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Abstract

This paper presents a parameterized gait generator based on linear inverted pendulum model (LIPM)
theory, which allows users to generate a natural gait pattern with desired step sizes. Five types of zero
moment point (ZMP) components are proposed for formulating a natural ZMP reference, where ZMP
moves continuously during single support phases instead of staying at a fixed point in the sagittal and
lateral plane. The corresponding center of mass (CoM) trajectories for these components are derived by
LIPM theory. To generate a parameterized gait pattern with user-defined parameters, a gait planning
algorithm is proposed, which determines related coefficients and boundary conditions of the CoM
trajectory for each step. The proposed parameterized gait generator also provides a concept for users to
generate gait patterns with self-defined ZMP references by using different components. Finally, the
feasibility of the proposed method is validated by the experimental results with a teen-sized humanoid
robot, David, which won first place in the sprint event at the 20th Federation of International Robot-
soccer Association (FIRA) RoboWorld Cup.

1 Introduction

Nowadays, humanoid robot has become one of most popular topics in robotics research. However, it is still
a challenging task for biped robots to walk stably, and many algorithms such as neural fuzzy network (Kim
et al., 2005; Ferreira et al., 2011), policy gradient reinforcement learning (Tedrake et al., 2004; Li et al.,
2011; Su et al., 2011), Q-learning algorithm (Park et al., 2004; Hu et al., 2008), and central pattern
generator (CPG) (Endo et al., 2008; Nassour et al., 2013; Farzaneh et al., 2014; Li et al., 2015) have been
utilized to generate a stable biped gait pattern. CPG is a bio-inspired neural network that generates
rhythmic signals to imitate a nervous system. Its center system can be used to coordinate each actuator so
as to produce a walking motion with rhythmic signals. However, there is no intuitive relationship between
the periodic signals and the motions. Thus, it is difficult to generate a parameterized gait pattern with
desired step sizes using CPG.

Instead of using machine learning algorithms to generate a gait pattern, some research has utilized the
linear inverted pendulummodel (LIPM) (Kajita et al., 2001; Taskiran et al., 2010; Shin &Kim, 2014) with
a zero moment point (ZMP) reference to generate a stable walking reference. In LIPM theory, the robot
model is simplified into an inverted pendulum model with its center of mass (CoM) constrained at a
constant height. Due to the linear property, the robot model can be easily implemented on real robots at
low computational cost. Erbatur and Kurt (2009) proposed a natural reference generation method using
LIPM and a natural ZMP reference. However, the CoM trajectory proposed by Erbatur was approximated
using the Fourier series instead of an analytical solution for the relationship between CoM and ZMP, and
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the step sizes for each step are identical. Hence, this trajectory is unsuitable for parameterized gait pattern
generation. In contrast, the analytical solutions of the CoM trajectory are derived for parameterized gait
pattern generation in this paper.

According to the concept proposed by Erbatur and Kurt (2009), a ZMP reference with ZMP moving forward
slightly within single support phases (SSP) is regarded as a natural ZMP reference. To formulate a natural ZMP
reference, we further propose five types of ZMP components in this paper. Analytical solutions for these
ZMP components are derived to obtain a corresponding CoM trajectory of the natural ZMP reference. Moreover,
a gait planning algorithm is presented to determine the boundary conditions for each step so that a parameterized
gait pattern can be generated with user-defined parameters. With the proposed method, users can design a
parameterized gait pattern with desired step sizes for each step. The period of a step and the period of
double support phase (DSP) is also adjustable. Thus, average velocity of the gait pattern is also user-controllable.

This paper is organized as follows. The basic concepts of LIPM are introduced in Section 2. Then, five
types of ZMP components are presented and their corresponding CoM trajectories are derived, where
the natural ZMP reference composed of proposed ZMP components is introduced. In Section 3, the
parameterized gait planning algorithm is presented. Section 4 illustrates the simulation and experimental
results. Finally, conclusions and future work are described in Section 5.

2 Natural ZMP and center of mass trajectories based on the linear inverted pendulum
model method

In this section, the relationship between the ZMP and CoM of the LIPM theory is introduced first. Then,
different types of ZMP references are derived to acquire corresponding CoM trajectories based on the
relationship.

2.1 Basic concept of linear inverted pendulum model

In LIPM theory (Erbatur & Kurt, 2009), the robot model is simplified as a point mass supported by a
massless leg like an inverted pendulum. Since the leg is assumed to be massless for simplification, mass of
the leg should be much less than the mass of robot’s upper body. If this assumption is not achieved, the
modeling error may affect the stability. The mass of the robot is assumed to concentrate at a point, which is
the CoM of the robot. Moreover, the height of CoM zc is assumed to be constant, so the CoM is constrained
on a fixed-height plane while walking. The last assumption yields a linear system in which the motion of
CoM can be decoupled in the sagittal plane and lateral plane. Thus, considering that the control torque at
the contact point is assigned 0, the equations of motion of the CoM in the sagittal plane and the lateral
plane are expressed as follows:
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where g is the gravity constant, and x and y the coordinates of the CoM in the sagittal and lateral planes,
respectively.

To guarantee walking stability, ZMP, which is a widely used criterion for stable biped walking
(Vukobratović& Stepanenko, 1972; Choi et al., 2004; Kajita et al., 2006, 2007), is considered. In order to
achieve zero moment at the contact point as shown in Figure 1, torque caused by gravity should be
balanced by torque caused by acceleration of the CoM. Thus, a torque balance equation in both sagittal and
lateral planes is obtained as follows:
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where ωn is defined as
ffiffiffiffiffiffiffiffiffi
g=zc

p
, and p and q the coordinates of ZMP in the sagittal and lateral planes,

respectively.
It is noted that (2) also presents the relationship between ZMP and CoM, and the CoM trajectory can be

derived by assigning a suitable ZMP trajectory to (2). For simplicity, the following only presents the
derivation of the CoM trajectory in the sagittal plane, namely x(t), and the CoM trajectory in the lateral
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plane y(t) can be obtained in the same way. Applying Laplace transformation to the first row of (2), we
can obtain

s2XðsÞ�sx0 � vx0 =ω2
nXðsÞ�ω2

nPðsÞ

XðsÞ= s

s2�ω2
n

x0 +
1

s2�ω2
n

vx0� ω2
n

s2�ω2
n

PðsÞ ð3Þ

where x0 and vx0 denote the initial position and initial velocity of the CoM in the sagittal plane,
respectively. P(s) denotes the Laplace transform of the sagittal ZMP trajectory p(t). Then, applying inverse
Laplace transformation, the sagittal CoM trajectory x(t) can be obtained as

xðtÞ= x0coshðωntÞ + vx0
ωn

sinhðωntÞ +L�1 �ω2
n

s2�ω2
n

PðsÞ
� �

(4)

where L�1ð�Þ denotes inverse Laplace transform.
Furthermore, the sagittal CoM velocity vx(t) can be obtained as the first derivative of (4):

vxðtÞ= x0ωnsinhðωntÞ + vx0coshðωntÞ + d

dt
L�1 �ω2

n

s2�ω2
n

PðsÞ
� �

(5)

Since the lateral CoM trajectory y(t) and the lateral CoM velocity vy(t) can be obtained in the same way,
the dynamics of CoM in the sagittal and lateral planes can be expressed as follows:
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with
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where y0 and vy0 denote the initial position and initial velocity of the CoM in the lateral plane,
respectively. C(t) and S(t) are defined as cosh(ωnt) and sinh(ωnt), respectively. Q(s) denotes
Laplace transform of the lateral ZMP trajectory q(t). It can be seen in (6) and (7) that the first term
of the right-hand side is due to the initial conditions, and the second term is due to the given
ZMP references.

2.2 Different types of ZMP

To generate a different type of motion it is necessary to utilize different types of ZMP references.
In this paper, five types of ZMP components are considered, which are step function type, ramp function
type, parabolic function type, cubic function type, and sine function type. In order to use these

Figure 1 Torque balance for linear inverted pendulum model in the sagittal plane
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different types of ZMP components, it is necessary to know the corresponding pðtÞ and qðtÞ of these
components.

2.2.1 Step function type ZMP
Considering a step function type ZMP pstep (t,As,Ts) = Asu(t− Ts), where u(·) is the unit step function, its
Laplace transform is

PstepðsÞ=As

s
e�sTs (8)

Multiplying by �ω2
n = ðs2�ω2

nÞ and applying inverse Laplace transformation, the second term of its
corresponding CoM trajectory pstep can be obtained as follows:
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2.2.2 Ramp function type ZMP
Considering a ramp function type ZMP pramp(t,Ar,Tr) = Artu(t−Tr), its Laplace transform is

PrampðsÞ=Ar

s2
ðsTr + 1Þe�sTr (10)

Similarly, the second term of its corresponding CoM trajectory pramp can be obtained as follows:

prampðt;Ar; TrÞ=Ar t�Trcoshðωnðt�TrÞÞ� 1
ωn

sinhðωnðt�TrÞÞ
� �

uðt�TrÞ (11)

2.2.3 Parabolic function type ZMP
Considering a parabolic function type ZMP ppara(t,Ap,Tp) = Apt

2u(t− Tp), its Laplace transform is

PparaðsÞ=Ap

T2
p

s
+
2Tp
s2

+
2
s3

 !
e�sTp (12)

Similarly, the second term of its corresponding CoM trajectory ppara can be obtained as follows:

pparaðt;Ap; TpÞ=Ap t2 +
2
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n
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2
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2.2.4 Cubic function type ZMP
Considering a cubic function type ZMP pcubic(t,Ac,Tc) = Act

3u(t− Tc), its Laplace transform is
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c
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6
s4

� �
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Similarly, the second term of its corresponding CoM trajectory pcubic can be obtained as follows:
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6
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n
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c +
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n
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�
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2.2.5 Sine function type ZMP
Considering a sine function type ZMP psinðt;Aβ; α; TβÞ=AβsinðαtÞuðt�TβÞ, its Laplace transform is

PsinðsÞ=ðϕss +ψ sÞ
e�sTβ

s2 + α2
(16)

where ϕs = Aβ sin(αTβ) and ψs = αAβ cos(αTβ).
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Similarly, the second term of its corresponding CoM trajectory psin can be obtained as follows:

psinðt;Aβ; α; TβÞ= 1
α2 +ω2

n

ϕsω
2
ncosðαðt�TβÞÞ + ψ s

α
ω2
nsinðαðt�TβÞÞ

h
�ϕsω

2
ncoshðωnðt�TβÞÞ�ψ sωnsinhðωnðt�TβÞÞ

�
uðt�TβÞ ð17Þ

In addition, for a cosine function type ZMP pcos(t,Aβ,a,Tβ) = Aβ cos(αt)u(t− Tβ), the second term of its
corresponding CoM trajectory pcos is

pcosðt;Aβ; α; TβÞ= 1
α2 +ω2

n

ϕcω
2
ncosðαðt�TβÞÞ + ψ c

α
ω2
nsinðαðt�TβÞÞ

h
�ϕcω

2
ncoshðωnðt�TβÞÞ�ψ cωnsinhðωnðt�TβÞÞ

�
uðt�TβÞ ð18Þ

where ϕc = Aβ cos αTβ and ψc = − αAβ sin αTβ.

2.3 Center of mass trajectory generation by given ZMP references

So far, by being given a suitable ZMP reference and suitable initial conditions, the CoM trajectory can be
acquired with (6) and (7). However, there is a problem when using (6) and (7) to calculate the CoM
trajectory since there are cosh term and sinh term in (6) and (7). The value of cosh term and sinh term tend
to infinity as t becomes much greater than 0. Hence, a complete gait pattern is divided into several
partitions according to the number of steps, and the CoM trajectory is generated step by step with given
boundary conditions for each step. Hereafter, the CoM trajectory will be discussed for a single step.

2.3.1 Common ZMP reference
Generally, the most common ZMP reference for a single step is defined as follows:

pnðtÞ=AnuðtÞ
qnðtÞ=BnuðtÞ

�
for t 2 ð0; T � (19)

where T denotes the period of a step, which is half of the walking period. Subscript n denotes the nth step.
An and Bn denote sagittal amplitude and lateral amplitude of ZMP for the nth step. Since the following
discusses the CoM trajectory of a single step as well, the subscript n will be omitted for simplicity when
there is no ambiguity.

2.3.2 Double support phase ZMP reference
It is obvious that the common ZMP reference does not consider DSP. On the other hand, a ZMP reference
taking into account DSP can be expressed as follows:

pDðtÞ= A�d1 + d1
kvT

t
	 


uðtÞ�uðt�t1Þ½ � +A uðt�t1Þ�uðt�t2Þ½ � + A + d2
kvT

ðt�t2Þ
h i

uðt�t2Þ
qDðtÞ= q0 + B�q0

kvT
t

	 

uðtÞ�uðt�t1Þ½ � +B uðt�t1Þ�uðt�t2Þ½ � + B + qf�B

kvT
ðt�t2Þ

h i
uðt�t2Þ

8<
: (20)

where A − d1 and A + d2 are initial and final positions of p, respectively, and q0 and qf are initial and final
positions of q, respectively. It is noted that when walking in a straight line, the values of q0 and qf are
usually set as 0, namely q0 = qf = 0. A, B and the initial and final positions of p and q are user-defined
parameters for designing a desired ZMP reference, and these parameters are determined by a
parameterized gait planning algorithm in this paper, which will be examined in Section 3. Superscript D
denotes the ZMP reference taking into account DSP, kv denotes virtual DSP scale, t1 is kvT, and t2 is
(1− kvT). As shown in Figure 2, the DSP-ZMP reference is composed of three intervals. The first interval
is a DSP whose range is (0, t1]. The second phase is an SSP whose range is (t1, t2]. The third interval
is a DSP whose range is (t2, T]. ZMP moves within the DSP and stays at a fixed point within the SSP.
In addition, d1 and d2 denote the incremental amount of sagittal amplitude within the first interval and
the third interval, respectively. It is important that d1 and d2 should be positive since the gait pattern
is generated for walking forward.
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2.3.3 Moving ZMP reference
In human walking, ZMP moves continuously even during SSP. Thus, Erbatur and Kurt (2009) defined a
ZMP reference with ZMPmoving forward slightly during SSP as a natural ZMP reference. Inspired by this
concept, we define a moving ZMP reference as follows:

pMðtÞ= A�d1 + d1�a
kvT

t
	 


uðtÞ�uðt�t1Þ½ � + A�a + 2a
ð1�2kvÞT ðt�t1Þ

h i
uðt�t1Þ�uðt�t2Þ½ �

+ A + a + d2�a
kvT

ðt�t2Þ
h i

uðt�t2Þ
qMðtÞ= q0 + B�q0

kvT
t

	 

uðtÞ�uðt�t1Þ½ � + B + bsin π

ð1�2kvÞT ðt�t1Þ
	 
h i

uðt�t1Þ�uðt�t2Þ½ �
+ B + qf�B

kvT
ðt�t2Þ

h i
uðt�t2Þ

8>>>>>><
>>>>>>:

(21)

where a denotes half of the distance that ZMP moves forward during an SSP, and b denotes the
incremental amount of lateral amplitude during an SSP. It is noted that B and b must have the same sign.
In addition, the DSP-ZMP reference is a special case of a moving ZMP reference while a = 0 and
b = 0.

With the proposed moving ZMP reference, the ZMP can move during SSP not only in the sagittal plane
but also in the lateral plane, which makes the robot walk more naturally and in a more human-like way.
To obtain the corresponding CoM trajectory of the moving ZMP reference, (21) can be rewritten
as follows:

pMðtÞ=ðLp1 +Kp1tÞ uðtÞ�uðt�t1Þ½ � + ðLp2 +Kp2tÞ uðt�t1Þ�uðt�t2Þ½ �
+ ðLp3 +Kp3tÞuðt�t2Þ

qMðtÞ=ðLq1 +Kq1tÞ uðtÞ�uðt�t1Þ½ � + Lq2 +Kq2sinðαt�tdÞ
� �

uðt�t1Þ�uðt�t2Þ½ �
+ ðLq3 +Kq3tÞuðt�t2Þ

8>><
>>: (22)

with

Lp1 =A�d1; Lp2 =A�a� 2at1
ð1�2kvÞT ; Lp3 =A + a�ðd2�aÞt2

kvT

Kp1 =
d1�a

kvT
; Kp2 =

2a
ð1�2kvÞT ; Kp3 =

d2�a

kvT

Lq1 = q0; Lq2 =B; Lq3 =B�ðqf�BÞt2
kvT

Kq1=
B�q0
kvT

; Kq2 = b; Kq3 =
qf�B

kvT
; α=

π

ð1�2kvÞT ; td = αt1

Figure 2 DSP-ZMP reference. SSP = single support phase; DSP = double support phase
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Since pM(t) and qM(t) are linear combinations of step, ramp, and sine function type ZMP, pMðtÞ and
qMðtÞ of the moving ZMP reference can be obtained using (9), (11), (17), and (18) as follows:

pMðtÞ= pstepðt; Lp1; 0Þ + prampðt;Kp1; 0Þ + pstepðt; Lp2�Lp1; t1Þ + prampðt;Kp2�Kp1; t1Þ
+ pstepðt; Lp3�Lp2; t2Þ + prampðt;Kp3�Kp2; t2Þ ð23Þ

qDðtÞ= pstepðt; Lq1; 0Þ + prampðt;Kq1; 0Þ + pstepðt; Lq2�Lq1; t1Þ + prampðt;�Kq1; t1Þ
+ cosðtdÞpsinðt;Kq2; α; t1Þ�sinðtdÞpcosðt;Kq2; α; t1Þ
+ pstepðt; Lq3�Lq2; t2Þ + prampðt;Kq3; t2Þ�cosðtdÞpsinðt;Kq2; α; t2Þ + sinðtdÞpcosðt;Kq2; α; t2Þ ð24Þ

So far, the corresponding CoM trajectory of the moving reference can be obtained by substituting (23)
and (24) into (6) and (7), respectively. However, the initial conditions of the DSP-ZMP reference are still
unknown. To determine the initial conditions, we define the boundary conditions of the CoM trajectory as
initial and final positions of ZMP, namely xM0 = pMð0Þ=A�d1, x

M(T) = pM(T) = A + d2, yM0 = qMð0Þ= q0,
and yM(T) = qM(T) = qf. Then, substituting these boundary conditions into the first row of (6) and (7), the
initial velocity of a moving reference can be obtained as

vMx0=
ωn
SðTÞ xMðTÞ�CðTÞxM0 �pMðTÞ� �

= ωn
SðTÞ A + d2�CðTÞðA�d1Þ�pMðTÞ½ �

vMy0=
ωn
SðTÞ yMðTÞ�CðTÞyM0 �qMðTÞ� �

= ωn
SðTÞ qf�CðTÞq0�qMðTÞ� �

(
(25)

Figure 3 Corresponding center of mass (CoM) trajectories of moving ZMP references without double support
phase (DSP) and with DSP. In the top of (a) and (c), the solid line and the dashed line denote the CoM trajectory
and ZMP trajectory in x-axis, respectively. In the bottom of (a) and (c), vx denotes velocity of CoM in x-axis.
Similarly, in the top of (b) and (d), the solid line and the dashed line denote the CoM trajectory and ZMP trajectory
in y-axis, respectively. In the bottom of (b) and (d), vy denotes velocity of CoM in y-axis.
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Figure 3 shows a moving ZMP reference with two steps. A1 and A2 are 0.1 and 0.15, respectively. B1 and B2
are 0.075 and −0.075, respectively. d1 and d2 of both steps are set as 0.025, and q0 and qf of both steps are set as
0. a of both steps are set as 0.01. b1 and b2 are set as 0.01 and −0.01, respectively. T and zc are set as 1 second
and 0.52975m, respectively. Figure 3(a, b) shows CoM trajectories of the moving ZMP reference without
DSP. Figure 3(c, d) shows CoM trajectories of the moving ZMP reference with DSP, and kv is set as 0.1. It can
be seen that at the boundary (T = 1 second), the velocity of the moving ZMP reference with DSP is
smoother than that of the moving ZMP reference without DSP. Velocity smoothness means the velocity is
continuous derivative at boundaries. Hence, the ZMP reference with DSP is more reliable because of its
smooth transition.

3 Parameterized gait planning algorithm

In Section 2.3, a CoM trajectory with the moving ZMP reference has been introduced. In order to generate
a complete gait pattern using the proposed CoM trajectory with desired footprint location, a parameterized
gait planning algorithm is presented in this section. Once the user-defined parameters are determined, the
initial conditions and CoM trajectory for each step can be obtained and the overall gait pattern can be
acquired using the gait planning algorithm. The gait planning algorithm consists of the following steps:

i. Determine the user-defined parameters including step period T, step height H, step width W, number of
stepsN, virtual DSP ratio kv, andDSP ratio k. It is noted that the period of DSP is defined by k instead of kv.
The period of DSP TDSP is 2kT and the period of SSP TSSP is (1− 2k)T. The range of k is set as (0, 0.25] so
that TDSP will not be greater than half of the period T and there is sufficient time for the swing leg to step
forward. kv is used to tune the boundary velocities for a smooth transition between steps.

ii. Determine the step size of each step Sn for n∈ {1, 2,… ,N}, and it is important that SN should be 0 so that the
walking distances of both legs can be identical. Then, as in the footprint definition shown in Figure 4, stride
length Ln can be obtained as Ln = Sn+Sn−1 for n∈{1, 2,… , N} with S0 = 0.Furthermore, assuming the
first swing leg is the right leg of the robot, the stride length of a specific leg for each step is defined as follows:

Lr;n=
Ln; for n= 2i�1 8i 2 N + ; 2i� 1⩽Njf g
0; for n= 2i 8i 2 N + ; 2i⩽Njf g

�
(26)

Ll;n=
0; for n= 2i�1 8i 2 N + ; 2i�1⩽Njf g
Ln; for n= 2i 8i 2 N + ; 2i⩽Njf g

�
(27)

where Lr,n and Ll,n denote the stride length of the right and left legs for the nth step, respectively. For example,
if the robot takes four steps and S = [0.05, 0.05, 0.05, 0], then Lr = [0.05, 0, 0.1, 0] and Ll = [0, 0.1, 0, 0.05].

iii. Calculate the sagittal amplitude of each step, namely An for n∈ {1, 2,… , N}. An is defined as

An = Ln�1 +An�2 for n 2 f2; ¼ ; Ng (28)

with A0 = 0 and A1 = 0. It is noted that A0 is just a virtual sagittal amplitude for calculating An and is not
used in the following steps. A1 is defined as 0 so that the robot can walk with zero initial velocity.

iv. Determine Bn, an, and bn for each step. Generally, if step width W is identical for all steps, then Bn can be
defined as

Bn = ð�1Þn�1W
.
2 for n 2 f1; ¼ ; Ng (29)

an and bn should be relatively small values to An and Bn, respectively.

Figure 4 Definitions of step size and stride length for footprint location
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v. Calculate the boundary conditions for each step, namely An− d1,n, An+ d2,n, q0,n, and qf,n for
n∈ {1, 2,… , N}. In order to accelerate from zero initial velocity at the first step and decelerate to zero
final velocity at the final step in the sagittal plane, d1,1 and d2,N are set as 0. d2 of the other steps are defined
as follows:

d2;n=
An + 1�An

2
for n 2 f1;:::;N�1g (30)

In addition, since the initial position of a stepmust be the same as the final position of its previous step, we
can know

d1;n + 1 = d2;n for n 2 f1;:::;N�1g (31)

Similarly, q0,1 and qf,N are set as 0, and q0 and qf of the other step are defined as

qf ;n =
Bn + 1 +Bn

2
for n 2 f1;:::;N�1g (32)

q0;n+ 1 = qf ;n for n 2 f1; ¼ ; N�1g (33)

vi. Calculate the initial position and the initial velocity for each step with (25).
vii. Calculate the CoM trajectory step by step with (6) and (7).
viii. Concatenate the CoM trajectories of all steps together to obtain the complete CoM trajectory

as follows

xðtÞ=
XN
n=1

xnðt�ðn�1ÞTÞ uðt�ðn�1ÞTÞ�uðt�nTÞ½ � (34)

yðtÞ=
XN
n=1

ynðt�ðn�1ÞTÞ uðt�ðn�1ÞTÞ�uðt�nTÞ½ � (35)

ix. Calculate the foot trajectories with respect to the world coordinate system. The foot trajectory
generation is divided into two parts. Swing foot trajectory is obtained using a rolling cycle
(Liu et al., 2013), and the supporting foot trajectory stays at a fixed point. Thus, the foot trajectories
for nth step are defined as

footxj;nðtÞ=
0; if t⩽ t1
Lj;n
2π ðθ� sin θÞ; if t1 < t⩽ t2
Lj;n; otherwise

8<
: (36)

footyl;nðtÞ= 1
2
W and footyr;nðtÞ=� 1

2
W (37)

footzj;nðtÞ=
H
2 ð1�cos θÞ; if t1 < t⩽ t2
0; otherwise

�
(38)

where t1 = kT, t2 = (1− k)T, θ = 2π(t− t1)/(t2 − t1), and t∈ (0,T]. j∈ {r, l}, r and l denote the right
foot and the left foot, respectively.Then, a complete foot trajectory with respect to the world
coordinate system can be obtained as follows:

footxjðtÞ=
XN
n=1

Oj;n + footxj;nðt�ðn�1ÞTÞ� �
uðt�ðn�1ÞTÞ�uðt�nTÞ½ � (39)

footylðtÞ= 1
2
W and footyrðtÞ=� 1

2
W (40)

footzj=
XN
n=1

footzj;nðt�ðn�1ÞTÞ uðt�ðn�1ÞTÞ�uðt�nTÞ½ � (41)

with Oj,1 = 0, Oj;n=
Pn�1

m=1
Lj;m for n 2 f2; ¼ ; Ng and j∈ {r, l}.

x. Finally, calculate the foot trajectories with respect to the joint coordinate system and apply inverse
kinematics.
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4 Experiments

Parameterized gait patterns have been generated for the teen-sized humanoid robot, David Junior, which is
96 cm tall and weighs about 9.4 kg. The CoM height zc of David is 52.975 cm. David has 26 d.f. as shown
in Figure 5. Each leg consists of 6 d.f. and weighs 2.177 kg. Each arm consists of 5 d.f., and the mass of the
upper body with arms is 4.96 kg.

The gait patterns consist of eight steps (four walking cycles), namely N = 8. The first swing leg is
assigned the right leg. The step period T was set as 0.85 seconds and DSP ratio k was set as 0.22. Thus,
DSP period TDSP was 0.374 seconds and SSP period TSSP was 0.476 seconds. The magnitude of the lateral
amplitude was set as 8 cm, so B = [8, −8, 8, −8, 8, −8, 8, −8] cm. an for all steps were set as 0.5 cm. b was
set as [0.5, −0.5, 0.5, −0.5, 0.5, −0.5, 0.5, −0.5] cm. Virtual DSP ratio kvwas set as 0.1. To demonstrate the
feasibility of the proposed method, two different gait patterns were generated with different step size S.
Step height H was set as 3 cm.

In the first gait pattern, each step sizewas set as 5 cm except thefinal step, namely S = [5, 5, 5, 5, 5, 5, 5, 0] cm.
Figures 6 and 7 show the sagittal and lateral trajectory of CoM, respectively. Figure 8 shows foot
trajectories with respect to X-axis and Z-axis. Figure 9 shows the ZMP reference and the CoM trajectory of
the first gait pattern in XY plane. Foot trajectories of both legs depicted with plus sign markers are also
shown in Figure 9.

In the second gait pattern, Swas set as [2, 2, 3, 4, 5, 4, 3, 0] cm. The lateral CoM trajectory of the second
gait pattern was set the same as in the first gait pattern, and the sagittal CoM trajectory is shown in
Figure 10. Foot trajectories with respect to the X-axis are shown in Figure 11. Figure 12 shows the ZMP
reference, CoM trajectory, and foot trajectories of both legs in the XY plane.

To verify that the moving ZMP reference with DSP is more reliable than the moving ZMP
reference without DSP, a simulation study was carried out on Webots (Michel, 2004), which is a
powerful robot simulator widely used in robotic research. Both of the gait patterns mentioned above
were performed in the simulator, and actual ZMP trajectories were measured for verification. The
robot model of the simulation was modeled based on the specification of David as shown in Figure 13.
Although there is modeling error between the real robot and the simulation model, the simulation results
are still reliable.

Four force sensors are equipped underneath the corners of each sole to measure actual ZMP
trajectories. The measured ZMP trajectories of the first and the second gait pattern are shown in
Figures 14 and 15, respectively. The solid lines denote the measured ZMP trajectory and the dotted
lines denotes the boundaries of foot trajectory in Figures 14 and 15. It can be seen that the measured
ZMP trajectory of the ZMP reference with DSP is more regular than that of the ZMP reference
without DSP, and vibration of the former is also smaller. Furthermore, in Figures 14(a) and 15(a),
it can be seen that overshoot occurs while support phase transitions. It is especially serious
at the transitions marked with the red circles because ZMP almost exceeds the boundary of the
support polygon. Therefore, the reliability of the moving ZMP reference with DSP can be verified with
this simulation.

Figure 5 Teen-sized humanoid robot, David Junior
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Figure 7 ZMP reference and center of mass (CoM) trajectory in the lateral plane

Figure 8 Foot trajectories for the first gait pattern

Figure 6 ZMP reference and center of mass (CoM) trajectory in the sagittal plane for the first gait pattern

Parameterized gait pattern generator 11
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Figure 10 ZMP reference and center of mass (CoM) trajectory in the sagittal plane for the second
gait pattern

Figure 11 Foot trajectories with respect to the X-axis for the second gait pattern

Figure 9 ZMP reference and center of mass (CoM) trajectory in the XY plane for the first gait pattern
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Eventually, gait patterns mentioned above were performed by David, and snapshots of both gait

patterns are shown in Figure 16 (refer to the Supplementary Video 1) and Figure 17 (refer to the
Supplementary Video 2), respectively. It can be seen that David Junior was able to walk stably

Figure 12 ZMP reference and center of mass (CoM) trajectory in the XY plane for the second gait pattern

Figure 13 The model of David in the robot simulator

Figure 14 Measured ZMP trajectory of the first gait pattern. DSP = double support phase. ZMPx denotes the x
coordinate of the ZMP, and ZMPy denotes the y coordinate of the ZMP

Parameterized gait pattern generator 13
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with both gait patterns generated by using the proposed method. In addition, with gait patterns
generated by using the proposed method (refer to the Supplementary Video 3), David won first place
in the HuroCup sprint event at the 20th Federation of International Robot-soccer Association (FIRA)
RoboWorld Cup competition, which is a well-known international robotic competition held annually.
Thus, the feasibility of the proposed method has been validated.

5 Conclusions

A parameterized gait pattern generator with a natural ZMP reference for biped walking has been
proposed in this paper. Five types of ZMP components are presented for formulating the natural ZMP
reference, and the corresponding terms for the CoM trajectory are also derived based on the
relationship between ZMP and CoM from LIPM theory. Moreover, a gait planning algorithm is presented
for generating a gait pattern with user-defined parameters so that parameterized gait pattern generation
can be achieved. Finally, the simulation and experimental results validate the feasibility of the proposed
method.

In this paper, the CoM trajectory is acquired based on a natural ZMP reference. Another factor to
achieve natural walking or human-like walking may be heel-to-toe walking, which means the contact
point transition of the supporting foot starts at heel-strike and ends at toe-off. Thus, extra sensors and
feedback controller on the sole for achieving heel-to-toe walking can be considered as future works to
enhance the walking stability and natural walking.
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Figure 15 Measured ZMP trajectory of the second gait pattern. ZMPx denotes the x coordinate of the ZMP, and
ZMPy denotes the y coordinate of the ZMP. DSP = double support phase
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Figure 16 Snapshots for the first gait pattern with S = [5, 5, 5, 5, 5, 5, 5, 0] cm. The robot walks stably with
identical step sizes
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Figure 17 Snapshots for the second gait pattern with S = [2, 2, 3, 4, 5, 4, 3, 0] cm. The robot walks stably with
different step sizes
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