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Abstract

We develop a new analytical solution of a three-dimensional atmospheric pollutant
dispersion. The main idea is to subdivide vertically the planetary boundary layer
into sub-layers, where the wind speed and eddy diffusivity assume average values
for each sub-layer. Basically, the model is assessed and validated using data obtained
from the Copenhagen diffusion and Prairie Grass experiments. Our findings show that
there is a good agreement between the predicted and observed crosswind-integrated
concentrations. Moreover, the calculated statistical indices are within the range of
acceptable model performance.

2020 Mathematics subject classification: primary 42A38; secondary 34B24, 76Rxx.
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1. Introduction

Atmospheric pollution is always a serious problem. Regions with high pollutant
concentrations have negative effects such as the reduction of respiratory resistance
against bacterial and viral infections. Therefore, inhabitants of these regions could be
more frequently infected in case of epidemics. Recently, many studies have established
that atmospheric pollution is one of the favourable factors that can facilitate the
propagation of COVID-19. Furthermore, it was found that breathing polluted air may
worsen the effects of COVID-19 and can lead to hospitalization and subsequent death
[24]. For these reasons, models for the atmospheric processes of the unstructured
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temporal and spatial variability of pollutants have been developed and discussed in
the literature [5, 12, 14, 16, 19, 22, 23]. Unfortunately, all of these explicit models were
obtained only for particular or simplified formulations of the wind speed profile and
eddy diffusivity of the three-dimensional parabolic second-order advection–diffusion
equation. These simplifications will limit the analysis of the results, since the wind
speed profile and eddy diffusivity are the most important factors in the transport and
diffusion of contaminants in the air.

The main objective of this work is to overcome these limitations. The idea is to
divide the planetary boundary layer (PBL) into a multi-layer domain, such that for each
sub-layer, the eddy diffusivity and wind speed assume average values. The analytical
solution of the advection–diffusion equation is obtained by using the Fourier transform
and the technique of separation of variables that leads to the Sturm–Liouville problem
[2]. Finally, to better approach the dominant parameters of the dispersion of pollutants,
the following parameterizations are adopted:

(i) the Deaves and Harris wind speed profile [7];
(ii) the vertical eddy diffusivity coefficient is assumed to be an explicit function

of both downwind distance and vertical height which are expressed under
convective conditions [8];

(iii) the lateral eddy diffusivity coefficient as a function of both downwind distance
and vertical height [3, 14].

We begin our paper with a general formulation of the atmospheric dispersion
of pollutants in the atmospheric boundary layer as described in Section 2. Then
we explore the explicit solution in Section 3. Discussion and numerical results are
presented in Section 4 and a conclusion is given in the last section.

2. General problem formulation

The turbulent dispersion of pollutants in the PBL is governed by the advection–
diffusion equation

∂C
∂t
+ ∇.(Uw C) = ∇.(D ∇C) + S, (2.1)

where Uw = (U, V , W)T is the wind speed vector (m/s) representing the components
U, V and W in the east-west, north-south and vertical directions, respectively; D is the
molecular diffusion coefficient; S is the source term; and ∇ is the gradient operator.

By use of the time average and fluctuation values, U = u + u′, V = v + v′,
W = w + w′ and C = c + c′, the wind speed vector Uw is expressed as

Uw = Uw + Uw
′

with Uw = (u, v, w)T and Uw
′
= (u′, v′, w′)T .
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The application of the Reynolds averaging rules to the vertical mass flow, Uw C, leads
to [6]

Uw C = Uw c + Uw
′

c′ with Uw
′ c′ = (u′c′, v′c′, w′c′)T . (2.2)

It turns out that turbulent diffusion can be described with Fick’s laws of diffusion as
follows [22]:

u′c′ = −Kx
∂c
∂x

, v′c′ = −Ky
∂c
∂y

, w′c′ = −Kz
∂c
∂z

,

where Kx, Ky and Kz are the eddy diffusivity components along the x-, y- and
z-directions, respectively.

Note that in a turbulent boundary layer where advection is occurring, K will be
larger than D and eddy diffusion will dominate solute transport. In this case, the
molecular diffusion coefficient ∇.(D ∇C) is then to be replaced by an eddy or turbulent
diffusivity. The source term could be eliminated from equation (2.1), and should be
added to the boundary conditions as a delta function. At the point (0, 0, Hs), there is a
source rejecting the pollutant with a continuous flow Q,

u c(0, y, z) = Qδ(y)δ(z − Hs),

where Hs is the source height. By application of the Reynolds averaging and the
divergence operator to equation (2.2), equation (2.1) may be written as

∂c
∂t
= − ∂
∂x

u′c′ − ∂
∂y

v′c′ − ∂
∂z

w′c′ − Uw.∇c. (2.3)

In the remainder of this paper, the following assumptions are considered:

(a) the steady state condition (that is, ∂c/∂t = 0);
(b) the two terms v(∂c/∂y) and w(∂c/∂z) are neglected since the x-axis coincides

with the wind flow average, therefore the wind velocity components w and v are
less important; and

(c) the turbulent diffusion in the direction of the mean wind is neglected compared
to the advection transport mechanism, that is,

u
∂c
∂x
>>
∂

∂x

(
Kx
∂c
∂x

)
.

These assumptions lead to the steady-state advection–diffusion equation defined as
0 < x < Lx, −Ly < y < Ly and 0 < z < Hmix,

u(z)
∂c
∂x
=
∂

∂y

(
Ky
∂c
∂y

)
+
∂

∂z

(
Kz
∂c
∂z

)
,
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which is subject to the boundary conditions:

lim
Ly−→∞

Ky(x, z)
∂c
∂y
= 0, Kz(x, z)

∂c
∂z
= 0 at z = z0, and

Kz(x, z)
∂c
∂z
= 0 at z = Hmix,

(2.4)

where z0 is the surface roughness length and Hmix is the PBL height.
We consider that the eddy diffusivities have the following separable formulations:

Ky(x, z) = ζy(x) u(z), (2.5)

Kz(x, z) = ξ(x) ϕz(z). (2.6)

We vertically divide the PBL into H intervals, such that for each one, the eddy
diffusivity and wind speed assume average values. For h = 1, . . . , H,

uh =
1

zh − zh−1

∫ zh

zh−1

u(s) ds, (2.7)

ϕzh =
1

zh − zh−1

∫ zh

zh−1

ϕz(s) ds. (2.8)

Using the formulations of Ky and Kz in equations (2.5) and (2.6), equation (2.3) can be
written as

uh
∂ch

∂x
= ζy(x) uh

∂2ch

∂y2 + ξ(x) ϕzh

∂2ch

∂z2 (2.9)

with uh and ϕzh (given by equations (2.7) and (2.8)) as constants. Equation (2.9) is
subject to the first boundary conditions of equation (2.4) on the one hand, and on the
other hand, the continuity of both the concentration and the flux at the interface level
is applied. For h ∈ {2, . . . , H},

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕz1

∂c1(x, y, z0)
∂z

= 0, ϕzH

∂cH(x, y, zH)
∂z

= 0,

ch−1(x, y, zh−1) = ch(x, y, zh−1),

ϕzh−1

∂ch−1(x, y, zh−1)
∂z

= ϕzh

∂ch(x, y, zh−1)
∂z

.

3. Analytical solution

We start this section by applying Fourier transform to equation (2.9). Let ĉωh (x, z)
denote the Fourier transformation of ch with respect to y. Then,

ĉωh (x, z) =
∫ +∞
−∞

ch(x, y, z) e−2iπωy dy, h ∈ {1, . . . , H},
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which gives

uh

[∂ĉωh
∂x
+ (2π)2ω2ζy(x)ĉωh

]
= ξ(x) ϕzh

∂2ĉωh
∂z2 , z ∈ [zh−1, zh].

Let

χωh (x, z) = ĉωh (x, z) exp
(
(2π)2 ω2

∫ x

0
ζy(s) ds

)
, (3.1)

then

∂χωh
∂x
=

[∂ĉωh
∂x
+ (2π)2ω2ζy(x)ĉωh

]
exp
(
(2π)2 ω2

∫ x

0
ζy(s) ds

)
.

By multiplying both sides of equation (3.1) by

exp
(
(2π)2 ω2

∫ x

0
ζy(s) ds

)

and, since uh and ϕzh are constants for each interval, we show easily that for all
h ∈ {1, . . . , H},

uh
∂χωh
∂x
= ξ(x) ϕzh

∂2χωh
∂z2 , z ∈ [zh−1, zh]. (3.2)

We proceed in the same way with the boundary conditions, and find

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕz1

∂χω1 (x, z0)

∂z
= 0,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

χωh−1(x, zh−1) = χωh (x, zh−1),

ϕzh−1

∂χωh−1(x, zh−1)

∂z
= ϕzh

∂χωh (x, zh−1)

∂z
,

h ∈ {2, . . . , H}

ϕzH

∂χωH(x, zH)

∂z
= 0.

The solution of equation (3.2) is assumed to be in the form

χωh (x, z) =
∞∑

n=0

Gωh,n(x) Ph,n(z), h ∈ {1, . . . , H}.

This separated form gives two ordinary differential equations to be solved:

d Gωh,n

dx
+ γ2

n ξ(x) Gωh,n = 0, (3.3)
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and

ϕzh

d2 Ph,n

dz2 + γ2
n uh Ph,n = 0, (3.4)

where γn is a separation constant.
The first-order ordinary differential equation (3.3) has the solution

Gωh,n(x) = μn(ω) exp
(
− γ2

n

∫ x

0
ξ(s) ds

)
,

where μn is an arbitrary function depending on ω.
Equation (3.4) represents a Sturm–Liouville problem. Solutions of such problem

form an eigenfunction basis of the form

Ph,n(z) = αh,n cos(λh,nz) + βh,n sin(λh,nz), (3.5)

where λh,n = γn
√

(uh/ϕzh ).
Equation (3.5) satisfies the following boundary conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕz1

d P1,n(z0)
dz

= 0,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ph−1,n(zh−1) = Ph,n(zh−1),

ϕzh−1

d Ph−1,n(zh−1)
dz

= ϕzh

d Ph,n(zh−1)
dz

,
h ∈ {2, . . . , H}

ϕzH

d PH,n(zH)
dz

= 0.

(3.6)

(3.7)

(3.8)

To calculate the expression of Ph,n, it comes down to calculate the values of αh,n and
βh,n, on each of the sub-layer [zh−1, zh], h ∈ {1, . . . , H}.

By solving the recursive system resulting from substitution of equation (3.5) in
equations (3.6)–(3.8), we obtain respectively the formulations of αh,n and βh,n. More
specifically, we have the following.

For the first sub-layer, α1,n and β1,n satisfy the equation

α1,n sin(λ1,nz0) − β1,n cos(λ1,nz0) = 0,

from which we can take β1,n = sin(λ1,nz0), so that α1,n = cos(λ1,nz0), which means

P1,n(z) = cos(λ1,n(z − z0)).

For the last sub-layer (Hth sub-layer),

αH,n = cot(λH,nzH) βH,n.
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Additionally for the intermediate sub-layers,

αh,n =
ϕzhλh,n − ϕzh−1λh−1,n

2ϕzhλh,n

[{
cos((λh,n + λh−1,n)zh−1) +

ϕzhλh,n + ϕzh−1λh−1,n

ϕzhλh,n − ϕzh−1λh−1,n

× cos((λh,n − λh−1,n)zh−1)
}
αh−1,n +

{
sin((λh,n + λh−1,n)zh−1)

−
ϕzhλh,n + ϕzh−1λh−1,n

ϕzhλh,n − ϕzh−1λh−1,n
sin((λh,n − λh−1,n)zh−1)

}
βh−1,n

]
,

and

βh,n =
ϕzhλh,n − ϕzh−1λh−1,n

2ϕzhλh,n

[{
sin((λh,n + λh−1,n)zh−1) +

ϕzhλh,n + ϕzh−1λh−1,n

ϕzhλh,n − ϕzh−1λh−1,n

× sin((λh,n − λh−1,n)zh−1)
}
αh−1,n −

{
cos((λh,n + λh−1,n)zh−1)

−
ϕzhλh,n + ϕzh−1λh−1,n

ϕzhλh,n − ϕzh−1λh−1,n
cos((λh,n − λh−1,n)zh−1)

}
βh−1,n

]
.

The eigenvalues γn, n ∈ N∗ of this problem are real and discrete, and the eigenfunc-
tions are mutually orthogonal. The orthogonality relation developed by Mikhailov and
Ozisik [17] for this class of (self-adjoint) problems with respect to the density uh on
each interval [zh−1, zh], h ∈ {1, . . . , H} leads to

H∑
h=1

∫ zh

zh−1

uh Ph,m(s) Ph,n(s) ds = ‖Ph,m‖ . ‖Ph,n‖ . δm,n,

where δm,n is the Kronecker symbol. Then, we can write

‖PH,n‖2 =
H∑

h=1

∫ zh

zh−1

uh (Ph,n(s))2 ds

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H∑
h=1

uh(zh − zh−1), when γn = 0,

H∑
h=1

uh

2 λh,n
[sin(λh,n(zh − zh−1)){(α2

h,n − β2
h,n) cos(λh,n(zh + zh−1))

+2αh,n βh,n sin(λh,n(zh+zh−1))}+λh,n(α2
h,n+β

2
h,n)(zh − zh−1)], when γn � 0.

The eigenvalues of each sub-layer can be obtained by integrating equation (3.4)
on each of the intervals [zh−1, zh], h ∈ {1, . . . , H}, taking into account the boundary
conditions equations (3.6)–(3.8). However, the eigenfunctions PH,n form a complete
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set, so χωH can be developed as

χωH(x, z) =
∞∑

n=0

an exp
(
− γ2

n

∫ x

0
ξ(s) ds

)
PH,n(z).

Then, the coefficients an are given by

an =
1

‖Ph,n‖2
H∑
�=1

∫ z�

z�−1

u�χω� (0, z) P�,n(z) dz

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Q∑H
h=1 uh(zh − zh−1)

, when γn = 0,

Q
‖Ph,n‖2

H∑
�=1

P�,n(Hs), when γn � 0.

The inverse Fourier transform of

exp
(
(2π)2 ω2

∫ x

0
ζy(s) ds

)

is given by

1

2
√
π
∫ x

0 ζy(s) ds
exp
(
− y2

4
∫ x

0 ζy(s) ds

)
.

Consequently,

cH(x, y, z) =
Q

2
√
π
∫ x

0 ζy(s) ds
exp
(
− y2

4
∫ x

0 ζy(s) ds

)

×
∞∑

n=0

exp
(
− γ2

n

∫ x

0
ξ(s) ds

) PH,n(z)

‖PH,n‖2
( H∑

h=1

Ph,n(Hs)
)
. (3.9)

The crosswind-integrated concentration cy
H(x, z) is obtained by integrating equation

(3.9) with respect to y from −∞ to +∞, which yields

cy
H(x, z) = Q

∞∑
n=0

exp
(
− γ2

n

∫ x

0
ξ(s) ds

) PH,n(z)

‖PH,n‖2
H∑

h=1

Ph,n(Hs). (3.10)

4. Validation and experimental data

The wind speed profile u(z) is parameterized using the model of Deaves and
Harris [7]. This model is extrapolated using experimentally measured wind speed
profiles. The advantage of this profile over other ones is that it extends the accurate
representation of the logarithmic law to a small height, and through better accuracy
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for the logarithmic and power law models to a moderate height,

u(z) =
u∗
k

[
ln
(z + z0

z0

)
+ 5.75

( z
Hmix

)
− 1.88

( z
Hmix

)2
− 1.33

( z
Hmix

)3
+ 0.25

( z
Hmix

)4]
,

where Hmix is the PBL height. The modified form of the vertical eddy diffusivity
coefficient Kz, given in equation (2.6), is adopted from [8], where the functional

ϕz(z) = 0.22 Hmix w∗
( z
Hmix

(
1 − z

Hmix

))1/3(
1 − exp

(
− 4 z

Hmix

)
− 0.0003 exp

( 8 z
Hmix

))
,

where w∗ is the convective velocity. The integrable correction dimensionless func-
tion in equation (2.6) is defined in terms of the along-wind length scale L1 as
follows [18]:

ξ(x) = 1 − exp
(
− x

L1

)
. (4.1)

The length L1 is given in terms of u, ϕz and σw as [18]

L1 =
1

σ2
w(Hs)

u(Hs) ϕz(Hs),

where σw is the vertical turbulent intensity. Note that there exist many expressions of
σw; we adopt here the expression given by Hanna et al. [13]:

σw = 0.96 w∗
( 3 z
Hmix

+
|L|

Hmix

)1/3
,

where L is the Monin–Obukhov length [21]. The Monin–Obukhov length is a
parameter used in atmospheric dispersion having the dimension of a length, and
describes the atmospheric stability states according to their sign, that is, L is
negative (positive) for an unstable (stable) situation whereas |L| >> 1 indicates neutral
situation [21].

Note that when L1 → 0, the term exp (−x/L1) becomes negligible in equation (4.1),
and Kz depends only on z (that is, Kz ≡ ϕz in equation (2.6)).

The lateral eddy diffusivity is given by Huang [14]:

Ky(x, z) =
1
2

u(z)
d σ2

y(x)

dx
, (4.2)

where σy is the standard deviation in the crosswind direction (depends only on x). By
identifying equations (2.5) and (4.2), we obtain

ζy(x) =
1
2

d σ2
y(x)

dx
.

The model presented as equation (3.10) is assessed and validated using data sets
obtained from the Copenhagen diffusion and Prairie Grass experiments.

The Copenhagen experiments were realized in the northern part of Copenhagen
between 12/09/1978 and 19/07/1979 as described by Gryning et al. [10] and Gryning
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and Lyck [11]. They were carried out using the tracer sulphur hexafluoride (SF6),
which was realized without buoyancy from a tower at a height of Hs = 115 m,
the roughness length was z0 = 0.6 m. The remaining required parameters for these
experiments are given in [10, 11].

The Prairie Grass experiments were realized in O’Neil, Nebraska between
03/07/1956 and 30/08/1956 and well detailed by Nieuwstadt [20] and the data
downloaded from http://www.harmo.org/jsirwin (see [1]). They were carried out
using the tracer sulphur dioxide (SO2), realized without buoyancy from a tower at a
height of Hs = 1.5 m, the roughness length was z0 = 0.006 m. All necessary data for
these experiments are given in [1, 20].

For the practical implementation of the analytical solution, we have discretized the
PBL into 2 and 4 sub-layers. For the 2-sub-layers case, the discretization is

dz1 =
7(Hmix − z0)

13
and dz2 =

6(Hmix − z0)
13

;

and for the 4-sub-layers case, the discretization is

dz1 =
3(Hmix − z0)

15
, dz2 =

3(Hmix − z0)
15

, dz3 =
7(Hmix − z0)

15
,

and dz4 =
2(Hmix − z0)

15
.

The quality and performance of models are usually presented by drawing a scatter
diagram using predicted and observed values. Figure 1 represents a scatter diagram
between observed and predicted crosswind-integrated concentrations for the two
formulations of the vertical diffusivity and the number of sub-layers in the PBL (when
H = 2 and H = 4) for the Copenhagen (top panel) and the Prairie Grass (bottom
panel) experiments. The figure shows a good agreement between the predicted and
observed values which seem to be a good parameterization of the model. An immediate
visualization inspection of the overall model performance shows that the observed
crosswind-integrated concentration tended to be slightly larger than those predicted.
The quantitative evaluation of models is usually made through statistical performance
analysis that is presented and widely used in many works. The statistical indices which
we will use here are defined as [4]: the normalized mean square error (NMSE), the
mean relative square error (MRSE), the correlation coefficient (COR), the fractional
bias (FB), the fractional standard deviations (FS), the geometric mean bias (MG),
the geometric mean variance (VG) and the factor of two (FAC2). The perfect models
would have NMSE = MRSE = FB = FS = 0 and COR = MG = VG = FAC2 = 1 [4].
The satisfied numerical results given in Figure 1 are re-affirmed from the values
of statistical performance measures summarized in Table 1. The calculated values
are mostly within the range of acceptable model performance for both formulations
of the vertical eddy diffusivity. Furthermore, Table 1 indicates that similar results
are obtained compared to other analytical procedures, previously published in the
literature [9, 12, 15, 19].
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(Chang and Hanna, 2004)

NMSE< 1.5

COR ≥ 0.70

|FB| < 0.3

0.75<MG< 1.25

1≤VG< 4

0.5<FAC2< 2

.

FIGURE 1. Scatter plot of observed and predicted crosswind-integrated concentrations of the Copenhagen
(top panel) and the Prairie Grass experiments (bottom panel). The solid line is a one-to-one line (y = x)
and dotted lines correspond to a factor of two (that is, y = 0.5x and y = 2x).
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TABLE 1. Statistical measures for the Copenhagen and Prairie Grass experiments.

Copenhagen experiments

Models NMSE MRSE COR FB FS MG VG FAC2

Kz = ξ(x)ϕz(z) 0.0533 0.0533 0.8657 −0.0135 0.0018 0.9660 1.0885 1.096
(H = 2)
Kz = ϕz(z) 0.0660 0.0660 0.8498 0.0432 0.03897 1.0235 1.1007 1.055
(H = 2)
Kz = ξ(x)ϕz(z) 0.0768 0.0768 0.8308 0.0543 0.1686 1.0273 1.1022 0.9235
(H = 4)
Kz = ϕz(z) 0.0892 0.0890 0.8274 0.0973 0.2065 1.0726 1.1124 0.8882
(H = 4)
[9] (H = 2) 0.08 – 0.86 −0.02 0.05 – – 1.0
[9] (H = 4) 0.1 – 0.82 0.1 0.04 – – 0.92
[15] 0.069 – – −0.009 0.051 0.996 1.055 1.009

Prairie Grass experiments
Kz = ξ(x)ϕz(z) 0.0210 0.0209 0.9809 −0.0503 −0.0108 0.9018 1.0645 0.9807
(H = 2)
Kz = ξ(x)ϕz(z) 0.0613 0.0608 0.9763 −0.1809 −0.0514 0.8616 1.3228 0.9373
(H = 4)
[19] 0.25 – 0.92 0.03 0.20 – – 0.68
[12] 0.04 – 0.96 −0.09 0.13 – – 0.79

5. Conclusion

The solution of the three-dimensional steady-state atmospheric diffusion equation
was developed taking into account more realistic formulations of the wind speed
profile and two formulations of the vertical eddy diffusivity. The convergence was
numerically validated using data sets obtained from the Copenhagen and Prairie
Grass experiments. The results showed that predicted and observed values were in
good agreement and the calculated statistical indices were mostly within the range
of acceptable model performance. The findings of the current study show that the
current model could be an interesting approach for an accurate prediction of the
atmospheric dispersion of pollutants and may be appropriate for other continuous
flows.
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