
explained in § 2, and its reliability will be discussed in § 3 by comparison with available
results.

In this paper, we will compute the three-dimensional motion of interacting squirmers
in periodic suspensions in a fluid otherwise at rest. The coherent structures in a
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suspension of squirmers will be investigated in § 4. Statistics of near-field interactions
will be analysed in § 5. In § 6, we will compare the present numerical results with
those of previous research, both experimental and numerical, and engage in further
discussion.

2. Methods
The Stokesian dynamics simulation method for computing the hydrodynamic

interactions among an infinite suspension of particles, in the absence of Brownian
motion and at negligible particle Reynolds number, was developed by Brady et al.
(1988). This method was extended by Mehandia & Nott (2007) for dipole spheres.
The numerical method used in this study is similar to theirs, but it had to be
modified in order to deal with squirmers instead of inert spheres. To our knowledge,
Brady’s Stokesian dynamics method has not previously been exploited for squirmers,
so we explain the modified method in detail in this section. (Of course, dynamic
simulations of active particles in Stokes flow have been reported but without accurate
representation of the near field.)

2.1. A squirmer

The model micro-organism used in this paper (a spherical squirmer) is the same as the
one used by Ishikawa et al. (2006). It is assumed to be neutrally buoyant (i.e. force-
free), possibly bottom-heavy (therefore not necessarily torque-free) and non-Brownian,
and it is also assumed to swim at very small Reynolds number; i.e. it is assumed
to be inertia-free. The model of a squirmer was first proposed by Lighthill (1952), and
has been extended by Blake (1971), Felderhof & Jones (1994) and Stone & Samuel
(1996). The model has also been used by Magar, Goto & Pedley (2003) and Magar &
Pedley (2005) to analyse nutrient uptake properties of a solitary squirmer.

The sphere’s surface is assumed to move purely tangentially, and these tangential
motions are assumed to be axisymmetric and time-independent. Thus the tangential
surface velocity of a squirmer, in the reference frame moving along with the squirmer,
is given as

us =

2∑
n=1

2

n(n + 1)
Bn

( e · r
r

r
r

− e
)

P ′
n(e · r/r), (2.1)

where Pn is the nth Legendre polynomial, e is the unit orientation vector of a squirmer,
r is the position vector and r = |r |. We will follow Ishikawa et al. (2006) and omit
squirming modes higher than the second (i.e. Bn = 0 in us when n � 3), though such
a restriction is not required for the numerical methods to work. The swimming speed
of a solitary squirmer is Usol =2B1/3. We denote by β the ratio of second-mode
squirming to first-mode squirming; i.e. β = B2/B1. It should be noted that B2, and
hence β , can have either sign. A squirmer with positive β is a ‘puller’, analogous to
a micro-organism for which the thrust-generating apparatus is in front of the body
(which dominates the drag), as in biflagellate algae such as Chlamydomonas, whereas
a squirmer with negative β is a ‘pusher’; i.e. the thrust is generated behind the body,
as in bacteria or spermatozoa. In the present study, we intend to discuss coherent
structures in a general suspension of active particles whose hydrodynamics can be
modelled precisely. Thus we do not use a bacterium-specific model (as did Ishikawa
et al. 2007), even though coherent structures are often discussed in a bacterial bath.
Ishikawa & Hota (2006) experimentally showed that the squirmer is a good model for
one kind of ciliated protozoan, Paramecium, and there are other real micro-organisms,
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Figure 1. Velocity vectors in the reference frame moving along with the squirmer. Uniform
flow of speed 1, in dimension-free form, coming from far right. The scales of vectors in (a)
and (b) are the same. (a) β = 1; (b) β = 5.

notably ciliates such as Opalina and colonies of flagellates such as Volvox, which may
be modelled as squirmers. Moreover, cyanobacteria (Waterbury et al. 1985) also have
no external appendages, and they swim by a bulk streaming of the cell surface
without observable shape change (Pitta & Berg 1995). Thus, they may be modelled
as squirmers, too. However, it should be emphasized that our choice of a spherical
squirmer as a model micro-organism was made because it was the simplest we could
think of that also permitted a precise analysis of the hydrodynamics, even in the near
field (Ishikawa et al. 2006). By treating the fluid dynamics precisely we can be sure
that any emergent behaviours really do emerge as consequences of hydrodynamical
interactions and not as artefacts of a near-field approximation scheme. Velocity
vectors, relative to the translational velocity vector of a squirmer, for the cases β = 1
and 5 are explicitly shown in figure 1.
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There have been some previous investigations of the hydrodynamic interactions
between micro-organisms (Guell et al. 1988; Ramia, Tullock & Phan-Thien 1993;
Nasseri & Phan-Thien 1997; Jiang, Osborn & Meneveau 2002; Lega & Passot 2003;
Hernandes-Ortiz, Stoltz & Graham 2005; Saintillan & Shelley 2007), but none of
them has studied micro-organisms in near contact. Apart from the last of these
papers, the dependence of coherent structures on the details of the micro-organisms’
interactions has also not been discussed before. Recently, the trajectories of real
interacting micro-organisms (modelled as spheroidal squirmers) were experimentally
and computationally investigated by Ishikawa & Hota (2006); their results show that
the interaction is indeed mainly hydrodynamic and that the squirmer model is a good
one.

2.2. Multipole expansion

Isothermal Stokes flow of an incompressible Newtonian fluid is considered. When
N squirmers are periodically replicated in three-dimensional space, the governing
equation of the flow field external to the squirmers can be given in integral form,
using the single-layer potential only, as

ui(x) − 〈ui(x)〉 = − 1

8πμ

N∑
α=1

∫
Aα

Jij (x − y)qj ( y) dAy, (2.2)

where u is the velocity, q is the single-layer potential and A is the surface of a particle
(see Pozrikidis 1992). J is the Green function for a triply periodic lattice, which is
evaluated by Ewald summation on the lattice and reciprocal lattice of image points,
as explained by Beenakker (1986). The brackets 〈〉 indicate the suspension average.
The single-layer potential, q, is the difference between the traction force on the inner
surface, f in , and that on the outer surface, f out, given by

q = f out − f in . (2.3)

The velocity field generated by point forces in a homogeneous fluid is expressed
by (2.2) with the boundary condition (2.1). So it also induces an axisymmetric
flow field inside the spheres, which make f in non-zero. In order to impose a rigid-
body motion inside the spheres, one needs to introduce a double-layer potential in
(2.2) and to deal with velocity slip on the surface explicitly. Introducing double-
layer potentials, however, makes the multipole expansion much more tedious and
considerably increases the computational load. Since f in can be obtained analytically
in the case of a squirmer, it is computationally more efficient to express the velocity
field in terms of single-layer potentials only than by using two kinds of potential.
The effect of f in appears in calculating the stresslet strength of a squirmer, so it is
subtracted analytically as will be explained later on. The boundary element method
using single- or double-layer potentials only, a so-called generalized boundary integral
method, is explained in detail, including the derivation of integral equations and the
force and torque exerted on a particle, in an established text by Pozrikidis (1992).

The right-hand side of (2.2) can be expanded in moments about the centre of each
particle with radius a as (see Durlofsky, Brady & Bossis 1987)

ui(x) − 〈ui(x)〉 =
1

8πμ

N∑
α=1

[(
1 +

a2

6
∇2

)
JijF

α
j + RijL

α
j

+

(
1 +

a2

10
∇2

)
KijkS

α
jk + ∇k∇lJijQ

α
klj + · · ·

]
, (2.4)
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where F, L, S, Q are respectively the monopole, the antisymmetric dipole, the
symmetric dipole, the irreducible quadrupole of the single-layer potential. The
propagators are given as follows:

Rij = εlkj

1

4
(∇kJil − ∇lJik ), Kijk =

1

2
(∇kJij + ∇jJik ), (2.5)

where ε is the unit-alternating isotropic tensor.
There is no contribution of f in to the force and torque; therefore the force and

torque exerted on the fluid are analogous to the monopole F and the antisymmetric
dipole L of the single-layer potential, respectively (Pozrikidis 1992). The force and
torque a squirmer exerts on the fluid are given by

Fα = −
∫

Aα

q(x) dAx, Lα = −
∫

Aα

x ∧ q(x) dAx. (2.6)

However, f in , does contribute to the stresslet, and one needs to calculate it carefully.

The stresslet, Ŝ, a squirmer exerts on the fluid can be expressed as (see Batchelor
1970)

Ŝ
α

= −
∫

Sα

[
1

2
{ f outx + x f out} − 1

3
x · f outI − μ (un + nu)

]
dSx, (2.7)

where n is the outward normal vector, and I is the unit tensor. In the case of a
squirmer, the last term in the right-hand side of (2.7) can be expressed in terms of f in

(detailed derivation in Appendix B of Ishikawa et al. 2006), and Ŝ can be expressed
by the single-layer potential as

Ŝα = −
∫

Sα

[
1

2
(qx + xq) − 1

3
x · qI

]
dSx = Sα. (2.8)

Thus the stresslet Ŝ is also analogous to the symmetric dipole S of the single-layer
potential.

The irreducible quadrupole, Q, that a squirmer exerts on the fluid, is defined by

Qα
klj = −1

2

∫
Aα

(
yk − xα

k

) (
yl − xα

l

)
qjdAy − a2

6
F α

j δkl, (2.9)

where xα is the centre of particle α.

2.3. Formation of the grand mobility matrix

In order to determine the motion of a squirmer in the flow field given by (2.2), we
exploit the Faxén laws for a squirmer. The Faxén laws for the force, torque and
stresslet for a squirmer can be found in Ishikawa et al. (2006):

Uα
i − 〈ui(xα)〉 =

F α
i

6πμa
+

2

3
Bα

1 eα
i +

(
1 +

a2

6
∇2

)
u′

i(x
α), (2.10)

Ωα
i − 〈ωi(xα)〉 =

Lα
i

8πμa3
+

1

2
εijk∇ju

′
k(x

α), (2.11)

−〈Eij (xα)〉 =
Sα

ij

20
3

πμa3
+

1

5
μa2Bα

2

(
3eα

i eα
j − δij

)

+
1

2

(
1 +

a2

10
∇2

)
(∇ju

′
i(x

α) + ∇iu
′
j (x

α)), (2.12)
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where U and Ω are the translational and rotational velocities of the squirmer,
respectively, 〈ω〉 is the angular velocity of the bulk suspension 〈E〉 is the rate of
strain tensor of the bulk suspension and u′ is the disturbance velocity field caused
by the other particles. Since a solitary squirmer swims with a constant velocity, an
additional second term appears on the right-hand side of (2.10). A solitary squirmer
also generates a stresslet (see Ishikawa et al. 2006), so the second term appears on
the right-hand side of (2.12).

The velocity disturbance caused by a stresslet decays as r−2, while the next
moment, a quadrupole, creates a disturbance that decays as r−3. By integrating
over an infinite volume, one can show that the effect of a quadrupole is marginally
important compared with that of a stresslet. The next moment, an octupole, creates
a disturbance that decays as r−4, so the velocity disturbance caused by octupoles and
higher moments vanishes after integration over an infinite volume of the suspension.
The quadrupole of a squirmer may be derived from (2.28) in Brady et al. (1988)
as

Qα
klj =

(
a2

10
c〈Fm〉 + 2πμa3Bα

1 eα
m

)(
δkmδjl + δlmδkj − 2

3
δklδjm

)

+
3a3

4

∑
i �=α

∫
Ai

GklJjmqmdA +
9c

16π

∫
V

GklJjm〈Fm〉 dV, (2.13)

where c is the volume fraction of particles, and V is the volume for suspension
averaging. GklJjm is a second-order differential operator, but the detailed form is
not needed here. Since a solitary squirmer generates a quadrupole, an additional
term with Bα

1 appears on the right-hand side of (2.13). We will follow Brady et al.
(1988) and neglect the last two integrals on the right-hand side of (2.13), in order to
reduce the computational load. Brady et al. concluded that the additional accuracy
provided by retaining the full quadrupole expression (2.13) is not worth the additional
computational costs. Thus we will calculate as far as the stresslet in the multipole
expansion given by (2.4), and the quadrupole will be approximated by (2.13) without
the last two integrals.

The convergent expressions for squirmer interactions in a fluid suspension can be
derived by substituting u − 〈u〉 in the multipole expansion given by (2.4) for u′ in
(2.10)–(2.12). The result is expressed in matrix form as

⎛
⎜⎜⎝

U − 〈u〉 − 2
3
B1e + Qsq

Ω − 〈ω〉

−〈E〉 − 1
5
B2(3ee − I)

⎞
⎟⎟⎠ = Mfar

⎛
⎜⎝

F

L

S

⎞
⎟⎠ , (2.14)

where Qsq is given by

Qα
sq,i =

1

8πμ

N∑
n

′ 4πa2

3
Bn

1 ∇2Jij e
n
j . (2.15)

The prime on the sum indicates that the n= α term is excluded from the Ewald
summation. Mfar is the grand mobility matrix, which is equal to the one derived
by Brady et al. (1988) for a suspension of inert spheres. The effect of the
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squirming motion appears only on the left-hand side of (2.14). We should note
that Mfar is symmetric and positive definite. In order to satisfy positive definiteness,
the integration in (2.2) needs to be performed over an infinite volume of the
suspension.

2.4. Inclusion of near-field interactions

The inverse of the grand mobility matrix Mfar is the grand resistance matrix Rfar . As
discussed by Durlofsky et al. (1987), inverting the Ewald-summed mobility matrix
sums an infinite number of reflected interactions among an infinite number of
particles. In an earlier work, we have used the grand resistance matrix based on
pairwise additivity, which is applicable only to a semi-dilute regime (Ishikawa &
Pedley 2007a, b). The grand resistance matrix constructed here, on the other hand, is
applicable to any volume fraction of particles, because inverting the mobility matrix
is a true many-body approximation to the resistance matrix. The error in the grand
resistance matrix is no longer O(c3). Rfar still lacks, however, near-field interactions,
because they are reproduced only when all multipoles are included. In order to
include the near-field interactions, we will follow the method of Durlofsky et al.
and add near-field multipoles in a pairwise additive fashion. Durlofsky et al. showed
that the following procedure of including lubrication is remarkably accurate for any
configuration of a finite number of particles.

When the minimum separation between two squirmer surfaces is small enough,
i.e. less than 0.1a in this study, we add the force Fnear , torque Lnear and stresslet
Snear generated by pairs of squirmers. By exploiting the linearity of the flow field,
near-field multipoles can be divided into two simpler multipoles: (a) the multipoles
generated by two inert spheres with translational and rotational velocities in a linear
flow field and (b) the multipoles generated by two squirmers without translational
and rotational velocities in a fluid otherwise at rest. Thus Fnear , Lnear and Snear can
be expressed as

⎛
⎜⎝

Fnear

Lnear

Snear

⎞
⎟⎠ = Rnear

2B

⎛
⎜⎝

U − 〈u〉
Ω − 〈ω〉

−〈E〉

⎞
⎟⎠ +

⎛
⎜⎝

Fnear
sq

Lnear
sq

Snear
sq

⎞
⎟⎠ , (2.16)

where Rnear
2B is the exact two-sphere resistance matrix, which can be found in Kim &

Karrila (1992), for instance. Fnear
sq , Lnear

sq and Snear
sq are respectively the force, torque and

stresslet generated by two squirmers without translational and rotational velocities in
a fluid otherwise at rest. We have already compiled a database of pairwise interactions
of squirmers (Ishikawa et al. 2006), so we will use the database in constructing these
multipoles.

Part of the two-squirmer resistance interaction, the far-field part, has already been
included upon the inversion of Mfar , so we have to subtract it off. The matrix
composed of these two-body infinite reflection interactions is denoted by Rfar

2B . Finally,
the complete expressions for squirmer interactions in a fluid suspension can be given
as ⎛

⎜⎝
F

L

S

⎞
⎟⎠ =

[
Rfar − Rfar

2B

]
⎛
⎜⎝

U − 〈u〉 − 2
3
B1e + Qsq

Ω − 〈ω〉
−〈E〉 − 1

5
B2(3ee − I)

⎞
⎟⎠ +

⎛
⎜⎝

Fnear

Lnear

Snear

⎞
⎟⎠ . (2.17)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

38
07

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008003807


Development of coherent structures in suspensions of micro-organisms 409

e

g

a

h

Figure 2. A sketch of the arrangement of a bottom-heavy squirmer. Gravity acts in the g
direction, while the squirmer has orientation vector e and radius a, and its centre of mass is
at distance h from its geometrical centre.

The unknown quantities in this equation are U , Ω and S. This equation can be
rewritten as ⎛

⎜⎝
F

L

S

⎞
⎟⎠ =

[
Rfar − Rfar

2B + Rnear
2B

]
⎛
⎜⎝

U − 〈u〉
Ω − 〈ω〉

−〈E〉

⎞
⎟⎠

+
[
Rfar − Rfar

2B

]
⎛
⎜⎜⎝

− 2
3
B1e + Qsq

0

− 1
5
B2 (3ee − I)

⎞
⎟⎟⎠ +

⎛
⎜⎝

Fnear
sq

Lnear
sq

Snear
sq

⎞
⎟⎠ . (2.18)

The first matrix multiplication on the right-hand side of (2.18) indicates the
contribution from two inert spheres with translational and rotational velocities in
a linear flow field, which is equal to the equation derived by Brady et al. (1988). The
second matrix multiplication indicates the far-field contribution from the squirming
motion, and the last term indicates the near-field contribution from the squirming
motion.

2.5. A gravitational torque and a repulsive force

If squirmers are bottom-heavy, external gravitational torques are generated when they
are not vertically oriented, and they tend to swim upwards on average. The fact that
micro-organisms are generally somewhat denser than water, and therefore experience
a net gravitational force, is neglected in this study because the sedimentation speed
of dead cells is much less than the swimming speed of live cells (Kessler 1986). If the
distance of the centre of mass is h from the centre of the squirmer, in the direction
opposite to its swimming direction in undisturbed fluid (see figure 2), then there is an
additional torque of

Lbh =
4

3
πa3ρhe ∧ g, (2.19)

where ρ is the cell density; g is the gravitational acceleration vector; and the
gravitational direction is g/g.
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A non-hydrodynamic inter-particle repulsive force Frep is added to the system in
order to avoid the prohibitively small time step needed to overcome the problem of
overlapping particles. We will follow Brady & Bossis (1985) and Ishikawa & Pedley
(2007a), and use the following function:

Frep = α1

α2 exp(−α2ε)

1 − exp(−α2ε)

r
r
, (2.20)

where α1 is a dimensional coefficient; α2 is a dimensionless coefficient; and ε is
the minimum separation between squirmer surfaces non-dimensionalized by their
radius. The coefficients used in this study are α1 = 1 and α2 = 103. The minimum
separation obtained with these parameters is between 10−3 and 10−4, compared with
the separation of 10−1 below which the near-field lubrication forces have to be treated
explicitly. The effect of the repulsive force on the trajectories of cells is very small,
because it acts only in the very near field and changes the distance between particles
by only around 10−4.

2.6. Numerical methods

We will calculate interacting squirmers’ motion in a fluid otherwise at rest (〈E〉 = 0).
The computational region is a cube with side H . A suspension of infinite extent is
modelled by applying periodic boundary conditions, and the interactions among an
infinite number of particles are calculated by the Ewald summation over the next two
layers from the unit cell on the real- and reciprocal-space lattices. The convergence
parameter in the Ewald sum is set at the optimal value

√
π/H (Beenakker 1986),

and the sum converges extremely rapidly. The time marching is performed by the
fourth-order Adams–Bashforth scheme, for random initial positions and orientations.
Although we have used a particle number N that ranges up to 216, it is not large
enough for the scale of the coherent structures to be completely independent of it.
The effect of particle number will be explicitly discussed later on in § 4 (cf. figure 11).
Fortunately, the particle number does not affect the results qualitatively in the range
used in this study, and we see a number of phenomena that have been observed in
experiments emerge (cf. § 6).

All equations are non-dimensionalized using the radius a, characteristic velocity
Usol = 2B1/3 and the fluid viscosity μ. There is one important dimensionless parameter
in addition to β and c, Gbh , which is proportional to the ratio of the time to swim a
body length to the time to rotate to face up and is defined as

Gbh =
2πρgah

μB1

. (2.21)

3. Benchmark tests for the present numerical methods
Since exact solutions for a concentrated suspension of squirmers have not previously

been reported, we check the reliability of the present numerical methods by
comparison with (a) the exact solution for a concentrated suspension consisting
of a simple cubic array of spheres, (b) numerical results for two-squirmer interactions
obtained by the boundary integral method and (c) numerical results for a semi-
dilute suspension of squirmers obtained by a Stokesian dynamics simulation, in
which the grand resistance matrix is constructed in a pairwise additive manner.
In comparison (a), the accuracy of the final form of the grand resistance matrix,
[Rfar −Rfar

2B +Rnear
2B ], in (2.18) can be checked. In comparisons (b) and (c), the accuracy
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Figure 3. The shear viscosity of an infinite suspension of a simple cubic array of spheres as
a function of volume fraction. The exact solution is obtained by Nunan & Keller (1984), and
the asymptotic value is calculated by (3.1).

of the last two terms on the right-hand side of (2.18) can be checked in a semi-dilute
regime.

3.1. A concentrated suspension of spheres in a simple cubic array

The accuracy of the grand resistance matrix in (2.18) has already been discussed in
Brady et al. (1988). Similar results will be shown here, but we will explain them again
in order to help readers assess the accuracy of our computation.

The apparent shear viscosity, η, of an infinite suspension, consisting of a simple
cubic array of spheres, is calculated by the present methods (with η being non-
dimensionalized by μ). The results are shown in figure 3, in which the exact solutions
up to c =0.48 and the asymptotic values, both obtained by Nunan & Keller (1984),
are shown as well. The asymptotic equation is given by

η − 1 =
π

4
ln ε−1 + 0.63, where ε = 1 −

(
6c

π

)1/3

. (3.1)

We see that the present results agree well with the exact solution in the range
0 � c � 0.48. The agreement in the c 
 1 regime indicates that the propagators for
the force, torque and stresslet in the far-field separation, Mfar in (2.14), are correctly
modelled by the present method. The present results show singular behaviour when
c approaches π/6, which is the value obtained from the asymptotic analysis by
Nunan & Keller (1984). The asymptotic behaviour is dominated by the lubrication
forces between spheres, so it is confirmed that the present method can correctly
describe the lubrication forces as well. Consequently, the near-field and far-field
interactions between an infinite number of spheres are correctly described by the
present method over the whole range of c.

We have also calculated the sedimentation velocity of a simple cubic array of
spheres. The results were compared with table 1 in Brady et al. (1988), and the
difference between the two results was less than 1 % when 0.001 � c � 0.5236.
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0

 BEM
β = 5

Present results

Figure 4. Comparison of two-squirmer trajectories obtained by the present method and the
boundary element method (BEM). Two squirmers with β = 5 are facing each other initially,
and the arrows in the figure show the directions of the trajectories.

3.2. Two-squirmer interaction

In this section, we will discuss whether the interaction due to squirming can be
correctly described by the last two terms in (2.18). The far-field interaction due
to squirming motion is given by the second term on the right-hand side of (2.18),
whereas the near-field interaction is given by the last term. The resistance matrix
[Rfar − Rfar

2B ] in the second term is included in the final form of the grand resistance

matrix, [Rfar − Rfar
2B + Rnear

2B ], whose accuracy was checked in the previous section.
The trajectories of two squirmers initially swimming in opposite directions on

slightly offset paths are shown in figure 4 (β =5). The arrows in the figure show the
directions of the trajectories. The solid lines in the figure are obtained by the full
boundary integral method (Ishikawa et al. 2006), and the circles are obtained by the
present method. We see that the two squirmers come close to each other, then change
their orientation in the near field and finally avoid each other. The two trajectories
match perfectly, which indicates that the translational and rotational velocities of two
interacting squirmers can be correctly described by (2.18). We have also compared
the time change of the stresslet in this case, and the results show good agreement.
We have tried some other cases such as (a) two-squirmer interaction with different
initial conditions, (b) interaction of two bottom-heavy squirmers and (c) two-squirmer
interaction under a simple shear flow. All of these results show excellent agreement,
though they are omitted here.

3.3. A semi-dilute suspension of squirmers

The translational cell diffusivity is a measure of the increasing displacements between
pairs of particles. Thus one calculates the mean square displacement, which necessarily
grows with time. If it grows more rapidly than linearly in time, then the spread is
not diffusive (if proportional to t2, it is as if the relative velocity of two spheres were
constant), but if it becomes linear in time, then the spread is diffusive. Since we do
not know whether the spreading is diffusive or not, we define a translational cell
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Figure 5. Comparison of dispersion coefficient between two methods (c = 0.1, β = 1 and
Gbh = 0). The present method using 64 squirmers is indicated by present, and PA indicates
the former results using 27 squirmers in which the grand mobility matrix is constructed in a
pairwise additive manner. The function y = bx, where b is a coefficient, is drawn as well for
comparison.

dispersion tensor, DT , by dividing the mean square displacement by time:

DT (�t) =
〈[r(t + �t) − r(t)][r(t + �t) − r(t)]〉

2�t
, (3.2)

where r is the translational displacement. If DT asymptotes to a constant value as
�t → ∞, the asymptotic value is the diffusion coefficient. A similar calculation is
carried out for angular displacement, leading to the rotational cell dispersion tensor
DR:

DR(�t) =
〈[λ(t + �t) − λ(t)] [λ(t + �t) − λ(t)]〉

2�t
, (3.3)

where λ is the rotational displacement. The dispersion of squirmers in a semi-dilute
suspension was investigated by Ishikawa & Pedley (2007b); ‘semi-dilute’ here means
that most of the interactions are pairwise. The grand resistance matrix in this case
was derived by a pairwise summation of exact two-body solutions. The assumption
of pairwise additivity should be accurate enough in the semi-dilute regime, so we will
compare our present results with those former calculations.

Figure 5 shows effective translational and rotational dispersions under the
conditions of c = 0.1, β = 1 and Gbh = 0. The solid and broken lines are the results of
the former calculations using 27 squirmers assuming pairwise additivity; white and
black circles are the present results using 64 squirmers. The function y = bx, where b

is a constant, is drawn as a dotted line in the figure as well. We see that both results
show similar dispersion coefficients and diverge from y = bx at similar values of �t .
Both results agree well, which indicates that the interaction between squirmers in a
semi-dilute regime can be correctly described by (2.18). We have also compared the
rheological properties of a semi-dilute suspension of squirmers, and the results show
good agreement, though they are omitted here.
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Figure 6. Distribution and trajectories of 216 squirmers with β = 5 and c = 0.1 (Gbh =0).
(a) Distribution of squirmers. Tops and bottoms of symmetry axes of squirmers are shown as
white and black points respectively. The computational cell is located at the centre as indicated
by the white lines. (b) Trajectories of squirmers. White circles are drawn from t = 67–70 with
time intervals of 0.1. The positions of squirmers at t =70 are drawn as black circles.

4. Coherent structures in suspensions of squirmers
Three-dimensional movement of non-bottom-heavy squirmers with β = 5 in a

suspension with c = 0.1 is computed for random initial positions and orientations. The
squirmer distribution at t = 70 in one realization is shown in figure 6(a), in which the
front and back of the symmetry axis of a squirmer are drawn as white and black points,
respectively. The computational cell is located at the centre of figure 6(a), and the
region −0.5H � x � 1.5H, −0.5H � y � 1.5H, 0 � z � H is shown in the figure with the
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Figure 7. Velocities of squirmers with β =5 and c = 0.1 (Gbh = 0). Only the velocities larger
than 1 are shown as cylinders, in which the length of a cylinder is 1.5 times the absolute value
of the velocity, and the centre position of the corresponding squirmer is expressed by a black
tip. In some regions, neighbouring squirmers are swimming in similar directions.

z direction perpendicular to the figure. Figure 6(b) shows the trajectories of squirmers,
in which a white circle is drawn for each squirmer at times t = 67 to t = 70 with a
time interval of 0.1, and the positions of the squirmers at t = 70 are drawn as black
circles. This figure shows only the computational cell, i.e. 0 � x, y, z � H . We see that
some squirmers appear to form a small cluster, and later we will calculate the radial
distribution function to quantify the degree of aggregation. Note that by the time in
the figure, t = 70, the system is already in statistical steady state, verified by the fact
that the radial distribution function is time-independent for t > 20 (data not shown).

Figure 7 shows the squirmer velocities at t =70, where only the velocities larger than
1 in the region 0 � x, y, z � H are shown as cylinders. The orientation of a cylinder
corresponds to the direction of its velocity vector, and the origin of the velocity vector,
i.e. the centre position of the corresponding squirmer, is expressed by a black tip.
The length of a cylinder is 1.5 times the absolute value of the velocity. Cylinders are
employed so that the three-dimensionality of velocity vectors in the figure becomes
more apparent from the overlapping of three-dimensional objects. We see what appear
to be collective motions. Dozens of squirmers locally move in similar directions, and
the maximum velocity of a squirmer rises to about 3 in these simulations.

When c is as high as 0.4, the squirmers are quite closely packed, and we cannot
clearly identify clusters, as shown in figure 8(a). The trajectories of squirmers are
far from straight lines in this case, and squirmers interact considerably, as shown in
figure 8(b). Figure 9 shows the squirmer velocities in a manner similar to figure 7;
only the velocities larger than 1 in the region 0 � x, y, z � H are shown as cylinders,
and the length of a cylinder is equal to the absolute value of the velocity. We again
see some collective motions of squirmers, in which several squirmers swim in similar
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Figure 8. Distribution and trajectories of 216 squirmers with β = 5 and c = 0.4 (Gbh =0).
(a) Distribution of squirmers. Tops and bottoms of symmetry axes of squirmers are shown as
white and black points respectively. The computational cell is located at the centre as indicated
by the white lines. (b) Trajectories of squirmers. White circles are drawn from t = 67–70 with
time intervals of 0.1. The positions of squirmers at t =70 are drawn as black circles.

directions. The velocity of squirmers again rises to about 3 in these motions. The
collective motions seen in figures 7 and 9 may be related to the ‘slow turbulence’
phenomenon observed by Dombrowski et al. (2004) or the mesoscale motion of
whorls and jets observed by Mendelson et al. (1999), which will be discussed in § 6.
Figures 6–9 suggest that suspensions of squirmers exhibit both aggregation and
collective motions, and we will analyse these statistically in turn.

In order to quantify the degree of aggregation, we will calculate the radial
distribution function g(r) (McQuarrie 1976) and compare it to that for a hard-sphere
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Figure 9. Velocities of squirmers c = 0.4 (β = 5 and Gbh = 0). Only the velocities larger than
1 are shown as cylinders, in which the length of a cylinder is the absolute value of the velocity,
and the centre position of the corresponding squirmer is expressed by a black tip. In some
regions, neighbouring squirmers are swimming in similar directions.

fluid. Mathematically, ρg(r)4πr2 dr , where ρ is the bulk number density of particles,
is the average number of particles whose distance from a central particle is between r

and r +dr . An accurate formula for the hard-sphere fluid radial distribution function
was reported by Trokhymchuk et al. (2005) over a range of volume fractions. Thus,
we calculated the motion of 64 squirmers in a unit cell during t = 0–1500, and g(r)
was calculated by averaging between t = 500–1500. (It was necessary to wait until
t ≈ 500 to ensure that any ordered structure was well developed, at least for c = 0.1
and β = 1, as can be seen from figure 13.) Figure 10(a) shows g(r) with various values
of β and for c =0.1. We see that g(r) is significantly larger than the hard-sphere
results for r � 0.1, which indicates that squirmers, such as those shown in figure 6, are
more aggregated than particles in a hard-sphere fluid. The effect of β on g(r) is not
so strong, and we see similar tendencies for all values of β examined. Figure 10(b)
shows g(r) for c = 0.4. Relative to a particle in a hard-sphere fluid, a squirmer is more
likely to have very close neighbours (r < 2.03) but less likely to have neighbours at
intermediate distances (2.03 < r < 2.8). We see that g(r) for c = 0.4 oscillates for large
r and has a second peak around r − 2 = 2, for both the squirmer suspension and the
hard-sphere fluid. This is caused by the second neighbouring sphere, which is often
located at around r = 4 in a packed suspension. The effect of β on the g(r) is not
strong, as in the c = 0.1 case.

In order to clarify the scale of the collective motions seen in figures 7 and 9, we
calculate the spatial correlation of squirmer velocities, defined as

IU (r) =
〈U(x, t) · U(x + r, t)〉

〈U2(x, t)〉
, (4.1)
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Figure 10. The effect of β on the radial distribution function g(r) averaged between
t = 500–1500 and (N = 64,Gbh = 0). The hard-sphere radial distribution function calculated
analytically by Trokhymchuk et al. (2005) is indicated by hard sphere. (a) c =0.1; (b) c = 0.4.

where r is the distance between squirmers. The brackets 〈〉 indicate an average value
over N squirmers and over all different time steps after t = 20. IU (r) is defined only
for r � 2, because two squirmers never come closer than r = 2. The results are shown
in figures 11 and 12. The translational velocity correlation of N = 216 squirmers with
β = 5 and c = 0.1 is shown in figure 11(a), where the results for N =125 and 64 are
also shown for comparison. IU is positive when r � 8 and N = 216, so neighbouring
squirmers tend to move together in a similar direction. Squirmers swimming together
in a similar direction occupy the space of about (4/3)π83, which is about 24 % of
the total volume H 3. IU shows anti-correlation when r is large, which is suggestive
of a whirl structure. However, these results are strongly influenced by the size of the
computational domain, because the whirl structure cannot be developed beyond it.
Fortunately, however, the particle number does not qualitatively affect the results in
the range used in this study, and we see similar collective motions of squirmers in
all three cases. The translational velocity correlation of squirmers for c = 0.4 (β = 5)
is shown in figure 11(b), where the results for N = 125 and 64 are also shown for
comparison. The structure is similar to that of the c = 0.1 case.

The effect of the squirming parameter β , seen in (2.1), on the translational
velocity correlation, averaged between t = 500–1500, is shown in figure 12. In these
computations, we used a particle number N =640, because it was necessary to
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Figure 11. Correlation of the translational velocity of squirmers with β =5 for N = 64, 125
and 216 (Gbh =0). (a) c = 0.1 (Half of the computational cell size is about 10.4 for N = 216,
8.7 for N = 125 and 7 for N = 64.) (b) c = 0.4 (Half of the computational cell size is about 6.6
for N =216, 5.5 for N = 125 and 4.4 for N = 64.)

compute for a very long time period, t = 0−1500, in order to identify ordered
motions. We should note, however, that similar correlations also appear for N =27
and N = 100, so the results shown here are qualitatively unaffected by the particle
number. For c =0.1 (figure 12a), IU is positive in the whole region when β = ±1,
indicating a globally ordered motion in which most squirmers move in approximately
the same direction. IU for β = 1 is larger than that for β = −1, so the squirmers with
β = 1 show more ordered motion than those with β = −1. In the cases of β = ±5,
on the other hand, IU instead shows anti-correlation when r > 5 or 6, suggesting a
whirl-like structure, though once again the limited computational domain means that
we must be cautious in interpreting the results. For c = 0.4 (figure 12b), squirmers
with β =1 once again show a globally ordered motion (though the value of IU is
smaller than in the c = 0.1 case), but squirmers with β = −1, ±5 do not.

The squirmer velocity correlations apparent in IU (r) must ultimately be influenced
by squirmer orientation correlations, so we calculate the spatial correlation of squirmer
orientations, defined as Ie(r) = 〈e(x) · e(x + r)〉, where the brackets 〈〉 indicate an
average value over squirmers and time steps. The results are shown in figure 13. We
see that squirmers with β =1 have correlated orientations even at large distances, for
both c = 0.1 and c =0.4. Squirmers with β = −1 have correlated orientations at long
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Figure 12. Effect of β on the correlation of translational velocity averaged between
t = 500–1500 (N = 64,Gbh =0). (a) c = 0.1 (Half of the computational cell size is about 7.)
(b) c =0.4 (Half of the computational cell size is about 4.4.)

distances for c = 0.1 but not for c = 0.4. Squirmers with β = 5 are weakly aligned
at small distances, while squirmers with β = −5 are slightly anti-aligned at small
distances. It is interesting to note that the squirmers’ orientations are never anti-
aligned at large distances even though their velocities are (cf. figures 11 and 12). The
long-range order appearing for β = ±1 implies that the system is in a globally ordered
state, what Toner, Tu & Ramaswamy (2005) called a ‘ferromagnetic flock’. The reason
why the ordered motion appears in the β = 1 case will be discussed in detail in § 5.

We also calculated the probability density of two squirmers having an angle θ

between their orientation vectors and whose distance apart is between either 2 and
2.1 or 4 and 4.1. The results are shown in figure 14 (β = 1 and 5; c =0.1 and 0.4), where
the probability density is normalized so that it becomes unity when the orientation is
isotropic at given distance r . We see that the peak of the probability density for β = 1
is around θ = 0 even when r = 4, which again indicates that squirmers with β = 1 tend
to have similar orientation in these simulations.

Since, for some values of β , the squirmers’ orientations are ordered across the whole
simulation domain, it makes sense to quantify this global orientational order via the
squirmer-averaged orientation vector, defined as

emean =
1

N

N∑
i=1

ei . (4.2)
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Figure 13. The spatial correlation of the orientation of the squirmers for different values of
c and β (averaged between t = 500–1500 with N = 64). (a) c = 0.1 (Half of the computational
cell size is about 7.) (b) c = 0.4 (Half of the computational cell size is about 4.4.)

Now |emean| is an ‘order parameter’ for the system, since |emean| =1 if all the squirmers

face in the same direction, and one can show that |emean| ≈ 1/
√

N if the squirmers
face isotropically random directions. Figure 15 shows the time dependence of |emean|
for c = 0.1 and various values of β , with N =64. (The calculation was repeated with
N = 27 and N = 100, and the results were qualitatively unchanged.) For β = ±1, |emean|
grows initially and then saturates at a value � 1/

√
N , indicating a globally ordered

suspension in which most squirmers swim in a similar direction. The time until
saturation is approximately 300 time units. After saturation, the group swimming
direction (i.e. the direction of emean) drifts slowly over time, on a time scale of
100 s (data not shown). This is the reason why we think that the ordered motion
is stable for the time scale of 100 time units. For β = ±5, however, |emean| remains

≈ 1/
√

N , indicating an absence of global order. Figure 15(b) shows the same statistics,
now computed for a higher volume fraction of c = 0.4. The β = 1 case again shows
significant global order (|emean| ≈ 0.7 � 1/

√
N ), and the time until saturation is shorter,

around 100 time units. The β = −1 case no longer shows global order, and the β = ±5
cases also show no global order (|emean| ≈ 1/

√
N).

Gbh is the ratio of the gravitational torque to a scale for the viscous torque, defined
by (2.21). If one assume that micro-organisms swim in water at 5 body lengths per
second with their centre of mass 0.2a down from the geometric centre (as is roughly
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Figure 14. The probability density of two squirmers having an angle θ between their
orientation vectors and whose distance apart is between either 2 and 2.1 or 4 and 4.1
for different values of c and β (averaged between t = 500–1500 with N = 64). (a) c =0.1;
(b) c =0.4.

the case for Chlamydomonas nivalis; Kessler 1986), Gbh is about 100 for micro-
organisms with radii of 125 μm. The trajectories of bottom-heavy squirmers with
Gbh = 100 and β =5 are shown in figure 16; the gravitational direction is downwards.
The squirmers clearly tend to swim upwards, but the trajectories are far from straight
lines, and the effect of hydrodynamic interaction is very strong when β =5 even with
Gbh = 100. Figure 17 shows the squirmer velocities relative to the average velocity of
squirmers, where only the velocities larger than 0.5 in 0 � x, y, z � H are shown as
cylinders, and the length of a cylinder is the absolute value of the velocity. We see
some collective motions for bottom-heavy squirmers, which are mainly in the vertical
direction. We also performed simulations of bottom-heavy squirmers with various β

values. The results show that squirmers tend to swim upwards more smoothly as the
absolute value of β is decreased, though the results are omitted here.

5. Statistics of near-field interactions
A question of interest is whether the ordered motions seen in the β = 1 simulations

are due to near-field or far-field interactions. On the one hand, the far-field velocity
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Figure 15. Time dependence of the magnitude of the squirmer-averaged swimming direction
for different values of c and β (averaged between t = 500–1500 with N = 64). An |emean| close
to 1 indicates that all the squirmers are swimming in a common direction. (a) c =0.1; (b)
c =0.4.

of an individual squirmer decays like r−2, and this slow decay suggests that there
may be strong far-field interactions. On the other hand, the aggregation of squirmers
demonstrated in figure 10 suggests that near-field interactions play an important role.
By calculating certain statistics, we can demonstrate that it is in fact the near-field
interactions that are responsible for the ordered motion.

One way of showing that near-field interactions are responsible for alignment in
the β = 1 simulations is to look at the rate of change of the alignment between a
squirmer and the squirmer-averaged swimming direction, as a function of the distance
between a squirmer and its nearest neighbour. The quantity e · emean is a measure of
the alignment between a squirmer and the squirmer-averaged swimming direction,
and the rate of change of this alignment is (d/dt)(e · emean). For convenience, let us
define η(d) as the expectation of (d/dt)(e · emean), where the expectation is taken by
averaging over all instances in which the squirmer is a distance d from its nearest
neighbour. Symbolically,

η(d) =

〈
d

dt
(e · emean)

〉
n.n.dist=d

, (5.1)

where ‘n.n.dist= d ’ indicates that the nearest neighbour distance equals d . Also, let
p(d) denote the probability density function for the distance d between a squirmer
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Figure 16. Trajectories of 216 bottom-heavy squirmers with Gbh = 100 and β = 5. (White
circle is drawn from t = 67–70 with a time interval of 0.1. The position of squirmers at t = 70
is drawn as a black circle.) The gravitational direction is downwards as shown in the figure.
(a) c = 0.1; (b) c =0.4.

and its nearest neighbour. Figure 18 shows a plot of η(d)p(d) versus d . It clearly
shows that a squirmer tends to align with the squirmer-averaged swimming direction
when it is very close to a neighbour and lose alignment with the squirmer-averaged
swimming direction when it is not close to a neighbour. The plot does not capture
the true height of the leftmost peak because of the finite histogram bin width; in
reality the peak is narrower and higher. The plot was calculated using a subset of the
simulation data over which the system was in statistical steady state, i.e. leaving out
the early time data in which the order parameter |emean| was still rising (cf. figure 15).
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g

Figure 17. Velocities of 216 squirmers relative to the average velocity in the three-dimensional
configuration with c = 0.4 (β = 5 and Gbh = 100). Only the velocities larger than 0.5 are shown
as cylinders, in which the length of a cylinder is the absolute value of the velocity, and the
centre position of the corresponding squirmer is expressed by a black tip. Some collective
motions appear, mainly in the vertical direction.
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Figure 18. Approximate rate of change η of the alignment between a squirmer and the
squirmer-averaged swimming direction, as a function of the distance d between the squirmer
and its nearest neighbour, and weighted by the probability density p of the nearest neighbour
distance, for a simulation with β = 1, c = 0.1 and N = 64.

Another way of showing that near-field interactions are responsible for alignment
in the β =1 simulations is to analyse those intervals of time in which a squirmer is
close to a neighbour. Let us define a ‘near interval’ as an interval of time in which the
distance between a particular squirmer i and its nearest neighbour k is less than some
cutoff distance dcut. We choose dcut = 2.1, but the results are qualitatively unchanged
for other choices of dcut. Collating the results from many near intervals, we calculate
the distributions of ei · ek at the beginning and end of near intervals; the results
are shown in figure 19. For the case β =1, c = 0.1, N =64, the mean value of ei · ek

increases from 0.22 to 0.34 over the near interval, indicating that two neighbouring
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Figure 19. Approximate probability density function for the dot product ei · ek of nearest
neighbour swimming directions at the beginning or end of near intervals for a simulation with
β =1, c = 0.1 and N = 64. (a) At the beginning of near intervals, where the mean value of
ei · ek is 0.22. (b) At the end of near intervals, where the mean value of ei · ek is 0.34.

squirmers are significantly more aligned after a near-field interaction than before.
Figure 19(b) can also be thought of as showing the histogram at the start of a ‘not-
near interval’, with figure 19(a) showing it at the end: clearly the alignment decreases
when the squirmers are not very close together. Thus, it is the near-field interactions
that are responsible for the ordered behaviour.

Examination of near intervals also yields some insight into why the β = 5
simulations exhibit less ordered behaviour. For β = 5, the near intervals have a
less aligning effect. The mean value of ei · ek increases only very slightly from ≈ 0 to
0.04 over a near interval for simulations with β = 5, c = 0.1, N = 216 (distributions not
shown). In the case in which the volume concentration c is 0.4, the distance between
a squirmer and its nearest neighbour is almost always less than 2.1, so squirmers are
constantly interacting with one another by near-field interactions, and one cannot
break a squirmer’s trajectory into a series of discrete near intervals.

In the present study, both lubrication forces and repulsive forces are generated
when two squirmers are very near to contact (r − 2 � 0.001). In order to separate
the effect of these two forces, we performed a similar simulation as for figure 13(a)
(c = 0.1, β = 1, N = 64) but without the lubrication forces. The grand resistance matrix
in this case is just Rfar . To avoid the very small time step needed to prevent the
overlapping of particles, the coefficients of the repulsive force given by (2.20) are set
as α1 = 1, α2 = 20. The same repulsive force is used in the simulation with the lubri-
cation forces for comparison. The spatial correlation of the orientation of the
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Figure 20. The effect of lubrication forces on the spatial correlation of the orientation of the
squirmers (c = 0.1, β = 1 and N = 64). The coefficients for the lubrication force are α1 = 1 and
α2 = 20. The inclusion of the near-field lubrication forces in constructing the grand resistance
matrix is indicated by with LF, whereas without LF indicates that they are not included.

squirmers defined by 〈e(0) · e(r)〉, with or without the lubrication forces, are shown
in figure 20. We see that the spatial correlation falls considerably if the lubrication
forces are neglected. These results also support the proposal that the near-field
hydrodynamics play an important role in generating the coherent structures. The
physical mechanism underlying the alignment of neighbouring squirmers is still under
investigation.

6. Discussion
The main conclusions of this work are that, for a suspension of self-propelled

spherical squirmers, (a) coherent structures, such as aggregation and collective
motions, can emerge from purely hydrodynamic interactions; and (b) in principle,
details of the near field have a strong impact on the formation of coherent structures.
Although most micro-organisms do not resemble squirmers, we believe that these
conclusions will remain true for real micro-organism suspensions.

We now investigate whether the current numerical results can be usefully compared
with previous experimental, analytical and computational findings. The previous
studies considered are (a) slow turbulence caused by the collective motion of B.
subtilis (Dombrowski et al. 2004), (b) patterns of whirls and jets observed in B.
subtilis colonies (Mendelson et al. 1999; Lega & Passot 2003) and (c) numerical
models for systems of self-driven particles (Vicsek et al. 1995; Hernandes-Ortiz et al.
2005; Saintillan & Shelley 2007).

Dombrowski et al. (2004) have reported a collective motion of bacteria in a sessile
drop of B. subtilis suspension, where B. subtilis is a rod-shaped bacterium with aspect
ratio of about 6. (The cell concentration is not mentioned in the paper.) The cells tend
to swim in the same direction as their neighbours, generating a mesoscale coherent
structure in the flow. The mesoscale structure, called slow turbulence, changes its
direction randomly in a manner reminiscent of real turbulence. Some of the collective
motions observed in this study, such as figures 7 and 9, have a similar structure,
too. Dombrowski et al. investigated the velocity correlation, analogous to (4.1), and
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the anti-correlation appears around 50 μm< r in their experiment. They observed the
cell motions from the bottom of a petri dish, so the motions were restricted by a
wall. By assuming that the typical body length of B. subtilis is about 4 μm, the value
50 μm< r corresponds to 12.5 <r in dimensionless form, which is greater than the
present result of 5–8 (see figure 11). The quantitative difference may be caused by the
limited computational cell size employed in this study. In future studies, we would
like to clarify this by using a much larger computational cell size, containing many
more squirmers.

Organized cell swimming motions in B. subtilis colonies were reported by
Mendelson et al. (1999). They observed a mesoscale motion in a water film above an
agar gel, so the organized motions are restricted to a two-dimensional plane. (The
cell concentration is not mentioned in the paper.) In their experiments, individual
cells swam at rates between 76 and 116 μms−1 and were organized into patterns of
whirls, each approximately 1000 μm2, and jets of about 95 × 12 μm. Whirls and jets
were short-lived, lasting only about 0.25 s. By assuming that the typical body length
of B. subtilis is 4 μm and that it swims at a speed of 96 μms−1, all dimensional
values mentioned above can be non-dimensionalized. The size of a typical whirl
is approximately 8 × 8, and that of a jet is about 24 × 3. Although cell swimming
motions in a fully three-dimensional domain are analysed in the present study, instead
of that in a two-dimensional film, the length scale of each whirl appearing in the
present study is rather similar to the structures found in the experiment, which is
about 5–8. Some of the collective motions observed in this study, figures 7 and 9
for instance, may be similar to the jet structure, though the definition of the jet is
unclear. The whirls and jets in the experiments last for about 6 dimensionless time
units. The time scale of the whirl structure in the present study is also about 6–8.
(The time scale is calculated by calculating velocity correlations in time, analogous
to (4.1), though the figure is omitted in this paper.) Although the length and time
scales in the experiment and present study are similar, we need further investigations
to check them in a much larger computational cell.

In a previous study, we investigated coherent structures in monolayers of squirmers,
i.e. in a two-dimensional suspension (Ishikawa & Pedley 2008). The squirmers in a
monolayer also generated whirl structures, when the areal fraction of squirmers
was higher than 0.3 and when β = 5. The length scale of each whirl was about
8. Thus, the length scale of a typical whirl is not much different between two
and three dimensions. However, we observed aggregation of squirmers much more
clearly in a monolayer, when the areal fraction of squirmers was small. So the
coherent structures in two and three dimensions are considerably different (Ishikawa &
Pedley 2008). Another study of self-propelled spheres in a two-dimensional simulation
has been reported by Mehandia & Nott (2007), with similar conclusions about
aggregation.

Vicsek et al. (1995) proposed a simple numerical model for the analysis of self-
ordered motions in systems of particles that experience some sort of biological
interaction. In their model particles are driven with a constant speed on a two-
dimensional plane and at each time step assume the average direction of motion
of the particles in their neighbourhood with some random perturbation added.
Though this is a simple model, it results in collective motions similar to those
observed in this study. In Vicsek’s model, when the areal fraction of particles is
large and the random perturbations are small, the particles tend to swim in the
same direction. This behaviour is similar to that found here for non-bottom-heavy
squirmers with β = ±1, at least at lower volume fraction (c = 0.1; cf. figures 12 and
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13). When areal fraction and random perturbations are both large, in Vicsek’s model,
the particles move randomly with some correlation. This behaviour is similar to
that for β = 5, as shown in figures 7 and 9. Our squirmer model has no random
perturbation (except in initial condition), but the similarities in the results suggest
that the hydrodynamic interactions are analogous to random perturbations, and
more vigorous squirming (|β| =5 as opposed to |β| =1) gives rise to larger random
perturbations. This viewpoint is consistent with that proposed in our earlier study
of self-diffusion in a semi-dilute suspension of squirmers (Ishikawa & Pedley 2007b).
However, as opposed to Vicsek’s model, we observe that in some cases a higher
number density can reduce the order in the system (cf. figure 15; β = 1).

Lega & Passot (2003) used a two-dimensional continuum model to analyse the
evolution of bacterial colonies growing on soft agar plates. Their simulations also
gave rise to various colony patterns as well as whirl structures in the colonies.
However, the hydrodynamics around individual cells were not analysed, and an
ad hoc random-body force was employed to represent sub-grid scale dynamics. In
order to understand the mechanism of organized cell swimming motion, we believe
that it is important to model individual cells and solve for their collective motion as
a result of interaction between individuals, without making any ad hoc assumption
for individual cells.

Recently, Hernandes-Ortiz et al. (2005) performed direct simulations of large
populations of confined hydrodynamically interacting swimming particles. The
computational cell size they employed was much larger than the observed coherent
structures, and they showed that hydrodynamic coupling between the swimmers led to
coherent vortex motions in the flow, which had a scale larger than individual swimmers
and comparable to the depth of the simulation box. Although their simulation
methods allowed them to deal with a much larger computational system than the
present study, they did not treat near-field fluid dynamics precisely. A swimming
bacterium was modelled as two rigidly linked beads which exert equal and opposite
point forces on the fluid. The structure moves and rotates in response to the low-
Reynolds-number flow of the suspending medium, driven by all the other structures.
Using point forces or point stresslets is good enough to model the far-field interactions
between particles, because higher moments decay rapidly in the far field. In considering
near-field interactions, however, one cannot describe the lubrication flow in terms of
a few point singularities. Most recently Saintillan & Shelley (2007) used slender-body
theory to investigate orientational order in suspensions of self-locomoting rods. A
bacterium is modelled as a slender rod-like particle, which propels itself by exerting
an axisymmetric tangential shear stress on the fluid over a section of its body, while
the remainder of its body is subject to the usual no-slip boundary condition (a
sort of ellipsoidal squirmer). Hydrodynamic interactions were captured through the
disturbance velocity, which is the fluid velocity induced by the force distributions.
Though their simulation methods could also deal with a much larger computational
systems than the present study, they again did not treat near-field hydrodynamics
precisely. In the present study, we solve both far- and near-field interactions precisely
and perform Brady’s Stokesian dynamics simulation of squirmers for the first time to
our knowledge.

The authors are grateful for helpful discussions to Professor E. J. Hinch and
Professor J. M. Rallison in Department of Applied Mathematics and Theoretical
Physics, University of Cambridge. This work was partly supported by Grant-in-Aid
for Young Scientists (A) by the Japan Society for the Promotion of Science.
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