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Investigations on electronic structure of YMnO3 by electron energy loss
spectra and first-principle calculations
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Crystal structure and electronic structure of YMnO3 were investigated by X-ray diffraction and
transmission electron microscopy related techniques. According to the density of states (DOS), the
individual interband transitions to energy loss peaks in the low energy loss spectrum were assigned.
The hybridization of O 2p with Mn 3d and Y 4d analyzed by the partial DOS was critical to the
ferroelectric nature of YMnO3. From the simulation of the energy loss near-edge structure, the
fine structure of O K-edge was in good agreement with the experimental spectrum. The valence
state of Mn (+3) in YMnO3 was determined by a comparison between experiment and calculations.
© 2019 International Centre for Diffraction Data. [doi:10.1017/S0885715619000617]
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I. INTRODUCTION

Ferroelectric materials have attracted great interest in
fundamental research owing to their potential technological
applications (Du et al., 2008; Gibbs et al., 2011; Malo and
Maignan, 2012). YMnO3 exhibits multiferroicity with high
ferroelectric and low antiferromagnetic transition temperature
(Huang et al., 1997; Lin et al., 2019a, 2019b). It belongs to the
non-center symmetric space group of P63cm at room temper-
ature with typical ABO3-type structure (Prikockyte et al.,
2011; Bi et al., 2019; He et al., 2019). A prototype ferroelec-
tricity was observed in the so-called d0-ness systems, such as
BaTiO3, in which Ti

4+(d0) ions make off-center movements in
TiO6 octahedra to lower the energy through enhanced Ti 3d
and O 2p hybridization (Cohen, 1992; Ghosez et al., 1998;
Babu et al., 2007). YMnO3 contains Mn (3d4) magnetic
ions. Thus, a mechanism other than “d0-ness” is needed to
account for the ferroelectricity. Possibilities include lone
pair electrons as in BiMnO3 or a spin frustration of magnetic
order as in TbMnO3 (Kimura et al., 2003). But neither lone
pair nor spin frustration can explain the ferroelectricity of
YMnO3.

The ferroelectricity mechanism for YMnO3 has been
ambiguous and confusing so far. Filippetti and Hill performed
density functional theory (DFT) calculations and proposed
that distortion was caused by hybridization between unoccu-
pied Mn 3d2z and O 2pz orbitals (Filippetti and Hill, 2002).
Cho performed the polarization-dependent X-ray absorption
spectroscopy and concluded that Y 4d states were strongly
hybridized with the O 2p states (Cho et al., 2007). Liu pro-
posed that the ferroelectric origin of YMnO3 was associated
with the charge transfer from the Y–O bonds to the Mn–O
bonds (Liu et al., 2011), etc. However, these works did not

systematically combine experiments with calculations when
discussing the electronic structure of YMnO3.

X-ray diffraction (XRD) and electron energy loss spectro-
scopy (EELS) are two important methods for characterization
of materials and condensed matter. Combining with the XRD
results, EELS can provide additional information. When inci-
dent electrons enter a material, they interact with the constitu-
ent atoms via electrostatic forces. As a result of these forces,
some of the electrons are scattered. The interaction between
incident electrons and the atomic electrons surrounding the
nucleus is inelastic scattering. By analyzing the energy loss
distribution of inelastic scattered electrons, the spatial environ-
ment information of the electrons can be obtained, and various
physical and chemical properties of the sample can be studied.
(Egerton et al., 1987; Zhang et al., 2008; Lin et al., 2019a,
2019b; Wang et al., 2019a, 2019b). First-principle calcula-
tions were used to analyze the single-electron excitation
from the valence band (VB) to the conduction band (CB) in
EELS experiments. The empty density of states (DOS) can
be comparable with the energy loss near-edge structure
(ELNES) (Ikeno and Mizoguchi, 2017; Wang et al., 2018).
In this work, we combined the first-principle calculations
with EELS experiments, valence EELS were obtained and
analyzed by the calculated DOS, ELNES were investigated
by comparing the simulated results with experiments to
study the electronic structure of YMnO3. The results provided
a theoretical basis for understanding the ferroelectric mecha-
nism of YMnO3.

II. EXPERIMENTAL METHODS AND THEORETICAL

DETAILS

The YMnO3 sample was prepared using a conventional
solid-state reaction method (Zhang et al., 2014). The XRD
measurements were performed in the EMPYREAN X-ray dif-
fractometer from Dutch PANalytical company (with the
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detector PIXcel-3D). The powder sample was flattened onto
the glass piece and loaded into the fixture. The measurements
were carried out in the Bragg Brentano θ−2θ geometry with
CuKα radiation at an operating voltage of 40 kV and an oper-
ating current of 40 mA. The samples were scanned from 10° to
130° with the step size of 0.26261°, and the dwell time is
39.53 s step−1. HighScore software was used to smooth the
data, eliminate the alpha-2, and refine the lattice parameter.
The EELS experiments were performed using a post-column
Gatan Imaging Filter system attached to the microscope with
an energy resolution of 1.0 eV for core-loss EELS. Its energy
resolution was determined by the full-width half-maximum of
the zero-loss peak. The spectra were acquired in selected area
electron diffraction (SAED) mode at small momentum

transfer. The energy dispersion is 0.2 eV pixel−1. All of the
spectra were calibrated using the zero-loss peak position.

The calculations were performed using the DFT in
Cambridge Serial Total Energy Package (CASTEP).
Ultrasoft pseudopotential was expanded within a plane wave
basis set to ensure the convergence with the cut-off energy
(450 eV). Integrations in Brillouin zone were performed
using special k-points generated with 4 × 4 × 2 mesh parame-
ters grid. Exchange and correlation effects were described by
Perdew–Burke–Ernzerhof (PBE) in generalized gradient
approximation (Perdew et al., 1996). During the optimization,
the convergence criteria of the energy and the maximum force
were set at 1.0 × 10−5 eV atom−1 and 0.05 eV Å−1. The max-
imum stress was less than 0.1 GPa and the displacement of
atoms convergence should be less than 0.002 Å.

III. RESULTS AND DISCUSSIONS

Figure 1 presents XRD patterns of the YMnO3 powders.
Compared with the standard card (PDF 01-070-4962), the
position of the diffraction peaks is almost the same, so it is
shown that the powder sample is in P63cm hexagonal struc-
ture. Therefore, the YMnO3 of ferroelectric phase was deter-
mined by XRD experiments, which provided a qualitative
basis for EELS experiments. And the standard card provides
atomic structure information for the simulated calculation
(a = 6.1390 Å, b = 6.1390 Å, c = 11.4070 Å, α = 90°, β = 90°,
γ = 120°). Figure 2 presents the crystal structure of the opti-
mized hexagonal YMnO3, the primitive unit cell contains six
formula units (30 atoms). Two inequivalent Y1 (0, 0, 0.771)
and Y2 (0.334, 0.667, 0.730) atoms form layers between the
MnO5 triangular bipyramids tilted with respect to c-axis.

Figure 1. XRD pattern of the collected powders, the position of diffraction
peaks is almost the same with the standard card (PDF 01-070-4962).

Figure 2. (a) Atomic structure of the P63cm ferroelectric
YMnO3. (b) The triangular bipyramids of MnO5 in the
atomic model. (c) Three-dimensional electron density
distribution of YMnO3 obtained by CASTEP calculation. (d)
Atomic structure with z-axis perpendicular to the paper surface.
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Equivalent Mn atoms (0.335, 0.335, 0.497) are situated in the
center of MnO5, which is surrounded by O3 (0, 0, 0.475), O41
(0.334, 0.667, 0.516), O42 (0.667, 0.334, 0.516) in the plane
(OP) perpendicular to the c-axis, O1 (0.359, 0.359, 0.334)
and O2 (0.308, 0.308, 0.660) along the c-axis (OT). The lattice
constant and interatomic distance were obtained from the liter-
ature by Salazar-Kuri et al. (2012), and we used these data to
build the atomic structure of YMnO3. The related parameters
and corresponding experimental values (Lima and Lalic,
2013) are presented in Table I. As it can be seen, the calculated
parameters are consistent with the experimental data. The elec-
tron density distribution around the Mn ion in Figure 2(c) is
anisotropic. The minimum electron densities of the Mn–OT

bonds are larger than that of the Mn–OP bonds. The results
can be described to the conventional localized bonding elec-
trons, because the Mn–OT bonds (∼1.9 Å) are quite shorter
than the Mn–OP bonds (2.1 Å). Figure 3(a) is the SAED dia-
gram under [1�10] zone axis. Figure 3(b) shows the high-
resolution transmission electron microscopy (HRTEM)
results. The measured interplanar spacings were about 0.281
and 0.305 nm, which are comparable with the planes of
(004) and (110) in the XRD, respectively. The matching planes
shown by SAED are also (004) and (110). Moreover, the
SAED pattern in Figure 2(a) is consistent with the FFT pattern
[inset of Figure 2(b)] of the HRTEM image.

The single-scattering distribution S(E) of YMnO3 is
shown in Figure 4(a), which is extracted by the removal of
the plural scattering using Fourier-log deconvolution
(Egerton, 2009). One important step to gain S(E) is the
removal of the zero-loss peak, as emphasized by our previous
work (Zhang et al., 2006), because it is high-energy tail covers
features of the low-loss region (Rafferty et al., 2000; Erni and
Browning, 2005). Above the bandgap, there are five well-
resolved peaks, located at ∼6.40 eV (A1), ∼10.21 eV (A2),
∼14.07 eV (A3), ∼21.39 eV (A4) and ∼34.49 eV (A5), respec-
tively. The dominant peak A5 can be assigned to the bulk-
plasmon oscillation. Other peaks originate from the single
electron excitation from the VB to the empty DOS in the
CB, and their profiles are expected to have a direct correlation
with the joint DOS between occupied and unoccupied states in
the energy bands. It should be noted, most of the peaks have
mixed character since the dipole transitions selection rules
have been extended. In the case of a large collection aperture,
dipole-forbidden transitions (ΔL = 2) are sometimes observed
(Egerton et al., 1987; Lin et al., 2017; Quhe et al., 2019).
Thus, A1 is mainly attributed to the transitions between the
O 2p to the Mn 3d band. A2 agrees with the characteristic of
the O 2p to the Mn 3d/Y 4d transitions; meanwhile, the Mn
3d to the Y 4d transitions also make contributions to it. A3 cor-
responds to the excitation from the O 2p or Mn 3d to the Y 4d
level. A4 corresponds to the transitions from the O 2s to the
Mn 3d. For convenience, the assignments of the correspond-
ing transitions were added to Table II. We found that every
energy loss peak is related to the electronic transitions from
the O 2p orbital to the Mn 3d or Y 4d orbitals. The information
about electronic structure can be obtained from Figure 4(b).
In the VB, the primarily populated O 2p and Mn 3d states
form a block of the states whose energy lies approximately
between −6.7 and −1.1 eV, within this energy range Mn
atoms and O atoms exhibits hybridization. The energy range
of −18.8 to −17.3 eV is mainly filled by a relatively narrow
band of the 2s orbital electrons of O atoms. In the VB, only
a small amount of Y 4d states are concentrated in the energy
range from −6.6 to −1.7 eV, while the Y 4d states are mainly
concentrated in the CB between 5.6 and 7.4 eV. The energy
level from 2.8 to 7.1 eV is mainly occupied by the 3d orbital
electrons of Mn atoms and is filled by little O 2p states.

TABLE I. Calculated equilibrium lattice constants and selected interatomic
distances (Å) in YMnO3 crystal compared to experimental data.

Cal. (Salazar-Kuri et al., 2012) Exper. (Lima and Lalic, 2013)

a 6.139 6.155
c 11.407 11.403
Mn–O1 1.863 1.850
Mn–O2 1.862 1.878
Mn–O3 2.073 1.996
Mn–O4 2.052 2.097
Y1–O1 2.281 2.345
Y2–O1 2.275 2.459
Y1–O2 2.316 2.282
Y2–O2 2.300 2.283
Y1–O3 2.326 2.345
Y2–O4 2.452 2.459

Figure 3. (a) SAED pattern recorded from [1�10] zone axis. (b) HRTEM image shows three different lattice directions, the left bottom shows the pattern after Fast
Fourier Transform (FFT).
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Overall, the local symmetry of the Mn is bipyramidal, thus the
energy of its 3d orbital splits into doublets: in the VB top
consists of the mixture of the e1g and a1g states, while the
CB bottom is formed of the mixture of the a1g, e1g and t1g
states (Sotero et al., 2015). We also observed from the figure
that the 4d orbital electrons of Y atoms and the 2p orbital elec-
trons of O atoms have hybrid processes in both VB and CB,
but the hybridization intensity is not stronger than Mn3d
and O2p. Thus, the analysis of the DOS showed that the inter-
action among 2p of O, 3d of Mn, and 4d of Y atomic orbitals
causes the spontaneous polarization, which results in the
appearance of ferroelectric phase.

To get more information about the electronic structure, we
have carried out ELNES studies. The ELNES reflect both
compositional analysis and degree of bonding hybridization.
Thus, it contains valuable information about the nearest neigh-
bored bonding (O 2p with the cationic d-orbital). Figure 5
shows the results of O K-edge by calculation and experiment.
We can see that the simulated spectra nearly reproduce all
details presented in the fine structure in terms of number of
peaks, peak intensity and peak position. The O K-edge fine
structure reflects mainly the density of O 2p states when
hybridized with Y and Mn orbitals from the YMnO3. In
Figure 5(b), five characteristic peaks marked by a, b, c, d
and e can be clearly distinguished, where peaks a and b are
related to the hybridization between O and Mn ions, and
peaks c and d reflect the hybridization between O and Y
ions. It indicates that O–Mn and O–Y covalent bonds are
formed between O atoms and Mn/Y atoms, which has a

stabilizing effect on the ferroelectric phase. The feature
group of e is an absorption peak, which is a diffractive region
due to a backscattering process between the absorber and its
nearest neighbor oxygen shell (Kim et al., 2014; Wang
et al., 2019a, 2019b). In Figure 6, there are two main peaks
of Mn L2,3 edge in the experiment and calculations, which
are originating from the electron transition from 2p3/2 and
2p1/2 states to unoccupied 3d bands (Nishida et al., 2013).
The L3/L2 ratio is known to be related to the valence state
of the 3d transition metal. And the ratio of Mn L3/L2 in this
work was estimated using the method reported by Varela
et al. (2009). The integrated areas of the Mn L2,3 edge used
to estimate L3/L2 ratio are shown in Figure 6(c), and the
ratio is about 2.46. It can be confirmed from related literature
that the Mn of the YMnO3 compound is between trivalent and
tetravalent oxidation states (Schmid and Mader, 2006). We
simulated two valence states of Mn shown in Figures 6(a)
and 6(b), and the simulated spectrum with Mn (+3) is in
good agreement with the experimental spectrum. Therefore,

Figure 4. (a) The low energy loss spectrum of YMnO3. The intensity maximum around 34.49 eV is assigned to the bulk-plasmon loss, the smaller features are
due to excitation from interband transitions. (b) Total and partial DOS in YMnO3. The fermi level is set at 0 eV.

TABLE II. Assignment of the major interband transition between
experiment and theory.

Transition Energy (eV) Predominant orbital character

A1 6.40 O2p–Mn3d
A2 10.21 O2p–Y4d/Mn3d, Mn3d–Y4d
A3 14.07 O2p/Mn3d–Y4d
A4 21.39 O2s–Mn3d
A5 34.49 Bulk-plasmon loss

Figure 5. (a) The simulation spectrum of O K-edge with core-hole effects.
(b) The experimental spectrum of O K-edge.
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we confirmed that the element of Mn is trivalent oxidation
state in YMnO3.

IV. CONCLUSIONS

In summary, the electronic structure of YMnO3 was
investigated systematically based on both EELS and first-
principle calculations. The XRD and SAED experiments
revealed that the sample was pure hexagonal YMnO3 and
the Mn is bipyramidal coordinated. Assignments of the
individual interband transitions have been accomplished by
comparing the interband transition energy with the calculated
PDOS. The analysis from the DOS, low energy loss spectrum,
and high-energy loss spectrum of the O K-edge, the ferroelec-
tricity of YMnO3 is related to the hybridization (O 2p and Mn
3d, O 2p and Y 4d, respectively) and the forming of covalent
bonds. In addition, the experimental spectrum of O K-edge is
in good agreement with the simulated spectrum. The fine
structure of Mn L2,3 edge confirmed that Mn ion in the
YMnO3 belongs to trivalent oxidation state.
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