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Abstract We prove that, under rather general conditions, the 1-cohomology of a von Neumann algebra
M with values in a Banach M-bimodule satisfying a combination of smoothness and operatorial conditions

vanishes. For instance, we show that, if M acts normally on a Hilbert space H and B0 ⊂ B(H) is a norm
closed M-bimodule such that any T ∈ B0 is smooth (i.e., the left and right multiplications of T by x ∈ M
are continuous from the unit ball of M with the s∗-topology to B0 with its norm), then any derivation of

M into B0 is inner. The compact operators are smooth over any M ⊂ B(H), but there is a large variety
of non-compact smooth elements as well.
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0. Introduction

Given a von Neumann algebra M and a Banach M-bimodule B, an element T ∈ B is

smooth (over M) if the left and right multiplications of T by elements in M are continuous

from the unit ball of M with the s∗-topology, into B with its norm topology. The space

s∗M (B) (or s∗(B), for simplicity) of all smooth elements in B is itself a Banach M-bimodule,

and we investigate in this paper the question of whether the first cohomology with

values in a smooth closed M-bimodule B0 ⊂ s∗(B) vanishes. In other words, whether any

derivation δ : M → B0 (i.e., a linear map satisfying δ(xy) = xδ(y)+ δ(x)y, ∀x, y ∈ M) is

‘inner’, in the sense that there exists T ∈ B0 such that δ(x) = T x − xT , ∀x ∈ M .

We in fact only consider Banach M-bimodules B that are operatorial (over M),

i.e., for which the norm on B satisfies the axiom ‖pT p+ (1− p)T (1− p)‖ = max{‖pT p‖,
‖(1− p)T (1− p)‖}, for all T ∈ B and all projections p in M , and they will usually be

assumed dual and normal.

The prototype example of a dual normal operatorial M-bimodule is the space of all

linear bounded operators B(H) on the Hilbert space H on which M is represented. Its

smooth part s∗(B(H)) is a hereditary C∗-subalgebra of B(H) that contains the space of

compact operators K(H). But, unless M is a direct sum of matrix algebras, s∗(B(H)) is
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much bigger, containing a large variety of smooth elements that are non-compact (see 1.6,

1.7 hereafter).

We first prove that, if B is a dual normal operatorial M-bimodule, then any derivation

δ from M into a closed sub-bimodule B0 ⊂ s∗(B) can be ‘integrated’ to an element in B0
on any abelian von Neumann subalgebra of M , and show that, if M satisfies some very

weak regularity condition (e.g., if M has a Cartan subalgebra [11], or if it has property

(0) of [21]), then any element in B0 implementing δ on a diffuse abelian subalgebra

automatically implements δ on all M . We also prove a similar statement for smooth

derivations of M into an arbitrary (not necessarily dual normal) operatorial Banach

bimodule B0, i.e., for derivations that are continuous from the unit ball of M with the

s∗-topology into B0 with its norm topology. The precise statement is as follows.

Theorem 0.1. Let M be a von Neumann algebra with the property that any II1 factor

summand of M contains a wq-regular diffuse abelian von Neumann subalgebra. Let B0
be an operatorial Banach M-bimodule and δ : M → B0 a derivation. Assume that either

δ is smooth, or that B0 is a closed sub-bimodule of the smooth part of a dual normal

operatorial M-bimodule B, i.e., B0 ⊂ s∗(B). Then there exists T ∈ B0 such that δ = adT ,

‖T ‖ 6 ‖δ‖.
The wq-regularity condition for a diffuse von Neumann subalgebra B ⊂ M requires that

one can ‘reach out’ from B to M inductively, by a chain of algebras, B = N0 ⊂ N1 ⊂ · · · ⊂
Nı = M , such that, for all  < ı , N+1 is generated by unitaries u ∈ M with the property

that uNu∗ ∩ N is diffuse. We in fact prove a stronger statement than 0.1, where one

merely requires the existence of a wq-regular subalgebra that satisfies an asymptotic

commutativity property in M , which we call property (C ′), generalizing property (0)

in [21] and (C) in [29]. We mention that, in the case when a derivation δ takes values into

a smooth M-bimodule B0 that is contained in a dual normal M-bimodule, we actually

prove that δ follows automatically smooth, without the wq-regularity condition.

Our second main result shows that, in the specific case when B = B(H), 0.1 holds true

even without the wq-regularity assumption: any smooth-valued derivation of any von

Neumann subalgebra M into B(H) is inner. More precisely, we prove the following.

Theorem 0.2. Let M ⊂ B(H) be an arbitrary von Neumann algebra normally represented

on a Hilbert space H, B0 ⊂ s∗(B(H)) a Banach M sub-bimodule, and δ : M → B0 a
derivation. Then there exists T ∈ B0 such that δ = adT , ‖T ‖ 6 ‖δ‖.

In particular, since the compact operators are smooth over any von Neumann algebra,

the above theorem recovers a result in [30], showing that any derivation of a von Neumann

algebra with values into the space of compact operators is implemented by a compact

operator. It also provides an answer to a question posed by Gilles Pisier [27], motivated

by the similarity problem, concerning derivations from a C∗-algebra with a trace (M0, τ )

(such as the reduced C∗-algebra of a free group, C∗r (Fn), 2 6 n 6∞), represented on a

Hilbert space H, with values in B(H), satisfying ‖ ‖2 - ‖ ‖B(H) type continuity conditions.

Indeed, the existence of such a derivation δ implies that the representation of M0 is

automatically ‘normal with respect to τ ’ on the non-degenerate part of δ, and that δ
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extends to a smooth derivation of M = M ′′0 into s∗M (B(H)), so 0.2 applies, to give the

following.

Corollary 0.3. Let M0 be a C∗-algebra with a faithful trace τ , and let M0 ⊂ B(H) be

a faithful representation of M0. Let δ : M0 → B(H) be a derivation. Assume that δ is

continuous from the unit ball of M0 with the topology given by the Hilbert norm ‖x‖2 =
τ(x∗x)1/2, x ∈ M0, to B(H) with the operator norm topology. Then there exists T ∈ B(H)
such that δ = adT and ‖T ‖ 6 ‖δ‖.

As we mentioned before, the prototype example of a smooth operatorial M-bimodule is

the space of compact operators K(H) on the Hilbert space H on which M is represented, a

case studied in [16, 29, 30]. The initial motivation for our work has in fact been to provide

an abstract setting for this case, and to find the largest degree of generality for which

arguments in the spirit of [16, 29, 30] can be carried over. At the same time, we were

hoping to find M-bimodules for which the vanishing cohomology on abelian subalgebras

(as in [16]) and automatic extension properties (as in [29]) do hold, while the arguments

in [30], showing the vanishing 1-cohomology for arbitrary II1 factors, do not.

Results that show vanishing of the 1-cohomology with coefficients in B(H) for arbitrary

algebras, like in 0.2 or 0.3 above, can be relevant for the similarity problem (see [6, 20, 26]).

In turn, the existence for some II1 factor M of a smooth M-bimodule B0 for which M
has non-inner derivations would imply, via Theorem 0.1, that M has no diffuse abelian

wq-regular subalgebra (so, in particular, M would have no Cartan subalgebras, would

be prime, etc). This falls within the larger scope of finding a cohomology theory for II1
factors that is non-vanishing (and if possible calculable) and that could detect important

properties of II1 factors, like absence of regularity, or infinite generation. We do not

provide smooth such B0 here, and it may be that in fact 0.1, 0.2 hold true for all II1
factors and all smooth bimodules. We leave the clarification of this aspect as an open

problem.

The paper is organized as follows. In § 1, we define the smooth part of a Banach

M-bimodule, prove the main properties, and provide examples. In particular, we show

that, if M ⊂ B(H) is a non-atomic finite von Neumann algebra, then the smooth part

of the M-bimodule B(H) contains infinite-dimensional projections along ‘Gaussian’,

‘canonical anticommutation relation (CAR)’, and ‘free’ directions (see 1.7, 1.8). In § 2,

we consider smooth-valued derivations and show that they can be ‘integrated’ on abelian

subalgebras (see 2.5). The proof of this result follows ideas and techniques from [16].

In § 3, we introduce the notion of wq-regularity for subalgebras, and prove Theorem 0.1

(see 3.7, 3.8), by showing that, if a smooth-valued derivation δ has been integrated

to a smooth element T on a diffuse abelian subalgebra that is wq-regular in M , then T
automatically implements δ on all M . As we mentioned before, we in fact prove a stronger

result, involving a property that generalizes properties (0) in [21] and (C) in [29], called

property (C ′) (see 3.6). The proofs in this section consist of a refinement of arguments

in [29].

In § 4, we prove Theorem 0.2 and deduce Corollary 0.3 (see 4.1 and 4.5). The proof

of 4.1 follows the same strategy as in the case of compact-valued derivations in [30],

but the additional technical difficulties are significant. We overcome them by using
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the incremental patching technique in [31, 33, 34]. Section 5 contains general remarks,

including a generalization of Theorem 4.1 that recovers results in [36] (see 5.1), the

definition of smooth n-cohomology for n > 2 (5.2), and some final comments on smooth

cohomology (5.3). For convenience, we have included an Appendix with the proof of a

general ‘continuity principle’, extracted from [29, 30], used several times in this paper. For

the basics of von Neumann algebras, we refer the reader to the classic monographs [9, 42].

1. Smooth bimodules

Recall that if M is a unital Banach algebra (which we will in fact always assume in this

paper to be a von Neumann algebra), then a Banach M-bimodule B is an M-bimodule

with the property that 1M T = T 1M = T , ∀T ∈ B, and the left and right multiplication

operations M ×B 3 (x, T ) 7→ xT ∈ B, B×M 3 (T, x) 7→ T x ∈ B are bounded bilinear

maps. For simplicity, we will in fact always assume that ‖xT ‖ 6 ‖x‖‖T ‖, ‖T x‖ 6 ‖T ‖‖x‖,
∀x ∈ M, T ∈ B.

If in addition B is the dual of a Banach space B∗ and for each x ∈ M the maps B 3
T 7→ xT ∈ B, B 3 T 7→ T x ∈ B are continuous with respect to the σ(B,B∗) topology

(also called weak∗-topology), then B is called a dual M-bimodule. Finally, if M is a von

Neumann algebra, B is a dual M-bimodule, and for each T ∈ B the maps M 3 x 7→ xT ∈
B, M 3 T 7→ T x ∈ B are continuous from (M)1 with the σ(M,M∗)-topology (also called

ultraweak topology), then we say that the dual M-bimodule B is normal.

Definitions 1.1. (1◦) Let M be a von Neumann algebra and B a Banach M-bimodule. An

element T ∈ B is smooth (with respect to M) if the maps x 7→ xT , x 7→ T x are continuous

from (M)1 with the s∗-topology to B with the norm topology. We denote by s∗M (B) (or

simply s∗(B) if no confusion is possible) the set of smooth elements T ∈ B, and call it the

smooth part of the M-bimodule B. The Banach M-bimodule B is smooth if s∗(B) = B.

A subset S of a Banach M-bimodule B is uniformly smooth if, ∀ε > 0, there exists a

s∗-neighborhood V of 0 in M such that, if x ∈ (M)1 ∩V, then ‖T x‖, ‖xT ‖ 6 ε, ∀T ∈ S.

Note that, if (M, τ ) is a finite von Neumann algebra with a faithful normal trace τ (the

case of most interest for us), then this amounts to the existence of some α > 0 such that,

if x ∈ (M)1, ‖x‖2 6 α, then ‖xT ‖, ‖T x‖ 6 ε, where as usual ‖x‖2 = τ(x∗x)1/2 denotes

the Hilbert norm implemented by τ .

(2◦) An M-bimodule is operatorial if, for any p ∈ P(M) = {p ∈ M | p = p∗ = p2} and

any T ∈ B, we have ‖pT p+ (1− p)T (1− p)‖ = max{‖pT p‖, ‖(1− p)T (1− p)‖}.
Proposition 1.2. Let B be a Banach M-bimodule and B0 ⊂ B a Banach sub-bimodule.

(1◦) s∗(B) is a Banach M-bimodule.

(2◦) If M0 ⊂ M is a von Neumann subalgebra, then s∗M (B) ⊂ s∗M0
(B).

(3◦) s∗(B)/B0 ⊂ s∗(B/B0).

(4◦) If B is operatorial, then B/B0, with its quotient norm and M-bimodule structure,

is an operatorial Banach M-bimodule.

(5◦) The bidual B∗∗ of B has a natural dual M-bimodule structure, and, if B is

operatorial, then so is B∗∗.
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(6◦) Let B be a dual normal M-bimodule. Then its predual B∗ has a natural

Banach M-bimodule structure which is smooth (i.e., s∗M (B∗) = B∗). But if B is

operatorial, then the norm on B∗ satisfies ‖ϕ(p · p)+ϕ((1− p) · (1− p))‖ = ‖ϕ(p ·
p)‖+‖ϕ((1− p) · (1− p))‖, for ϕ ∈ B∗, p ∈ P(M), and thus it is not operatorial in

general.

Proof. (1◦) s∗(B) is clearly closed to addition and scalar multiplication. Also, if Tn ∈
s∗(B) and limn ‖Tn − T ‖ = 0 for some T ∈ B, then for any ε > 0 there exists n0 such

that ‖T − Tn0‖ 6 ε/2. Also, since Tn0 ∈ s∗(B), there exists an s∗-neighborhood V of 0
in M such that if x ∈ M ∩V then ‖xTn0‖, ‖Tn0 x‖ 6 ε/2. Thus, for such x we also have

‖xT ‖ 6 ‖xTn0‖+‖x(T − Tn0)‖ 6 ε. This shows that T ∈ s∗(B).
If ‖xT ‖, ‖T x‖ 6 ε for x ∈ V ∩ (M)1, for some s∗-neighborhood V of 0 in (M)1, then

in particular it holds true for x ∈ V ∩ (M0)1, for any subalgebra M0 ⊂ M . Moreover,

‖xT ‖B/B0 , ‖T x‖B/B0 6 ε as well, proving 2◦ and 3◦.
Parts 4◦, 5◦ are trivial by the definitions. The fact that s∗M (B∗) = B∗ in 6◦ is Lemma 5

in [40], and the last part of 6◦ is trivial.

Proposition 1.3. (1◦) If M is embedded as a ∗-subalgebra in a unital C∗-algebra B with

1M = 1B, then B with its left and right multiplications by elements in M is an operatorial

Banach M-bimodule and s∗M (B) is a hereditary C∗subalgebra of B which is both an

M-bimodule and an M ′ ∩B-bimodule.

(2◦) Assume that M ⊂ B(H) is a normal representation of M. Then the hereditary

C∗-algebra s∗M (B(H)) ⊂ B(H) contains the space of compact operators K(H) and it is

both an M-bimodule and an M ′-bimodule.

(3◦) With M ⊂ B(H) as in 2◦, let P ⊂ M be a von Neumann subalgebra and H0 ⊂ H
a Hilbert subspace such that the projection p of H onto H0 commutes with P. Then

ps∗M (B(H))p ⊂ s∗Pp(B(H0)), with equality if P = M.

(4◦) If (M, τ ) is a finite von Neumann algebra, P ⊂ M is a von Neumann subalgebra,

and eP denotes the orthogonal projection of L2 M onto L2 P, then for any T ∈
s∗M (B(L

2 M)) we have eP T, T eP ∈ s∗M (B(L
2 M)). Also, with the usual identifications, we

have eP s∗M (B(L
2 M))eP = s∗P (B(L

2 P)).

Proof. (1◦) If T1, T2 ∈ s∗(B) and xi ∈ (M)1 converges s∗ to 0, then ‖xi (T1T2)‖ 6
‖xi T1‖‖T2‖ → 0 and ‖(T1T2)xi‖ 6 ‖T1‖‖T2xi‖ → 0, showing that T1T2 ∈ s∗(B). Also,

‖xi T ∗1 ‖ = ‖T1x∗i ‖ → 0; thus s∗(B) is actually a C∗-subalgebra of B. Moreover, if T0 ∈ B
with 0 6 T0 6 T ∈ s∗(B), then ‖xi T0‖ 6 ‖xi T 1/2‖‖T 1/2‖ → 0, and so T0 ∈ s∗(B). Thus,

s∗(B) is hereditary.

The smoothness of an element is clearly invariant to left–right multiplication by

elements commuting with M .

(2◦) For any bounded net of operators xi ∈ B(H) converging s∗ to 0, and any T ∈ K(H),
limi ‖xi T ‖ = limi ‖T xi‖ = 0, so in particular K(H) ⊂ s∗(B(H)).
(3◦) follows trivially from the fact that smoothness over P is invariant to left–right

multiplication by elements in P ′.
(4◦) If xn ∈ (M)1 satisfies τ(x∗n xn) = ‖xn‖22 → 0 and we denote by EP the τ -preserving

conditional expectation of M onto P, then, by using that eP yeP = EP (y)eP , ∀y ∈ M ,
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and the fact that EP (x∗n xn) converges to 0 in the s∗-topology, we get

‖xneP T ‖2 = ‖T ∗eP x∗n xneP T ‖ = ‖T ∗eP EP (x∗n xn)T ‖ 6 ‖T ‖‖EP (x∗n xn)T ‖ → 0.

Similarly, ‖T eP xn‖ → 0. The same calculation shows that, if T0 ∈ s∗P (B(L
2 P)), then

eP T0eP viewed as an element in B(L2 M) is smooth/M . Combined with 3◦, this shows

that eP s∗M (B(L
2 M))eP = s∗P (B(L

2 P)).

Remark 1.4. In the same spirit as 1.3(1◦) above, a more general class of operatorial

M-bimodules can be obtained by taking two (unital ∗-) representations π1, π2 of M
into a C∗-algebra B and letting x · T · y = π1(x)Tπ2(y), ∀T ∈ B, x, y ∈ M . But, as we

will later see, we are mainly interested in dual normal M-bimodules, with M a II1
factor. This means that the C∗-algebra B should be a von Neumann algebra as well,

with π1, π2 normal embeddings of M into B. When B = B(H), this amounts to normal

representations π1, π2 of M on the Hilbert space H, where without loss of generality

we may assume that dimπ1(M)H > dimπ2(M)H. If π1(M) is identified with M , then this

implies that π2(x) = U xU∗ p′, where U ∈ U(H) is a unitary element and p′ is a projection

in the commutant M ′ of M in B(H). Thus, the above M-bimodule structure on B = B(H)
is actually equivalent to the one given by x · T · y = xT yp′. Since this class of bimodules

does not offer a significant generalization with respect to the case π1 = π2, we have opted

to only consider this latter case, for the sake of simplicity. On the other hand, it may

be interesting to characterize all operatorial Banach M-bimodules B from an ‘operator

space perspective’: for instance, to examine whether any such B is ‘essentially’ equivalent

to a quotient of B(H).

Lemma 1.5. Let (M, τ ) be a finite von Neumann algebra, M ⊂ B(H) a normal

representation of M, H0 ⊂ H a Hilbert subspace, and p = projH0
.

(1◦) p ∈ s∗(B(H)) iff limα→0 sup{‖x(ξ)‖ | x ∈ (M)1, ‖x‖2 6 α, ξ ∈ (H0)1} = 0 and iff

limn ‖qn pqn‖ = 0 (equivalently, ‖(1− qn)p(1− qn)− p‖ → 0), for any sequence of

projections {qn}n ⊂ P(M) that decreases to 0.

(2◦) If H = L2 M, then a sufficient condition for p to be in s∗(B(L2 M)) is that H0 ⊂ M̂
and ∃C > 0 such that ‖x‖ 6 C‖x‖2, ∀x ∈ H0.

Proof. The first equivalence in 1◦ is just a reformulation of the condition of smoothness

for the orthogonal projection projH0
. If qn ∈ P(M) decrease to 0, then they converge to

0 in the strong operator topology, so ‖qn p‖ → 0, as required. Conversely, if this latter

condition is satisfied for all sequence of orthogonal projections, then by Lemma A.1 it

follows that ‖xn p‖ → 0 for any sequence {xn}n ⊂ (M)1 with τ(x∗n xn)→ 0.

(2◦) If x̂ ∈ H0 ⊂ M̂ ⊂ L2 M , satisfies ‖x‖2 6 1 and we take y ∈ M , then ‖y(x̂)‖2 =
‖yx‖2 6 ‖y‖2‖x‖ 6 C‖y‖2. This shows in particular that, if y ∈ (M)1 satisfies ‖y‖2 6 α,

then ‖yp‖ 6 Cα, so p is smooth.

Definition 1.6. Let (M, τ ) be a finite von Neumann algebra. An orthogonal projection p
of L2(M) onto a Hilbert subspace H0 ⊂ L2 M is strongly smooth (or s-smooth) if condition

1.5(2◦) is satisfied, i.e., there exists some C > 0 such that ‖x‖ 6 C‖x‖2, ∀x ∈ H0.
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The next two results provide a large variety of concrete examples of smooth and

strongly smooth non-compact elements in the case when M is a finite von Neumann

algebra and the target bimodule is B(L2 M). We distinguish three remarkable classes of

infinite-dimensional Hilbert subspaces H ⊂ L2 M with p = projH smooth.

1.6.1. Gaussian–Hilbert subspace H ⊂ L2 M , generated inside an arbitrary diffuse abelian

von Neumann subalgebra A of M by an orthonormal system {ξn}n ⊂ L2 A consisting

of a sequence of independent and identically distributed real-valued Gaussian random

variables ξn , n > 1 (see 1.7(2◦)). This can be obtained as follows: endow the real line

R with the probability measure given by dµ0(t) = (2π)−1/2e−t2
dλ0(t), where dλ0 is the

Lebesgue measure on R, and denote by (X, µ) the infinite product probability space

5∞i=1(R, µ0)i ; let ξn denote the projection of X onto the nth term R of the infinite

product; viewing A as L∞(X) and L2(X) as L2 A, the sequence {ξn}n ⊂ L2(X) satisfies

the conditions.

1.6.2. CAR Hilbert subspace H ⊂ L2 M , having as orthonormal basis a sequence of

self-adjoint unitary elements {un}n ⊂ M̂ generating an arbitrary hyperfinite II1 subfactor

R ⊂ M , satisfying the canonical anticommutation relations (CARs) ui u j = −u j ui ,

∀i 6= j , with τ(ui ) = 0, ∀i , as in [38] (see 1.7(4◦)).

1.6.3. Free Hilbert subspace H ⊂ L2 M , having as orthonormal basis a sequence of

unitaries in M̂ ⊂ L2 M that are free independent with respect to the trace on M
(see 1.8(1◦)).

As we will see below, s-smoothness is a purely non-commutative phenomenon, which

only occurs when M is II1 (e.g., in CAR and free directions, as in 1.6.2 and 1.6.3). We

are grateful to Assaf Naor and Gideon Schechtman for their help with the Gaussian

example 1.7(2◦), and to Gilles Pisier for his help with the CAR example 1.7(4◦), below.

Proposition 1.7. Let (M, τ ) be a finite von Neumann algebra and M ⊂ B(L2 M) its

standard representation.

(1◦) If M is atomic, then s∗M (B(L
2 M)) = K(L2 M).

(2◦) Assume that M is diffuse, and let A ⊂ M be an arbitrary separable diffuse abelian

von Neumann subalgebra of M. Given any sequence {ξn}n ⊂ L2(A, τ ) of independent

and identically distributed real-valued Gaussian random variables in A, as in 1.6.1

above, the orthogonal projection p of L2 M onto the Hilbert subspace H ⊂ L2 A
generated by {ξn}n satisfies p ∈ s∗M (B(L

2 M)). Thus, K(L2 M) ( s∗M (B(L
2 M)).

(3◦) If M is diffuse abelian, then any s-smooth projection p ∈ B(L2 M) must have finite

rank.

(4◦) Assume that M is of type II1, and let R ⊂ M be an arbitrary hyperfinite II1
subfactor. If {un}n ⊂ U(R) is a sequence of self-adjoint unitaries of trace 0 satisfying

the CARs ui u j = −u j ui , ∀i 6= j , as in 1.6.2 above, and we denote by H ⊂ L2 M the

Hilbert space with orthonormal basis {un}n, then the projection of L2 M onto H is

s-smooth.
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Proof. (1◦) If M has finite-dimensional center, then M is finite dimensional, and the

statement becomes trivial. If in turn Z(M) is infinite dimensional, then it follows

isomorphic to `∞(N) (because M has a faithful trace). Let {ek}k>1 be the atoms in Z(M),
and let pn = 6n

i=1ek . Then pn are finite-rank projections, i.e., pn ∈ K = K(L2 M), and

they increase to 1. Thus, if T ∈ B = B(L2 M) is a smooth element, then ‖(1− pn)T ‖ → 0,

so in the Calkin algebra B/K we have ‖T ‖B/K = ‖(1− pn)T ‖B/K 6 ‖(1− pn)T ‖ → 0,

showing that T ∈ K.

(2◦) By 1.3(4◦), it is sufficient to prove that, if qn ∈ A are projections with τ(qn)→ 0,

then sup{‖qnξ‖2 | ξ = ξ∗ ∈ (H)1} → 0. If ξ = 6 j c jξ j with c j ∈ R, 6 j |c j |2 = 1, then ξ is

still a Gaussian with the same distribution as the ξn . Since the L2-norm of the restriction

of a Gaussian ξ to the set Yn = {t | |ξ(t)| > n} decays exponentially in n2, it follows that

the L2-norm of the restriction of ξ to an arbitrary set Y ⊂ X of measure µ(Y ) 6 µ(Yn)

is majorized by ‖ξχYn‖2, and thus tends to 0 as n tends to ∞, independently of ξ .

(3◦) It is well known that, if H0 ⊂ L∞(T) ⊂ L2(T) has dimension 1 6 n 6∞ and

satisfies the property that ‖x‖ 6 C‖x‖2, ∀x ∈ H0, then C >
√

n (see, e.g., [24], or [25]).

(4◦) The CAR unitaries {un}n ⊂ R ⊂ M satisfy the following properties: un = u∗n ;

τ(un) = 0; unum = −umun , ∀n 6= m. But then, for any finitely many real scalars ck ∈ R,

the element x = 6kckuk ∈ R satisfies the identities

x∗x = (6i ci ui )(6 j c j u j ) = 6kc2
k +6i 6= j ci c j ui u j

= ‖x‖221M +6i< j ci c j (ui u j + u j ui ) = ‖x‖221M .

Thus, x∗x = ‖x‖221M . This shows that, if we denote by H0 the span of {uk | k > 1}, then

for any x = x∗ ∈ H0 we have x∗x = ‖x‖221M , so in particular ‖x‖ = ‖x‖2. For arbitrary

x ∈ H0, we thus get

‖x‖ 6 ‖<x‖+‖=x‖ = ‖<x‖2+‖=x‖2 6
√

2‖x‖2.

Hence, if we let H be the closure of H0 ⊂ L2 R ⊂ L2 M , then p = projH verifies

condition 1.6, and is thus s-smooth.

Recall that a subset S of a group 0 is free if the subgroup generated by S is the free

group with generators in S, FS .

Proposition 1.8. With (M, τ ) as in 1.5, assume that L(0) ⊂ M is a group von Neumann

subalgebra. Let S ⊂ 0 be an infinite subset, and denote by pS the orthogonal projection

of L2 M onto the Hilbert space HS having orthonormal basis {ug | g ∈ S}.
(1◦) If S is a free subset of 0, then pS is s-smooth.

(2◦) If pS is s-smooth, then 0 is non-amenable.

Proof. (1◦) By [1, 5], if S ⊂ 0 is a free set, then for any x ∈ `2(S) we have ‖x‖ 6 2‖x‖2.

(2◦) If 0 is amenable, then by Kesten’s characterization of amenability in [19], for any

x = 6gcgug ∈ L(0) with cg > 0 and 6gcg = 1, one has ‖x‖ = 1. This shows in particular

that an element of the form xn = n−16n
i=1usi , with si ∈ S, has norm ‖xn‖ = 1 while

‖xn‖2 = n−1/2. Letting n tend to infinity shows that pS cannot be s-smooth.
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Lemma 1.9. Let M be a von Neumann algebra, B an operatorial Banach M-bimodule,
and T ∈ s∗(B) a smooth element.

(1◦) Given any ε > 0, there exist a normal state ϕ on M and α > 0 such that, if
p1, . . . , pn ∈ P(M) is a partition of 1 with projections that commute with T and
satisfy ϕ(pi ) 6 α, ∀i , then ‖T ‖ 6 ε.

(2◦) If T commutes with a diffuse von Neumann subalgebra B ⊂ M, then T = 0.

Proof. (1◦) Since T is smooth, given any ε > 0, there exist a normal state ϕ on M and
α > 0 such that, if p ∈ P(M) satisfies ϕ(p) 6 α, then ‖pT ‖ 6 ε. Thus, if p1, . . . , pn ∈ M
is a partition of 1 with projections satisfying ϕ(pi ) 6 α, ∀i , by using the fact that T =
(6i pi )T = 6i pi T pi , it follows that

‖T ‖ = ‖6i pi T pi‖ = max
i
‖pi T pi‖ 6 max

i
‖pi T ‖ 6 ε.

(2◦) This is now immediate from part 1◦, because B diffuse implies that for any normal
state ϕ on M and any α > 0 there exist partitions of 1 in B of ϕ-mesh less than α.

2. Derivations into smooth bimodules

Definition 2.1. Let B be a Banach M-bimodule. A derivation of M into B is a linear map
δ : M → B satisfying the property that δ(xy) = xδ(y)+ δ(x)y, ∀x, y ∈ M . Recall from [40]
that any derivation is automatically continuous from M with the operator norm topology
to B with its norm topology. We say that δ is smooth if it is continuous from (M)1 with
the s∗-topology to B with its norm topology. Thus, if M is a finite von Neumann algebra
with a faithful normal tracial state τ , this amounts to the continuity of δ from (M)1 with
the Hilbert norm ‖ ‖2 given by τ to B with its norm.

If B is a dual M-bimodule and δ : M → B is a derivation, then we say that δ is weakly
continuous if it is continuous from the unit ball of M with the ultraweak topology (i.e.,
the σ(M,M∗)-topology) to B with its w∗-topology (i.e., the σ(B,B∗)-topology). Recall
from [40] that, if the dual M-bimodule B is normal, then any derivation of M into B is
automatically weakly continuous in this sense.

If δ is a derivation of M in a Banach M-bimodule B, then we denote by K 0
δ the norm

closure of the convex hull of {δ(u)u∗ | u ∈ U(M)}. If in addition B is a dual M-bimodule,
then we denote by Kδ the σ(B,B∗)-closure in B of K 0

δ . More generally, if B is a von
Neumann subalgebra of M , we denote by Kδ,B the σ(B,B∗) closure in B of the convex
hull of co{δ(u)u∗ | u ∈ U(B)}. Since ‖δ(v)v∗‖ 6 ‖δ‖, ∀v ∈ U(M), it follows that Kδ, Kδ,B
are σ(B,B∗)-compact subsets of the ball of radius ‖δ‖ of B.

We will prove in this section that smooth-valued derivations of von Neumann algebras

can be ‘integrated in abelian directions’.

Proposition 2.2. Assume that δ : M → B is a smooth derivation of a von Neumann

algebra M into a Banach M-bimodule B. Then we have the following.

(1◦) δ is continuous from the unit ball of M with the ultraweak topology to B with the

σ(B,B∗) topology (i.e., δ is weakly continuous as a derivation of M into the dual

M-bimodule B∗∗).
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(2◦) If B is a dual M-bimodule, then δ is weakly continuous.

(3◦) We have δ(M) ⊂ s∗(B). If in addition M is finite and B is a dual M-bimodule, then

Kδ is a uniformly smooth subset of s∗(B).

Proof. (1◦) If ϕ : B→ C is a continuous functional, then (M)1 3 x 7→ ϕ(δ(x)) ∈ C is

continuous with respect to the s∗-topology, and thus also continuous with respect to

the ultraweak topology on (M)1. This shows that δ is weakly continuous as a derivation

into B∗∗.
(2◦) follows from 1◦.
(3◦) Recall that, for any y ∈ M , the multiplication maps x 7→ xy, yx are s∗-continuous

on the unit ball of M .

Let ε > 0. By the smoothness of δ, there exists an s∗-neighborhood V of 0 in (M)1 such

that if y ∈ V then ‖δ(y)‖ 6 ε/2. Given x ∈ (M)1, let V0 ⊂ V be an s∗-neighborhood of

0 in (M)1 such that if y ∈ V0 then xy, yx ∈ V. Thus, since yδ(x) = δ(yx)− δ(y)x , if we

take y ∈ V0, then we have the following estimates for δ(x):

‖yδ(x)‖ 6 ‖δ(yx)‖+‖δ(y)x‖ 6 ‖δ(yx)‖+‖δ(y)‖ 6 ε,

and similarly ‖δ(x)y‖ 6 ε. Thus, δ(x) ∈ s∗(B).
If M is finite, then a basis of neighborhoods of 0 in the s∗-topology is given by

‖ ‖2-neighborhoods with respect to traces on M . Thus, for any ε > 0, there exists a normal

trace τ on M and α > 0 such that if y ∈ (M)1, ‖y‖2 6 α then ‖δ(y)‖ 6 ε/2. Thus, if we

take an arbitrary x ∈ (M)1 and we choose α0 > 0 such that x ∈ (M)1 ‖x‖2 6 α0 implies

‖δ(x)‖ 6 ε0/2, then for any u ∈ U(M) we have ‖xδ(u)u∗‖ 6 ‖δ(x)‖+‖δ(xu)‖ 6 ε0. Thus,

if in addition B is a dual M-bimodule, by the inferior semicontinuity of the norm on

B with respect to the σ(B,B∗)-topology, it follows that ‖xT ‖ 6 ε0, ∀T ∈ Kδ. Similarly,

‖T x‖ 6 ε0, ∀T ∈ Kδ. Hence, Kδ ⊂ s∗(B) and Kδ is uniformly smooth.

Lemma 2.3. Let M be a von Neumann algebra, B a dual M-bimodule, and δ : M → B a

derivation. Let ∅ 6= K ⊂ Kδ be a w∗-closed convex subset. For each T ∈ B and u ∈ U(M)
denote Tu(T ) = uT u∗+ δ(u)u∗.
(1◦) Tu are w∗-continuous affine transformations satisfying Tu ◦ Tu′ = Tuu′ , ∀u, u′ ∈

U(M), and Tu(Kδ) ⊂ Kδ.

(2◦) If u ∈ U(M), T ∈ B, then δ(u) = T u− uT iff Tu(T ) = T .

(3◦) Let U0 ⊂ U(M) be an amenable group, and assume that Tu(K ) = K , ∀u ∈ U0. Then

there exists T ∈ K such that δ = adT on spU0.

(4◦) If A ⊂ M is an abelian von Neumann subalgebra such that Tu(K ) = K , ∀u ∈ U(A),
then there exists T ∈ K such that δ = adT on A.

(5◦) If B ⊂ M is a von Neumann algebra with an amenable subgroup U0 ⊂ U(B)
satisfying U ′′0 = B, Tu(K ) = K , ∀u ∈ U(A), and B is normal relative to B, then

there exists T ∈ K such that δ = adT on B.

(6◦) If u ∈ U(M) normalizes a subalgebra B ⊂ M and T ∈ B satisfies adT = δ on B,

then Tu(T ) implements δ on B as well.
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Proof. (1◦) By noticing that Tu′(δ(u)u∗) = δ(u′u)(u′u)∗, then, taking convex combinations

of elements of the form δ(v)v∗ and σ(B,B∗)-closure, it follows that Tu(Kδ) ⊂ Kδ and

Tu′ ◦ Tu = Tu′u , ∀u, u′ ∈ U(B).
(2◦) Tu(T ) = T means uT u∗+ δ(u)u∗ = T , or equivalently δ(u) = T u− uT .

(3◦) By applying the Markov–Kakutani fixed point theorem to the amenable group of

affine transformations {Tu | u ∈ U0} of the bounded σ(B,B∗)-compact convex set Kδ, we

get some T ∈ Kδ with the property that Tu(T ) = T , ∀u ∈ U0, and 2◦ applies. If A ⊂ M
is abelian, then by taking U0 = U(A) in 3◦ one gets 4◦. Part 5◦ follows trivially from 3◦,
while 6◦ is straightforward to check.

Corollary 2.4. Let B be a dual M-bimodule and δ : M → B a smooth derivation. If A ⊂ M
is an abelian von Neumann subalgebra then there exists T ∈ Kδ,A ⊂ Kδ ⊂ s∗(B) such that

δ(a) = T a− aT,∀a ∈ A.

Proof. This is now immediate from 2.2(3◦) and 2.3(4◦).
We will now show that smooth-valued derivations are inner on finite type I von

Neumann algebras. The proof follows ideas from the proof of the case when the target

bimodule is the ideal of compact operators, in [16].

Theorem 2.5. Let M = A0⊕ B with A0 abelian diffuse and B finite atomic. Let B be a

dual normal operatorial M-bimodule and δ : M → B a derivation. Assume that δ takes

values into a Banach sub-bimodule B0 ⊂ s∗(B). Then there exists a unique T ∈ Kδ such

that δ = adT , and this T lies in B0.

Proof. Let first A ⊂ M be an abelian von Neumann subalgebra. By Lemma 2.3, there

does exist T ∈ Kδ,A ⊂ B such that δ(a) = T a− aT , ∀a ∈ A. We show that any T ∈ Kδ,A
that implements δ on A must in fact belong to B0. Assume that T 6∈ B0, in other words

that ‖T ‖B/B0 > 0.

Note that for any projection p ∈ A we have pT − T p ∈ B0, and thus ‖T ‖B/B0 = ‖pT p+
(1− p)T (1− p)‖B/B0 . Note also that B operatorial implies that B/B0 is operatorial,

i.e., ‖pT p+ (1− p)T (1− p)‖B/B0 = max{‖pT p‖B/B0 , ‖(1− p)T (1− p)‖B/B0}, ∀T ∈ B,

p ∈ P(A).
Denote by P the set of all projections p ∈ A with the property that ‖pT p‖B/B0 =
‖T ‖B/B0 . Assume that P has a minimal projection e. If e is even minimal in A, i.e.,

Ae = Ce, then for any u ∈ U(A) we have

eδ(u)u∗e = δ(eu)u∗e− δ(e)e = zδ(e)ze− δ(e)e = 0,

where z ∈ T is so that eu = ze. This implies that eT ′e = 0 for any T ′ ∈ Kδ,A, so in

particular eT e = 0, contradicting the fact that e ∈ P.

Thus, e is not minimal in A. But then, any non-zero projection f ∈ Ae with f 6= e
satisfies f, e− f 6∈ P, so

‖T ‖B/B0 = ‖ f T f + (e− f )T (e− f )‖B/B0

= max{‖ f T f ‖B/B0 , ‖(e− f )T (e− f )‖B/B0} < ‖T ‖B/B0 ,

a contradiction.
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This shows that P cannot have minimal projections. Let F be a maximal chain in P,

and denote f0 the infimum over all f ∈ F . Since P has no minimal projections, f0 6∈ P,

i.e., ‖ f0T f0‖B/B0 < ‖T ‖B/B0 . Since

max{‖( f − f0)T ( f − f0)‖B/B0 , ‖ f0T f0‖B/B0}
= ‖( f − f0)T ( f − f0)+ f0T f0‖B/B0 = ‖ f T f ‖B/B0 = ‖T ‖B/B0 ,

it follows that ‖( f − f0)T ( f − f0)‖B/B0 = ‖T ‖B/B0 , ∀ f ∈ F , or equivalently ‖ f ′T f ′‖B/B0

= ‖T ‖B/B0 , ∀ f ′ ∈ F ′, where F ′ = { f − f0 | f ∈ F}. Thus, F ′ is a chain in P with

infF ′ = 0.

Using this fact, we construct recursively a decreasing sequence of projections f ′k ∈ F ′,
such that ‖( f ′k − f ′k+1)T ( f ′k − f ′k+1)‖ > c, ∀k > 1, where c = (‖T ‖B/B0 −‖ f0T f0‖B/B0)/2
> 0.

Assume that f ′1, . . . , f ′n ∈ F ′ have been constructed to satisfy this property for all

1 6 k 6 n− 1. Since F ′ is a chain decreasing to 0 and ‖ f ′nT f ′n‖ > 2c (because f ′n ∈ F ′),
by the normality of the bimodule structure on B and the inferior semicontinuity with

respect to the σ(B,B∗)-topology of the norm on B, it follows that there exists f ′ ∈
F ′, f ′ 6 f ′n , such that ‖( f ′n − f ′)T f ′n‖ > ‖ f ′nT f ′n‖/2 > c. Applying the same reasoning

on the right-hand side, it follows that there exists a projection f ′′ ∈ F ′, such that

f ′′ 6 f ′ and ‖( f ′n − f ′)T ( f ′n − f ′′)‖ > c. Since ‖( f ′n − f ′′)T ( f ′n − f ′′)‖ = ‖ f ′n − f ′‖‖( f ′n −
f ′′)T ( f ′n − f ′′)‖ > ‖( f ′n − f ′)T ( f ′n − f ′′)‖ > c, the projection f ′n+1 = f ′′ satisfies the

required condition for k = n.

We have thus constructed a sequence of mutually orthogonal projections en = f ′n −
f ′n+1 ∈ A, n > 1, such that ‖enT en‖ > c, ∀n > 1. Since T ∈ Kδ,A, it follows that, for each

n, there exists un ∈ U(A), such that ‖enδ(un)u∗nen‖ > c. Let now u ∈ A be defined by

u = (1−6nen)+6nunen . Then u ∈ U(A), uen = un,∀n, and we have

enδ(u)u∗en = enδ(enu)u∗nen − enδ(en)en = enδ(un)u∗nen,

where we have used the fact that for any projection p ∈ M we have pδ(p)p = 0 (because

pδ(p)p = pδ(p2)p = 2pδ(p)p). Thus, ‖enδ(u)u∗en‖ > c, ∀n, contradicting the fact that

δ(u)u∗ ∈ s∗(B).
Thus, the assumption T 6∈ B0 led us to a contradiction. This shows that T ∈ B0.

Let now M = A0⊕ B with A0 abelian diffuse and B finite atomic. Let B = ⊕k∈J Bk , with

each Bk a finite-dimensional factor. Denote Vk a finite subgroup of U(Bk) that generates

the algebra Bk . Also, for each finite set of indices F ⊂ J , denote VF = ⊕k∈FVk ⊕C(1−
sF ), where sF = 6k∈F sk , with sk = 1Bk the support projection of Bk .

We let V = ∪FVF , the union being over the finite subsets F ⊂ J . Note that V is a

locally finite group (thus amenable) that commutes with A = A0⊕Cs and V ′′ = C⊕ B =
C(1− s)+ Bs, where s = 6ksk = 1B .

Let K0 = {T ∈ Kδ,A | T a− aT = δ(a),∀a ∈ A}. This is clearly a w∗-closed convex

subset which by the first part is non-empty and contained in B0. Further, let K denote the

w∗-closure of the convex hull of elements of the form Tu(T ), T ∈ K0, u ∈ V. By 2.3(6◦),
adT = δ on A, ∀T ∈ K . Note also that (1− s)K (1− s) = (1− s)K0(1− s) and that any

element in sK (1− s) lies in x K0(1− s) for some x ∈ Ms = Bs. Since K0 ⊂ B0, this shows

that sK (1− s) ⊂ B0, and thus K (1− s) ⊂ B0 as well. Similarly, (1− s)K ⊂ B0.
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On the other hand, by 2.3(5◦), there exists T ∈ K such that δ = adT on spV. Since

δ = adT on A as well, we have δ = adT on spAV = B. Let us prove that T ∈ B0. From

the above, we see that it is sufficient to show that sT s ⊂ B0.

Assume that ‖sT s‖B/B0 > 0, and consider the set P of all projections p ∈ P(Z(Ms))
with the property that ‖pT p‖B/B0 = ‖T ‖B/B0 . If e ∈ P were a minimal projection in P,

then sk 6 e for some k. But sk T sk ∈ B0. Indeed, this is because for each u ∈ U(B) we

have skδ(u)u∗sk = skδ(sku)u∗sk − skδ(sk)sk = skδ(sku)u∗sk and usk run over the unitary

group U(B)sk = U(Bk), which is compact in the (operator) norm of B. Thus, sk Kδ,Bsk =
sk K 0

δ,Bsk ⊂ B0. But then ‖(e− sk)T (e− sk)‖B/B0 = ‖eT e‖B/B0 = ‖T ‖B/B0 , contradicting

the minimality of e.

But if P does not have a minimal projections, then one can proceed exactly like

in the argument in 1◦ above, to get a sequence of mutually orthogonal projections

en ∈ Z(B) such that ‖enT en‖ > c > 0, ∀n. This implies that for each n there exists

a unitary element un ∈ U(B) such that ‖enδ(un)u∗nen‖ > c. The unitary element u =
6nunen + (1−6en) ∈ M will then satisfy enδ(u)u∗en = enδ(un)u∗nen , so that on the one

hand we have ‖enδ(u)u∗en‖ = ‖enδ(un)u∗nen‖ > c, ∀n, but on the other hand, by the

smoothness of δ(u)u∗ ∈ B0, we have limn ‖enδ(u)u∗en‖ = 0, a contradiction. This ends

the proof of the fact that sT s (and thus T ) lies in B0.

To prove the uniqueness of T ∈ Kδ,B implementing δ on B, let T ′ ∈ Kδ ∩B0 be another

element satisfying adT ′ = δ. Then [T − T ′,M] = 0, so in particular (T − T ′)sk = sk(T −
T ′),∀k. Since M(1− s) = A0(1− s) is diffuse, by Lemma 1.9 we have T (1− s) = T ′(1− s),
(1− s)T = (1− s)T ′, and we only need to prove that sk T sk = sk T ′sk , ∀k, as well.

To do this, note that sk T sk is in the norm closure of the convex hull of the set

{skδ(v)v
∗sk | v ∈ Vk}. But if for each v ∈ Vk we denote by Tv the transformation of

Kk = sk Kδ,Bsk given by Kk 3 ξ 7→ Tv(ξ) = vξv∗+ skδ(v)v
∗sk , then for each ξ ∈ Kk the

map Kk 3 ξ 7→ π(ξ) = ∫Vk
Tv(ξ) dµ(v), where µ is the Haar measure on Vk , satisfies

π(Tv′(ξ)) = π(ξ), for any v′ ∈ Vk , because of the invariance of the Haar measure. By

taking convex combinations and norm closure, this shows that π has a single point range.

Since the operator T implements δ, we also have Tv(sk T sk) = sk T sk , so π(sk T sk) = sk T sk ,

thus showing that any T ∈ Kδ that implements δ coincides with the single point π(K )
under sk .

This finishes the proof that there exists a unique T ∈ Kδ implementing δ on M , and

that this T lies in B0.

Theorem 2.6. Let M = A0⊕ B with A0 abelian diffuse and B finite atomic. Let B be a

dual operatorial M-bimodule and δ : M → B a smooth derivation. Assume that δ takes

values into a Banach sub-bimodule B0 ⊂ s∗(B). Then there exists a unique T ∈ Kδ such

that δ = adT , and this T lies in B0.

Proof. Note first that there are only two places in the proof of 2.5 where we used the fact

that the dual operatorial bimodule B is normal: (a) to deduce in the first part (abelian

case) of the proof that if a net pi ∈ P(A) increases to some projection p ∈ A, then

supi ‖pi T ‖ = ‖pT ‖, supi ‖T pi‖ = ‖T p‖, where T ∈ B is an element in Kδ that implements

δ on the abelian von Neumann subalgebra A; and (b) to deduce in the second part that,
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since δ and adT are weakly continuous, if they coincide on the ∗-subalgebra spVA, which

is weakly dense in M , then they must coincide on all M .

But, by 2.2(3◦), if B is merely a dual operatorial M-bimodule (not necessarily normal),

but δ is assumed smooth, then Kδ follows a uniformly smooth subset of s∗(B). Thus, if

we define T as in the first part of the proof of 2.5, then T lies in Kδ, so it will be smooth.

In particular it will satisfy property (a) above. With this in hand, the second part of

the proof of 2.5 applies unchanged by using the fact that T smooth implies δ′ = δ− adT
smooth, so, if δ′ = 0 on a dense ∗-subalgebra spVA of M , then δ′ = 0 on all M .

3. Vanishing 1-cohomology results

We show in this section that, once a smooth-valued derivation δ is implemented by a

smooth element on a diffuse abelian von Neumann subalgebra satisfying some very weak

regularity properties, then that element automatically implements δ on the entire von

Neumann algebra.

We will also prove that smooth-valued derivations are automatically smooth, i.e., if

δ : M → s∗(B) ⊂ B, then δ is continuous from (M)1 with the s∗-topology to B with its

norm topology.

Note that these results can be formulated in terms of properties of the 1-cohomology

of M with coefficients in the smooth part of a bimodule B. Thus, if M is a von

Neumann algebra and B is a Banach M-bimodule, then we denote by Z1(M,B)
(respectively, Z1

s (M,B)) the space of derivations (respectively, smooth derivations) of

M into B, by B1(M,B) (respectively, B1
s (M,B)) the subspace of inner derivations

(respectively, derivations implemented by smooth elements of B) and by H1(M,B) =
Z1(M,B)/B1(M,B) (respectively, H1

s (M,B) = Z1
s (M,B)/B1

s (M,B)) the corresponding

quotient space.

With this terminology, our results show that, if B is a dual normal operatorial

M-bimodule, then Z1(M, s∗(B)) = Z1
s (M,B), H1(M, s∗(B)) = H1

s (M,B) (M arbitrary),

and that if B0 ⊂ s∗(B), then H1(M,B0) = 0 whenever M contains a diffuse abelian

subalgebra that satisfies the weak regularity property. We will also prove that,

under this same regularity condition for M , if B is an arbitrary smooth operatorial

Banach M-bimodule (not necessarily dual normal), then H1
s (M,B) = 0, i.e., any smooth

derivation of M into B is inner.

The weak regularity property that we consider is in the spirit of a similar concept

considered for groups in (Definition 2.3 of [32]; see also 1.2 in [14] for a related concept).

Definition 3.1. Let B be a diffuse von Neumann subalgebra of a II1 factor M . Consider

the well ordered family of intermediate von Neumann subalgebras B = B0 ⊂ B1 ⊂ · · · ⊂
B ⊂ · · · of M constructed recursively, by transfinite induction, in the following way:

(a) for each  , B+1 is the von Neumann algebra generated by v ∈ U(M) with vBv∗ ∩ B
diffuse; (b) if  has no ‘predecessor’, then B = ∪n< Bn

w
. Notice that, if ı0 is the first

ordinal of cardinality |M |, then this family is constant from ı0 on. Let ı be the first ordinal

for which Bı+1 = Bı . The algebra Bı is by definition the wq-normalizer algebra of B in M .

If the wq-normalizer of B in M is equal to M , then we say that B is wq-regular in M . If

the wq-normalizer of B in M is equal to B, we also say that B is wq-malnormal in M .
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With this terminology, we see that the wq-normalizer of B in M is wq-malnormal in M .

The converse is in fact also true, so, similarly to the group case in (2.3 of [32]), one can

characterize the wq-normalizer of B in M as follows.

Lemma 3.2. Let B ⊂ M be a diffuse von Neumann subalgebra and N its wq-normalizer.

If an intermediate von Neumann algebra B ⊂ Q ⊂ M satisfies the property that any v ∈
U(M) with vQv∗ ∩ Q diffuse must lie in Q, then Q contains N . Thus, the wq-normalizer

of B in M is the smallest von Neumann subalgebra N ⊂ M containing B with the property

that there exist no v ∈ U(M) \ N with vNv∗ ∩ N diffuse, or equivalently, the smallest

wq-malnormal subalgebra of M that contains B.

Proof. Let B0 ⊂ · · · ⊂ Bı = N be constructed by transfinite induction as in 3.1, with Bı
the first ordinal having the property that Bı+1 = Bı . Assume that we have shown that

B ⊂ Q for some 0 6  < ı . If v ∈ U(M) satisfies vBv∗ ∩ B diffuse, then v ∈ B+1 by the

definition of B+1. But, since Q contains B we also have vQv∗ ∩ Q diffuse, so v ∈ Q. This

shows that B+1 ⊂ Q. Also, if  6 ı has no predecessor and Bn ⊂ Q, ∀n <  , then the

weak closure of ∪n< Bn is contained in Q. Altogether, these facts imply that Bı ⊂ Q.

Lemma 3.3. Let M be a von Neumann algebra, B a dual normal Banach M-bimodule,

and δ : M → B a derivation. If δ vanishes on two von Neumann subalgebras N1, N2 ⊂
M, then it vanishes on the von Neumann algebra N1 ∨ N2, generated by N1, N2. Thus,

ker δ ∩ (ker δ)∗ is the maximal von Neumann subalgebra of M on which δ vanishes, and

we will denote it Mδ.

Proof. Since, if δ is equal to 0 on x, y ∈ M it is also 0 on the product xy, it follows that δ

vanishes on the algebra generated by N1, N2, which is a ∗-algebra. By the weak continuity

of δ, it follows that δ also vanishes on N1 ∨ N2.

Lemma 3.4. With M,B, δ as in 3.3, assume that δ(M) ⊂ s∗(B). Let v ∈ U(M).

(1◦) If vMδv
∗ ∩Mδ is diffuse, then v ∈ Mδ. Thus, Mδ is wq-malnormal in M.

(2◦) Assume that M is of type II1 with a faithful normal trace τ . For any ε > 0 there

exists α > 0 such that, if vA0v
∗ ⊂ Mδ for some α-partition A0 ⊂ Mδ, then ‖δ(v)‖ 6

ε. Also, if x = x∗ ∈ M is such that {x}′ ∩Mω
δ is diffuse, then x ∈ Mδ.

Proof. (1◦) This is immediate from Lemma 1.9(2◦), once we notice that, if x ∈ Mδ satisfies

v∗xv ∈ Mδ, then T = δ(v)v∗ commutes with x .

(2◦) The first part follows from 1.9(1◦), and it implies trivially the last part.

Theorem 3.5. Let M be a von Neumann algebra, B a dual normal operatorial Banach

M-bimodule, and δ : M → B a derivation that takes values in a Banach sub-bimodule

B0 ⊂ s∗(B), of the smooth part of B.

(1◦) δ is automatically smooth. If in addition M is finite, then Kδ is a uniformly

smooth subset of s∗(B). More generally, if T0 ∈ s∗(B) then Kδ(T0)
def= cow

∗{Tu(T0) |
u ∈ U(M)} is a uniformly smooth subset of s∗(B).
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(2◦) Assume that M = Q0⊕ Q1 with Q1 of type II1 with atomic center and Q0 having

no II1 factor as direct summand. If A1 ⊂ Q1 is a diffuse abelian von Neumann

subalgebra and we denote Q = Q0⊕ A1, then there exists a unique T ∈ Kδ ∩B0
such that adT = δ on Q.

Proof. (1◦) Note first that, by Theorem 2.5, δ is implemented by an element in B0 ⊂ s∗(B)
on any given abelian von Neumann subalgebra of M . Since adT is smooth and takes values
in B0 for any T ∈ B0, by subtracting such an ‘inner’ derivation from δ, it follows that,
given any abelian von Neumann subalgebra A ⊂ M , we may assume that δ = 0 on A.

If M = M0⊕M1 with M0 properly infinite and M1 finite, then M0 ' N0⊗B(`2N). From
the above, it follows that we may assume that δ = 0 on a diffuse MASA (maximal abelian
∗-subalgebra) A0 ⊂ 1⊗B(`2N). But such a MASA is regular in B(`2N) and in fact, since
its commutant contains N0, it is regular in M0 as well. So, by 3.4(1◦), δ = 0 on all M0.

We are thus reduced to proving that δ is smooth on M1, i.e., we may assume that M
is a finite von Neumann algebra. By 2.5, by subtracting if necessary an inner derivation
implemented by a smooth element, we may also assume that δ vanishes on Z(M). Let
{pi }i ⊂ P(Z(M)) be a net of central projections increasing to 1 such that Mpi has a
faithful normal trace. We already know that for any sequence of mutually orthogonal
projections en ∈ Mpi we have limn ‖δ(en)‖ = 0 (this is because δ is implemented by
elements in s∗(B) on any abelian von Neumann subalgebra of M , in particular on the von
Neumann algebra generated by {en}n). By Lemma A.1 in the Appendix, it follows that
δ is smooth on each Mpi . Note now that limi ‖δ(x(1− pi ))‖ = 0 uniformly in x ∈ (M)1.
Indeed, for, if there exists c > 0 such that, for all i , there exist j > i and x j ∈ (M)1
with ‖δ(x j (1− p j ))‖ > c > 0, then we can find an increasing sequence of indices i1 <

i2 . . . in I such that ‖δ(xin (pin − pin+1))‖ > c/2. But then x = 6n xin (pin − pin+1) ∈ M ,
and the mutually orthogonal projections fn = pin+1 − pin satisfy ‖ fnδ(x)‖ > c/2, ∀n,
contradicting the smoothness of δ(x).

Since δ is smooth, if M is finite, then 2.2(3◦) applies to get that Kδ is a uniformly smooth
subset of B0. Since T0 ∈ s∗(B) implies that K0 = co{uT0u∗ | u ∈ U(M)} is uniformly
smooth, the last part of 1◦ follows as well.

(2◦) Let Q0 = Q0
0⊕ Q1

0⊕ Q2
0 with Q0

0 finite atomic, Q1
0 properly infinite, and Q2

0 of

type II1 with diffuse center. Let B = Q0
0⊕ A1

0⊕ A2
0⊕ A1 ⊂ Q, where A1

0 is a diffuse

maximal abelian subalgebra of a copy of B(`2N) that splits off Q1
0 and A2

0 is

the center of Q2
0. By Theorem 2.5, there exists a unique T ∈ Kδ,B such that

adT = δ on B, and this T belongs to B0. Thus, δ′ = δ− adT takes M into B0
and vanishes on B. This implies that if u ∈ U(M) normalizes B then δ′(u)u∗ ∈ B0
commutes with B. So if s = 1M − 1Q0

0
then δ′(u)u∗, u∗δ′(u) commute with the diffuse

algebra Bs. By Lemma 1.9, this implies that δ′(u)s = 0. By taking the linear span

of such u, then weak closure, and using that B is regular in Q, this shows that

δ(x)s = [T, x]s, sδ(x) = s[T, x], ∀x ∈ Q. But, since M(1− s) = Q0
0(1− s) ⊂ B, for x ∈ Q,

we also have (1− s)δ(x)(1− s) = (1− s)δ(x(1− s))− (1− s)xδ(1− s) = (1− s)adT (x(1−
s))− (1− s)xadT (1− s) = (1− s)adT (x)(1− s). Altogether, this shows that δ = adT on

all Q.

The above argument also shows that any T ′ ∈ B0 that implements δ on Q must

satisfy T s = T ′s, sT = sT ′, while, by the last part of the proof of 2.5, if T ′ ∈ Kδ

https://doi.org/10.1017/S1474748015000122 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000122


Smooth bimodules and cohomology 171

implements δ on M(1− s) = Q0
0, then (1− s)T ′(1− s) = (1− s)T (1− s). This proves the

uniqueness of T .

Definition 3.6. Let M be a II1 factor and N ⊂ M a von Neumann subalgebra. We say that

N has property (C ′) in M (or that N ⊂ M satisfies (C ′)) if the following holds true: for

any finite set F ⊂ N and any ε > 0, there exist V = V ∗ ⊂ U(M) finite with the following

properties:

(a) ‖x − EV ′′(x)‖2 6 ε, ∀x ∈ F ;

(b) there exist diffuse abelian von Neumann subalgebras Av ⊂ {v}′ ∩Mω, v ∈ V , that

mutually commute, i.e., aa′ = a′a, ∀a ∈ Av, a′ ∈ Av′ , v, v′ ∈ V .

If M ⊂ M has (C ′), we simply say that M has property (C ′). Note that this property

for M is weaker than property (C) of M , as defined in [29].

It is trivial by the definition that any abelian von Neumann subalgebra of M has

property (C ′) in M . More generally, it is easy to see that any amenable von Neumann

subalgebra N ⊂ M has property (C ′) in M . It has been shown in [29] that, if M either

has a Cartan subalgebra or has property (0) of [21], then M has property (C), and thus

(C ′) as well. Finally, note that property (C ′) is hereditary: if N0 ⊂ N ⊂ M and N ⊂ M
has (C ′), then so does N0 ⊂ M .

Theorem 3.7. Let M be a von Neumann algebra such that any II1 factor summand of M
has a diffuse, wq-normal subalgebra with property (C ′). Let B be a dual normal operatorial

M-bimodule, B0 ⊂ s∗(B) a Banach sub-bimodule, and δ : M → B0 a derivation. Then

there exists a unique T ∈ Kδ ∩B0 such that δ(x) = adT (x), ∀x ∈ M, (so ‖T ‖ 6 ‖δ‖ as

well). If in addition M is finite, then T is the only element in Kδ that implements δ on M.

Proof. We first prove the statement in the case when M is a II1 factor with a wq-normal

diffuse von Neumann subalgebra N ⊂ M with property (C ′). More precisely, we show

that, given any T0 ∈ Kδ ∩B0, there exists T ∈ Kδ(T0)∩B0 such that δ = adT .

To this end, we first show that, for any finite set F = F∗ ⊂ N , there exists T = T (F) ∈
Kδ(T0) such that δ(x) = adT (x), ∀x ∈ F , and thus for all x in von Neumann algebra

MF ⊂ M generated by F .

By property (C ′) of N ⊂ M , for any given ε > 0, there exists a finite set V = V (ε) ⊂
U(M) satisfying V = V ∗, x ∈ε V ′′, ∀x ∈ F , and such that for any α > 0 there exist

mutually commuting finite-dimensional abelian subalgebras Av ⊂ M with all atoms of

trace at most α, such that ‖v− E A′v∩M (v)‖2 6 α, ∀v ∈ V . Let A = ∨vAv be the von

Neumann algebra generated by Av, v ∈ V , and let S = S(V, α) ∈ Kδ,A(T0) be an element

implementing δ on A (see 2.3(4◦)). By 3.5(1◦), we have ‖δ(v− E A′v∩M (v))‖ 6 α′, with

α′→ 0 as α→ 0. Since δ− adS is A-bimodular, if we denote by {ek}k the minimal

projections of A, it follows that (δ− ad(S))(E A′∩M (v)) = 6kek(δ(v)− [S, v])ek . Since δ(v)

is fixed and the set {[S, v] | S ∈ Kδ(T0)} is uniformly smooth (by last part of 3.5(1◦)), if

we take α sufficiently small then by 1.9(1◦) we get ‖(δ− ad(S))(E A′v∩M (v))‖ 6 α′, ∀v ∈ V .

Altogether, we get the estimates

‖(δ− adS)(v)‖ 6 ‖δ(v− E A′v∩M (v))‖+‖(δ− ad(S))(E A′v∩M (v))‖ 6 2α′,∀v ∈ V .
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Taking αn so that α′ 6 2−n−1, and denoting Sn = S(V, αn), we have thus constructed a

sequence Sn ∈ Kδ(T0) with the property that ‖(δ− adSn)(v)‖ 6 2−n , ∀v ∈ V . Thus, if we

let S′ be a weak limit point of {Sn}n , then S′ ∈ Kδ(T0) and δ(v) = ad(S′), ∀v ∈ V . Since

δ and adS′ are weakly continuous, this shows that δ = adS′ on the whole von Neumann

algebra generated by V .

Take now ε = 2−n , and let Vn ⊂ U(M) be a finite set satisfying ‖x − EV ′′n (x)‖2 6 2−n ,

∀x ∈ F , and property 3.6(b). Denote by Tn the corresponding element S′(Vn, 2−n) ∈
Kδ(T0) with the property that δ coincides with adTn on the von Neumann subalgebra

Qn = V ′′n satisfying ‖x − EQn (x)‖2 6 2−n , ∀x ∈ F . Let now T be a weak limit point of

{Tn}n . Since Tn ∈ Kδ(T0) and Kδ(T0) is uniformly smooth, δ− adTn are uniformly smooth,

and thus

‖(δ− adTn)(x)‖ = ‖(δ− adTn)(x − EQn (x))‖ → 0,∀x ∈ F,
implying that δ = adT on F = F∗. Hence, δ = adT on the whole von Neumann algebra

generated by F .

With this at hand, we finally take a weak limit point of the net {T (F)}F , indexed by the

finite subsets F = F∗ ⊂ N , to obtain an element T ∈ Kδ(T0) that implements δ on all N .

By 3.5(1◦), Kδ(T0) ⊂ B0, so T ∈ B0 as well. By Lemma 3.4, it follows that T actually

implements δ on the wq-normalizer of N in M , and thus on M .

Note that the above argument combined with the fact that Kδ(T0) ⊂ B0 for finite von

Neumann algebras (see 3.5(1◦)) also shows that, if M0 = ⊕i M(i) with each M(i) a II1
factor with a diffuse wq-normal von Neumann subalgebra Ni ⊂ M(i) having property

(C ′) in M(i), then there exists T ∈ Kδ(T0) ⊂ B0 such that δ = adT .

Let now M be an arbitrary von Neumann algebra satisfying the hypothesis in 3.7. Thus,

M = Q0⊕ Q1 with Q0 having no II1 factor summand and Q1 of type II1 with atomic

center such that any of its II1 factor summands has a diffuse wq-regular von Neumann

subalgebra with property (C ′). By 3.5(2◦), there exists T0 ∈ Kδ ∩B0 such that δ = adT0
on Q0⊕C. Then apply the above to M0 = C1Q0 ⊕ Q1 and T0 to get T ∈ Kδ,M0(T0)∩B0
such that δ = adT on M0. Since any u ∈ U(M0) normalizes Q0⊕C1Q1 , Tu(T0) implements

δ on Q0⊕C1Q1 as well; thus any T ′ ∈ Kδ,M0(T0) implements δ on Q0⊕C1Q1 . Thus T
implements δ on both C1Q0 ⊕ Q1 and Q0⊕C1Q1 , and therefore on all M .

The uniqueness of T ∈ Kδ ∩B0 implementing δ on M follows by the same argument as

in the proof of the uniqueness in 3.5(2◦).

Theorem 3.8. Let M be a von Neumann algebra such that any II1 factor summand of M
has a diffuse, wq-normal subalgebra with property (C ′). Let B0 be a smooth operatorial

Banach M-bimodule and δ : M → B0 a smooth derivation. Then there exists a unique

T ∈ Kδ ∩B0 such that δ(x) = adT (x), ∀x ∈ M, (so ‖T ‖ 6 ‖δ‖ as well). If in addition M
is finite, then T is the only element in Kδ that implements δ on M.

Proof. We can view δ as a (smooth) derivation of M into the bidual B = B∗∗0 of B0,

taking values in the closed sub-bimodule B0 of s∗(B). Note that, by 1.2(4◦), B is a dual

operatorial M-bimodule. By Proposition 2.2, since δ is smooth, δ : M → B is weakly

continuous.

Let A ⊂ N be an abelian von Neumann subalgebra. Thus, by Corollary 2.4, δ is

implemented on A by some T0 ∈ Kδ ⊂ B, where Kδ is the σ(B,B∗) closure in B = B∗∗0 of
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K 0
δ ⊂ B0 (where B∗ = B∗0). By the smoothness of δ, T0 is smooth in B (i.e., it belongs to

s∗(B)), so, by Theorem 2.6, we actually have T0 ∈ B0.

From this point on, the argument in the proof of 3.7 goes unchanged, to first deduce

that there exists T ∈ Kδ ∩B0 such that δ = adT , and then show the uniqueness of T as

well.

Remark 3.9. As we mentioned at the beginning of this section, Theorems 3.7, 3.8

can be viewed as vanishing 1-cohomology results, showing that for II1 factors M the

1-cohomology with values in a closed submodule B0 of the smooth part of a dual

normal operatorial M-bimodule B, H1(M,B0) (respectively, the smooth first cohomology

H1
s (M,B)) vanishes as soon as M satisfies some rather weak decomposability properties.

In particular, this is the case if M has a Cartan subalgebra, and more generally

if M has a diffuse amenable subalgebra whose quasi-normalizer generates M . This

holds as well for non-prime factors M (i.e., factors that can be decomposed as a

tensor product of two II1 factors) and for factors having property (0) of Murray and

von Neumann [21].

The class of factors covered by Theorems 3.7, 3.8 contains many group factors L(0),
with 0 infinite conjugacy class (ICC) groups. For instance, all wreath product groups

0 = H oG, with H non-trivial, are in this class. Indeed, if H is finite, then L(0) has

L(H (0)) as an amenable diffuse regular von Neumann subalgebra. If |H | = ∞, then L(H)
contains a diffuse abelian von Neumann subalgebra A, and any such algebra is wq-regular

in L(0). Another class of group factors covered by 3.7 is L(0n) for 0n = P SL(n,Z), n > 3.

This is because any such 0n contains a chain of infinite abelian subgroups H1, . . . , Hm
that generate 0n and are such that Hi commutes with Hi+1 for all i . Thus, L(0n) has

diffuse abelian von Neumann subalgebras (e.g., L(H1)) that are wq-regular in L(0n). It

is interesting to note that in all these cases the L2-cohomology of the group 0 vanishes

as well (see [12]; see also [23]).

Note that P SL(2,Z) and the free groups Ft , 2 6 t 6∞, do not have this property. In

fact, by results in [10], the free group factors L(Ft ) do not have property (C) of [29].

The same argument in [10] can probably be used to show that they do not satisfy the

weaker condition (C ′) either. But, despite the many in-decomposability properties, one

knows to prove for the free group factors (primeness, solidity, absence of diffuse amenable

subalgebras with non-amenable normalizing algebra, etc.) the fact that M = L(Ft ) does

not have any wq-regular diffuse abelian von Neumann subalgebra is still an open problem.

If one could find some smooth L(Ft )-bimodule B for which H1(L(Ft ),B) 6= 0, then, by 3.7,

3.8 it would follow that L(Ft ) does not even have any diffuse wq-regular subalgebra with

property (C ′).

4. The case B = B(H)

We will prove in this section that, if the target M-bimodule is a closed subspace B0
of the smooth part of the algebra B(H) of linear bounded operators on the Hilbert

space H on which the von Neumann algebra M acts, then any derivation with values

in B0 is implemented by an element in B0. In the particular case B0 = K(H), this result
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amounts to Theorem II in [30]. However, as we have seen in § 1, there is a large fauna of

non-compact operators in B(H) that are smooth over M , even when M is diffuse abelian.

One should mention that, while the proof of this result follows closely the ideas and

line of proof in [30], the arguments in [30] do not simply extend, as such, to this larger

degree of generality, and we will need to resolve additional technical difficulties, notably

in the proof of the analog of Lemma 1.1 in [30]. We overcome this through a careful usage

of the incremental patching techniques in [31, 33, 34].

Theorem 4.1. Let M ⊂ B(H) be a normal representation of a von Neumann algebra M
on a Hilbert space H. Let B0 ⊂ s∗(B(H)) be a Banach M sub-bimodule and δ : M → B0
a derivation. Then there exists T ∈ Kδ ∩B0 such that δ = adT .

Proof. By Theorem 3.5, we only need to prove 4.1 in the case when M is of type II1 with

atomic center and δ vanishing on Z(M). This means that we are actually reduced to

proving the case when M is a II1 factor. By writing M as an increasing union of a net of

separable II1 factors (see, e.g., the proof of A.1.2 in [35]), and taking into account that, if a

derivation δ : M → B0 ⊂ s∗(B(H)) is implemented by elements T1, T2 ∈ B0 on subfactors

N1 ⊂ N2 ⊂ M , then T1, T2 must coincide (by 1.9(2◦)), it follows that it is sufficient to

prove the statement in the case when M is a separable II1 factor.

By [28], M contains a hyperfinite II1 subfactor R ⊂ M with trivial relative commutant,

R′ ∩M = C1. By Theorem 3.7, we may assume that δ vanishes on R. We want to prove

that δ must then vanish on all M . We will do this by contradiction. If δ 6= 0, then there

exists v ∈ U(M) such that δ(v) 6= 0. Thus, there exists ξ0 ∈ H such that the orthogonal

projection p′ ∈ M ′ ∩B(H) of H onto Mξ0 satisfies p′δ(v)p′ 6= 0. Since we also have

p′s∗(B(H))p′ ⊂ s∗(B(p′(H))) (by 1.3(3◦)), this shows that it is sufficient to derive the

contradiction in the case when H = L2 M , with M ⊂ B(L2 M) the standard representation

of M . Since s∗(B(H)) is a M ′-bimodule as well, by replacing if necessary δ by a derivation

x 7→ x ′1δ(x)x
′
2 for some appropriate x ′1, x ′2 ∈ M ′, it follows that we may actually assume

that 〈δ(v)(1̂), v̂〉 = 1.

At this point, we need some versions of Lemmas 1.1, 1.2 in [30] for s∗(B(L2 M)) in lieu of

K(L2 M). The proof of the first of these lemmas follows the line of proof of 1.1 in [30], using

results from [31] and the incremental patching techniques developed in [30, 31, 33, 34].

Lemma 4.2. Assume that H is a separable Hilbert space and that R ⊂ M is a hyperfinite

II1 factor with R′ ∩M = C. For any countable set {Tm}m in the unit ball of s∗M (B(H)),
there exist unitary elements un ∈ R such that limn ‖Tm(unv)

k(ξ)‖H = 0, for all k 6= 0, ξ ∈
H, v ∈ U(M), m > 1.

Proof. Note first that it is sufficient to prove the statement in the case when H = L2 M .

Indeed, the statement only concerns spaces of the form M(ξ) ⊂ H, which are cyclic

representations of M , and are thus included in the left regular representation. Also, if pξ
is the orthogonal projection of H onto the closure Hξ of this space, then we clearly have

pξTm pξ ∈ s∗(B(Hξ )).

Moreover, in order to prove the statement in the case when H = L2 M , it is clearly

sufficient to prove that, for any finite sets F ⊂ L2 M , V ⊂ U(M), T ⊂ s∗(B(L2 M)),
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any ε > 0, and any n > 1, there exists a unitary element u ∈ R such that ‖T ((uv)kξ)‖2 6
ε, ∀ξ ∈ F , v ∈ V , T ∈ T , 1 6 |k| 6 n. Indeed, for, if we have this, then we take {ξn}n dense

in the unit ball of L2 M , {vn}n dense in the norm ‖ ‖2 in U(M), and for each n > 1 we

apply it to F = {ξ1, . . . , ξn}, V = {v1, . . . , vn}, T = {T1, . . . , Tn}, ε = 2−n , to get a unitary

element un that satisfies

‖Tl((unvi )
k(ξ j )‖2 6 2−n,∀i, j, |k|, l 6 n. (1)

The sequence {un}n will then clearly satisfy the condition in the statement of the lemma,

by the density of {ξn}n in (L2 M)1 and {vn}n in U(M).
Denote by W the set of partial isometries w ∈ R with the properties that ww∗ = w∗w

and ‖T ((wv)kξ)‖2 6 ετ(ww∗), ∀ξ ∈ F , v ∈ V , T ∈ T , 1 6 |k| 6 n (where w−k = (w∗)k for

k > 0). We endow W with the order given by w1 6 w2, w2w
∗
1w1 = w1. Then (W,6) is

clearly inductively ordered, and we let w be a maximal element. All we need is to prove

that w is a unitary element. Assume that p = 1−ww∗ 6= 0. If w0 ∈ pRp is a partial

isometry with w0w
∗
0 = w∗0w0 = q and we denote u = w+w0, then we have

〈T ∗T ((uv)k(ξ)), (uv)k(ξ)〉 = 〈T ∗T ((w+w0)v)
k(ξ), ((w+w0)v)

k(ξ)〉
= 〈T ∗T ((wv)k(ξ)), (wv)k(ξ)〉+6′(i,0)+6′(0, j)+6′(i, j), (2)

where the last line represents the sum of 2k × 2k elements, coming from developing the

binomial powers ((w+w0)v)
k in the scalar product of the first line. The summations

6′(i,0), 6
′
(0, j), 6

′
(i, j) are indexed over i, j > 1, and they have the following significance.

For each i > 1, 6′(i,0) is the sum of all terms with i appearances of w0 on the left-hand

side of the scalar product and no appearance on the right-hand side, i.e., each such term

is of the form 〈
T ∗T (wv)m0

( i∏
r=1

w0v(wv)
mr

)
(ξ), (wv)k(ξ)

〉
, (3)

for some m0,mi > 0 and m1, . . . ,mi−1 > 1. Similarly, 6′(0, j) is the sum of all terms with

j appearances of w0 on the right-hand side of the scalar product and no appearance on

the left-hand side, i.e., each such term is of the form〈
T ∗T (wv)k(ξ), (wv)n0

 j∏
s=1

w0v(wv)
ns

 (ξ)〉 , (4)

for some n0, n j > 0, n1, . . . , n j−1 > 1.

For i, j > 1, 6′(i, j) is the sum of all terms with i appearances of w0 on the left-hand

side and j appearances of w0 on the right-hand side of the scalar product, i.e., each such

term is of the form〈
T ∗T (wv)m0

( i∏
r=1

w0v(wv)
mr

)
(ξ), (wv)n0

 j∏
s=1

w0v(wv)
ns

 (ξ)〉 , (5)

for some m0,mi , n0, n j > 0, m1, . . . ,mi−1, n1, . . . , n j−1 > 1.
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We will show that we can make the choice of the partial isometry w0 6= 0 so that when

estimating all the terms in (3)–(5) they add up to a quantity 6 ετ(w∗0w0). We construct

w0 by first choosing its support projection q ∈ R so that all the terms in (5) are small,

and then choose a Haar unitary w0 ∈ q Rq so that the terms in (3), (4) are small. Let

δ > 0, which we will take to be sufficiently small, depending on ε > 0 and 2n .

Estimating 6′(i, j). Each of the terms in (5) has i > 1 appearances of w0 on the left-hand

side and j > 1 on the right-hand side of the scalar product. If either i or j is at least 2,

then the corresponding side of the scalar product will be of the form x1w0x2 . . . w0x pξ ,

for some finite number of possible xi ∈ (M)1. By using the fact that (pRp)′ ∩ pMp = Cp
and (see Theorem A.1.2 in [35], or Theorem 2.1 in [31]; see also Theorem 0.1 in [33]), it

follows that there exists q ∈ pRp such that for all the xi that appear this way and all ξ ′
in a finite subset of (pL2 Mp)1 we have

‖qxi q − τ(pxi p)q‖2 6 δ‖q‖2;
|‖qξ ′‖2−‖q‖2‖ξ ′‖2| 6 δ‖q‖2.

(6)

By using repeatedly the first inequality in (6) combined with the triangle inequality

for ‖ ‖2, with the Cauchy–Schwarz inequality and the second inequality in (6), it follows

that each element in (5) is at distance no more than n2δ‖q‖22 = n2δτ(q) to an element of

the form 〈q K q(wr
0ξ
′), ws

0η
′)〉 for some r, s > 1, K ∈ s∗(B(L2 M)), ξ ′, η′ ∈ (pL2 Mp)1, with

the number of possibilities for these terms depending on n.

But the operatorial norm ‖q K q‖ is small for q having sufficiently small trace, by the

smoothness of K . Also, by the second inequality in (6), the ‘size’ of the vectors wr
0ξ
′, ws

0η
′

is ‖wr
0ξ
′‖ ≈ ‖q‖2‖ξ ′‖, ‖ws

0η
′‖ ≈ ‖q‖2‖η′‖, with error controlled by δ‖q‖2. Altogether, this

shows that all terms in (6) have absolute value majorized by n2δτ(q). Since there are

at most 2n × 2n = 22n of them, if we take δ = εn−22−2n/4, then the sum of the terms in

6′(i, j), with i > 1, j > 1 and at least one of them > 2, is majorized by ετ(q)/4.

We now estimate the summation 6′(1,1), which consists of terms having exactly one

occurrence of w0 on the left and one on the right of the scalar product. But these are of

the form 〈q K qw0qξ ′, w0qη′〉, for which we have, by the Cauchy–Schwarz inequality and

the second part of (6),

|〈q K qw0qξ ′, w0qη′〉| 6 ‖q K q‖‖qξ ′‖2‖qη′‖2 6 3‖q K q‖‖q‖22 = 3‖q K q‖τ(q).
Since ‖q K q‖ can be made arbitrarily small for τ(q) small (by the smoothness of K ), it

follows that the 6(1,1) can be majorized by ετ(q)/4 as well.

Estimating 6′(i,0), 6
′
(0, j). Note that in the above estimates we only used the properties

of the support projection q of w0. We will choose now w0 ∈ U(q Rq) to be a Haar

unitary so that the sum over i of all the summations 6′(i,0) is majorized by ετ(q)/4
(similarly for 6′(0, j)). Indeed, each one of the terms in these sums is either of the form

〈(5i
r=1w0xr )ξ

′, q(K ∗η′)〉 or 〈q(K ξ ′), (5 j
s=1w0xs)η

′〉, for some finite number of operators

K in the unit ball of B(L2 M) and vectors ξ ′, η′ ∈ (L2 M)1.

By the second inequality in (6), if i, j > 2, then, combining with the first inequality

in (6) and the Cauchy–Schwarz inequality, we get that each one of these terms can be
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perturbed by 2δ‖q‖22 = 2δτ(q) to an element of the form 〈wi
0ξ
′, η′〉 or 〈ξ ′, w j

0η
′〉. Moreover,

each of the terms in 6′(1,0), 6
′
(0,1) is also of this form, but with i, j = 1. We can now take

any Haar unitary u0 ∈ q Rq and use the fact that limn〈unξ ′, η′〉 = 0, for any vectors ξ ′, η′,
to obtain that for any finite set F ′ ⊂ (L2 M)1 and any δ′ > 0 there exists n0 such that

|〈unξ ′, η′〉| 6 δ′τ(q), ∀ξ ′, η′ ∈ F ′, |n| > n0. Thus, if we define w0 = un0
0 then for sufficiently

small δ′ we get that 6′(i,0) 6 ετ(q)/4 and 6′(0, j) 6 ετ(q)/4.

Putting now together the two sets of estimates, one gets that 6′(i, j)+6′(i,0)+6′(0, j) 6

ετ(q) = ετ(w∗0w0), which, combined with 〈T ∗T ((wv)k(ξ)), (wv)k(ξ)〉 6 ετ(w∗w) (due to

w being in W), shows that the last line in (2) is further majorized by ετ(u∗u). Thus, u =
w+w0 ∈W, with w 6 u, and, since w0 6= 0, we have u 6= w, contradicting the maximality

of w in W. Thus, w is actually a unitary, and the lemma is proved.

The second technical lemma corresponds to Lemma 1.2 in [30], but for s∗(B) instead

of K(H). It shows that once 4.2 holds true for a sequence of unitaries un ∈ Mδ then, as

n→∞, the restriction of δ to the abelian von Neumann algebra generated by the unitary

unv tends to behave ‘virtually’ like the derivation of L∞(T) into B(L2(T)) implemented

by adP, where P is the projection of L2(T) onto H2(T).

Lemma 4.3. Let δ : M → s∗(B(L2 M)) be a derivation. Let v ∈ U(M), and assume

that {un}n ⊂ U(M) is a sequence of unitary elements such that δ(un) = 0, ∀n, and

limn ‖T ((unv)
kξ)‖ = 0, ∀ξ ∈ L2 M, k 6= 0, T ∈ {δ(v), δ(v)∗, δ(v−1), δ(v−1)∗}. Then the

sequence {〈δ((unv)
r )1̂, (unv)

s 1̂〉}n tends to 〈δ(v)1̂, v̂〉 if r = s > 0 and to 0 in all other

cases.

Proof. Let t > 0 be a positive integer. Since δ(un) = 0, we have

δ((unv)
t ) =

t−1∑
i=0

(unv)
i unδ(v)(unv)

t−i−1; (1)

δ((unv)
−t ) =

t−1∑
i=0

(unv)
−iδ(v−1)u−1

n (unv)
−t+i+1. (2)

But by the assumptions in the hypothesis, applied to the case T = δ(v) and ξ = 1̂, it

follows that, whenever t − i − 1 6= 0, we have

‖(unv)
i unδ(v)(unv)

t−i−11̂‖ = ‖δ(v)(unv)
t−i−11̂‖ → 0. (3)

Similarly, by applying the hypothesis to T = δ(v−1) and ξ = v̂, for any t − i − 1 > 0, we

have

‖(unv)
−iδ(v−1)u−1

n (unv)
−t+i+11̂‖ = ‖δ(v−1)u−1

n (unv)
−t+i+11̂‖ → 0. (4)

Thus, from (1) and (3), for any integer t > 1, we get

lim
n
‖δ((unv)

t )1̂− (unv)
t−1unδ(v)1̂‖ = 0, (5)

while from (2) and (4) we get

lim
n
‖δ((unv)

−t )1̂‖ = 0. (6)
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Now, if r < 0 and s is arbitrary, then the statement follows immediately from (6). If in

turn r > 0, then by (5) we have, for any integer s,

lim
n
(〈δ((unv)

r )1̂, (unv)
s 1̂〉− 〈δ(v)1̂, u−1

n (unv)
s−r+11̂〉) = 0. (7)

But, if s− r + 1 6= 1, then, by applying the hypothesis to T = δ(v)∗, ξ = v̂,

when s− r + 1 6 0, and to T = δ(v−1)∗, ξ = 1̂, when s− r + 1 > 2, we obtain

limn ‖δ(v)∗u−1
n (unv)

s−r+11̂‖ = 0. So the second term in (7) tends to 0. Thus, if s 6= r ,

then limn〈δ((unv)
r )1̂, (unv)

s 1̂〉 = 0. In addition, if s = r > 0, then, by (7) again, we get

limn〈δ((unv)
r )1̂, (unv)

s 1̂〉 = 〈δ(v)1̂, v1̂〉).
The case r = 0 is trivial, because then we have (unv)

r = 1 and δ(1) = 0.

End of the proof of 4.1. From this point on, the rest of the proof of the theorem goes

exactly the same way as the proof of Theorem II in [30], by using Lemmas 4.2, 4.3, in lieu

of Lemmas 1.1, 1.2 in [30], as well as Lemma 1.3 in [30], which can be used unchanged.

We include this last part of the argument, for completeness.

Recall that we have reduced the proof to the case when M is a separable II1 factor acting

on H = L2 M and δ : M → B0 ⊂ s∗(B(L2 M)) a derivation vanishing on a hyperfinite

subfactor R ⊂ M with R′ ∩M = C1. We want to prove that δ = 0 on all M . We assumed

by contradiction that there exists v ∈ U(M) with δ(v) 6= 0, and we have seen that we may

assume that 〈δ(v)1̂, v̂〉 = 1.

By 4.2, there exists a sequence of unitaries un ∈ U(R) such that limn ‖T (unv)
kξ‖ = 0,

for all k 6= 0, all ξ ∈ L2 M , and T ∈ {δ(v), δ(v)∗, δ(v−1), δ(v−1)∗}, or T ∈ {pm}m , for some

sequence of finite-rank projections pm → 1. Note that

lim
n
‖pm(unv)

kξ‖ = 0,∀m, ξ,

implies that {(unv)
k}n tends weakly to 0, for all k 6= 0. By Lemma 1.3 in [30], this implies

there exist Haar unitaries vn ∈ M such that limn ‖vn − unv‖ = 0. Since 〈δ(v)1̂, v1̂〉 = 1
and δ is norm continuous, by Lemma 4.3 this implies that limn〈δ(vr

n)1̂, v
s
n 1̂〉 is equal to 1

if r = s > 0 and to 0 in all other cases.

Take An to be the von Neumann subalgebra of M generated by the Haar unitary

vn , and denote by en the orthogonal projection onto L2 An . Since s∗M (B(L
2 M)) ⊂

s∗An
(B(L2 M)) and s∗An

(B(L2 M)) is an A′n-bimodule with en ∈ A′n , it follows that

enδ(An)en ⊂ ens∗An
(B(L2 M))en = s∗An

(L2 An). Thus

An 3 a 7→ δn(a) = enδ(a)en ∈ s∗An
(L2 An)

defines derivations with the property that ‖δn‖ 6 ‖δ‖, ∀n. Moreover, since all δn are

restrictions of δ, which is smooth, the derivations {δn}n are uniformly smooth; i.e., ∀ε > 0,

∃α > 0 such that, for any given n, if a ∈ (An)1 is such that ‖a‖ 6 α, then ‖δn(a)‖ 6 ε.

Since An ⊂ B(L2 An) are all spatially isomorphic to L∞(T) ⊂ B(L2(T)), with the

identification sending the Haar unitary generating An to the operator Mz , acting on

f ∈ L2(T) by multiplication with the function g(z) = z, we may view all δn as derivations

from L∞(T) into s∗L∞(T)(B(L
2(T)), which are uniformly bounded in norm by ‖δ‖ and
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uniformly smooth. Moreover, by spatiality, limn〈δn(Mzr )1̂, ẑs〉 is equal to 1 if r = s > 0
and to 0 in all other cases.

We now fix a free ultrafilter ω on N, and define 1 : L∞(T)→ B(L2(T)) to be the
weak limit over ω of δn ; then it is easy to see that 1 is still a derivation, which satisfies
‖1‖ 6 ‖δ‖ and is smooth (because δn are uniformly smooth). Moreover, we have that

〈1(Mzr )1̂, zs 1̂〉 = lim
n
〈δ(vr

n)1̂, v
s
n 1̂〉

is equal to 1 if r = s > 0 and to 0 in all other cases. By using the derivation properties,
this implies that 〈1(Mz)zr , zs〉 is equal to 1 if r = 0, s = 1, and to 0 otherwise. But this
means that 1(Mz) coincides with the commutator [P,Mz], where P is the orthogonal
projection of L2(T) onto the subspace H2(T) = sp{zk | k > 0}. Since both 1 and adP
are derivations and are weakly continuous (1 is even smooth), and they coincide on the
generator Mz of L∞(T), it follows that 1 = adP on all L∞(T).

Since 1 is smooth, this implies that adP is smooth. Moreover, since adP takes compact
values on the dense ∗-subalgebra sp{Mzr | r ∈ Z} and is smooth, it takes compact values
on all L∞(T). By 2.5 or 3.7, adP = adK for some K ∈ K(L2(T)). Thus P − K commutes
with L∞(T), which is maximal abelian in B(L2(T)). It follows that P − K = M f for some
f ∈ L∞(T). But then

〈(P − K )zk, zk〉 = 〈M f zk, zk〉 =
∫

f (z) dν(z)

for all k ∈ Z, with the left-hand side tending to 1 as k →∞ and to 0 as k →−∞, while
the right-hand side is constant. This final contradiction finishes the proof.

Corollary 4.4. Let M ⊂ B(H) be a normal representation of a von Neumann algebra M
on a Hilbert space H. If δ : M → B(H) is a smooth derivation, then there exists T ∈
s∗M (B(H)), with ‖T ‖ 6 ‖δ‖, such that δ = adT .

Corollary 4.5. Let M0 be a C∗-algebra with a faithful trace τ and M0 ⊂ B(H) a faithful
representation of M0. Let δ : M0 → B(H) be a derivation. Assume that δ is continuous
from the unit ball of M0 with the topology given by the Hilbert norm ‖x‖2 = τ(x∗x)1/2,
x ∈ M0, to B(H) with the operator norm topology. Then there exists T ∈ B(H) such that
δ = adT and ‖T ‖ 6 ‖δ‖. More precisely, if p0 denotes the projection onto the closure H0
of sp{δ(x)ξ | ξ ∈ H, x ∈ M0}, then [p0,M0] = 0, [p0, δ(M0)] = 0, the weak closure M of
M0 p0 ⊂ B(H0) is a finite von Neumann algebra, and δ extends to a smooth derivation of
M into B(H0) and is implemented by an element T ∈ s∗M (B(H0)), with ‖T ‖ 6 ‖δ‖.
Proof. Since yδ(x)ξ = (δ(yx)− δ(y)x)ξ , we have M0H0 ⊂ H0. The projection p0 onto H0
satisfies (1− p0)δ(x) = 0, ∀x ∈ M0, and it is the smallest projection with this property.

For each T = δ(y)p0 ∈ B(H0) and ξ ∈ H0, we have ‖xT (ξ)‖ small if x ∈ (M0)1, ‖x‖2 small.

Thus, if we denote by (πτ ,Hτ ) the GNS representation of M0 corresponding to the trace

τ , then the map θ : π(M0)→ M0 p0 ⊂ B(H0) defined by θ(π(x)) = xp0 is a ∗-algebra

morphism which is continuous from the unit ball of π(M0) with the ‖ ‖τ -topology to

(M0 p0)1 with the so-topology. This implies that θ extends to a ∗-morphism, still denoted

θ , from π(M0)
′′ to M = (M0 p0)

′′ ⊂ B(H0). This means that ker θ is given by a central

projection z0 in π(M0)
′′, i.e., M ' πτ (M0)

′′z0, and the rest of the statement follows
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from 4.1, once we notice that the extension by continuity of δ to all M = Mp0 is smooth

(and is thus smooth valued).

5. Further comments

5.1. Generalized smooth cohomology

Note that the proof of 2.5 still works (and thus the conclusion in 2.5 still holds true) if

we merely assume that B/B0 is operatorial, instead of the (stronger) condition that B is

operatorial.

But an even greater degree of generality for which the arguments in the proof of 2.5

work exactly the same way is the following framework, inspired by the work in [36]. Let

M be a von Neumann algebra, and let B be a dual normal M-bimodule. Assume that

L ⊂ B∗ is a subset of the unit ball of B∗ with the property that if ϕ ∈ L then ϕ(x · y) ∈ L
for any x, y ∈ (M)1 (so in particular λL ⊂ L for any λ ∈ C with |λ| 6 1). Moreover, we

assume the set L is ‘separating’ for B, i.e., ∀T ∈ B, ∃ϕ ∈ L such that ϕ(T ) 6= 0.

For T ∈ B, we denote ‖T ‖L = sup{|ϕ(T )| | ϕ ∈ L}. Note that ‖ ‖L is a norm on B which

is majorized by ‖ ‖ and is complete on the unit ball of (B, ‖ ‖). Moreover, (B, ‖ ‖L) is a

normed M-bimodule, and we denote by s∗(B, ‖ ‖L) its smooth part. As in 1.2(1◦), this

space is easily seen to be a Banach M-bimodule with respect to the usual norm ‖ ‖, and

its unit ball is complete in the norm ‖ ‖L .

Let now B0 ⊂ s∗(B, ‖ ‖L) be a sub-bimodule with the property that the unit ball of

(B0, ‖ ‖) is complete in the norm ‖ ‖L . In addition, we will require the norm implemented

by ‖ ‖L on the quotient space B/B0 by ‖T/B0‖L ,ess = sup{‖T − T0‖L | T0 ∈ B0}, T ∈ B,

to be operatorial, in the sense that, for any T ∈ B and any p ∈ P(M), we have

‖pT p+ (1− p)T (1− p)‖L ,ess = max{‖pT p‖L ,ess, ‖(1− p)T (1− p)‖L ,ess}.

Theorem 5.1.1. With the above assumptions and notation, let δ : M → B0 be a derivation.

Given any amenable von Neumann subalgebra B ⊂ M, δ is implemented on B by some

T ∈ Kδ,B ∩B0. Moreover, if B is diffuse and wq-regular in M, then T implements δ on

all M. And if B is a von Neumann algebra that contains M as a von Neumann subalgebra,

then T implements δ on all M even if A is not wq-regular in M.

Example 5.1.2. (1◦) If in the above we take L to be the whole unit ball of B∗, then ‖ ‖L
coincides with the norm ‖ ‖.
(2◦) Let M be a semifinite von Neumann factor, and denote by J ⊂M the compact

ideal space of M, i.e., the set of all elements T ∈M with the property that all spectral

projections of |T | corresponding to intervals [c,∞) for c > 0 are finite projections

in M. Let T r be a normal semifinite trace on M, and take L ⊂M∗ to be the set of

all normal functionals on M of the form ϕx,y(T ) = T r(yT x), with x, y ∈M, ‖x‖ 6 1,

T r(x∗x) 6 1, T r(y∗y) 6 1. Then the corresponding norm ‖ ‖L satisfies all the above

conditions. Moreover, J is contained in s∗(M, ‖ ‖L), and the quotient norm ‖ ‖L ,ess on

M/J is operatorial. Thus, we recover in this case the framework and results obtained

in [36], for which Theorem 5.1.1 provides a more abstract setting, with a higher degree

of generalization.
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Note that, if M = B(H), for some Hilbert space H, then J = K(H) and ‖ ‖L coincides

with the operatorial norm on B(H). But for type II∞ factors M, there are elements T in

M for which ‖T ‖L < ‖T ‖. Moreover, if M ⊂M is a von Neumann algebra and we view

M as a dual M-bimodule by left/right multiplication of the elements in M by elements

in M , then the norm ‖ ‖ is not smooth on J , and is not operatorial on M/J . In addition,

from the above we see that ‖ ‖L is both smooth on J and operatorial on the quotient

M/J . Thus, Theorem 5.1.1 is more general than Theorem 2.5.

5.2. Smooth n-cohomology

We propose here a definition of higher Hochschild cohomology groups with smooth

coefficients, Hn
s (M,B0), n > 2, which extends the 1-cohomology in § 3 to all n. This is done

in the spirit of the classical operatorial approach to Hochschild cohomology in [15, 17, 18]

(see also [41]), but with additional continuity requirements.

Thus, let B be a dual operatorial M-bimodule and B0 ⊂ s∗(B) a Banach M
sub-bimodule. Denote by Ln

s (M,B0) the space of n-linear maps 8 : Mn = M ×M × · · ·×
M → B0, which are separately s∗-norm continuous in each variable, i.e., for each i and

each fixed x1, . . . , xi−1, xi+1, . . . , xn , the map M 3 x 7→ 8(x1, . . . , xi−1, x, xi+1, . . . , xn) ∈
B0 is continuous from the unit ball of M with the s∗-topology to B0 with its norm topology.

We view {Ln
s (M,B0)}n as a chain complex with boundary operators ∂n : Ln

s → Ln+1
s defined

by

∂n(8)(x1, . . . , xn+1) = x18(x2, x3, . . . , xn+1)−8(x1x2, x3, . . . , xn+1)

+ · · ·+ (−1)n8(x1, x2, . . . , xn xn+1)+ (−1)n+18(x1, . . . , xn)xn+1.

Denote by Zn
s (M,B0) the kernel of ∂n+1, by Bn

s (M,B0) the image of Ln
s under ∂n , and by

Hn
s (M,B0) = Zn

s (M,B0)/Bn
s (M,B0) the corresponding (vector) quotient space.

As we mentioned in § 3, Theorems 3.7, 3.8, 4.1, can be formulated as vanishing

1-cohomology results, in the form H1(M,B0) = H1
s (M,B0) = 0. Note that smoothness

is automatic for 1-cocycles (=derivations). Such ‘automatic continuity’ phenomena for

1-cocycles are often present in cohomology theories involving operator algebras. But that

is no longer the case for the higher cohomology. We have thus required smoothness in

each variable, as part of the definition of n-cocycles.

Note that in the case when the target smooth bimodule B0 is the ideal of compact

operators on the Hilbert space H on which M acts, B0 = K(H), smoothness in each
variable is in fact automatic, once separate weak continuity is assumed, a fact that was

pointed out in Proposition 3 of [40]. We recall that statement here, and include a proof,

for the reader’s convenience, but also in order to emphasize the crucial way in which the

assumption that the target bimodule is the space of compact operators is being used.

This shows the difficulty of dealing with higher cohomology with coefficients in arbitrary

smooth bimodules (even when restricting to cocycles that are smooth in each variable).

Lemma 5.2.1 [39]. Let (M, τ ) be a finite von Neumann algebra, acting normally on the

Hilbert space H. If 8 : Mn → K(H) is n-linear, separately norm continuous, and weakly

continuous in each variable, then 8 is separately s∗-norm continuous on the unit ball of

M, in each variable. In particular, Zn
s (M,K(H)) = Zn

w(M,K(H)), ∀n > 1.
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Proof. By A.1, it is sufficient to prove that, if F : M → K(H) is a bounded linear map

which is weakly continuous (i.e., continuous from (M)1 with the σ(M,M∗)-topology to

K(H) with the σ(B(H),B(H)∗)-topology), then for any mutually orthogonal projections

en ∈ P(M) we have limn ‖F(en)‖ = 0.

Assume by contradiction that there exist mutually orthogonal projections en with

‖F(ek)‖ > c > 0, ∀n. Since the F(ek) are compact operators and they tend weakly to 0, it

follows that we can choose recursively a fast growing sequence of integers k1 � k2 � · · ·
such that F(ekn+1) is εn+1-supported by a finite-rank projection pn+1 with pk pn+1 = 0,

1 6 k 6 n. If the εn are taken sufficiently small, then by weak continuity of F we have that

F(e) = F(6nekn ) = 6n F(ekn ) must be compact, while being norm close to 6n pn F(ekn )pn ,

which is a non-compact operator (because under each pn there exist unit vectors on which

pn F(ekn )pn has norm > c/2). This contradiction completes the proof.

5.3. Toward a ‘good’ cohomology theory for II1 factors

The work in this paper can be viewed as a revisitation of techniques and results in [16, 29,

30] in light of the recent efforts ([8, 22, 43], among others) to find a ‘good’ 1-cohomology

theory for II1 factors M . By a ‘good cohomology’ we mean one that does not always vanish

and can therefore detect properties of II1 factors such as primeness, absence of Cartan

subalgebras, and infinite generation. An ideal such theory should also be calculable, and

in the case of group II1 factors M = L(0) should reflect the cohomology theory of the

group 0.

One can try to define such a cohomology theory on weakly dense ∗-subalgebras of M ,

as in one of the venues proposed in [8], or as in [22]. But this would require showing

that the definition of the resulting invariant (the cohomology group, or at least its

‘dimension’) does not depend on the choice of the dense subalgebra of M . Solving this

type of problem has run into difficulties that seem insurmountable at the moment, similar

to the problem of showing that Voiculescu’s free entropy dimension of a set of generators

of M is independent on the choice of generators.

We have thus taken the point of view that a ‘good cohomology’ for M should be

everywhere defined. All the weight for constructing such a cohomology is thus left on the

choice of the target M-bimodules B. The M-bimodules may be purely algebraic, with no

topology on them (as in [8]). But the danger in this case is that the resulting 1-cohomology

may be non-zero for any II1 factor. Also, in order for a cohomology to detect finite/infinite

generation of M , a derivation δ : M → B should be uniquely determined by its values on

a set of generators of M , thus imposing that δ satisfies some continuity properties.

A topological version of the Connes–Shlyakhtenko’s cohomology [8] has been proposed

by Thom in [43], where the target M-bimodule is the space B = Aff(M⊗M) of all densely

defined closable operators affiliated with M⊗M , and the derivations δ : M → B are taken

to be continuous from M with the norm topology to B with the topology of convergence

in measure. By using the non-commutative Lusin-type theorem, such derivations are

actually shown to be continuous from the unit ball of M with the Hilbert norm ‖ ‖2
given by the trace to B with the topology of convergence in measure [3, 43]. Thus, they

are indeed uniquely determined by their values on a set of von Neumann generators
of M . But this 1-cohomology was shown to always vanish in [37] (after prior work in
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this direction in [2, 3]). Moreover, it was proved in [37] that any derivation δ : M → B
that is continuous from M with the norm-‖ ‖− 2 topology to B with any ‘reasonable’

weak topology is inner. So the approach in [8, 43], among others, is at a stalemate at the

moment.

But we retain from the above that, in order for the derivations to be uniquely

determined by their value on a set of generators of M , the class of M-bimodules B and

derivations δ : M → B considered should satisfy some topological/continuity conditions.

We restrict our attention to the case when B are Banach M-bimodules. Note that, by [40],

any derivation of M into a Banach M-bimodule B is automatically norm continuous. Two

typical classes of Banach M-bimodules are the ‘L∞-type’ (operatorial) and the ‘L1-type’,

where the former come from representations M ⊂ B(H), with B ⊂ B(H) a norm closed

subspace satisfying MBM ⊂ B, while the latter appear as M-bivariant subspaces of the

dual of L∞-type Banach bimodules, B ⊂ B(H)∗. The L1-type M-bimodules seem to

always give rise to 1-cohomologies that are either vanishing (like in the case B = M∗
in [13], or due to the Ryll–Nardzewski theorem as in [4]), or are very large (like in the

case of the dual normal M bimodule B ⊂ B(L2 M)∗ that detects the non-amenability of

M in [7]). So the ‘L∞-type’ bimodules appear to be more suitable for our purpose.

Another important ‘wishful’ feature is that derivations should be uniquely determined

by their values on wq-regular diffuse von Neumann subalgebras of M and, if possible,

to be ‘integrable’ on abelian subalgebras. The first of this requirements is by analogy

to properties in L2-cohomology of groups (see, e.g., [23]) and countable equivalence

relations [12]. It is a property that ensures that the 1-cohomology is ‘small’ and calculable,

and that it is vanishing once M contains wq-regular abelian diffuse subalgebras. This last

property is best ensured when any δ considered is inner (i.e., implemented by an element

in B) on any abelian subalgebra A ⊂ M (δ is ‘integrable’ on A). This is not the case in

the initial Cheeger–Gromov approach to L2-cohomology, where the 0-module is B = `20,

but it is the case in the Peterson–Thom recent approach in [23], where B if taken to be

the bigger module Aff(L(0)).
We will call a bimodule B thin if there are no non-zero elements in B that commute with

a diffuse von Neumann subalgebra of M . Thin bimodules B do have the property that

any derivation δ : M → B is uniquely determined by its values on a wq-regular diffuse

subalgebra of M .

The smooth operatorial bimodules and cohomology that we propose in this paper

satisfy all the above ‘wishful’ properties: (a) smooth derivations are uniquely determined

by their values on sets of generators of the von Neumann algebra; (b) they are integrable

on abelian subalgebras; (c) they are uniquely determined by their values on wq-regular

diffuse subalgebras: in fact they take values into smooth bimodules, which are thin. The

problem is, of course, that any such cohomology may be vanishing. In the (optimistic!)

case that they do not, one needs to find a class of smooth bimodules for which the general

results in Theorems 2.5, 3.7, 3.8 (or 0.1 in the introduction) hold true, but for which there

do exist II1 factors M (e.g., M = L(Fn)) that have non-inner derivations.

The proof of Theorem 4.1 gives ideas and techniques that could be used to show

that all 1-cohomologies into operatorial smooth bimodules vanish (see also the problem

formulated at the end of Remark 1.4). Alternatively, 4.1 provides ‘boundary conditions’
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toward the search for a ‘good class’ of smooth bimodules B, by indicating the type of

conditions they should NOT satisfy: if B is ‘too operatorial’ (e.g., B is a sub-bimodule in

B(H) like in 4.1), then all derivations into the smooth part of B will be inner. The

room to maneuver is slim, but there are ways to generalize even more the class of

‘smooth-type’ bimodules considered, while still retaining ‘thinness’, integrability over

abelian subalgebras, and vanishing cohomology for wq-regular II1 factors, as in 2.5, 3.7,

and 3.8 (e.g., in the spirit of 5.1).
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Appendix A

We recall here, for the reader’s convenience, a result from [29]; see also A.1 in the

Appendix of [30]), showing that, if a weakly continuous linear map from a finite

von Neumann algebra into a dual Banach space has the property that it is s∗-norm

continuous on the unit ball of any copy of `∞N in M , then it follows s∗-norm continuous

on the unit ball of M . We include the proof from [29], for the sake of completeness.

Lemma A.1. Let (M, τ ) be a finite von Neumann algebra with a faithful normal trace

and B a dual Banach space. Let F : M → B be a weakly continuous linear map. Assume

that limn ‖F(en)‖ = 0 for any sequence of mutually orthogonal projections in M. Then

limn ‖F(xn)‖ = 0 for any sequence {xn}n in the unit ball of M that tends to 0 in the

strong operator topology.

Proof. Let us prove first that limn ‖F( fn)‖ = 0 for any sequence fn ∈ P(M) with

τ( fn)→ 0. Suppose by contradiction that there exists such a sequence with ‖F( fn)‖ >
c > 0, ∀n. By taking a subsequence, if necessary, we may assume that 6nτ( fn) <∞.

Let gn = ∨k>n fk , and note that gn is a decreasing sequence of projections with τ(gn) 6
6k>nτ( fk)→n 0.

Denote by snm the support projection of fm gn fm . Then snm 6 fm and snm is majorized

(in the sense of comparison of projections) by gn . Thus, since τ is a trace, we have τ(snm) 6
τ(gn)→n 0 for each m. Since {gn}n is decreasing, { fm gn fm}n is decreasing, and thus {snm}n
is decreasing in n, for each m. It follows that { fm − snm}n increases to fm , implying that

{F( fm − snm)}n is weakly convergent to F( fm). By the inferior semicontinuity of the norm

on B with respect to the w∗-topology, it follows that, for each fixed m and large enough nm ,

we have ‖F( fm − snm ,m)‖ > c/2.

This shows that we can construct recursively an increasing sequence of integers n1 <

n2 < · · · such that the projections hk = fnk − snk+1,nk satisfy ‖F(hk)‖ > c/2, ∀k. These

projections also satisfy τ(hk) 6 τ( fnk )→k 0. Moreover, by the definitions of hk and of

snk+1,nk , it follows that hk gnk+1 hk = 0, so in particular hk fnl = 0 for l > k+ 1. Thus, hkhl =
0, ∀l > k+ 1, i.e., {hk}k are mutually orthogonal projections. Since ‖F(hk)‖ > c/2, ∀k,

this contradicts the fact that F is s∗-norm continuous on atomic abelian von Neumann

subalgebras.
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To prove that, if {xn}n is an arbitrary sequence in (M)1 with ‖xn‖2 → 0, then ‖F(xn)‖
→ 0, it is clearly sufficient to show this for xn = x∗n . Moreover, since ‖|xn|‖2 = ‖xn‖2,

it follows that, if ‖xn‖2 → 0, then ‖(xn)+‖2 → 0, ‖(xn)−‖2 → 0, showing that it is

sufficient to prove the implication for sequences xn ∈ (M+)1, with τ(xn)→ 0. Let xn =
6m>12−menm , enm ∈ P(M), be the dyadic decomposition of xn . It follows that τ(enm)→ 0,

∀m. Let ε > 0. Let m0 be such that 2−m0(‖F‖+ 1) 6 ε/2. By the first part of the proof,

it follows that there exists n0 such that ‖F(enk)‖ 6 ε/2, ∀n > n0 and k 6 m0. Thus, if

n > n0 we have

‖F(xn)‖ 6
( m0∑

k=1

2−k‖F(enm)‖
)
+
∑

k>m0

2−k

 ‖F(enk)‖

6

( m0∑
k=1

2−k

)
ε/2+

∑
k>m0

2−k

 ‖F‖ 6 ε.

Remark A.2. If a von Neumann algebra M is normally represented on a Hilbert space H
and we endow B = B(H) with the M-bimodule structure given by left–right multiplication

by elements in M , and we let B0 ⊂ s∗(B) be the ideal of compact operators, B0 = K(H),
then the automatic smoothness of any derivation δ : M → B0 was proved in [29]. The

argument consists in reducing the problem to the case when M ' `∞N (via Lemma A.1),

which in turn follows from the innerness of compact-valued derivations on atomic abelian

von Neumann algebras, established in [16].

It was then noticed in [39] that in fact ANY weakly continuous linear map F : M →
K(H) is s∗-norm continuous on atomic abelian von Neumann subalgebras of M , and thus,

by p. 224 in [29] (i.e., A.1 above), all such weakly continuous linear compact-valued maps

are s∗-norm continuous on countable decomposable finite von Neumann algebras.

This general ‘principle’ is of course no longer true if we replace K(H) by the space of

all smooth elements s∗(B(H)). Indeed, we have seen in 1.8(2◦) that if M is a finite diffuse

von Neumann algebra then the smooth part of B(L2 M) contains infinite-dimensional

projections, and, since B0 = s∗(B(L2 M)) is a hereditary C∗-algebra, any such projection

p satisfies pB0 p ' B(L2 M). But there are of course plenty of weakly continuous linear

maps from M into B(L2 M) which are not s∗-norm continuous on all their atomic abelian

subalgebras; for instance, the inclusion map M ⊂ B(L2 M) does not satisfy this continuity

property on any `∞N ↪→ M .
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