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We study the linear stability of a vortex sheet in a limit case that corresponds to a
transition between a weakly stable regime and a violently unstable regime. We prove
an energy estimate that reflects the high degeneracy of the uniform
Kreiss–Lopatinskii condition.

1. Introduction

The existence of compressible vortex sheets is a nonlinear hyperbolic free-boundary
problem. In three space dimensions, all constant vortex sheets are violently unstable
(see, for example, [3]). In two space dimensions, a constant vortex sheet is violently
unstable if and only if

‖ur − ul‖ < 2
√

2c,

where ur and ul are the fluid velocities on either side of the interface and c is the
sound speed (which is constant on either side of the interface). In a recent work [2],
we have studied the stability of vortex sheets that satisfy

‖ur − ul‖ > 2
√

2c,

and we have shown that the solutions to the linearized problem obey an a priori
energy estimate. In this paper, we study the limit case

‖ur − ul‖ = 2
√

2c.

We shall show that the linearized problem about such a constant vortex sheet still
obeys an a priori estimate. However, the energy estimate is very weak, due to the
unusual fact that the so-called Lopatinskii determinant has a triple root.

To avoid overloading the paper, we shall often refer to [2], where the reader will
find detailed calculations and a wider list of references on the subject. As was done
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in [2], we consider the compressible Euler equations in the whole space R
2,

∂tρ + ∇ · (ρu) = 0,

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇p = 0,

}
(1.1)

where p = p(ρ) is the pressure law. It is assumed to be C∞ and increasing. As
in [2], the sound speed is denoted by c. We also decompose the velocity u as follows:
u = (v, u) ∈ R

2.
In this paper, we consider a piecewise constant solution of (1.1) that takes the

following form:

(ρ,u) :=

{
(ρ, vr, 0) if x2 > 0,

(ρ, vl, 0) if x2 < 0.
(1.2)

We are interested in the linear stability of this piecewise constant solution. We
assume that the vortex sheet defined by (1.2) satisfies

vr + vl = 0 and vr =
√

2c > 0. (1.3)

2. The linearized equations

Because we deal with a free-boundary problem, it is convenient to fix the (unknown)
interface by a change of variables. Then we linearize the nonlinear equations about
the particular solution given by (1.2). The linearized equations read (see [2] for
details)

LW := A0∂tW + A1∂x1W + A2∂x2W = f if x2 > 0,

B(W nc, ψ) := MW nc|x2=0 + b

(
∂tψ

∂x1ψ

)
= g if x2 = 0,

⎫⎪⎬
⎪⎭ (2.1)

where ψ is the unknown perturbed front and W is the following vector,

W :=
(

v̇+, v̇−,− ρ̇+

2ρ
+

u̇+

2c
,
ρ̇−
2ρ

+
u̇−
2c

,
ρ̇+

2ρ
+

u̇+

2c
,− ρ̇−

2ρ
+

u̇−
2c

)T

,

where ρ̇+ (respectively, ρ̇−) denotes the perturbed density on the right (respectively,
on the left) of the interface, and so on. In (2.1), the vector W nc is obtained by
retaining only the four last components of W . Furthermore, we recall that the
matrices Aj are given by the following formulae,

A0 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 2c2 0 0 0
0 0 0 2c2 0 0
0 0 0 0 2c2 0
0 0 0 0 0 2c2

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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A1 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

vr 0 −c2 0 c2 0
0 vl 0 c2 0 −c2

−c2 0 2c2vr 0 0 0
0 c2 0 2c2vl 0 0
c2 0 0 0 2c2vr 0
0 −c2 0 0 0 2c2vl

⎞
⎟⎟⎟⎟⎟⎟⎠

,

A2 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 −2c3 0 0 0
0 0 0 −2c3 0 0
0 0 0 0 2c3 0
0 0 0 0 0 2c3

⎞
⎟⎟⎟⎟⎟⎟⎠

,

while M and b are defined as follows:

b :=

⎛
⎝0 vr − vl

1 vr

0 0

⎞
⎠ =

⎛
⎝0 2vr

1 vr

0 0

⎞
⎠ , M :=

⎛
⎝−c c −c c

−c 0 −c 0
−1 −1 1 1

⎞
⎠ . (2.2)

Before stating our energy estimate for (2.1), we introduce some notation. First
define the half-space

Ω := {(t, x1, x2) ∈ R
3 such that x2 > 0} = R

2×]0, +∞[.

The boundary ∂Ω is identified to R
2. For all real number s and all γ � 1, we define

the following norm on the Sobolev space Hs(R2),

‖u‖2
s,γ :=

1
(2π)2

∫
R2

(γ2 + |ξ|2)s|û(ξ)|2 dξ,

where û is the Fourier transform of any function u defined on R
2. The space

L2(R+; Hs(R2)) is equipped with the norm

‖|u‖|2s,γ :=
∫ +∞

0
‖u(·, x2)‖2

s,γ dx2.

In the sequel, the variable in R
2 is (t, x1), while x2 is the variable in R

+.
Introducing W̃ := exp(−γt)W and ψ̃ := exp(−γt)ψ, we find that (2.1) is equiv-

alent to

LγW̃ := γA0W̃ + LW̃ = exp(−γt)f if x2 > 0,

Bγ(W̃ nc, ψ̃) := MW̃ nc|x2=0 + b

(
γψ̃ + ∂tψ̃

∂x1 ψ̃

)
= exp(−γt)g if x2 = 0.

⎫⎪⎬
⎪⎭ (2.3)

The main result of this paper is the following theorem.

Theorem 2.1. Assume that (1.3) holds. Then there exists a positive constant C
such that, for all γ � 1 and for all (W̃ , ψ̃) ∈ H4(Ω) × H4(R2), the following esti-
mate holds:

γ‖|W̃‖|20+‖W̃ nc|x2=0‖2
0+‖ψ̃‖2

1,γ � C

(
1
γ7 ‖|LγW̃‖|23,γ +

1
γ6 ‖Bγ(W̃ nc, ψ̃)‖2

3,γ

)
. (2.4)
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Recall that, under the assumption vr >
√

2c, the main energy estimate we have
proved in [2] involves the loss of only one derivative on the boundary and one
derivative in the interior domain, that is,

γ‖|W̃‖|20 + ‖W̃ nc|x2=0‖2
0 + ‖ψ̃‖2

1,γ � C

(
1
γ3 ‖|LγW̃‖|21,γ +

1
γ2 ‖Bγ(W̃ nc, ψ̃)‖2

1,γ

)
.

At the opposite, when vr <
√

2c, the linearized equations (2.1) are violently ill-
posed in any Sobolev or Hölder space (see [3]). In the limit case vr =

√
2c that we

are considering here, the Lopatinskii determinant associated with (2.1) has a triple
root, which yields a very poor energy estimate. The transition case is thus really
different from the one considered in [4]. As a matter of fact, it was shown in [1] that
a situation where the Lopatinskii determinant has a multiple root corresponds to a
transition between weak stability (here, the region vr >

√
2c) and violent instability

(here, the region vr <
√

2c). However, we note that the result of [1] is derived when
the root is double, and not triple as in our case.

3. Proof of the main result

We drop the tilde for convenience. Using the same argument as in [2, paragraph 4.1],
we claim that it is sufficient to prove theorem 2.1 in the special case LγW ≡ 0.
Performing a Fourier transform in (t, x1) and eliminating the unknown front in the
boundary conditions, we are led to consider the following boundary-value problem,

(τA0 + iηA1)Ŵ + A2
dŴ

dx2
= 0 if x2 > 0,

β(τ, η)Ŵ nc(0) = ĥ,

(3.1)

where ĥ is a source term related to Bγ(W nc, ψ) and β is defined by

β(τ, η) :=
(

−1 −1 1 1
−c(τ + ivlη) c(τ + ivrη) −c(τ + ivlη) c(τ + ivrη)

)
∀(τ, η) ∈ Σ.

The definition of the hemisphere Σ is the one we adopted in [2],

Σ := {(τ, η) ∈ C × R such that Re τ � 0 and |τ |2 + v2
r η2 = 1}.

Moreover, β is homogeneous of degree 0 with respect to (τ, η).
We emphasize that it is still possible to eliminate the front in the limit case

vr =
√

2c. Lemma 1 of [2] also applies in this case.
Using the two first scalar equations in (3.1), we obtain the following system of

ordinary differential equations,

dŴ nc

dx2
= A(τ, η)Ŵ nc if x2 > 0,

β(τ, η)Ŵ nc(0) = ĥ if x2 = 0,

⎫⎪⎬
⎪⎭ (3.2)
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where A(τ, η) is defined by

A(τ, η) :=

⎛
⎜⎜⎝

µr 0 −mr 0
0 µl 0 −ml

mr 0 −µr 0
0 ml 0 −µl

⎞
⎟⎟⎠ ,

with

µr,l :=
(1/c)(τ + ivr,lη)2 + 1

2cη2

τ + ivr,lη
, mr,l :=

1
2cη2

τ + ivr,lη
.

If we denote by ωr (respectively, ωl) the roots of the negative real part of the
equation

ω2 =
1
c2 (τ + ivrη)2 + η2

(
respectively, ω2 =

1
c2 (τ + ivlη)2 + η2

)
,

then the stable subspace of A(τ, η) has dimension 2 and is spanned by the two
vectors

Er(τ, η) :=
(

1
2cη2, 0,

1
c
(τ + ivrη)2 + 1

2cη2 − (τ + ivrη)ωr, 0
)T

,

El(τ, η) :=
(

0, 1
2cη2, 0,

1
c
(τ + ivlη)2 + 1

2cη2 − (τ + ivlη)ωl

)T

.

The Lopatinskii determinant is defined in the classical way,

∆(τ, η) := det[β(τ, η)(Er(τ, η), El(τ, η))]. (3.3)

It is continuous on the whole closed hemisphere Σ (while the symbol A has some
poles on the boundary of Σ). The following result describes the failure of the uniform
Lopatinskii condition.

Proposition 3.1. Assume that (1.3) holds. Then one has ∆(τ, η) = 0 if and only
if τ = 0. Furthermore, there exists a neighbourhood V of (0, 1/vr) in Σ and a C∞

function h defined on V such that

∆(τ, η) = τ3h(τ, η) and h(0, 1/vr) 	= 0 ∀(τ, η) ∈ V.

A similar result holds near (0,−1/vr).

Proof. We first compute

∆(τ, η) = −c2(τ + ivrη − cωr)(τ + ivlη − cωl)(ωr + ωl)(ωrωl − η2).

The first two factors (τ + ivrη − cωr) and (τ + ivlη − cωl) do not vanish on Σ. The
sum ωr + ωl does not vanish when τ has positive real part, since both numbers ωr,l
have negative real part. When τ is purely imaginary, one extends ωr,l by continuity.
Using the formulae given in [2, paragraph 5.1], one shows that ωr + ωl = 0 if and
only if τ = 0. Moreover, there exists a neighbourhood V of (0, 1/vr) and a C∞

function h1 defined on V such that

ωr + ωl = τh1(τ, η) and h1(0, 1/vr) 	= 0 ∀(τ, η) ∈ V.
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If the last term (ωrωl−η2) vanishes, then η 	= 0, and we compute that V := τ/(iη)
satisfies

V 2(V 2 − 6c2) = 0.

Here we have used the relation vr =
√

2c. When V =
√

6c, we use the formulae
given in [2, paragraph 5.1], and compute

ωr = −iη
√

7 + 4
√

3, ωl = −iη
√

7 − 4
√

3.

Therefore, ωrωl = −η2 	= η2 and τ = i
√

6cη is not a root of the Lopatinskii
determinant. Similar calculations show that τ = −i

√
6cη is not a root either. When

τ = 0, we have
ωr = −iη and ωl = iη,

so we have ωrωl = η2. If we define Ωr,l := ωr,l/(iη), then the function

f(V ) := ΩrΩl + 1

is holomorphic near V = 0. Using the relations

Ω2
r,l =

1
c2 (V + vr,l)2 − 1,

one shows that 0 is a double root of f , so we have

f(V ) = V 2g(V ),

for a suitable holomorphic function g that does not vanish at 0. This shows that
there exists a neighbourhood V of (0, 1/vr) and a C∞ function h2 defined on V such
that

ωrωl − η2 = τ2h2(τ, η) and h2(0, 1/vr) 	= 0 ∀(τ, η) ∈ V.

This completes the proof.

In order to construct a degenerate symmetrizer near the roots of the Lopatinskii
determinant, we need to precise the behaviour of the matrix β(τ, η) restricted to
the stable subspace of A(τ, η). This is summarized in the following lemma.

Lemma 3.2. There exists a neighbourhood V of (0, 1/vr) in Σ and a constant κ0 > 0
such that the following estimate holds for all (τ, η) ∈ V:

|β(τ, η)(Er(τ, η), El(τ, η))Z−|2 � κ0γ
6|Z−|2 ∀Z− ∈ C

2. (3.4)

A similar result holds near (0,−1/vr).

Proof. We have

β
(
Er El

)
=

(
(τ + ivrη)(c−1(τ + ivrη) − ωr) (τ + ivlη)(c−1(τ + ivlη) − ωl)

−cωr(τ + ivlη)(cωr − (τ + ivrη)) cωl(τ + ivrη)(cωl − (τ + ivlη))

)

for all (τ, η) ∈ Σ. Consequently, the upper left-hand corner coefficient of β(ErEl)
does not vanish near the point (0, 1/vr). Writing

β
(
Er El

)
=

(
ζ1 ζ2

ζ3 ζ4

)
,
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we easily obtain the equality(
1/ζ1 0

−ζ3/ζ1 1

)
β

(
Er El

) (
1 −ζ2

0 ζ1

)
=

(
1 0
0 ∆

)
.

In particular, we obtain the estimate

|β
(
Er El

)
Z−|2 � κ min(1, |∆|2)|Z−|2,

for a suitable constant κ > 0 that is independent on (τ, η) in a neighbourhood
of (0, 1/vr). One uses the factorization given in proposition 3.1 to conclude the
proof.

We are now able to construct a degenerate Kreiss symmetrizer near the points
where the Lopatinskii determinant vanishes. Following [2], we already know that
there exists a neighbourhood V of (0, 1/vr) in Σ and a C∞ mapping T on V such
that

T (τ, η)A(τ, η)T (τ, η)−1 =

⎛
⎜⎜⎝

ωr 0 0 0
0 ωl 0 0
0 0 −ωr 0
0 0 0 −ωl

⎞
⎟⎟⎠ ∀(τ, η) ∈ V.

The first two columns of T (τ, η)−1 are the vectors Er(τ, η) and El(τ, η). We define
our symmetrizer r in the following way,

r(τ, η) :=

⎛
⎜⎜⎝

−γ6 0 0 0
0 −γ6 0 0
0 0 K 0
0 0 0 K

⎞
⎟⎟⎠ ∀(τ, η) ∈ V,

with K � 1 to be fixed large enough. The matrix r(τ, η) is hermitian and we have

Re(r(τ, η)T (τ, η)A(τ, η)T (τ, η)−1) � κγ

⎛
⎜⎜⎝

γ6 0 0 0
0 γ6 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ∀(τ, η) ∈ V, (3.5)

for a suitable κ > 0. We have used the standard notation

Re M := 1
2M + M∗.

Now we let
β̃(τ, η) := β(τ, η)T (τ, η)−1.

Recall that the first two columns of T (τ, η)−1 are Er and El. Let

Z = (Z−, Z+) ∈ C
4,

with Z−, Z+ ∈ C
2. Writing

β̃(τ, η)Z = β̃(τ, η)
(

Z−

0

)
+ β̃(τ, η)

(
0

Z+

)
,
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and using (3.4), we obtain

κ0γ
6|Z−|2 � C0(|β̃(τ, η)Z|2 + |Z+|2),

for some appropriate κ0 > 0 and C0 > 0. In the definition of the symmetrizer r, we
choose K := 2C0/κ0 + 1. This choice yields the inequality

〈r(τ, η)Z, Z〉C4 +
2C0

κ0
|β̃(τ, η)Z|2 � γ6|Z−|2 + |Z+|2 � γ6|Z|2,

that is,
r(τ, η) + C(β̃(τ, η))∗β̃(τ, η) � γ6I ∀(τ, η) ∈ V. (3.6)

The construction of the symmetrizer near the other points of Σ is the same as
what was done in [2], so we shall not detail it. To derive the energy estimate, we
proceed as in [2, paragraph 4.9], using a finite covering of Σ and a partition of unity
(χi)1�i�I . In particular, when the support of χi is a neighbourhood of a point where
the Lopatinskii condition fails, we use (3.5) and (3.6) to derive an estimate that
reads

γχi(τ, η)2
∫ +∞

0
|Ŵ nc(τ, η, x2)|2 dx2 + χi(τ, η)2|Ŵ nc(τ, η, 0)|2

� C

γ6 χi(τ, η)2|ĥ|2(|τ |2 + v2
r η2)3.

When the support of χi is a neighbourhood of a point where the Lopatinskii con-
dition is satisfied, we obtain the following energy estimate (see [2] for details):

γχi(τ, η)2
∫ +∞

0
|Ŵ nc(τ, η, x2)|2 dx2 + χi(τ, η)2|Ŵ nc(τ, η, 0)|2 � Cχi(τ, η)2|ĥ|2.

Integrating with respect to the frequencies, and using Plancherel’s theorem, we
obtain (2.4). This completes the proof.
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