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MADNESS IN VECTOR SPACES

IIAN B. SMYTHE

Abstract. We consider maximal almost disjoint families of block subspaces of countable vector spaces,
focusing on questions of their size and definability. We prove that the minimum infinite cardinality of such
a family cannot be decided in ZFC and that the “spectrum” of cardinalities of mad families of subspaces
can be made arbitrarily large, in analogy to results for mad families on �. We apply the author’s local
Ramsey theory for vector spaces [32] to give partial results concerning their definability.

§1. Introduction. Recall that two infinite subsets x and y of the natural numbers
� are almost disjoint if x∩y is finite. A collectionA ⊆ [�]� , where [�]� is the set of
infinite subsets of �, is an almost disjoint family if its elements are pairwise almost
disjoint, and is a maximal almost disjoint family, or mad family, if it is not properly
contained in another such family. While any finite (almost) partition of � forms a
mad family, our focus here is confined to infinite mad families.
It is well known that every almost disjoint family is contained in a mad family
and every infinite mad family is uncountable. The former is an application of Zorn’s
Lemma, while the later a straightforward diagonalization.
A large almost disjoint family can be obtained as follows: identifying� with 2<� ,
consider

A = {{x � n : n ∈ �} : x ∈ 2�}. (1)

It is easy to see that A is almost disjoint and of size c, thus can be extended to a
mad family of size c. Note thatA is (topologically) closed as it is a homeomorphic
image of 2� . Here, we identify [�]� as a subspace of 2� via characteristic functions,
from which it inherits a Polish topology.
Two fundamental questions about infinite mad families one might ask are:

1. How big (or small) can they be?
2. How definable can they be?

One way of addressing Question 1 is to determine the value of the cardinal
invariant

a = min{|A| : A is an infinite mad family}.
This could mean which ℵα is such that a = ℵα , or how a relates to other well-
studied cardinal invariants (see [5] or [36]) between ℵ1 and c. By our comments
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MADNESS IN VECTOR SPACES 1591

above, ℵ1 ≤ a ≤ c, and a modification of that diagonalization argument shows that
b ≤ a, where b is the minimum size of an unbounded family of functions � → �
(see [ibid.]). However, the value of a cannot be decided in ZFC: both the Continuum
Hypothesis CH and Martin’s Axiom MA (see [21] or [22]) imply that a = c, and
thus, consistently ℵ1 < a = c, while Kunen [21] showed that in the model obtained
by adding ℵ2-many Cohen reals to a model of CH, ℵ1 = a < c = ℵ2. In [19], Hrušák
showed1 that the latter also holds in the models obtained by adding ℵ2-many Sacks
reals iteratively or “side-by-side” to a model of CH.
A more sophisticated version of Question 1 might ask for the “spectrum” of
cardinalities between ℵ1 and c that mad families can posses. This was first addressed
by Hechler [14], who produced a method for obtaining arbitrarily large continuum
and, simultaneously, mad families of all cardinalities κ for ℵ1 ≤ κ ≤ c. While
beyond the scope of our investigations here, these questions have been the focus
of much deep work in recent decades, notably Brendle’s [6], which establishes the
consistency of a = ℵ� , Shelah’s [29], which establishes the consistency of d < a,
and Shelah and Spinas’ [30], which gives a nearly sharp characterization of possible
mad spectra.
Question 2 above seeks to understand towhat extent the nonconstructivemethods
used to obtain mad families are necessary. A result of Mathias [23] says that an
infinite mad family can never be analytic (i.e., a continuous image of a Borel set).
Under large cardinal hypotheses, this can be pushed further to show that there
are no definable mad families at all, in the sense that there are none in L(R) (see
[9,23,35], and for a consistency result without large cardinals, [16]). Mathias’ result
is also sharp; Miller [24] proved that there is a coanalytic (i.e., the complement of
an analytic set) mad family assuming V = L, work later refined by Törnquist [34].
This article is concerned with an analogue of mad families arising in vector
spaces. Throughout, E will be a countably infinite-dimensional vector space over a
countable (possibly finite) field F .

Definition 1.1. We say that two infinite-dimensional subspaces X and Y of E
are almost disjoint if X ∩ Y is finite-dimensional.

Due to their more tractable nature, we will focus on block subspaces, that is, those
having a basis in “block position” with respect to a fixed basis for E (see Section 2
for the definition). Every infinite-dimensional subspace contains a block subspace,
so this is a relatively mild restriction.

Definition 1.2. A collection A of infinite-dimensional (block) subspaces of E
is an almost disjoint family of (block) subspaces if its elements are pairwise almost
disjoint and is a maximal almost disjoint family of (block) subspaces, or mad family
of (block) subspaces, if it is not properly contained in another such family.

Note that, by our prior comment, being maximal with respect to arbitrary
subspaces is equivalent to being maximal with respect to block subspaces.
While the topic of almost disjoint families of subspaces seems very natural, it
appears to have been little studied except for an article by Kolman [20], wherein

1Given the comments in [19], this result was likely known earlier.
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they are called “almost disjoint packings,”2 and indirectly in the recent work of
Brendle and Garcı́a Ávila [7] discussed below.
In light of the above questions for mad families on �, we ask the analogous
questions for infinite mad families of subspaces:

1. How big (or small) can they be? In particular, what is

avec,F = min{|A| : A is an infinite mad family of block subspaces}?
2. How definable can they be?

Two related notions have been studied for separable Hilbert spaces, that of
“almost orthogonal” and “almost disjoint” families of closed infinite-dimensional
subspaces, where “almost” is measured by considering the corresponding projection
operators modulo the compact operators. Results concerning Question 1 in these
settings were obtained in articles of Wofsey [37] and Bice [4], respectively. While not
directly related3 to our setting, these articles provide both motivation for, and ideas
used in, the results in Section 3 below.
When F is the finite field of order 2, vectors may be identified with elements of
FIN, the set of nonempty finite subsets of �, via their supports. Sums of vectors
in block position correspond to unions of the corresponding supports. This is the
setting of Hindman’s Theorem [15] on disjoint unions of finite subsets of�. During
the preparation of this article, an independent work of Brendle and Garcı́a Ávila
[7] appeared on maximal almost disjoint families of combinatorial subspaces of
FIN. Among other results, they show that non(M) ≤ aFIN, where non(M) is the
minimum size of a nonmeager subset of R and aFIN is the minimum size of an
infinite mad family in FIN, or in our language, a mad family of block subspaces
when |F | = 2. Together with known results, this shows the consistency of a < aFIN.
This article is organized as follows: In Section 2, we consider issues of cardinality
and address Question 1 using only ZFC techniques, showing that mad families
of block subspaces of cardinality ≥2 are always uncountable (Proposition 2.5)
and that b ≤ avec,F (Proposition 2.6). We then adapt the aforementioned work of
Brendle and Garcı́a Ávila to show, moreover, that non(M) ≤ avec,F , for general
F (Corollary 2.11). In Section 3, we use forcing to establish consistency results
regarding avec,F in analogy to those mentioned above for a, showing that is equal
to ℵ1 in the Cohen (Theorem 3.3) and Sacks (Theorem 3.6) models, and that
the spectrum of cardinalities of mad families of block subspaces can be made
arbitrarily large (Theorem 3.7). In Section 4, we consider issues of definability. We
use the Ramsey-theoretic results from the author’s [32] to give a partial solution for

2Several proofs in [20] appear to use a stronger property than almost disjointness, namely, that
whenever X0, . . . , Xn ∈ A are distinct, then Xi ∩ (

∑
j �=i Xj) is finite-dimensional. It easy to construct

almost disjoint families of subspaces for which this fails, e.g., X0 = 〈(e2n)n∈�〉, X1 = 〈(e2n+1)n∈�〉, and
X2 = 〈(e2n + e2n+1)n∈�〉, where (en) is a basis for E. This can be extended to an infinite almost disjoint
family of subspaces by our Proposition 2.5. As such, we reprove several of the results appearing in [20].
3Almost orthogonal families of closed subspaces of Hilbert space appear more closely related to

almost disjoint families on � than does our setting. For instance, countable almost orthogonal families
arise as images of countable almost disjoint families on � via the “diagonal map” (cf. Lemma 5.34 in
[10]), and, consistently, some mad families on � remain maximal when passed through this map [37].
Less is understood about the notion of almost disjointness for closed subspaces, e.g., it appears to be
open whether the corresponding cardinal invariant is ℵ1 in ZFC.
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“full” mad families of subspaces (Theorem 4.10). The existence of such families is
established under certain set-theoretic hypotheses (Theorem 4.12). Section 4 can be
read independently from the other sections. We conclude in Section 5 with further
remarks, conjectures, and open questions.

§2. Cardinality: ZFC results. Throughout, we fix (en) an F -basis for E (e.g.,
E =

⊕
n∈� F and en is the nth unit coordinate vector). If X is a subset of E, or a

sequence of vectors in E, we write 〈X 〉 for its linear span.
For x ∈ E, the support of x is given by

supp(x) = {n ∈ � : x =
∑
aiei ⇒ an �= 0}.

For nonzero vectors x, y ∈ E, andM ∈ �, we write x > M if min(supp(x)) > M ,
and x < y if max(supp(x)) < min(supp(y)). We call a sequence of nonzero vectors
(xn) a block sequence if xn < xn+1 for all n. A space spanned by a block sequence is
a block subspace.
As mentioned in Section 1, every infinite-dimensional subspace of E contains
a block subspace (Lemma 2.1 in [32]), and the block sequence forming the basis
of a block subspace is unique, up to scaling. Unless otherwise specified, a block
subspace is always assumed to be infinite-dimensional.
We begin with the following easy facts:

Proposition 2.1. Every almost disjoint family of (block) subspaces is contained in
a mad family of (block) subspaces.

Proof. This is a standard Zorn’s Lemma argument. 

Proposition 2.2. There is an almost disjoint family of block subspaces, and thus a
mad family of block subspaces, of size c.

Proof. Let A be an almost disjoint family on � of size c, as in (1) above. The
image of A under the injective map x �→ 〈(en)n∈x〉 is easily seen to be an almost
disjoint family of subspaces. 

Given an infinite-dimensional subspace Y and anM ∈ �, we write Y/M for the
set of y ∈ Y with y > M ; Y/M is always an infinite-dimensional subspace of Y .
Given a vector x, we write Y/x for Y/max(supp(x)). The following lemma will be
key to much of what follows.

Lemma 2.3. Let Y be a block4 subspace of E and x0, . . . , xm nonzero vectors
in E.

(a) If x ∈ Y , then
〈x0, . . . , xm, x〉 ∩ Y = 〈x0, . . . , xm〉 ∩ Y + 〈x〉.

4In earlier versions of this article, including in [31], this lemma was stated for arbitrary infinite-
dimensional subspacesY , rather thanblock subspaces.Thiswas in error, as the following counterexample
shows: LetY = 〈e0+e2, e1+e3, . . . , e2n+e2n+2, e2n+1+e2n+3, . . .〉. Note thatY contains either e0+e2n+2
or e0 − e2n+2, for each n. Thus, if we take x0 = e0, then for anyM , we can find an n with 2n + 2 > M
and so e0 ∈ 〈e0, e2n+2〉 ∩Y �= {0} = 〈e0〉 ∩Y . This is related to the fact that the basis for Y cannot put
in a “row reduced echelon form,” and appears to be the essential difficulty in removing “block” from
many of the arguments herein.
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(b) There is an M ∈ � (that depends only on Y and max(⋃mi=0 supp(xi))) such
that whenever x > M and x /∈ Y ,

〈x0, . . . , xm, x〉 ∩Y = 〈x0, . . . , xm〉 ∩Y.
Proof. (a) is just the special case of the modularity law for subspaces (and holds
for arbitrary Y ):

Z ⊆ Y implies (X +Z) ∩ Y = (X ∩ Y ) +Z,
where X = 〈x0, . . . , xm〉 and Z = 〈x〉.
(b) Suppose that Y = 〈(yn)〉, where (yn) is a block sequence. Put K =
max(

⋃m
i=0 supp(xi)) and letN be the largest index such that supp(yN )∩ [0, K ] �= ∅.

Set
M = max {max(supp(yN )), K} .

Take x > M with x /∈ Y . Suppose that
v = �0x0 + · · ·+ �mxm + �x ∈ Y,

with �i ’s not all 0. To prove the result, it suffices to show that � = 0. Towards a
contradiction, suppose that � �= 0 and write

α0y0 + · · ·+ αkyk = �0x0 + · · ·+ �mxm + �x,
for some k ∈ �. Since x > M , we must have that k > N . But, by our choice of N
and the fact that the yn are in block position, we have that

α0y0 + · · ·+ αNyN = �0x0 + · · ·+ �mxm,
which implies x = 1

� (αN+1yN+1 + · · ·+ αkyk) ∈ Y , a contradiction. 

Lemma 2.4. Suppose that Y0, . . . , Yn, Yn+1 are pairwise disjoint block subspaces
and x0, . . . , xm nonzero vectors such that 〈x0, . . . , xm〉 ∩ Yk = {0} for k ≤ n + 1.
Then, there is an x > xm such that 〈x0, . . . , xm, x〉 ∩ Yk = {0} for k ≤ n + 1.
Proof. By repeatedly applying Lemma 2.3(b), we can obtain an M0 ≥
max(

⋃m
i=0 supp(xm)) such that whenever x > M0 and not in any of the Yk ’s,

〈x0, . . . , xm, x〉 ∩ Yk = {0} for k ≤ n + 1.
To find such an x, start by picking x′0 ∈ Y0/M0, so 〈x′0〉 ∩ Y0 = 〈x′0〉 and

〈x′0〉 ∩ Yk = {0} for 0 < k ≤ n + 1. By repeatedly applying Lemma 2.3, we can
obtain anM1 ≥M0 such that whenever y ∈ Y1/M1, we have that

〈x′0, y〉 ∩ Y0 = 〈x′0〉 ∩Y0 = 〈x′0〉,
〈x′0, y〉 ∩ Y1 = 〈x′0〉 ∩Y1 + 〈y〉 = 〈y〉,
〈x′0, y〉 ∩Yk = 〈x′0〉 ∩Yk = {0} for 1 < k ≤ n + 1.

Pick x′1 ∈ Y1/M1. Continue in this fashion, using Lemma 2.3 to choose anM� ≥
M�−1 and x′� ∈ Y�/M� , for 1 ≤ � ≤ n + 1, so that

〈x′0, . . . , x′�−1, x′�〉 ∩Y0 = 〈x′0, . . . , x′�−1〉 ∩ Y0 = 〈x′0〉,
...

〈x′0, . . . , x′�−1, x′�〉 ∩ Y�−1 = 〈x′0, . . . , x′�−1〉 ∩ Y�−1 = 〈x′�−1〉,
〈x′0, . . . , x′�−1, x′�〉 ∩ Y� = 〈x′0, . . . , x′�−1〉 ∩ Y� + 〈x′�〉 = 〈x′�〉,
〈x′0, . . . , x′�−1, x′� 〉 ∩ Yk = 〈x′0, . . . , x′�−1〉 ∩ Yk = {0} for � < k ≤ n + 1.
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MADNESS IN VECTOR SPACES 1595

Then, x = x′0+ · · ·+x′n+1 is not in any of theYk ’s, and so 〈x0, . . . , xm, x〉∩Yk = {0}
for k ≤ n + 1. 

If X is a finite-codimensional subspace, then {X} is always a mad family of
subspaces. These are the only countable mad families of block subspaces.

Proposition 2.5. LetA be a maximal almost disjoint family of block subspaces of
size ≥2. Then, A is uncountable.
Proof. Suppose first thatA= {Y0, . . . , Yn, Yn+1} is a finite almost disjoint family
of block subspaces. By replacing each Yk with a relatively finite-codimensional
subspace, we may assume that they are pairwise disjoint. Pick an x0 not in any of
the Yk ’s, which can be done as in the proof of Lemma 2.4. By repeatedly applying
Lemma 2.4, we can build an infinite block sequence (xm) such that for each m
and k ≤ n + 1, 〈x0, . . . , xm〉 ∩ Yk = {0}. Then, 〈(xm)〉 is disjoint from each Yk ,
witnessing thatA fails to be maximal.
Suppose that A = {Yn : n ∈ �} is a countably infinite almost disjoint family
of block subspaces. Again, by passing to finite-codimensional subspaces, we may
assume that the Yk are pairwise disjoint. Pick a nonzero x0 ∈ Y0. By Lemma 2.3,
we can pick x1 ∈ Y1/x0 such that

〈x0, x1〉 ∩ Y0 = 〈x0〉,
〈x0, x1〉 ∩ Yk ⊆ 〈x0, x1〉 for k ≥ 1.

In general, given x0, . . . , xm, we can apply Lemma 2.3 to obtain xm+1 ∈ Ym+1/xm
such that

〈x0, . . . , xm, xm+1〉 ∩ Y0 = 〈x0, . . . , xm〉 ∩ Y0 = 〈x0〉,
...

〈x0, . . . , xm, xm+1〉 ∩ Ym = 〈x0, . . . , xm〉 ∩ Ym ⊆ 〈x0, . . . , xm〉,
〈x0, . . . , xm, xm+1〉 ∩Yk ⊆ 〈x0, . . . , xm, xm+1〉 for k ≥ m + 1.

Thus, (xm) is an infinite block sequence such that 〈(xm)〉 ∩ Yn ⊆ 〈x0, . . . , xn〉 for
each n ∈ �, and so again, A fails to be maximal. 

For f, g ∈ �� , we write f <∗ g if there is some N such that f(n) < g(n) for all
n ≥ N . A family of functions B ⊆ �� is bounded if there is some h ∈ �� such that
f <∗ h for all f ∈ B, and unbounded otherwise. We write

b = min{|B| : B is an unbounded family in ��}.
It is easy show that b is uncountable and it is well known that b ≤ a (see Proposition
8.4 in [5] or Theorem 3.1 in [36]). The corresponding result for infinite-dimensional
block subspaces of FIN was proved in [7], however their proof does not appear to
easily generalize; our proof here uses Lemma 2.3 to adapt the usual proof of b ≤ a.

Proposition 2.6. b ≤ avec,F .
Proof. LetA be an infinite almost disjoint family of block subspaces with |A| =
κ < b. We may enumerate A as {Yα : α < κ}. By passing to finite-codimensional
subspaces, we may assume that the Yn, for n < �, are pairwise disjoint. For
� ≤ α < κ, define fα by

fα(n) = min{k : Yα ∩ Yn ⊆ 〈e0, . . . , ek〉}.

https://doi.org/10.1017/jsl.2019.42 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.42


1596 IIAN B. SMYTHE

Definefm form < � arbitrarily. For each α < κ, let gα ∈ �� be such that whenever
y0 < · · · < yk are such that supp(yk) ⊆ [0, n] and x > gα(n),

〈y0, . . . , yk, x〉 ∩ Yα =
{
〈y0, . . . , yk〉 ∩ Yα if x /∈ Yα ,
〈y0, . . . , yk〉 ∩ Yα + 〈x〉 if x ∈ Yα .

Such functions exist by Lemma 2.3 (we are using the fact that the M in Lemma
2.3(b) depends only on the given subspace and the maximum of the supports of the
given finite sequence). As κ < b, there is an h ∈ �� , which we may take strictly
increasing, withmax{fα, gα} <∗ h for allα < κ. Define a block sequenceX = (xn)
by choosing x0 ∈ Y0 and xn+1 ∈ Yn+1/h(max(supp(xn))) for all n ∈ �. We claim
that 〈X 〉 is almost disjoint from each Yα .
Case 1. α = m < �. Let N > m be such that gm(n) < h(n) for all n ≥ N . Note
that max(supp(xN )) ≥ N . If k ≥ N , then xk+1 ∈ Yk+1/gm(max(supp(xk)) and,
since Yk+1 and Ym are disjoint,

〈xN , . . . , xk, xk+1〉 ∩ Ym = 〈xN , . . . , xk〉 ∩Ym = · · · = 〈xN 〉 ∩ Ym = {0}.
This shows that 〈X/xN−1〉 is disjoint from Ym.
Case 2. � ≤ α < κ. Let N be such that max{fα(n), gα(n)} < h(n) for
all n ≥ N . Again, note that max(supp(xN )) ≥ N . If k ≥ N , then xk+1 ∈
Yk+1/gα(max(supp(xk))), so

〈xN , . . . , xk, xk+1〉 ∩ Yα =
{
〈xN , . . . , xk〉 ∩Yα if xk+1 /∈ Yα ,
〈xN , . . . , xk〉 ∩Yα + 〈xk+1〉 if xk+1 ∈ Yα .

However, as xk+1 > fα(k + 1) and xk+1 ∈ Yk+1, it must be that xk+1 /∈ Yα . Then,
as in Case 1,

〈xN , . . . , xk, xk+1〉 ∩ Yα = 〈xN , . . . , xk〉 ∩ Yα = · · · = 〈xN 〉 ∩ Yα = {0},
showing, again, that 〈X/xN−1〉 is disjoint from Yα .
Thus, A fails to be maximal, and so b ≤ avec,F . 

Recall that FIN is the collection of all nonempty finite subsets of �. For a, b ∈
FIN, we write a < b if max(a) < min(b), and call a sequence (an) of elements
of FIN a block sequence if an < an+1 for all n ∈ �. Let FIN[∞] denote the set of
infinite block sequences in FIN. For A = (an) ∈ FIN[∞],

FU(A) = {an0 ∪ · · · ∪ ank : n0 < · · · < nk},
is the combinatorial subspace generated byA. We say thatA,B ∈ FIN[∞] are almost
disjoint if FU(A)∩FU(B) is finite. Following Brendle and Garcı́a Ávila [7], let aFIN
be the minimum cardinality of an infinite maximal almost disjoint family (defined
in the obvious way) of block sequences in FIN. As commented in Section 1, this is
the same as avec,F when |F | = 2.
We denote by non(M) theminimum size of a nonmeager subset ofR. Brendle and
Garcı́a Ávila show that non(M) ≤ aFIN (Theorem 3 in [7]) by showing b ≤ aFIN
(Proposition 12 in [7]), non(M) = max{b, b(pbd �=∗)} (Lemma 15 in [7], attributed
to folklore), and finally, b(pbd �=∗) ≤ aFIN (Theorem 16 in [7]). Here, b(pbd �=∗)
is the common (Lemma 14 in [7]) value of the cardinals bh(p �=∗), where, for
h : � → � a function with h(n) → ∞ as n → ∞, bh(p �=∗) is the minimum size
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MADNESS IN VECTOR SPACES 1597

of a family F ⊆ �� such that for all partial g : � ⇀ � with infinite domain and
bounded by h on that domain, there is anf ∈ F which is equal to g infinitely often.
For A = (an) ∈ FIN[∞], denote by

EA =
⋃

{an : |an| = 1}.
A careful reading of their proof reveals that Brendle and Garcı́a Ávila have shown
the following:
Theorem 2.7 (cf. Theorem 16 in [7]). Suppose that A ⊆ FIN[∞] satisfies the
following for all A,A′ ∈ A:
(i) EA is coinfinite, and
(ii) if A �= A′, then EA ∩EA′ is finite.

Then, if � ≤ |A| < b(pbd �=∗), there is a B ∈ FIN[∞] which is almost disjoint from
each element of A.
For X = (xn) a block sequence in E, let supp(X ) = (supp(xn)) ∈ FIN[∞]. If A
is a collection of infinite-dimensional block subspaces of E, then let

supp(A) = {supp(X ) : X is a block sequence and 〈X 〉 ∈ A}.
Note if X andY are block sequences spanning the same subspace, then supp(X ) =
supp(Y ). The proof of the following is easy and omitted.
Lemma 2.8. For any block sequence X in E, if A ∈ FIN[∞] is such that FU(A) ⊆
FU(supp(X )), then there is a block sequenceY inE with 〈Y 〉 ⊆ 〈X 〉 and supp(Y ) =
A.5

Lemma 2.9. If A is a family of infinite-dimensional block subspaces of E and
A ∈ FIN[∞] is almost disjoint (in the sense of FIN) from every element of supp(A),
then for any block sequence X in E with supp(X ) = A, 〈X 〉 will be almost disjoint
(in the sense of E) from every Y ∈ A.
Proof. Let A and A be as described, and suppose that there is some block
sequence X with supp(X ) = A, and a subspace in A, with block basis Y , such that
〈Y 〉∩ 〈X 〉 is infinite-dimensional. Let Z be an infinite block sequence in 〈Y 〉∩ 〈X 〉.
Then, supp(Z) will witness that A fails to be almost disjoint from supp(Y ). 

Lemma 2.10. If B is an infinite almost disjoint family of block subspaces ofE, then

A = supp(B) satisfies conditions (i) and (ii) in Theorem 2.7.
Proof. This follows immediately from the observation that if A = supp(X ) for
X a block sequence in E, and n ∈ EA, then en ∈ 〈X 〉. 

Putting Lemmas 2.8, 2.9, and 2.10 together with Proposition 2.6 and Theorem
2.7, we have:
Corollary 2.11. non(M) ≤ avec,F .

§3. Cardinality: Consistency results. It follows from Proposition 2.5 that
under CH, every mad family of block subspaces is of size c. Likewise, since
MAκ(�-centered) implies κ < p (cf. [3]), and p ≤ b (see [36]), these together
with Proposition 2.6 yield κ < avec,F . We give here a direct proof of this fact:

5This lemma implies that the suppmap is a projection, in the sense of forcing, between block sequences
in E and those in FIN. See the related discussion in Section 6 of [32].
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Theorem 3.1 (MAκ(�-centered)). κ < avec,F .

Proof. Let A be an infinite almost disjoint family of block subspaces. Define a
poset P to be all pairs (s, F ) where s is a finite normalized (i.e., leading coefficients
are equal to 1) block sequence in E and F a finite subset of A. We order elements
of P by (s ′, F ′) ≤ (s, F ) if s ′ � s , F ′ ⊇ F , and ∀X ∈ F (〈s ′〉 ∩X ⊆ 〈s〉). Note that
if (s, F ′), (s, F ) ∈ P, for a fixed s , then (s, F ′∪F ) ∈ P and extends both conditions.
As there are only countably many such s , this shows that P is �-centered. If G is a
filter in P, then we let XG = 〈⋃{s : ∃F ((s, F ) ∈ G)}〉.
Observe that if X ∈ A, then the set DX = {(s, F ) ∈ P : X ∈ F } is dense, and if
G is a filter in P with G ∩ DX �= ∅, then XG ∩ X is finite dimensional. For n ∈ �,
let En = {(s, F ) ∈ P : |s | ≥ n}. In order to see that the sets En are dense, it suffices
to show that a given (s, F ) in P can be extended to an (s�x, F ) in P. This can be
accomplished by using Lemma 2.3 to obtain anM for which whenever x > M and
not in

⋃
F , 〈s�x〉 ∩ X = 〈s〉 ∩ X for each of the finitely many X ∈ F . Then, for

any such x, (s�x, F ) ≤ (s, F ).
If |A| ≤ κ, by MAκ(�-centered), there is a filter G ⊆ P which meets the sets DX
and En, for X ∈ A and n ∈ �. Then, XG witnesses thatA fails to be maximal. 

Let Bκ be κ-random forcing, the set of all positive measure Borel subsets of
2κ ordered by containment modulo null sets, where κ ≥ � and 2κ is given the
product measure. By the random model, we mean the generic extension of a model
of CH obtained by forcing with Bℵ2 . It is well known that in the random model,
b = d = a = ℵ1 and non(M) = c = ℵ2 (see, e.g., Section 11.4 of [5]). Thus, by
Corollary 2.11, we have:

Corollary 3.2. In the random model, ℵ1 = a < avec,F = ℵ2.
Let Cκ be κ-Cohen forcing, the set of all finite partial functions p with dom(p) ⊆
κ × � and ran(p) ⊆ 2, ordered by extension. We identify Cℵ0 with the set C of all
finite partial functions p with dom(p) ⊆ � and ran(p) ⊆ 2. By theCohenmodel, we
mean the generic extension of amodel ofCH obtained by forcing withCℵ2 . Theorem
3.3 is stated as Theorem 3.7 in [20], however the proof given is just a reference to
[21]. We give a complete proof here. See also Theorem 4 in [7] for the analogous
result for FIN.

Theorem 3.3. In the Cohen model, ℵ1 = avec,F < c.

Proof. We follow the proof of the corresponding result for mad families of
subsets of �, Theorem 2.3 in Chapter VIII of [21]. We define a maximal almost
disjoint family A = {X	 : 	 < �1} of block subspaces having the property that
it remain maximal after forcing with C. By standard properties of Cohen forcing
(Lemma 2.2 in Chapter VIII of [21]), this suffices.
Using CH in the ground model, let (p	, 
	) for � ≤ 	 < �1 enumerate all pairs
(p, 
) such that p ∈ C and 
 is a nice C-name for a subset of E (in the sense of
Definition 5.11 in Chapter VII of [21]). We recursively pick block subspaces X	
as follows: Let Xn, n < �, be any sequence of infinite-dimensional almost disjoint
block subspaces. If � ≤ 	 < �1, and we have chosen X� for all � < 	, choose X	
almost disjoint from each of the (countably many) X� for � < 	 and so that if

p	 �C 
	 is an infinite-dimensional subspace and ∀� < 	 dim(
	 ∩ X̌�) <∞ (2)
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then
∀n∀q ≤ p	∃r ≤ q∃v > n(v ∈ X	 and r �C v̌ ∈ 
	).

To see thatX	 can be chosen, assume that (2) holds. Let Yi enumerate {X� : � < 	}
and let qi enumerate {q : q ≤ p	}. By (2), for each i , qi �C dim(
	 ∩ Y̌i) <∞. We
construct ri ∈ C and xi ∈ E inductively in i . Pick r0 ≤ q0 and x0 a nonzero vector
so that r0 �C x̌0 ∈ 
	 . Having chosen r0, . . . , rn and x0 < · · · < xn so that ri ≤ qi
and

ri �C x̌i ∈ 
	 ∧ ∀k ≤ i(〈x̌0, . . . , x̌i 〉 ∩ Y̌k ⊆ 〈x̌0, . . . , x̌k〉),
for each i ≤ n, apply Lemma 2.3 to find rn+1 ≤ qn+1 and xn+1 > xn so that

rn+1 �C x̌n+1 ∈ 
	 ∧ ∀k ≤ n + 1(〈x̌0, . . . , x̌n, x̌n+1〉 ∩ Y̌k ⊆ 〈x̌0, . . . , x̌k〉).
This is done as in the infinite case of Proposition 2.5. Let X	 = 〈(xn)〉.
Clearly A is an almost disjoint family. It suffices to show that it is maximal in
V[G ], where G is V-generic for C. Towards a contradiction, suppose that for some
(p	, 
	) with p	 ∈ G ,
p	 �C 
	 is an infinite-dimensional subspace and ∀X ∈ Ǎ(dim(
	 ∩ X ) <∞).
In particular, (2) holds at 	. But p	 �C dim(
	 ∩ X̌	) <∞, so there is a q ≤ p	 and
an N so that q �C 
	 ∩ X̌	 ⊆ 〈ě0, . . . , ěN 〉, contradicting that

∃r ≤ q∃x > N(x ∈ X	 ∧ r �C x̌ ∈ 
	). 

Given a notion of forcing P, we say that a mad family of subspaces A is P-
indestructible if A remains maximal after forcing with P. The proof of Theorem 3.3
above shows that, assumingCH, there is aC-indestructible mad family of subspaces.
Let S be Sacks forcing, the collection of all perfect subtrees of 2<� , ordered by
inclusion. S enjoys the Sacks property (cf. Lemma 2.1 in [2]): whenever p ∈ S and ġ
is an S-name for an element of �� , there is a q ≤ p and a function F : � → P(�)
such that for all n, |F (n)| ≤ 2n and q � ∀n(ġ(n) ∈ F (n)). It follows that S is
��-bounding: every element of �� in the generic extension is bounded by some
element of the ground model. We note that S is proper.6

Theorem 3.4 (CH). If P is a proper poset of size ℵ1 having the Sacks property,
then there is a P-indestructible mad family of block subspaces.
Proof. Using CH and properness, we can construct a sequence of pairs (p	, 
	),
	 < �1, so that:

(i) 
	 is a nice P-name for an infinite block sequence in E, with all antichains
occurring in 
	 countable, and

(ii) p	 ∈ P is such that if there are 
 and p ∈ P forcing that 
 is an infinite block
sequence, then there is a 	 such that p	 ≤ p and p	 � 
 = 
	 .

We construct a family of block sequences A = {Xα : α < �1} recursively as
follows: Begin by letting {Xi : i ∈ �} be any almost disjoint family of block
sequences (i.e., the corresponding subspaces are almost disjoint).
At stage α ≥ �: If

pα �� ∀	 < α(dim(〈
α〉 ∩ 〈X̌	〉) <∞),
6See, e.g., [25] for more details on properness.
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then chooseXα to be any block sequence almost disjoint fromall of theX	 for 	 < α.
Otherwise, enumerate by (v̇n) and (İn) P-names for vectors (in block position) and
intervals containing their supports, respectively, which are forced by pα to make up

α . Enumerate α as (	n)n<� .
As the X	n are almost disjoint, there is an f ∈ �� so that for all n,
X	0/f(0), . . . , X	n/f(n) are disjoint. By our assumption on pα , there is a P-name
ġ for an element of �� so that

pα � ∀n(〈
α/ġ(n)〉 ∩ 〈X̌	n 〉 = {0}).
Claim 3.5. If Y0, . . . , Yn, Yn+1 are disjoint block sequences and x0 < · · · < xn so
that for all k ≤ n, 〈x0, . . . , xn〉∩〈Yk〉 = {0}, then there is anM so that whenever x >
M and not in any of 〈Y0〉, . . . , 〈Yn〉, 〈Yn+1〉, then for all k ≤ n + 1, 〈x0, . . . , xn, x〉 ∩
〈Yk〉 = {0}.
Proof of claim. See the proof of Lemma 2.4. 

By the claim, there is a P-name ḣ for an element of �� so that

pα �∀n[(i0 < · · · < in and ḣ(0) < v̇i0 , . . . , ḣ(n) < v̇in )
⇒ ∀k ≤ n〈v̇i0 , . . . , v̇in 〉 ∩ 〈X̌	k /f̌(k)〉 = {0}].

As P is ��-bounding, there is a p ≤ pα, and a function m ∈ �� so that
p � ∀n(m(n) ≥ max{f̌(n), ġ(n), ḣ(n)}),

and so p forces thatm shares the relevant properties of f, ġ, and ḣ above. Further,
by ��-bounding, there is an increasing sequence of intervals (Jn)n<� , and a p′ ≤ p,
so that

p′ � ∀n∃m(İm ⊆ Jn).
Choose a further increasing sequence of intervals (Kn)n<� so that Kn contains at
least 2n many intervals of the form Jm, all of which are abovem(n).
By the Sacks property, there is a p′′ ≤ p and a function F with domain � so that
for each n, |F (n)| ≤ 2n and each element of F (n) is a collection of vectors in E, in
block position, so that

p′′ � ∀n({v̇k : İk ⊆ Ǩn} ∈ F̌ (n)),
and for all n and A ∈ F (n), there is a q ≤ p′′ with

q � {v̇k : İk ⊆ Ǩn} = Ǎ.
For each n, let A0, . . . , A|F (n)|−1 enumerate F (n). We pick vectors u0n recursively
as follows: Let u0n be the first element of A0. Having defined u

0
n < · · · < ujn , with

uin ∈ Ai , choose uj+1n to the first element of Aj+1 with support above u
j
n . Note

that this can be done as each Ak must contain elements with supports in each of
2n distinct intervals Jm. Let Xα = (u00 , . . . , u

|F (0)|−1
0 , u01 , . . . , u

|F (1)|−1
1 , . . .). Observe

that our choice ofm ensures thatXα is a block sequence and is almost disjoint from
each X	 for 	 < α. That

p′′ � dim(〈
α〉 ∩ 〈Xα〉) =∞
is ensured by the construction. It is then easy to show thatA = {〈Xα〉 : α < �1} is
forced to be a mad family of subspaces by any condition in P. 
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By the Sacks model, we mean the generic extension of a model of CH obtained by
forcing with a countable support iteration of Sacks forcing of length�2, see, e.g., [2]
or [19]. Theorem 3.6 below is also a corollary of Theorem 3.3 and a general theorem
of Zapletal (Theorem 0.2 in [38]), though the latter makes use of large cardinals
which are not necessary here.

Theorem 3.6. In the Sacks model, ℵ1 = avec,F < c.
Proof. This is proved using Theorem 3.4, exactly as Theorem III.2 in [19], which
the reader may consult for details. 

We note that it follows directly from Theorem 3.4 that in the model obtained by
forcing over a model of CH with the “side-by-side” (i.e., countable support product
of) Sacks forcing [1] of length�2, avec,F = ℵ1 as well. This is because any reals added
in the side-by-sidemodel are added by a product of�1 many copies of Sacks forcing,
which is proper, has the Sacks property, and preservesCH in the intermediatemodel.
Lastly, following [14], we turn to the problem of producing a “large spectrum” of
cardinalities of mad families of subspaces. Given an uncountable regular cardinal
κ, let

Dκ = {(α, �) ∈ κ × κ : α is an uncountable limit ordinal and � < α}.
Let Qκ be the set of all functions p : Fp × np → E where Fp ∈ [Dκ]<� , np ∈ �, and
for each (α, �) ∈ Fp, (p(α, �, 0), . . . , p(α, �, np − 1)) is a block sequence in E. We
say q ≤ p if q ⊇ p and whenever (α, �), (α, 
) ∈ Fp with � �= 
, we have that

〈(q(α, �, i))i<nq 〉 ∩ 〈(q(α, 
, i))i<nq 〉 = 〈(p(α, �, j))j<np 〉 ∩ 〈(p(α, 
, j))j<np 〉.
Theorem 3.7. Let κ be an uncountable regular cardinal. If G is V-generic for Qκ,
then in V[G ], for every uncountable cardinal � < κ there is a mad family of block
subspaces of E of cardinality �. In this model, κ ≤ c ≤ (κℵ0 )V.
Typically, κ = κℵ0 and so c = κ in the extension. Thus, it is consistent that c > ℵ2
(or even c > ℵ�1 , etc) and for every uncountable cardinal � ≤ c, there is a mad
family of size �. We will proceed with a series of lemmas.

Lemma 3.8. Qκ is ccc and |Qκ| = κ.
Proof. Suppose that {p	 : 	 < ℵ1} ⊆ Qκ. By thinning down, we may assume
that there is some fixed n for which np	 = n for all 	 < ℵ1. By the Δ-system lemma,
we may further thin down so that the Fp	 form a Δ-system, that is, there is some
finite set R ⊆ Dκ for which Fp	 ∩ Fp� = R for all 	 �= � < ℵ1. But as there are only
countably many functionsR×n → E, uncountably many of the p	 agree onR×n.
Given such p	 and p�, it is then immediate that q = p	 ∪p� is a common extension.
That |Qκ| = κ is easy to check. 

Lemma 3.9. Let p ∈ Qκ. For any (α, �) ∈ Dκ, there is a q ≤ p with (α, �) ∈ Fq .
Proof. If (α, �) /∈ Fp, we can define q ≤ p so that Fq = Fp ∪ {(α, �)}, nq = np,
and (q(α, �, 0), . . . , q(α, �, nq − 1)) any block sequence in E whatsoever. 

Lemma 3.10. Let p ∈ Qκ. For anyM > 0, there is a q ≤ p so that nq = np + 1
and q(α, �, np) > M for all (α, �) ∈ Fq .
Proof. Let q(α, �, i) = p(α, �, i) for i < np and (α, �) ∈ Fp, as required. Fix
α occurring as a first coordinate in Fp. Enumerate by �0, . . . , �k those � with
(α, �) ∈ Fp. Let Yj = 〈p(α, �j , 0), . . . , p(α, �j , np − 1)〉 for j ≤ k. By repeated
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applications of Lemma 2.3 (we are applying it to a finite-dimensional space Y ,
however the lemma remains true by essentially the same proof), there is anN0 ≥M
so that whenever x > N0 and not in Yj ,

〈q(α, �0, 0), . . . , q(α, �0, np − 1), x〉 ∩ Yj = Y0 ∩ Yj,
for 0 < j ≤ k. Let q(α, �0, np) be any vector x > N0 and not in

⋃
j≤k Yj . Let

Y ′
0 = 〈q(α, �0, 0), . . . , q(α, �0, np − 1), q(α, �0, np)〉.
Continue in this fashion, choosing N� ≥M so that whenever x > N� and not in
Y ′
i or Yj ,

〈q(α, �� , 0), . . . , q(α, �� , np − 1), x〉 ∩Y ′
i = Y� ∩ Y ′

i = Y� ∩ Yi,
and

〈q(α, �� , 0), . . . , q(α, �� , np − 1), x〉 ∩ Yj = Y� ∩ Yj,
for i < � and � < j ≤ k. Let q(α, ��, np) be any vector x > N� and not in⋃
i<� Y

′
i ∪

⋃
�<j≤k Yj . At the end of the construction, q will be a condition with

domain Fp × (np + 1) extending p and having the desired property. 

Proof of Theorem 3.7. Let G be V-generic for Qκ. By Lemmas 3.9 and 3.10,⋃
G : Dκ×� → E so that for each (α, �) ∈ Dκ,Gα,� (·) =

⋃
G(α, �, ·) is an infinite

block sequence in E.
Given an uncountable limit α < κ, we claim that 〈Gα,�〉 ∩ 〈Gα,
〉 is finite-
dimensional, for � �= 
 < α. Let p ∈ Qκ be given with (α, �), (α, 
) ∈ Fp. By
the definition of ≤ in Qκ, we have that

p � 〈Ġα,� 〉 ∩ 〈Ġα,
〉 = 〈(p̌(α, �, i))j<np 〉 ∩ 〈(p̌(α, 
, i))j<np 〉.
Thus, 〈Gα,�〉 ∩ 〈Gα,
〉 is forced to be finite-dimensional andAα = {〈Gα,�〉 : � < α}
is an almost disjoint family of subspaces. As Qκ preserves cardinals, |Aα | = |α|. It
remains to show that each Aα is maximal.
Fix α as above and let 
 be a nice Qκ-name for a subset of E. As Qκ is ccc,
there is a countable set of conditions A ⊆ Qκ, which decides which vectors are
in 
 and whether 
 is an infinite-dimensional subspace. That is, if p � v̌ ∈ 
, for
some v ∈ E and p ∈ Qκ, then there is a q ∈ A with q � v̌ ∈ 
, and likewise if
p � 
 is a subspace. A is contained in

Qκ,S = {p ∈ Qκ : (α, 
) ∈ Fp ⇒ 
 ∈ S}
for some countable S ⊆ α. Suppose that
p � 
 is an infinite-dimensional subspace of E and ∀
 ∈ Š(dim(
 ∩ 〈Ġα,
〉) <∞)
for p ∈ Qκ,S . Fix 	 ∈ α \ S. We claim that for all M > 0, the set of conditions
q ∈ Qκ such that

q � ∃v > M (v ∈ 
 ∩ 〈Ġα,	〉)
is dense below p. Let p′ ≤ p. We may assume that (α, 	) ∈ Fp′ . Let p′′ = p′ �
({(α, 
) : 
 ∈ S} × np′) ∈ Qκ,S . Then, p′′ ≤ p, and so
p′′ � 
 is an infinite-dimensional subspace of E and ∀
 ∈ Š(dim(
 ∩ 〈Ġα,
〉) <∞)
By Lemmas 2.3 and 3.10, there is a p′′′ ≤ p′′ in Qκ,S and a v > M so that

p′′′ � v̌ ∈ 
 ∧ ∀(α, 
) ∈ F̌p′′(v̌ /∈ 〈Ġα,
〉),
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and moreover, there is a condition q ∈ Qκ so that Fq = Fp′ ∪ Fp′′′ , nq = np′′′ + 1,
q(α, 	, np′′′) = v, and q ≤ p′. But then,

q � ∃v > M (v ∈ 
 ∩ 〈Ġα,	〉),

as claimed. Thus, Aα is forced to be a mad family of block subspaces.
That c ≤ κℵ0 in V[G ] follows from standard facts about ccc forcing (cf. Lemma
5.13 of Chapter VII in [21]). 


§4. Definability and Ramsey theory. In [23], Mathias showed that there are no
infinite analytic mad families on �. His proof proceeds by showing that, given an
infinite almost disjoint family A on �, the set H of subsets of � not covered by a
finite union of elements ofA is a selective coideal.7 Here, a coideal is the complement
of an ideal of subsets of �, and selectivity refers to closure under a certain kind
of diagonalization. Were A analytic, an application of the main Ramsey-theoretic
dichotomy of [23] shows that there must be an infinite set x ∈ H none of whose
infinite subsets are in the ⊆-downwards closure of A. Such an x witnesses that A
fails to be maximal.
Wewould like to replicate this argument to prove that there are no infinite analytic
mad families of subspaces of E, considered as subsets of the product space 2E . As
is the case for mad families on �, such a result would be sharp: assuming V = L,
the methods in [24] can be adapted to show that there is a coanalytic mad family of
subspaces. This naı̈ve approach runs into several problems, which we discuss below.
Let us first consider the setting where F is a finite field, in which case almost
disjoint subspaces of E are also almost disjoint as subsets of E. This suggests the
following strategy: Suppose that A is an infinite analytic almost disjoint family of
subspaces ofE and letH be the collection of all subsets ofE, which are not covered
by a union of finitely many elements of A. Then, H is a selective coideal of subsets
of E. Applying Mathias’ dichotomy as above, we obtain an infinite subset X ∈ H
all of whose further subsets are disjoint from the downwards closure ofA. IfAwere
maximal, then we would obtain the desired contradiction provided X contains an
infinite-dimensional subspace. However, there is no a priori reason why X ought to
contain such a subspace.
In the event that |F | = 2, hope is provided by Hindman’s theorem [15], one
formulation of which says that the collection B of all subsets of E which contain
an infinite-dimensional block subspace is a coideal. It would suffice, then, to show
that H ∩ B is a selective coideal. As the union of two ideals is an ideal if and only
if one contains the other, we would need to have that H ⊆ B (clearly, B �⊆ H).
Unfortunately, this is never true: take X ∈ H which has infinite intersection with
infinitely many elements of A and build a block sequence Y in X with the same
property. Taken as a set, Y ∈ H but Y contains no subspaces. This argument can
be adapted to show that the family of block sequences in E whose spans are in H
fails to be a coideal in the associated Ramsey space of all block sequences, in the
sense of [8].

7This is shown for infinite mad families in Proposition 0.7 of [23], but the assumption of maximality
is not necessary, see Example 2 on p. 35 of [33].
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We now turn to a strategy based on the Ramsey-theoretic results in [32] for block
sequences in vector spaces over an arbitrary countable field F .
Following [32],we let bb∞(E) denote the space of all infinite block sequences inE,
which inherits a Polish topology fromE� that is compatible with the Borel structure
of 2E . ForX,Y ∈ bb∞(E), we writeX � Y if 〈X 〉 ⊆ 〈Y 〉, andX �∗ Y ifX/n � Y
for some n, whereX/n denotes the tail subsequence ofX consisting of those vectors
inX with supports above n. Note that 〈X/n〉 = 〈X 〉/n, where the latter was defined
for subspaces in Section 2. A nonempty subset of bb∞(E) is a family if it is closed
upwards with respect to �∗. If X ∈ H, we write H � X = {Y ∈ H : Y � X}. The
key notions from [32] are as follows:

Definition 4.1. A family H ⊆ bb∞(E) is:
(a) a (p)-family, or has the (p)-property, if wheneverX0 � X1 � · · · is a decreas-
ing sequence with each Xn ∈ H, there is a Y ∈ H with Y �∗ Xn for all
n ∈ �.

(b) full if whenever D ⊆ E (not necessarily a subspace) and X ∈ H are such
that for every Y ∈ H � X , there is a Z � Y with 〈Z〉 ⊆ D, then there is a
Z ∈ H � X with 〈Z〉 ⊆ D.

(c) a (p+)-family if it is full and has the (p)-property.

Definition 4.2. The Gowers game [11] played below X ∈ bb∞(E), denoted
G [X ], is as follows: Players I and II alternate, with player I going first and playing
block sequences Xk � X , and player II responding with vectors yk ∈ 〈Xk〉 subject
to the constraint yk < yk+1, for k ∈ �. The block sequence (yk) is the outcome of
a play of the game.

A strategy for II inG [X ] is a function α taking sequences (X0, . . . , Xk) of possible
prior moves by I to vectors y ∈ 〈Xk〉, with α(X0, . . . , Xk−1) < y for all k. Given a
set A ⊆ bb∞(E), we say that α is a strategy for playing intoA if whenever II follows
α (that is, at each turn, given as input I’s prior moves, II plays the output of α), the
resulting outcome lies in A. These notions are defined likewise for I.

Definition 4.3. The infinite asymptotic game [27, 28] played below X , denoted
F [X ], is as follows: Players I and II alternate, with player I going first and playing
nk ∈ �, and player II responding with vectors yk ∈ 〈X/nk〉 subject to the constraint
yk < yk+1, for k ∈ �. Again, (yk) is the outcome of a play of the game.
Strategies for I and II in F [X ] are defined as above for G [X ], as is the notion of
having a strategy for playing into a set. In both games, we will be agnostic about
which player “wins”.

Definition 4.4. A family H ⊆ bb∞(E) is strategic if whenever α is strategy for
II in G [X ], when X ∈ H, there is an outcome of α which is in H.
It is proved in [32] that any sufficiently generic filter for (bb∞(E),�∗), viewed as
a �-closed notion of forcing, is a strategic (p+)-family.
The following theorem from [32] was originally proved by Rosendal [28] in the
case H = bb∞(E), which in turn was a discretized version of the dichotomy for
block sequences in Banach spaces proved by Gowers in [11].
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Theorem 4.5 (Theorem 1.1 in [32]). Let H ⊆ bb∞(E) be a (p+)-family. If
A ⊆ bb∞(E) is analytic, then there is a X ∈ H such that either
(i) I has a strategy in F [X ] for playing into Ac , or
(ii) II has a strategy in G [X ] for playing into A.

Assuming large cardinal hypotheses, and thatH is strategic, Theorem 4.5 can be
extended to all sets A in L(R) (Theorem 1.3 in [32]).
In what follows, if A is an infinite almost disjoint family of subspaces of E
(notably, the elements of A need not be block subspaces), we let

H(A) = {X ∈ bb∞(E) : ∃∞Y ∈ A(dim(〈X 〉 ∩Y ) =∞)}.
Note that H(A) is always nonempty, as it contains (en), is closed upwards with
respect to �∗, and is thus a family. We let

A = {X ∈ bb∞(E) : ∃Y ∈ A(〈X 〉 ⊆ Y )}.
Note thatA ∩H(A) = ∅, and that if A is analytic, so is A.
Lemma 4.6. If A is an infinite almost disjoint family of subspaces of E, then for
any X ∈ H(A),
(a) I and II have strategies in G [X ] and F [X ], respectively, for playing intoH(A).
(b) If A is maximal, then I and II have strategies in G [X ] and F [X ], respectively,
for playing into A.

Proof. (a) Fix an enumeration (Yn) of a countably infinite subset of A, each
Yn having infinite-dimensional intersection with 〈X 〉, in such a way that each Yn is
repeated infinitely often. To see that I has a strategy in G [X ] for playing intoH(A),
let I play an infinite block sequence in 〈X 〉 ∩ Yn on their nth move. The resulting
outcome will have infinitely many entries in each Yn and is thus in H(A). To see
that II has a strategy in F [X ] for playing into H(A), let II play the first element of
Yn they can on their nth move.
(b) Suppose thatA ismaximal. TakeY ∈ Ahaving infinite-dimensional intersection
with 〈X 〉. To see that I has a strategy inG [X ] for playing intoA, let I play, repeatedly,
any infinite block sequence Z contained in 〈X 〉 ∩Y . The resulting outcome will be
below Y . To see that II has a strategy in F [X ] for playing into A, observe that so
long as II plays in Y , which they may always do, the outcome will be contained
in Y . 

Lemma 4.7. For X an infinite-dimensional subspace, Y a block subspace, and
z0 < · · · < z� in E, if X ⊆ Y + 〈z0, . . . , z� 〉, then there is anM such that X/M ⊆ Y .
Proof. Let (yn) be a block basis for Y . Let N = max{supp(zi ) : i ≤ �} and
suppose that y0, . . . , yk are those basis vectors in Y whose supports are not above
N . LetM = max{N,max(supp(yk))}. We claim that X/M ⊆ Y . Take x ∈ X/M .
By assumption, x = y + w where y ∈ Y and w ∈ 〈z0, . . . , z� 〉. Write y = y′ + y′′,
where y′ ∈ 〈y0, . . . , yk〉 and y′′ ∈ 〈yk+1, yk+2, . . .〉, so that x−y′′ = y′+w. If either
side of this equation is nonzero, then supp(x − y′′) > M , but supp(y′ + w) ≤M ,
a contradiction. Thus, x = y′′ ∈ Y . 

Lemma 4.8. IfA is an infinite mad family of subspaces, thenH(A) is strategic and
has the (p)-property.
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Proof. That H(A) is strategic is immediate from Lemma 4.6(a), as whenever α
is a strategy for II inG [X ], forX ∈ H(A), we may let I use their strategy for playing
into H(A) in response.
In what follows, if (Zn) is a sequence in bb

∞(E) and Z ∈ bb∞(E) is such that
Z/n � Zn for all n ∈ �, we will call Z a diagonalization of (Zn).
To see that H(A) has the (p)-property, let X0 � X1 � X2 � · · · be a decreasing
sequence contained within H(A). Let X 0 ∈ bb∞(E) be a diagonalization of (Xn)
and take Y 0 ∈ A having infinite-dimensional intersection with 〈X 0〉. Following the
proof of Proposition 0.7 in [23], we will construct sequences (Xm) and (Ym) in
bb∞(E) where each Ym is a distinct element of A, 〈Xm〉 has infinite-dimensional
intersection with Ym, and Xm a further diagonalization of (Xn).
For each n, construct a countably infinite pairwise disjoint family of block
sequences An below Xn such that
(i) for all Y ∈ An, there is a Y ′ ∈ A with 〈Y 〉 ⊆ Y ′, and
(ii) for all Y ∈ An, 〈Y 〉 is disjoint from Y 0.
This can be accomplished as Xn ∈ H(A); simply take a countably infinite A′

n ⊆ A
not containing Y 0, all of whose elements have infinite-dimensional intersection
with 〈Xn〉, and let An be a set of block bases of subspaces witnessing this. Pairwise
disjointness and disjointness fromY 0, for elements inAn, can be ensured by passing
to tail block sequences. Enumerate An = {Yni : i ∈ �} in such a way that each
element is repeated infinitely often.
Next, we build a decreasing sequence X 00 � X 01 � X 02 � · · · in H(A) such that
for each n, X 0n � Xn, and 〈X 0n 〉 is almost disjoint from Y 0. We will denote by
X 0n = (x

0
n,i)i∈� .

Let x00,0 be the first entry ofY
0
0 . Theremust be a nonzero x ∈ 〈Y 10 〉 above x00,0 such

that no linear combination of x and x00,0 is in Y
0, otherwise Y 10 �∗ Y 0 by Lemma
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A2 : · · · Y 23 Y 22 Y 21
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0
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x02,0=x

0
1,1=x

0
0,3

X3

���
���

���

����
����

�����
����

����
���

������
������

������
������

������
�����

�������
�������

�������
�������

�������
�������

�

A3 : · · · Y 33 Y 32 Y 31 Y 30
x03,0=x

0
2,1=x

0
1,3=x

0
0,6

...

Figure 1. The construction of the X 0n ’s
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4.7. Let x01,0 = x
0
0,1 ∈ Y 10 be such a vector. We continue in this fashion, following

the diagram in Figure 1, with X 00 = (x
0
0,n), X

0
1 = (x

0
1,n), X

0
2 = (x

0
2,n), X

0
3 = (x

0
3,n),

etc. on.
That is, let x00,2 ∈ Y 01 be a vector above x00,1 such that no linear combination of it
with x00,0 and x

0
0,1 lies in Y

0. Next, let x00,3 = x
0
1,1 = x

0
2,0 ∈ 〈Y 20 〉 be a vector above

x00,2 such that no linear combination of it with x
0
0,0, x

0
0,1 and x

0
0,2 lies in Y

0. And so
on.
By construction, X 00 � X 01 � X 02 � · · · as each X 0n is a subsequence of the
previous ones, and each 〈X 0n 〉 is disjoint fromY 0. Moreover, each 〈X 0n 〉 has infinite-
dimensional intersection with 〈Y 〉, for each Y ∈ An, and X 0n ∈ H(A). Let X 1 be
a diagonalization of (X 0n ), and thus also a diagonalization of the original (Xn) as
well. Let Y 1 ∈ A have infinite-dimensional intersection with 〈X 1〉. Note that we
must have Y 1 �= Y 0.
We continue this process to obtain (Xm) and (Ym) as desired. Let i : � → �
be an everywhere infinity-to-one surjection and consider the sequence of pairs
(X i(m), Y i(m)). Construct X = (xm) so that each xm ∈ 〈X i(m)/m〉 ∩ Y i(m). Then,
X ∈ H(A), and moreover, for all n, if x ∈ 〈X/n〉, then x is a linear combination
of elements of X i(m0)/n, . . . , X i(mk )/n, each of which is �Xn. So, X/n � Xn for
all n. 

Definition 4.9. An infinite mad family A of subspaces is full ifH(A) is full.
The preceding lemmas, and Theorem 4.5, yield the following:

Theorem 4.10. There are no analytic full mad families of subspaces.
Proof. Suppose thatA was an analytic full mad family of subspaces. By Lemma
4.8, H is a (p+)-family. Applying Theorem 4.5 to the analytic set A, there is an
X ∈ H(A) such that either I has a strategy in F [X ] for playing into Ac , or II has a
strategy in G [Y ] for playing intoA. However, the latter contradicts Lemma 4.6(a),
while the former contradicts Lemma 4.6(b). 

Under large cardinal hypotheses, an identical proof, using Theorem 1.3 in [32],
shows that no full mad family of subspaces can be in L(R).
Must a mad family of subspaces be full? Unfortunately, we are only able to show
that, consistently, there are such mad families. It remains an open question whether
mad families must be full (we suspect not), and if not, whether full mad families
exist in ZFC. First, we need a variation on Theorem 3.1, localized to a fixed block
subspace X .

Lemma 4.11 (MAκ(�-centered)). Suppose thatX is a block subspace ofE and C an
almost disjoint family of block subspaces of E such that each has infinite-dimensional
intersection with X . If |C| ≤ κ, then there is a block subspace Y of X almost disjoint
from every element of C.
Proof. We mimic the proof of Theorem 3.1. Define a poset P to be all pairs
(s, F ) where s is a finite normalized block sequence in X and F a finite subset
of C. We order elements of P by (s ′, F ′) ≤ (s, F ) if s ′ � s , F ′ ⊇ F , and ∀W ∈
F (〈s ′〉 ∩ W ⊆ 〈s〉). As before, P is �-centered, and if G is a filter in P, we let
XG = 〈⋃{s : ∃F ((s, F ) ∈ G)}〉.
IfW ∈ C, then the setDW = {(s, F ) ∈ P :W ∈ F } is dense, and ifG ∩DW �= ∅,
then XG ∩W is finite dimensional. For n ∈ �, let En = {(s, F ) ∈ P : |s | ≥ n}. In
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order to see that the sets En, as before we use Lemma 2.3 to obtain anM for which
whenever x > M and not in

⋃
F , 〈s�x〉 ∩W = 〈s〉 ∩W for each of the finitely

manyW ∈ F . Then, for any such x in X (which can be found inW ∩ X for some
W ∈ C), (s�x, F ) ≤ (s, F ).
If |C| ≤ κ, by MAκ(�-centered), there is a filter G ⊆ P which meets the sets DW
and En, forW ∈ C and n ∈ �, so Y = XG is as desired. 

It will be useful to note that if A ⊆ B are infinite almost disjoint families of
subspaces, then H(A) ⊆ H(B).

Theorem 4.12 (MA(�-centered)8). There is a full mad family of block subspaces.

Proof. We will define A = ⋃
α<c Aα via transfinite recursion on c. Enumerate

by {Xα : α < c} and {Dα : α < c} all elements of bb∞(E) and subsets of E,
respectively, ensuring that the enumeration Xα repeats each X ∈ bb∞(E) cofinally
often. Fix a bijection 〈·, ·〉 : c× c → c.
Begin by letting A0 be any countably infinite almost disjoint family of block
subspaces. Given α < c, suppose that for � < α, A� has been defined to be an
infinite almost disjoint family of block subspaces with size ≤ |� | + ℵ0, and that
A� ⊆ A
 for � ≤ 
 < α. We define Aα as follows:
PutA′

α =
⋃
�<α A� . If 〈Xα〉 is almost disjoint from every element ofA′

α , then put
A′′
α = A′

α ∪ {〈Xα〉}. If not, put A′′
α = A′

α . Say α = 〈
, �〉. If X
 /∈ H(A′′
α), then let

Aα = A′′
α . Otherwise, let C be the collection of elements of A′′

α with which X
 has
infinite-dimensional intersection and consider the following cases:
Case 1. There is a Z � X
 such that 〈Z〉 is almost disjoint from each Y ∈ C and
is contained in D� . In this case, let B be a countably infinite almost disjoint family
of infinite-dimensional subspaces below Z. Note that if V ∈ B is compatible with
some Y ∈ A′′

α , then X
 must be compatible with that Y , so Y ∈ C, but this yields a
contradiction as 〈Z〉 must be almost disjoint from such a Y . Let Aα = A′′

α ∪ B, an
almost disjoint family by the preceding argument. Then, Z ∈ H(Aα).
Case 2. For every Y � X
 such that 〈Y 〉 is almost disjoint from every element of

C, there is no Z � Y with 〈Z〉 ⊆ D� . Note that if this fails, we are in Case 1. As
|C| ≤ |α| + ℵ0 < c, by MA(�-centered) and Lemma 4.11, there is a Y � X
 with
〈Y 〉 almost disjoint from each element of C. Let B be a countably infinite almost
disjoint family below Y , and let Aα = A′′

α ∪ B, an almost disjoint family by the
same argument as in Case 1. Then, Y ∈ H(Aα).
We claim that A = ⋃

α<c Aα is as desired. Note that H(A) =
⋃
α<c H(Aα), as

whenever X ∈ H(A), a countably infinite subset of A all compatible with X must
occur in some initialAα , as cf(c) > ℵ0. Clearly,A is a mad family. To verify fullness,
let D ⊆ E and X ∈ H(A), and suppose that for every Y ∈ H(A) � X , there is a
Z � Y with 〈Z〉 ⊆ D. We may take α < c large enough so that α = 〈
, �〉, X = X
 ,
D = D� , and X
 ∈ H(A′′

α), for A′′
α as in the construction above. If Case 1 occurred

for this α, then there is a Z ∈ H(Aα) � X ⊆ H(A) � X with 〈Z〉 ⊆ D. If Case
2 occurred for this α, then there is an Y ∈ H(Aα) � X ⊆ H(A) � X having no
8This result seems likely to be true under the weaker assumption that avec,F = c; the issue is that the

relevant almost disjoint family of subspaces, namely those of the formW ∩ 〈X
〉 forW ∈ C in Case 2,
need not be block.
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Z � Y with 〈Z〉 ⊆ D, contrary to assumption. Thus, there is a Z ∈ H(A) � X
with 〈Z〉 ⊆ D, as required. 

The proof of Theorem 4.12 can be adapted to show how to generically add a
full mad family of block subspaces: Let P be the collection of all countably infinite
almost disjoint families of block subspaces, ordered by reverse inclusion. It is easy
to see that P is �-closed and if G is V-generic for P, then G = ⋃

G is a mad family
of block subspaces. The arguments in Cases 1 and 2 above show that, for A ∈ P,
X ∈ H(A), and D ⊆ E, the set of all B ∈ P such thatH(B) “witnesses fullness for
X andD” is dense belowA. In the language of [13], assumingMA(�-centered), full
mad families of block subspaces exist generically.
What can we say about analytic mad families of subspaces in the absence of
fullness? For a family H ⊆ bb∞(E) and X ∈ H, the game GH[X ] is the variant of
G [X ] in which I is restricted to playing elements of H � X . A variant of Theorem
4.5, Theorem 3.11.5 in [31], can be used to obtain the following:
Theorem 4.13. LetA be an infinite mad family of subspaces. IfA is analytic, then
there is an Y ∈ H(A) such that II has a strategy in GH(A)[Y ] for playing into A.
WereH(A) to be+-strategic, that is, whenever α is a strategy for II in GH(A)[X ],
for some X ∈ H(A), then there is an outcome of α in H(A), then the conclusion
of the above theorem would yield the desired contradiction. However, by Theorem
3.11.9 of [31], this is equivalent toH(A) being full. These observations suggests that
full mad families of subspaces are analogous to +-Ramsey mad families on �, as
studied by Hrušák in [18] (see also [13]).9

§5. Further remarks, conjectures and open questions. Many of the arguments
above, particularly those dependent on Lemma 2.3 or results from [7], depend on
the subspaces involved being block subspaces. For this reason, we incorporated
“block” into our definition of the cardinal avec,F . It remains unclear whether this is
necessary for our results.
Question 5.1. Given an infinite mad family of (arbitrary) infinite-dimensional
subspaces, is there one of the same size consisting only of block subspaces? In particular,
can we remove “block” from the definition of avec,F ?
We have seen in Corollary 3.2 that it is consistent that a < avec,F . As in [7], we
also ask about the reverse inequality:
Question 5.2. Is avec,F < a consistent with ZFC?
Given the results in Section 3, it would be interesting to further determine in
which “canonical models” avec,F = ℵ1. In particular, as both a and non(M) are
ℵ1 in the Miller model (see Section 11.9 in [5]), we suspect that avec,F is as well.
The paramterized ♦ principles of Moore, Hrušák, and Džamonja [26] provide a
convenient way of isolating such results. For instance, it is shown in [26] that♦(b),
which holds in the Cohen, Sacks, and random models, implies that a = ℵ1. By
Corollary 3.2, this is not the case for mad families of block subspaces. We suspect
instead that the “correct” ♦ principle for avec,F is ♦(��,=∞) (cf. Theorem 7.5
in [26]):

9A closer analogue to being +-Ramsey would replace player II with player I in the definition of
+-strategic, however this does not seem relevant to the present situation.
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Conjecture 5.3. ♦(��,=∞) implies that avec,F = ℵ1.10
As ♦(��,=∞) holds in the Cohen and Sacks models, this would subsume The-
orems 3.3 and 3.6. Moreover,♦(��,=∞) implies that non(M) = ℵ1 and thus fails
in the random model, consistent with Corollary 3.2.
None of the original results in this article have any dependence on F . What
differences, if any, can arise from different choices of F ? In particular:

Question 5.4. Is it consistent with ZFC that for some choice of fields F and K
(e.g., |F | = 2 and K = Q) avec,F �= avec,K ?

The main motivating question for Section 4 remains open:

Question 5.5. Does there exist an infinite analytic mad family of subspaces of E?

Since posing this question in an earlier version of this article, it has been answered
negatively by Horowitz and Shelah [17] in the special case when |F | = 2. The work
in Section 4 also raises the following:

Question 5.6. Must every mad family of subspaces be full? If not, does there exist
(in ZFC) a full mad family of subspaces?

This may be analogous to the existence (in ZFC) of a +-Ramsey mad family on
�, recently announced by Osvaldo Guzmán-González [12].

Acknowledgment. The author would like to thank the anonymous referee for
many helpful comments and corrections.

REFERENCES

[1] J. E. Baumgartner, Sacks forcing and the total failure of Martin’s axiom. Topology and its
Applications, vol. 19 (1985), no. 3, pp. 211–225.
[2] J. E. Baumgartner and R. Laver, Iterated perfect-set forcing. Annals of Mathematical Logic, vol.

17 (1979), no. 3, pp. 271–288.
[3]M. G. Bell, On the combinatorial principle P(c). Fundamenta Mathematicae, vol. 114 (1981), no.

2, pp. 149–157.
[4] T. M. Bice, MAD families of projections on l2 and real-valued functions on �. Archive for

Mathematical Logic, vol. 50 (2011), no. 7–8, pp. 791–801.
[5] A. Blass, Combinatorial cardinal characteristics of the continuum, Handbook of Set Theory

(M. Foreman and A. Kanamori, editors), vol. 1, Springer, Dordrecht, 2010, pp. 395–489.
[6] J. Brendle, The almost-disjointness number may have countable cofinality. Transactions of the

American Mathematical Society, vol. 355 (2003), no. 7, pp. 2633–2649.
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