
J. Appl. Prob. 54, 763–772 (2017)
doi:10.1017/jpr.2017.33

© Applied Probability Trust 2017

ALMOST STOCHASTIC DOMINANCE UNDER
INCONSISTENT UTILITY AND LOSS FUNCTIONS

CHUNLING LUO,∗ ∗∗

ZHOU HE ∗ ∗∗∗ and

CHIN HON TAN,∗ ∗∗∗∗ National University of Singapore

Abstract

Current literature on stochastic dominance assumes utility/loss functions to be the same
across random variables. However, decision models with inconsistent utility functions
have been proposed in the literature. The use of inconsistent loss functions when
comparing between two random variables can also be appropriate under other problem
settings. In this paper we generalize almost stochastic dominance to problems with
inconsistent utility/loss functions. In particular, we propose a set of conditions that is
necessary and sufficient for clear preferences when the utility/loss functions are allowed
to vary across different random variables.
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1. Introduction

Stochastic dominance is a form of stochastic ordering that is frequently used in decision
analysis to determine if a clear preference exists between two distributions of outcomes. For
example, a random variable X dominates another random variable Y with first-degree stochastic
dominance if and only if the expected utility of X is at least as large as the expected utility of Y

across all nondecreasing utility functions. Hence, stochastic dominance can reveal preferences
even when the utility function of the decision maker is unclear. There are many forms of
stochastic ordering, including the hazard rate order and inverse stochastic dominance which
were considered in [20] and [5], respectively. We refer the interested reader to [9], [10], [12],
and [15] for a survey on this topic.

In the stochastic dominance literature, the expected utility associated with the two random
variables under consideration is often based on the same utility function. However, these
stochastic dominance rules are not applicable to decision models that allow for inconsistent
utility functions. For example, a decision model where utility is lottery dependent was proposed
in [1] and subsequently considered in [2], [4], and [14].

In the quality engineering literature, expected loss is frequently used to compare different
distributions of outcomes. Similar to expected utility, expected loss is computed using the
same loss function across all random variables under consideration. However, this may not be
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appropriate under certain problem settings. For example, the concentration levels of chemical
compounds that are known to have adverse effects on the ecology and/or human health are
constantly monitored and the loss associated with individual chemical compounds is frequently
expressed as a function of observed concentration levels [3], [6], [7]. However, the relationship
between loss and concentration is often poorly understood and likely to differ for different
chemical compounds in practice.

In this paper we build on the concept of almost stochastic dominance (ASD) proposed in [8],
which is able to identify clear preferences in practice that are not revealed by conventional
stochastic dominance rules. For example, most investors with a sufficiently long investment
horizon will prefer stocks over bonds and the former dominates the latter with ASD, but not
under conventional stochastic dominance rules. Recent generalizations of ASD include ASD of
higher degrees [19], generalized ASD [18], weighted ASD [16], and between first- and second-
order stochastic dominance [11]. In the above works, the utility/loss function was assumed to
be the same across all random variables.

We address this limitation by proposing a set of conditions that is necessary and sufficient
for clear preferences when the utility/loss functions associated with different distributions of
outcomes are allowed to vary. We illustrate how our proposed conditions, which generalize
the ASD conditions proposed in [8], can be used through an example of comparing poorly
understood chemical compounds that are present in the environment.

2. Main results

Consider two random variables X and Y . Let F and G denote the cumulative distribution
function of X and Y , respectively. Let uX and uY denote the utility function associated with X

and Y , respectively. Without loss of generality, assume that E[X] ≥ E[Y ]. In addition, we
assume that uX and uY are nondecreasing (i.e. u′

X, u′
Y ≥ 0) and their marginal utilities are

bounded from above and below by ū′ and u¯
′, respectively, i.e.

ū′ = sup{u′
X, u′

Y } and u¯
′ = inf{u′

X, u′
Y }.

Furthermore, uX and uY are known to be equivalent at k distinct points t1, t2, . . . , tk , i.e.

uX(t1) = uY (t1), uX(t2) = uY (t2), . . . , uX(tk) = uY (tk).

Without loss of generality, assume that t1 < t2 < · · · < tk . Here, we note that our problem
generalizes the problem that was studied in [8]. In particular, our problem reduces to the latter
when uX(t) = uY (t) for all t .

Definition 2.1. Define tolerance τ as

τ =
∫ ∞
tk

(1 − F(t)) dt + ∫ t1
−∞ G(t) dt + ∑k−1

i=1

∫ ti+1
t∗i

(G(t) − F(ti + ti+1 − t)) dt∫ ∞
tk

(1 − G(t)) dt + ∫ t1
−∞ F(t) dt − ∑k−1

i=1

∫ t∗i
ti

(G(t) − F(ti + ti+1 − t)) dt
,

where

t∗i =
{

max{t ∈ [ti , ti+1] : G(t) ≤ F(ti + ti+1 − t)} if F(ti+1) ≥ G(ti)

ti otherwise.
(2.1)
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Proposition 2.1. If E[X] ≥ E[Y ] then 1 ≤ τ ≤ ∫
S̄1

[G(t) − F(t)] dt/
∫
S1

[F(t) − G(t)] dt ,
where S1 = {t : F(t) > G(t)} and S̄1 denotes the complement of S1.

Proof. First, we show that τ ≥ 1. By Definition 2.1,

τ =
∫ ∞
tk

(1 − F(t)) dt + ∫ t1
−∞ G(t) dt + ∑k−1

i=1

∫ ti+1
t∗i

(G(t) − F(ti + ti+1 − t)) dt∫ ∞
tk

(1 − G(t)) dt + ∫ t1
−∞ F(t) dt − ∑k−1

i=1

∫ t∗i
ti

(G(t) − F(ti + ti+1 − t)) dt

= 1 +
∫ ∞
−∞ G(t) dt − ∫ t1

−∞ F(t) dt − ∫ ∞
tk

F (t) dt − ∑k−1
i=1

∫ ti+1
ti

F (ti + ti+1 − t) dt∫ ∞
tk

(1 − G(t)) dt + ∫ t1
−∞ F(t) dt − ∑k−1

i=1

∫ t∗i
ti

(G(t) − F(ti + ti+1 − t)) dt

= 1 +
∫ ∞
−∞ G(t) dt − ∫ t1

−∞ F(t) dt − ∫ ∞
tk

F (t) dt − ∑k−1
i=1

∫ ti+1
ti

F (s) ds∫ ∞
tk

(1 − G(t)) dt + ∫ t1
−∞ F(t) dt − ∑k−1

i=1

∫ t∗i
ti

(G(t) − F(ti + ti+1 − t)) dt
(2.2)

= 1 +
∫ ∞
−∞ G(t) − F(t) dt∫ ∞

tk
(1 − G(t)) dt + ∫ t1

−∞ F(t) dt − ∑k−1
i=1

∫ t∗i
ti

(G(t) − F(ti + ti+1 − t)) dt

= 1 + E[X] − E[Y ]∫ ∞
tk

(1 − G(t)) dt + ∫ t1
−∞ F(t) dt − ∑k−1

i=1

∫ t∗i
ti

(G(t) − F(ti + ti+1 − t)) dt
(2.3)

≥ 1. (2.4)

Equation (2.2) follows from the substitution s = ti + ti+1 − t . Equation (2.3) follows from the
definition of expected value and by applying integration by parts. Equation (2.4) follows from
the fact that E[X] ≥ E[Y ], G(t) ∈ [0, 1], F (t) ∈ [0, 1], and

∫ t∗i
ti

(G(t)−F(ti+ti+1−t)) dt ≤ 0;
see (2.1). Hence, τ ≥ 1.

Next, we show that τ ≤ ∫
S̄1

[G(t) − F(t)] dt/
∫
S1

[F(t) − G(t)] dt . First, we highlight the
fact that τ = ∫

S̄1
[G(t) − F(t)] dt/

∫
S1

[F(t) − G(t)] dt if uX(t) = uY (t) for all t . Next,
we note that τ(t1, t2, ti−1, ti+1, . . . , tk) ≤ τ(t1, t2, . . . , tk), where τ(t1, t2, . . . , tk) denotes the
value of τ when uX and uY are known to be equivalent at k distinct points t1, t2, . . . , tk . This
follows from (2.3), which states that

τ = 1 + E[X] − E[Y ]∫ ∞
tk

(1 − G(t)) dt + ∫ t1
−∞ F(t) dt − ∑k−1

i=1

∫ t∗i
ti

(G(t) − F(ti + ti+1 − t)) dt

and (2.1), which highlights that the third term in the denominator of the expression above is
nondecreasing when the equivalent point ti is removed.

Since τ = ∫
S̄1

[G(t) − F(t)] dt/
∫
S1

[F(t) − G(t)] dt when uX(t) = uY (t) for all t and τ is
nonincreasing with the removal of an equivalent point, τ ≤ ∫

S̄1
[G(t) − F(t)] dt/

∫
S1

[F(t)−
G(t)] dt . �

Proposition 2.1 states that τ is some value between 1 and the ratios of the area between F

and G (i.e.
∫
S̄1

[G(t) − F(t)] dt/
∫
S1

[F(t) − G(t)] dt). Next, we present a theorem which
highlights that τ describes the maximum allowable deviation in marginal utility such that
preference for X over Y is clear. In particular, the expected utility of X is no less than the
expected utility of Y if their marginal utilities deviate by a maximum factor of τ . Furthermore,
if their marginal utilities are allowed to deviate by a factor greater than τ , there exist some uX

and uY such that the expected utility of X is strictly less than the expected utility of Y .
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Theorem 2.1. Suppose that uX(t1) = uY (t1), uX(t2) = uY (t2), . . . , uX(tk) = uY (tk), and
E[X] ≥ E[Y ]. Then E[uX(X)] ≥ E[uY (Y )] if and only if sup{u′

X, u′
Y }/inf{u′

X, u′
Y } ≤ τ ,

where τ is defined by Definition 2.1.

Proof. First, we show that if sup{u′
X, u′

Y }/inf{u′
X, u′

Y } ≤ τ then E[uX(X)] ≥ E[uY (Y )].
We have

E[uX(X)] − E[uY (Y )]
=

∫ ∞

−∞
uX(t) dF(t) −

∫ ∞

−∞
uY (t) dG(t)

=
[(

uX(tk) +
∫ ∞

tk

u′
X(t) dt

)
−

∫ ∞

−∞
u′

X(t)F (t) dt

]

−
[(

uY (tk) +
∫ ∞

tk

u′
Y (t) dt

)
−

∫ ∞

−∞
u′

Y (t)G(t) dt

]

=
[∫ ∞

tk

u′
X(t)(1 − F(t)) dt −

∫ t1

−∞
u′

X(t)F (t) dt −
k−1∑
i=1

∫ ti+1

ti

u′
X(t)F (t) dt

]

−
[∫ ∞

tk

u′
Y (t)(1 − G(t)) dt −

∫ t1

−∞
u′

Y (t)G(t) dt −
k−1∑
i=1

∫ ti+1

ti

u′
Y (t)G(t) dt

]
(2.5)

≥ u¯
′
(∫ ∞

tk

(1 − F(t)) dt +
∫ t1

−∞
G(t) dt

)
− ū′

(∫ ∞

tk

(1 − G(t)) dt +
∫ t1

−∞
F(t) dt

)

+
k−1∑
i=1

(∫ ti+1

ti

u′
Y (t)G(t) dt −

∫ ti+1

ti

u′
X(t)F (t) dt

)
(2.6)

= u¯
′
(∫ ∞

tk

(1 − F(t)) dt +
∫ t1

−∞
G(t) dt

)
− ū′

(∫ ∞

tk

(1 − G(t)) dt +
∫ t1

−∞
F(t) dt

)

+
k−1∑
i=1

(∫ ti+1

ti

u′
Y (t)G(t) dt −

∫ ti+1

ti

u′
X(ti + ti+1 − s)F (ti + ti+1 − s) ds

)
(2.7)

= u¯
′
(∫ ∞

tk

(1 − F(t)) dt +
∫ t1

−∞
G(t) dt

)
− ū′

(∫ ∞

tk

(1 − G(t)) dt +
∫ t1

−∞
F(t) dt

)

+
k−1∑
i=1

(∫ ti+1

ti

u′
Y (t)G(t) dt − u′

X(ti + ti+1 − t)F (ti + ti+1 − t) dt

)

≥ u¯
′
(∫ ∞

tk

(1 − F(t)) dt +
∫ t1

−∞
G(t) dt

)
− ū′

(∫ ∞

tk

(1 − G(t)) dt +
∫ t1

−∞
F(t) dt

)

+
k−1∑
i=1

(
ū′

∫ t∗i

ti

G(t) − F(ti + ti+1 − t) dt + u¯
′
∫ ti+1

t∗i
G(t) − F(ti + ti+1 − t) dt

)
(2.8)

= u¯
′
(∫ ∞

tk

(1 − F(t)) dt +
∫ t1

−∞
G(t) dt +

k−1∑
i=1

∫ ti+1

t∗i
G(t) − F(ti + ti+1 − t) dt

)

https://doi.org/10.1017/jpr.2017.33 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.33


Almost stochastic dominance 767

− ū′
(∫ ∞

tk

(1 − G(t)) dt +
∫ t1

−∞
F(t) dt −

k−1∑
i=1

∫ t∗i

ti

G(t) − F(ti + ti+1 − t) dt

)

≥ 0. (2.9)

Equation (2.5) follows from the fact that uX(tk) = uY (tk). Equation (2.6) follows from the
fact that u¯

′ ≤ u′
X ≤ ū′ and u¯

′ ≤ u′
Y ≤ ū′. Equation (2.7) follows from the substitution t =

ti + ti+1 − s and (2.8) follows from Lemma A.1; see Appendix A. Equation (2.9) follows from
Definition 2.1 and the condition sup{u′

X, u′
Y }/inf{u′

X, u′
Y } ≤ τ . Hence, it follows from above

that E[uX(X)] ≥ E[uY (Y )] if sup{u′
X, u′

Y }/inf{u′
X, u′

Y } ≤ τ .
Next we prove the other direction by contradiction. Assume that

E[uX(X)] ≥ E[uY (Y )], (2.10)

and
sup{u′

X, u′
Y }

inf{u′
X, u′

Y } > τ. (2.11)

Let γ = sup{u′
X, u′

Y }/inf{u′
X, u′

Y }. The following uX and uY are consistent with assump-
tion (2.11):

u′
X(t) =

⎧⎨
⎩

γ 0.5, t ∈ [−∞, t1] ∪ [ti + ti+1 − t∗i , ti+1], i = 1, 2, . . . , k − 1,
1

γ 0.5
, t ∈ [ti , ti + ti+1 − t∗i ] ∪ [tk, ∞], i = 1, 2, . . . , k − 1,

(2.12)

u′
Y (t) =

⎧⎨
⎩

1

γ 0.5
, x ∈ [−∞, t1] ∪ [t∗i , ti+1], i = 1, 2, . . . , k − 1,

γ 0.5, x ∈ [ti , t∗i ] ∪ [tk, ∞], i = 1, 2, . . . , k − 1.

(2.13)

It follows that

E[uX(X)] − E[uY (Y )]

=
[∫ ∞

tk

u′
X(t)(1 − F(t)) dt −

∫ t1

−∞
u′

X(t)F (t) dt −
k−1∑
i=1

∫ ti+1

ti

u′
X(t)F (t) dt

]

−
[∫ ∞

tk

u′
Y (t)(1 − G(t)) dt −

∫ t1

−∞
u′

Y (t)G(t) dt −
k−1∑
i=1

∫ ti+1

ti

u′
Y (t)G(t) dt

]
(2.14)

= 1

γ 0.5

(∫ ∞

tk

(1 − F(t)) dt +
∫ t1

−∞
G(t) dt

)
− γ 0.5

(∫ ∞

tk

(1 − G(t)) dt +
∫ t1

−∞
F(t) dt

)

+
k−1∑
i=1

(∫ t∗i

ti

γ 0.5G(t) dt +
∫ ti+1

t∗i

1

γ 0.5
G(t) dt −

∫ ti+ti+1−t∗i

ti

1

γ 0.5
F(t) dt

−
∫ ti+1

ti+ti+1−t∗i
γ 0.5F(t) dt

)
(2.15)

= 1

γ 0.5

[∫ ∞

tk

1 − F(t) dt +
∫ t1

−∞
G(t) dt +

k−1∑
i=1

(∫ ti+1

t∗i
G(t) dt −

∫ ti+ti+1−t∗i

ti

F (t) dt

)]
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− γ 0.5
[∫ ∞

tk

1 − G(t) dt +
∫ t1

−∞
F(t) dt −

k−1∑
i=1

(∫ t∗i

ti

G(t) dt −
∫ ti+1

ti+ti+1−t∗i
F (t) dt

)]

= 1

γ 0.5

[∫ ∞

tk

1 − F(t) dt +
∫ t1

−∞
G(t) dt +

k−1∑
i=1

(∫ ti+1

t∗i
G(t) − F(ti + ti+1 − t) dt

)]

− γ 0.5
[∫ ∞

tk

1 − G(t) dt +
∫ t1

−∞
F(t) dt −

k−1∑
i=1

(∫ t∗i

ti

G(t) − F(ti + ti+1 − t) dt

)]
(2.16)

< 0. (2.17)

Equation (2.14) follows from (2.5). Equation (2.15) follows from (2.12) and (2.13). Equa-
tion (2.16) follows by applying a substitution similar to that used to obtain (2.7). Equation (2.17),
which follows from Definition 2.1 and (2.11), contradicts assumption (2.10). This completes
the proof. �

Theorem 2.1 states that tolerance τ describes the maximum allowable deviation in marginal
utility such that preference for X over Y is clear. Next, we study two problem settings where τ

is interesting.
First, we consider the case where X and Y are bounded from below by 0, and uX and uY

are known to be equivalent at that lower bound.

Proposition 2.2. If E[X] ≥ E[Y ], uX(0) = uY (0), and X and Y are bounded from below by 0,
then τ = E[X]/E[Y ].

Proof. It follows from Definition 2.1 that under the proposition conditions

τ =
∫ ∞

0 1 − F(t) dt∫ ∞
0 1 − G(t) dt

= E[X]
E[Y ] . �

In Proposition 2.2 we highlighted that tolerance is given by the ratio of expected values when
both random variables are bounded from below by 0 and the two utility functions are known to
be equivalent at that lower bound. Hence, the higher the relative difference in expected values,
the higher the allowable deviation in marginal utility for clear preferences. We note that Tan
and Luo [17] recently highlighted a similar observation between two random variables under
limited distribution information (i.e. only the expected values are known) when uX(t) = uY (t)

for all t .
Next, we consider the case where both random variables are bounded from below and above

by 0 and 1, respectively. In addition, uX and uY are known to be equivalent at both 0 and 1.
In particular, these assumptions are consistent with the problems considered in [1] and [2].

Proposition 2.3. If E[X] ≥ E[Y ], uX(0) = uY (0), uX(1) = uY (1), and X and Y are bounded
from below by 0 and bounded from above by 1, then

τ =
∫ 1
t∗1

G(t) − F(1 − t) dt∫ t∗1
0 F(1 − t) − G(t) dt

,

where t∗1 = max{t ∈ [0, 1] : G(t) ≤ F(1 − t)}.
Proof. This follows immediately from Definition 2.1. �
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When uX(t) = uY (t) for all t , Leshno and Levy [8] highlighted that tolerance depends on
the areas sandwiched between F(t) and G(t). When uX and uY can differ, but are known to
be equivalent at the lower and upper bounds, it follows from Proposition 2.3 that tolerance
depends on the areas sandwiched between F(1 − t) and G(t).

Example 2.1. (Comparing chemical compounds.) Let B and C denote the concentration levels
(ng/L) of Bisphenol A (BPA) and caffeine in the environment, respectively. Suppose that based
on historical data, it is reasonable to assume that B and C are well described by the following
triangular distributions:

B ∼ tri(0, 360, 48) and C ∼ tri(0, 2080, 260).

As the adverse health effects of BPA are more severe than that of caffeine, the loss of BPA will
be higher than that of caffeine under similar concentration levels. To address such differences,
some form of normalization is necessary. One way is to divide the concentration of each
compound by their respective predicted no-effect concentration (PNEC) values [6], [3]. The
proposed PNEC values for BPA and caffeine are 60 ng/L and 5200 ng/L, respectively [13], [7].

Let X and Y denote the ‘normalized concentration levels’ of BPA and caffeine, respectively,
i.e.

X ∼ tri(0, 6, 0.8) and Y ∼ tri(0, 0.4, 0.05).

Let lX and lY denote the loss associated with BPA and caffeine, respectively. Here, we assume
that lX(0) = lY (0) and lX(1) = lY (1), but it is unclear if the two loss functions are equivalent
at other points since the normalization is only carried out at one point (i.e. PNEC value).

It follows from Theorem 2.1 that the expected loss of BPA is no less than the expected loss of
caffeine so long as the maximum marginal loss and minimum marginal loss of both compounds
differ by less than a factor of 273.577. For example, consider the following loss functions,
which are equivalent at 0 and 1 and whose marginal loss differs by less than a factor of 273.577:

lX(x) =

⎧⎪⎨
⎪⎩

0.02x, 0 ≤ x ≤ 11
60 ,

1.22x − 0.22, 11
60 ≤ x ≤ 1,

1.5x − 0.5, x > 1,

lY (y) =

⎧⎪⎨
⎪⎩

0.8y, 0 ≤ y ≤ 0.75,

1.6y − 0.6, 0.75 ≤ y ≤ 1,

2y − 1, y > 1.

Based on the loss functions above, E[lX(X)] = 2.92 > E[lY (Y )] = 0.12, which is consistent
with Theorem 2.1. Hence, it can be concluded that based on historical data, the expected loss of
BPA is guaranteed to be higher than that of caffeine across a very wide range of loss functions and
a decision to prioritize BPA over caffeine is appropriate even though the relationship between
loss and concentration is not well understood.

For the sake of completeness, we highlight that Theorem 2.1 also states that the expected
loss of caffeine can be strictly greater than the expected loss of BPA if the maximum marginal
loss and minimum marginal loss of both compounds are allowed to differ by more than a factor
of 273.577. To see this, consider the following loss functions:

lX(x) =

⎧⎪⎨
⎪⎩

0.05x, 0 ≤ x ≤ 0.9404,

16x − 15, 0.9404 ≤ x ≤ 1,

0.06x + 0.94, x > 1,

lY (y) =

⎧⎪⎨
⎪⎩

15y, 0 ≤ y ≤ 0.0642,

0.04y + 0.96, 0.0642 ≤ y ≤ 1,

6y − 5, y > 1.
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Based on the loss functions above, E[lX(X)] = 0.897 < E[lY (Y )] = 0.90, which is consistent
with Theorem 2.1.

3. Summary and future work

In the stochastic dominance literature, random variables are compared based on the same
utility function. These conditions do not apply to decision models with inconsistent utility
functions that were motivated by empirically observed violations of expected utility theory and
considered in, for example, [1], [2], [4], and [14]. As illustrated in Example 2.1, inconsistent
loss functions can also be more appropriate for the comparison of poorly understood chemical
compounds where the normalization of loss functions is only performed at selected concentra-
tion points. In this paper we generalized the ASD conditions proposed in [8] by providing a set
of necessary and sufficient conditions for clear preferences between distributions of outcomes
when utility/loss functions are allowed to differ. The conditions highlighted that expected
utility/loss of one random variable is guaranteed to be no less than that of another random
variable if and only if marginal utilities/losses deviate by less than a factor of τ , which is
defined based on the distributions of the random variables under comparison.

In this paper it was assumed that utility/loss functions are only known to be nondecreasing
and equivalent at some distinct points. In practice, more information on utility/loss functions
may be available (e.g. concavity). One direction of future work is to study how additional
information on the properties of the utility/loss functions can be incorporated.

Appendix A

Lemma A.1. The following inequality holds for i = 1, 2, . . . , k − 1:

∫ ti+1

ti

u′
Y (t)G(t) − u′

X(ti + ti+1 − t)F (ti + ti+1 − t) dt

≥ ū′
∫ t∗i

ti

G(t) − F(ti + ti+1 − t) dt + u¯
′
∫ ti+1

t∗i
G(t) − F(ti + ti+1 − t) dt.

Proof. Let

v′(t) =
{

ū′ if t ∈ [ti , ti + m], i = 1, 2, . . . , k − 1,

u¯
′ if t ∈ (ti + m, ti+1], i = 1, 2, . . . , k − 1,

where m = (uY (ti+1) − uY (ti) − u¯
′(ti+1 − ti ))/(ū

′ − u¯
′). Since G(t) is nondecreasing

∫ ti+1

ti

u′
Y (t)G(t) dt ≥

∫ ti+1

ti

v′(t)G(t) dt = ū′
∫ ti+m

ti

G(t) dt + u¯
′
∫ ti+1

ti+m

G(t) dt. (A.1)

In a similar fashion, it can be shown that

∫ ti+1

ti

u′
X(ti + ti+1 − t)F (ti + ti+1 − t) dt

≤ ū′
∫ ti+m

ti

F (ti + ti+1 − t) dt + u¯
′
∫ ti+1

ti+m

F(ti + ti+1 − t) dt. (A.2)
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Hence, from (A.1) and (A.2), it follows that∫ ti+1

ti

u′
Y (t)G(t) − u′

X(ti + ti+1 − t)F (ti + ti+1 − t) dt

≥ ū′
∫ ti+m

ti

G(t) dt + u¯
′
∫ ti+1

ti+m

G(t) dt − ū′
∫ ti+m

ti

F (ti + ti+1 − t) dt

− u¯
′
∫ ti+1

ti+m

F(ti + ti+1 − t) dt

= ū′
∫ ti+m

ti

G(t) − F(ti + ti+1 − t) dt + u¯
′
∫ ti+1

ti+m

G(t) − F(ti + ti+1 − t) dt

≥ ū′
∫ t∗i

ti

G(t) − F(ti + ti+1 − t) dt + u¯
′
∫ ti+1

t∗i
G(t) − F(ti + ti+1 − t) dt

The last inequality follows from (2.1). �

Acknowledgements

The authors thank the editor, an associate editor, and two anonymous referees for many
helpful comments and suggestions. In addition, the authors thank Karina Gin and Luhua
You for introducing the chemical compound comparison problem which motivated this work.
This research is supported by the National Research Foundation, Prime Ministers Office,
Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE)
programme.

References

[1] Becker, J. L. and Sarin, R. K. (1987). Lottery dependent utility. Manag. Sci. 33, 1367–1382.
[2] Becker, J. L. and Sarin, R. K. (1989). Decision analysis using lottery-dependent utility. J. Risk Uncertainty

2, 105–117.
[3] Carlsson, C. et al. (2006). Are pharmaceuticals potent environmental pollutants?: Part I: Environmental risk

assessments of selected active pharmaceutical ingredients. Sci. Total Environ. 364, 67–87.
[4] Daniels, R. L. and Keller, L. R. (1990). An experimental evaluation of the descriptive validity of lottery-

dependent utility theory. J. Risk Uncertainty 3, 115–134.
[5] De La Cal, J. and Cárcamo, J. (2010). Inverse stochastic dominance, majorization, and mean order statistics.

J. Appl. Prob. 47, 277–292.
[6] Ferrari, B. et al. (2004). Environmental risk assessment of six human pharmaceuticals: are the current

environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environ.
Toxicol. Chem. 23, 1344–1354.

[7] Komori, K., Suzuki, Y., Minamiyama, M. and Harada, A. (2013). Occurrence of selected pharmaceuticals
in river water in Japan and assessment of their environmental risk. Environ. Monit. Assess. 185, 4529–4536.

[8] Leshno, M. and Levy, H. (2002). Preferred by “all" and preferred by “most" decision makers: almost stochastic
dominance. Manag. Sci. 48, 1074–1085.

[9] Levy, H. (1992). Stochastic dominance and expected utility: survey and analysis. Manag. Sci. 38, 555–593.
[10] Levy, H. (2016). Stochastic Dominance: Investment Decision Making Under Uncertainty, 3rd edn. Springer,

Cham.
[11] Müller, A., Scarsini, M., Tsetlin, I. and Winkler, R. L. (2017). Between first- and second-order stochastic

dominance. To appear in Manag. Sci. Available at http://dx.doi.org/10.1287/mnsc.2016.2486.
[12] Müller, A. and Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. John Wiley,

Chichester.
[13] Pal, A. et al. (2014). Emerging contaminants of public health significance as water quality indicator compounds

in the urban water cycle. Environ. Internat. 71, 46–62.
[14] Schmidt, U. (2001). Lottery dependent utility: a reexamination. Theory Decision 50, 35–58.

https://doi.org/10.1017/jpr.2017.33 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.33


772 C. LUO ET AL.

[15] Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders. Springer, New York.
[16] Tan, C. H. (2015). Weighted almost stochastic dominance: revealing the preferences of most decision makers

in the St. Petersburg paradox. Decision Anal. 12, 74–80.
[17] Tan, C. H. and Luo, C. (2017). Clear preferences under partial distribution information Decision Anal. 14,

65–73.
[18] Tsetlin, I., Winkler, R. L., Huang, R. J. and Tzeng, L. Y. (2015). Generalized almost stochastic dominance.

Operat. Res. 63, 363–377.
[19] Tzeng, L. Y., Huang, R. J. and Shih, P.-T. (2013). Revisiting almost second-degree stochastic dominance.

Manag. Sci. 59, 1250–1254.
[20] Yu, Y. (2009). Stochastic ordering of exponential family distributions and their mixtures. J. Appl. Prob. 46,

244–254.

https://doi.org/10.1017/jpr.2017.33 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.33

	1 Introduction
	2 Main results
	3 Summary and future work
	A 
	Acknowledgements
	References

