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The stability of the flow of an incompressible, viscous fluid through a pipe of circular
cross-section, curved about a central axis is investigated in a weakly nonlinear regime.
A sinusoidal pressure gradient with zero mean is imposed, acting along the pipe.
A WKBJ perturbation solution is constructed, taking into account the need for an
inner solution in the vicinity of the outer bend, which is obtained by identifying the
saddle point of the Taylor number in the complex plane of the cross-sectional angle
coordinate. The equation governing the nonlinear evolution of the leading-order vortex
amplitude is thus determined. The stability analysis of this flow to axially periodic
disturbances leads to a partial differential system dependent on three variables, and
since the differential operators in this system are periodic in time, Floquet theory may
be applied to reduce it to a coupled infinite system of ordinary differential equations,
together with homogeneous uncoupled boundary conditions. The eigenvalues of this
system are calculated numerically to predict a critical Taylor number consistent with
the analysis of Papageorgiou (1987). A discussion of how nonlinear effects alter the
linear stability analysis is also given. It is found that solutions to the leading-order
vortex amplitude equation bifurcate subcritically from the eigenvalues of the linear
problem.

1. Introduction
Our concern is with the stability of the unsteady viscous flow of an incompressible

fluid in a pipe of circular cross-section, itself curved about a central axis, and subject
to a sinusoidal pressure gradient of zero mean. In particular, we are interested in the
effects of the nonlinear terms of the Navier–Stokes equations on the development
of the disturbance at the pipe walls. The stability of laminar periodic flows, such
as in the problem under consideration, is often of both mathematical and physical
importance. In this case, our model is of particular relevance to the fluid mechanics of
the cardiovascular system, and in particular the possible links to atheroma. Atheroma
is increasingly an important disease process in middle age, and indeed postmortem
results even in young people have shown evidence of changes to large arterial vessels.
In the initial stages fatty streaks – accumulation of lipid in the tunica intima –
occur. Subsequently, raised plaques become visible on the surface of the arteries. An
important feature of atheroma is that it develops at preferred sites in the circulatory
system. Early signs may be seen in the major central arteries, and not in the peripheral
system, and indeed the later onset of atheroma in the peripheral circulation might
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146 T. A. Shortis and P. Hall

well be due to more advanced lesions in larger vessels influencing the blood flow past
them and hence the development downstream. The first sites tend to be found near
junctions and curves in the arteries. For example, the posterior wall of the descending
thoracic aorta almost always has fatty streaks, whilst the anterior wall does not. It is
thought that one or both of two factors are important in the preferential distribution:
first the structure of the vessel wall varies so that some sites are more prone to
development, and secondly that they are subject to different influences due to the
fluid flow, and this might alter the physiological or biochemical processes taking
place. Clearly we are interested in the latter. Experimental evidence indicates that
atheroma is linked with low permeability of the endothelium which inhibits the efflux
of cholesterol. It was initially thought that this low permeability might be due to
damage to the endothelium produced by high wall shear stresses, but in fact it has
been shown that such damage increases the rate at which molecules may diffuse into
and out of the plasma. Thus we would expect that less streaks are visible at regions
of high shear, which agrees with observational evidence. For example, in junctions
streaks are observed on the outer walls, but not on the flow divider, and in curved
arteries evidence of atheroma is more prevalent on the inner bends. For a more
detailed account of atherogenesis and references to experimental work the reader is
referred to Caro et al. (1978).

Clearly, the model used to study the fluid flow in a curved pipe is far simpler than
the blood flow within the aortic arch. For example, our model does not take into
account the distensibility of the arterial wall. However, although this would be of
importance in determining the local pressure gradient it does not affect the overall
velocity distribution, since the wavelength of the pulse of fluid driven by the pressure
gradient is far greater than the distance travelled by a typical fluid element in a single
cycle. For example, in the canine aorta, the pulse wavelength is 3–4 m, whilst the
distance travelled by the fluid element is about 10–20 cm, and hence we can assume
that during one period the cross-sectional area of the section of the pipe traversed
by the fluid is approximately uniform. Similarly elastic effects can also be neglected
provided that there is no discernible change in the pipe cross-section over a length
scale of say 10 cm.

Several problems dealing with the stability of oscillatory flows have been investi-
gated, both theoretically and experimentally (see Davis 1976). Periodic laminar flows
may be categorized in two ways. First those which have a non-zero mean veloc-
ity, in which case the disturbance is usually associated with the mean flow and the
parameters governing the stability problem are dependent on the unperturbed flow
field. Secondly, periodic flows may be purely oscillatory, that is have zero mean. In
general perturbation methods, although often applicable to flows of non-zero mean,
cannot be employed to study such disturbances and numerical techniques must be
relied upon to analyse the stability problem. The flow field investigated in this paper
is purely oscillatory in nature and thus falls into the latter of these groups.

Since viscosity is to be included, of importance are the stability mechanisms
operating within the Stokes layers formed at the pipe walls, and in particular those
associated with specific types of geometry and local surface behaviour. Since we
are investigating the flow within a curved pipe, clearly centrifugal effects are of
importance, and will affect the development of the instability differently depending
on whether the surface is locally convex or concave.

Experimental and theoretical investigations of the centrifugal instabilities of a
Stokes layer in time-periodic flows were done by Seminara & Hall (1976). They inves-
tigated the linear stability of the flow induced by a cylinder oscillating harmonically
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Oscillatory viscous flow of an incompressible fluid 147

about its axis in an unbounded fluid. Within the Stokes layer at the surface of the
body, the flow is shown to be unstable to a Taylor-vortex-like mode of instabil-
ity, with the vortices being periodic in the azimuthal direction for sufficiently high
frequencies of oscillation. Also considered was the possible relevance of their study
to the stability of the flow within the aortic arch. A description of the flow here
is complicated, but less important features of the problem were neglected. Previous
work by Lyne (1971), had shown that, in the high-frequency limit, viscous effects
are confined to a thin layer at the wall, suggesting a Stokes-layer-type flow regime
there. Seminara & Hall also investigated the flow induced by an oscillating curved
pipe, and in particular the stability characteristics of the inner (convex) and the outer
(concave) bend. They found that at the inner bend the disturbance is locally unstable,
whilst at the outer bend it is locally stable. If, however, the flow is driven by an
oscillating pressure gradient, as is the case for our problem, the stable and unstable
regions change positions. A more detailed experimental treatment of this problem
was carried out by Park, Barenghi & Donnelly (1980) and confirmed the secondary
subharmonic destabilization of the most dangerous mode found by Seminara &
Hall.

Hall (1984) and Papageorgiou (1987) found that the type of instability mechanism
investigated by Seminara & Hall can also occur at spatially localized positions in
more complex boundary layer flows.

Hall (1984) considered the instability of the two-dimensional flow induced by
a transversely oscillating cylinder, of both elliptical and circular cross-section, in
an unbounded viscous fluid, in both the linear and weakly nonlinear regimes. For
frequencies sufficiently high, the cylinder motion drives an unsteady boundary layer
which is unstable to Taylor–Görtler vortices, localized in regions where the slip
velocity of the potential flow, outside the boundary layer, is parallel to the motion.
For the circular cylinder case in the weakly nonlinear regime, it was found that
the finite-amplitude solutions to the evolution equation for the leading-order vortex
amplitude bifurcate subcritically from the eigenvalues of the linear problem.

In the problems outlined above, the flow field was essentially two-dimensional.
However the problem under consideration in this paper comprises the basic motion
in the pipe core, together with a small secondary two-dimensional flow in the cross-
section, and thus the underlying flow is no longer two-dimensional. The steady
problem was first studied by Dean (1927, 1928), who concluded that the motion
depends on a parameter, K , defined by

K = 2R2
e

a

R
,

where a is the pipe radius, R its radius of curvature about some central axis,
and Re the Reynolds number. Dean’s analysis was restricted to small values of K ,
but subsequently has been extended numerically to cover moderately large K , and
asymptotic boundary layer theory has been used to obtain results for very large values
of this parameter.

Until Lyne (1971), the time-dependent problem had not been studied. He gave a
detailed asymptotic analysis of the fully developed unperturbed flow in a curved pipe
under the action of a pressure gradient assumed to be sinusoidal in time, and with
zero mean. It is also assumed that δ, defined as

δ =
a

R
,
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is small. The flow is found to depend on two parameters,

ε2 =

(
W 2

aω2

)
1

R
, Rs =

W 2a

Rων
,

where ν is the kinematic viscosity, W is a typical velocity along the pipe, and ω is
the frequency of oscillation of the basic flow. The parameter ε2 is the ratio of the
square of the displacement amplitude of the axial motion, (W 2/aω2), to the radius of
curvature, R, and is taken to be small. Rs may be thought of as the Reynolds number
of the secondary flow. Also of importance in the analysis is the parameter β, given by,

β2 =

(
2ν

ω

)
1

a2
=

2ε2

Rs
;

β is also assumed to be small. Physically, β represents the ratio of the Stokes layer
thickness, (2ν/ω)1/2, to the pipe radius, a. Since β is small, the viscous effects are
confined to a thin layer on the pipe wall, whilst the flow in the pipe core is inviscid.
The influence of the parameter β on physiological flows was first recognized by
Womersley (1955).

The linear stability problem was investigated theoretically by Papageorgiou (1987)
and a more detailed discussion of the results obtained is given in §2.2, since this
provides a basis for the nonlinear problem under consideration here.

Since the Stokes layer is thin, the streamlines adjacent to the wall can be assumed
to have radius of curvature of O(R), and we introduce, Ta, the Taylor number for the
secondary flow and defined by

Ta =
W 2

(
(2ν/ω)1/2

)3

Rν2
= 2

W 2

Rω

a

ν

(
2ν

a2ω

)1/2

= 2Rsβ.

Since we are interested in centrifugal effects, we demand that Ta is O(1), and choose
Rs to be

Rs = 2Tβ−1,

where Ta = 4T . Note that we may relate the parameters, ε, β, T through the formula

ε2 = βT ,

and thus the problem may be reduced to one dependent only on the parameters
β and T . Since Ta is much smaller than the Taylor number for the axial flow, we
may assume that the vortices will be aligned with the flow down the pipe and will
have characteristic wavenumbers based on the Stokes layer thickness, (2ν/ω)1/2. In
the construction of the solution two length scales, O(1) and O(β), emerge as being
of importance. A possible approach, taking into account the different scalings in the
pipe cross-section, would be to expand the perturbation quantities in powers of β and
apply a WKBJ method. Walton (1978) adopted such a method when investigating the
narrow spherical annulus problem. He anticipated that the critical Taylor number at
the equator, above which instabilities in the flow may occur, was slightly in excess of
that for the corresponding cylinder problem. It was found that the solution becomes
singular in the vicinity of the equator, suggesting that an inner expansion is required to
smooth out this singularity. The solutions to the resulting amplitude equation could be
expressed in terms of Airy functions, which have the property that solutions decaying
at infinity exhibit oscillatory behaviour at minus infinity. Clearly such functions are
physically unacceptable, since we require that solutions for the velocity distribution
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Figure 1. The coordinate system.

must be symmetric about the equator. The difficulty was resolved by Soward & Jones
(1983), who identified the Taylor number for which inner solutions are well behaved
away from the equator.

For our problem, the linear stability analysis of Papageorgiou showed that, as for
the narrow spherical annulus problem, the solution to the amplitude equation was
singular, in this case in the neighbourhood of the outer bend. Again a local inner
expansion produced physically unacceptable results and the method of Soward &
Jones (1983), was employed to identify the correct Taylor number for which the inner
solution is well behaved at ±∞. Papageorgiou’s investigation also indicated that the
instability sets in first at the outer bend of the pipe, and it was also shown that there
exists no critical Taylor number for the corresponding problem at the inner bend,
suggesting that centrifugal effects are of little importance here.

The procedure for the remainder of this paper is as follows. In the coming section
we formulate the problem at hand, obtaining the governing equations for the flow
field within the Stokes layer. In § 2.2 we present a brief summary of the derivation
of the linear amplitude equation derived by Papageorgiou. This analysis is then
extended in § 3 to include the nonlinear terms of the governing equations and thus the
evolution equation for the leading-order vortex amplitude is obtained in this weakly
nonlinear regime. In § 4 numerical results for both the linear and nonlinear problems
are presented and discussed. Finally we draw some conclusions.

2. Formulation of the problem
2.1. Equations of motion

Consider the flow of an incompressible viscous fluid in a pipe of circular cross-section
and radius a, which itself is curved in a circle of radius R about a central axis, as
illustrated in figure 1. The spatial coordinates are taken to be (r, θ, φ) where r and
θ are polar coordinates within the pipe cross-section, and Rφ measures the distance
along the pipe. The velocity vector u has components (u, v, w) corresponding to the
(r, θ, φ) coordinate system and is assumed to be independent of φ, once the basic flow
is fully developed.

A sinusoidal pressure gradient of the form

− ∂

∂φ

(
p

ρ

)
= RWω cos(ωt)

is imposed on the above flow regime. If we consider the Navier–Stokes equations
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for the system, and in particular the balance between the viscous work and pressure
terms, we see that there exists a layer of thickness O(2ν/ω)1/2 on the pipe walls inside
which the viscous terms dominate, whilst in the core we have a potential flow. Similar
analysis for the r- and θ-momentum equations suggests that within the viscous layer u
and v are O(W 2β/Rω) and O(W 2/Rω) respectively. Thus we introduce the following
non-dimensional notation:

u′ =
u

W 2/Rω
, v′ =

v

W 2/Rω
, w′ =

w

W
,

p′ =
p

ρ(a/R)W 2
, r′ =

r

a
, τ = ωt.

 (2.1)

Substituting (2.1) into the Navier–Stokes equations yields

ur + ε2

(
uur + 1

r
vuθ − 1

r
v2

)
− w2 cos θ = −pr − 1

2
β2 1

r
∂
∂θ

(
vr + 1

r
v − 1

r
uθ

)
, (2.2a)

vr + ε2

(
uvr + 1

r
vvθ − 1

r
uv

)
+ w2 sin θ = − 1

r
pθ + 1

2
β2 1

r
∂
∂r

(
vr + 1

r
v − 1

r
uθ

)
, (2.2b)

wr + ε2

(
uwr + 1

r
vwθ

)
= cos τ+ 1

2
β2

(
wrr + 1

r
wr + 1

r2wθθ

)
, (2.2c)

ur + 1
r
u+ 1

r
vθ = 0. (2.2d)

For ease in notation, we have ignored the superscripts on the new, non-dimensional
variables. The system of equations above, (2.2a–d), describes the viscous flow field
both near the wall of the pipe and in its core. The continuity equation of (2.2d)
may be satisfied by introducing a non-dimensional stream function ψ, with u and v
given by

u− 1

r
ψθ, v = −ψr.

We are primarily interested in the stability of the flow field adjacent to the walls,
i.e. within the Stokes layer, which is of thickness, (2ν/ω)1/2β. Thus we introduce the
following scalings for r and ψ:

η = β−1(1− r), Ψ = β−1ψ,

where η and Ψ are the new radial coordinate and stream function respectively, inside
the Stokes layer. The solution for the basic flow within this layer is given by Lyne as
a series expansion in β,

Ψ = Ψ0 + βΨ1 + β2Ψ2 + · · · , (2.3a)

w = wB0 + βwB1 + β2wB2 + · · · (2.3b)

In (2.3a,b), Ψi and wBi for i = 0, 1, 2 . . . , are functions of τ, η and θ and are found for
fixed values of Rs, the secondary Reynolds number. Expressions for Ψ0, Ψ1 may be
found in Lyne (1971). As was stated in the Introduction, we require the asymptotic
solution, as β → 0 and Rs →∞.

The first two terms in the expansion for wB are given by

wB0 = sin τ− e−η sin(τ− η), (2.4a)

wB1 = − 1
2
ηe−η sin(τ− η). (2.4b)
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Denoting the basic flow by UB = (uB, vB, wB, pB), we have the following expressions
for uB and vB:

uB = βuB0 + β2uB1 + · · · , vB = vB0 + βvB1 + · · · , (2.5a,b)

where

uBi =
∂Ψi

∂θ
, vBi =

∂Ψi

∂η
(2.6)

for i = 0, 1 . . . .
The solutions (2.5a,b) are strictly valid only in the limit as Rs →∞ with β held fixed.

However, since Rs has no explicit effect on the equations for Ψ0, wB0 etc. within the
Stokes layer, but only affects the core flow, where it acts like the conventional Reynolds
number, the solutions above, (2.4a,b), (2.5a,b) are indeed valid representations of the
flow field as β → 0.

Before proceeding with the analysis, we re-write the Navier–Stokes equations
(2.2a–d) in terms of the Stokes variable η and thus obtain the system of equations
governing the flow field within the Stokes layer.

2.2. Review of the linear problem

We now present a brief summary of the inner analysis and the results obtained
by Papageorgiou (1987). For a more complete description of the analysis and the
techniques employed, the reader is referred to this paper.

In the Introduction we mentioned that, for both the narrow spherical annulus
near the equator and the curved pipe problem in the vicinity of the outer bend,
inner expansions lead to physically unrealistic results. Such problems can be resolved
by the analytic continuation of the solution into the complex θ-plane. Soward &
Jones first used such a method to resolve the narrow spherical annulus problem,
and Papageorgiou modified their method when considering the linear stability of the
flow in a curved pipe. We now describe this approach when applied to the study
undertaken here. The reader is referred to Soward & Jones (1983), and Heading
(1962) for a more complete discussion of the formation of the inner solution in these
cases.

We wish to obtain a dispersion relation for the Taylor number T of the form

T = T (k, θ, σ), (2.7)

where σ is the growth rate, and k is a wavenumber. T is an analytic function of the
complex variables k, θ, and σ, but we require that, for physical flows, it remain real
and constant for all θ. At a minimum of T , for physically acceptable solutions, the
following conditions must hold:

Tk = 0, Tθ = 0. (2.8)

In Hall (1984) these conditions are satisfied on the real θ-axis, but clearly complex
values of θ are also permissible. For the narrow spherical annulus problem studied
by Walton (1978), Soward & Jones found that, at the minimum value of T on θ = 0,
although Tk = 0, Tθ did not vanish, and the resulting amplitude equation is of the
Airy type, which does not lead to physically realistic solutions.

If we are to obtain valid solutions that describe the vortex amplitudes at the critical
Taylor number, we must locate the saddle points of T at which the conditions of (2.8)
are met. Since, for our problem, this does not occur for real θ we must analytically
continue the solution into the complex θ-plane. Suppose that such a point exists, say
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at θ = θ0, then the solution found in the neighbourhood of this point provides both
the inner solution, that removes the singularity at the outer bend, θ = 0, and also a
set of asymptotic solutions that match with those valid away from the saddle point,
and which describe the flow field as β → 0, for all real θ.

In addition, we note that due to the symmetry of the problem, we shall be
considering only modes that are symmetric with respect to θ. Thus,

Re(θ0) = 0, Im(K0) = 0. (2.9)

An inner variable Θ, defined by

θ − θ0 = β1/2Θ, (2.10)

is introduced and we note that Θ is of O(1).

We also introduce the following notation for the perturbation vector, q̂:

q̂ =

(
p̂,
∂v̂

∂η
,
∂ŵ

∂η
, û, v̂, ŵ

)
. (2.11)

The perturbation vector q̂ is then expanded in powers of β1/2 as

q̂ = d1(Θ)q̂1E + d2(Θ)q̂2Eβ
1/2 + d3(Θ)q̂3Eβ + · · ·+ c.c., (2.12)

where E = exp[ik0Θ/β
1/2] and c.c. denotes the complex conjugate. The q̂i, i = 1, 2, . . .

are defined in a similar manner to q̂. Having introduced a disturbance, q̂, into the
basic flow within the Stokes layer, we describe the total flow as

(u, v, w, p) = (uB, vB, wB, pB) + ε1(û, v̂, ŵ, p̂),

where ε1 is a small vanishing parameter, and the subscript B is, once again, used to
denote quantities of the unperturbed, basic flow field.

It is now a straighforward procedure to substitute the total flow field into the
governing equations and linearize with respect to ε1. The leading-order problem for
q̂1, reduces to

Ĉ0(q̂1) = 0, (2.13)

where Ĉ0 is the operator defined by

Ĉ0 = I
∂

∂η
− Â0 + B

∂

∂τ
. (2.14)

In the above, Â0 and B are 6× 6 matrices not given here.

At O(β1/2), q̂2 satisfies,

d2

[
I
∂q̂2

∂η
− Â0q̂2 + B

∂q̂2

∂τ

]
= d1ΘM1q̂1 +Θd1M2q̂1 + d1M3q̂1. (2.15)
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Here Mi, i = 1, 2, 3, are 6× 6 matrices not given here. The solution to (2.15) is of the
form

d2q̂2 = −id1Θ q̂
(1)
2 + iΘd1q̂

(2)
2 + d1q̂

(3)
2 , (2.16)

where q̂(i)
2 i = 1, 2, 3 are evaluated using the following system of equations:

Ĉ0(q̂
(1)
2 ) =−Ĉk00(q̂1),

Ĉ0(q̂
(2)
2 ) = iĈθ00(q̂1),

Ĉ0(q̂
(3)
2 ) = iĈk00(q̂1Θ).

 (2.17)

In (2.17), the subscripts k0, θ0 denote partial differentiation with respect to k0, θ0

respectively, and zero represents evaluation at θ = θ0.

The evolution equation for the leading-order amplitude function d1 is determined
by imposing a solvability condition on the differential system obtained at O(β). The
required condition is

IMd1ΘΘ + INΘd1Θ + IP d1 + IQd1Θ + IRΘd1 + ISΘ
2d1 = 0, (2.18)

where the coefficients IN → IS are double integrals over η- and τ-space, for example,

IM =

∫ ∞
η=0

∫ 2π

τ=0

VT (M (0)q̂1 +M (1)q̂(1)
2 )dτdη. (2.19)

3. Formulation of the nonlinear stability problem

We now go on to describe how nonlinear effects alter the linear stability anal-
ysis outlined in § 2.2. The terms fundamental, mean and first-harmonic refer to the
dependence of the disturbance on the θ-coordinate. We recall that the θ-dependent
amplitude of the disturbance satisfies (2.18) and that exponentially decaying solutions
exist for only certain values of the Taylor number, T , that is those satisfying the
conditions (2.8). We scale the amplitude of the disturbance in such a way as to
introduce nonlinear effects which modify the linear amplitude equation. In order to
retain the linear structure of (2.18), we expand the Taylor number as

T = T0C + βT1, (3.1)

where T0C is the critical value of T0. We first assume that the velocity field perturbation
is O(βδ). At O(β2δ), the fundamental interacts with itself, through the nonlinear terms
of the Navier–Stokes equations, to produce first-harmonic and mean flow correction
terms. These then interact with the fundamental, reinforcing it at O(β3δ). Thus for
(2.18) to be modified by nonlinear effects we must choose δ = 1

2
.

We now outline the construction of the inner solution following the method of
Papageorgiou (1987), described briefly in § 2.2. We define an O(1) inner variable Θ by

θ − θ0 = Θβ1/2, (3.2)

where θ = θ0 is the value of θ for which the condition (2.8) are satisfied; k0 and T0
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are similarly defined. The disturbance quantities u, v, w and p are then expanded as

ũ = Ed11u11β
1/2 + [Ed21u21 + E2d22u22 + d20u20]β

+[Ed31u31 + E2d32u32 + E3d33u33 + d30u30]β
3/2

+ · · ·+ c.c., (3.3a)

ṽ = Ed11u11β
1/2 + [Ed21v21 + E2d22v22 + d20v20]β

+[Ed31v31 + E2d32v32 + E3d33v33 + d30v30]β
3/2

+ · · ·+ c.c., (3.3b)

w̃ = Ed11w11β
1/2 + [Ed21w21 + E2d22w22 + d20w20]β

+[Ed31w31 + E2d32w32 + E3d33w33 + d30w30]β
3/2

+ · · ·+ c.c., (3.3c)

p̃ = Ed11p11β
1/2 + [Ed21p21 + E2d22p22 + d20p20]β

+[Ed31p31 + E2d32p32 + E3d33p33 + d30p30]β
3/2

+ · · ·+ c.c. (3.3d)

The coefficients in the above expansions depend only on the variable τ,Θ and η, c.c.
denotes the complex conjugate and E is given by

E = exp[ik0Θ/β
1/2] (3.4)

Hence, the total flow may be expressed as

(u, v, w, p) = (uB, vB, wB, pB) + (ũ, ṽ, w̃, p̃), (3.5)

where the subscript B denotes the basic flow. At this point we introduce the pertur-
bation vector qij , defined as

qij =

[
pij ,

∂vij

∂η
,
∂wij

∂η
, uij , vij , wij

]
. (3.6)

We proceed by substituting (3.5) into the governing equations and successively
equate like powers of β1/2, so that at O(β1/2) we find that the fundamental, q11,
satisfies the linear stability problem, with θ, k and T evaluated at the saddle point
of T ,

Ĉ0(q11) = 0, (3.7)

where Ĉ0 is the operator defined by,

Ĉ0 = I
∂

∂η
− Â0 + B̂

∂

∂τ
. (3.8)

Â0 is the matrix A evaluated at the saddle point of T

A =


0 − 1

2
ik 0 1

2
k2 + ikT0vB0 0 −2wB0 cos θ

2ik 0 0 −2T0vB0η k2 + 2ikT0vB0 4wB0 sin θ
0 0 0 −2T0wB0η 0 k2 + 2ikT0vB0

0 0 0 0 ik 0
0 1 0 0 0 0
0 0 1 0 0 0

 , (3.9)
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and B is the 6× 6 matrix

B =


0 0 0 −1 0 0
0 0 0 0 −2 0
0 0 0 0 0 −2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (3.10)

At O(β), the fundamental, q21, satisfies

d21Ĉ0(q21) = d11M1q11Θ + d11ΘM2q11 + d11ΘM1q11 (3.11)

where the matrices Mi, i = 1, 2, are related to the operator Ĉ0 through the following
equations:

M1 = i
∂Ĉ0

∂k0

, M2 = −∂Ĉ0

∂θ0

, (3.12a,b)

and we may obtain a solution to (3.11) by writing

d21q̂21 = −id11Θ q̂
(1)
21 + iΘd11q̂

(2)
21 + d11q̂

(3)
21 , (3.13)

where q̂(i)
21, i = 1, 2, 3, are to be determined. Substitution of (3.13) into (3.11) and

equating coefficients of d11Θ,Θd11 and d11 yields the following equations for q̂(1)
21 , q̂

(2)
21

and q̂(3)
21 :

Ĉ0(q̂
(1)
21 ) = −Ĉk00(q̂11), (3.14a)

Ĉ0(q̂
(2)
21 ) = iĈθ00(q̂11), (3.14b)

Ĉ0(q̂
(3)
21 ) = iĈk00(q̂11Θ). (3.14c)

In (3.14a–c), the subscripts k0, θ0 denote partial differentiation with respect to k0, θ0

respectively, and the zero subscript denotes evaluation at the saddle point of T , that
is where. In addition to the fundamental mode q21, first harmonic q22 and mean flow
correction q20 terms are also generated. After some manipulation, we find that these
maybe expressed as

d22q22 = d2
11q̂22, d20q20 = d11d11q̂20. (3.15a,b)

In addition, q̂22, q̂20 satisfy

Ĉ0(q̂22) = D , (3.16)

Ĉ0(q̂20) = D . (3.17)

In the above equations of q22 and q20, D and D̂ represent the terms arising form the
interaction of the leading-order fundamental with itself.

The amplitude function d11 is obtained by imposing a solvability condition on the
differential system for the fundamental q31 at O(β3/2),

d31Ĉ0(q̂31) = d11ΘΘ[M (0)q̂11 +M (1)q̂(1)
21 ]

+d11ΘΘ[N (0)q̂11 + N (1)q̂(1)
21 + N (2)q̂(2)

21 ] + d11[P
(0)q̂11 + P (2)q̂(2)

21 + P (3)q̂(3)
21 ]

+d11Θ[Q (0)q̂11 + Q (1)q̂(1)
21 + Q (3)q̂(3)

21 +Θd11[R
(0)q̂11 + R (2)q̂(2)

21 + R (3)q̂(3)
21 ]

+Θ2d11[S
(0)q̂11 + S (2)q̂(2)

21 ] + d11|d2
11|T (0)q̂11, (3.18)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

98
00

32
79

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112098003279


156 T. A. Shortis and P. Hall

where M (i),N (i),P (i),Q (i),R (i),S (i), i = 0, 1, 2, 3, are 6 × 6 matrices not given here, and
T (0) contains the terms arising from the interaction of the leading-order fundamental
with the first-harmonic and mean flow correction terms. By considering the partial
differential system adjoint to (3.7), we find that a solution to the above equation exists
if

d11ΘΘIM +Θd11ΘIN + d11IP + d11ΘIQ +Θd11IR +Θ2d11IS + d11|d2
11|IT = 0, (3.19)

where IM etc. are double integrals over η- and τ-space. For example,

IM =

∫ ∞
η=0

∫ 2π

τ=0

V T [M (0)q̂11 +M (1)q̂(1)
21 ]dτdη, (3.20)

and V satisfies the adjoint differential system,

Ĉ†0 (V ) = 0 (3.21)

V 1 = V 2 = V 3 = 0 at η = 0 (3.22)

where Ĉ†0 is the operator

Ĉ†0 =
∂

∂η
+ ÂT0 + BT

∂

∂τ
. (3.23)

The amplitude equation (3.19) must be solved subject to the boundary conditions

d11 → 0 as |Θ| → ∞. (3.24)

4. Numerical solution and results
In this section, we describe the numerical procedure used to solve the leading-order

eigenvalue problem subject to boundary conditions of no-slip at the pipe wall and
decay of the disturbance at infinity.

The leading-order problem must be solved subject to conditions on k0 and θ0. The
eigenrelation is solved for fixed values of k and θ until the value of T0 corresponding
to physically acceptable solutions is located.

On the basis of Floquet theory, since the basic flow is periodic in time, we assume
that the disturbances are also periodic and carry out a Fourier expansion in time for
the perturbation quantities. For neutrally stable solutions this takes the form

q = G

∞∑
−∞

qneinτ + c.c., (4.1)

where G is a constant and qn are functions of η alone. After some manipulation, the
equations for the leading-order problem may be reduced to a pair of coupled partial
differential equations for u and w,(

∂2

∂η2
− k2 − 2

∂

∂τ

)(
∂2

∂η2
− k2

)
u11 + 2ikT0(k

2vB0 + vB0ηη)u11 − 2ikT0vB0u11ηη

−4k2wB0w11 cos θ0 − 4ik sin θ0(wB0ηw11 + wB0w11η) = 0, (4.2a)(
∂2

∂η2
− k2 − 2

∂

∂τ

)
w11 + 2T0wB0ηu11 − 2iT0vB0w11 = 0. (4.2b)

Substitution of (4.1) into the above system would lead to an infinite set of coupled
ordinary differential equations at successive powers of einτ. In order to reduce this to
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a more tractable system of equations, we set un = wn = 0 for |n| > M. In addition, we
replace ∞ by η∞, where η∞ and M are chosen to give the degree of accuracy required.

For larger η, (4.2a,b) reduces to(
∂2

∂η2
− k2 − 2

∂

∂τ

)(
∂2

∂η2
− k2

)
u11 − 1

2
ikT0k

2 sin θ0u11 + 1
2
ikT0 sin θ0u11ηη

−4k2 sin τw11 cos θ0 − 4ik sin θ0 sin τw11η = 0, (4.3a)(
∂2

∂η2
− k2 − 2

∂

∂τ

)
w11 + 1

2
ikT0 sin θ0w11 = 0. (4.3b)

The above system has three independent solutions with the correct behaviour as
η →∞. These may be used to integrate (4.2a,b) from η = η∞ to η = 0, in this instance
using a fourth-order Runge–Kutta scheme with h steps in the interval of integration,
to provide 3(2M + 1) solutions. Combining the independent solutions of the reduced
system at η = 0 we may satisfy all but one of the boundary conditions, and the
remaining condition is met if T (k, θ) is an eigenvalue of the system.

Our calculations, for M = 6, η∞ = 12.5 and h = 251 gave results of T0 =
10.7301, θ0 = 0.3525i and k0 = 0.5313, comparing favourably with those given by
Papageorgiou (1987).

The eigenfunctions corresponding to (4.2a,b) were found to have the property that

un11 = 0, n even, (4.4a)

wn11 = 0, n odd. (4.4b)

The functions, u−1
11 and w0

11 evaluated at the critical values of k0, θ0 and T0 are
illustrated in figure 2, together with the eigenfunctions for u−3

11 . The solutions were

normalized such that the first derivative of w(0)
11 was set to unity.

The solution to the adjoint solution was calculated in the same manner and used
as a check on the values found above, since the eigenvalues of the adjoint system
are identical with those of (4.2a,b). The functions V−1

1 and V 0
3 of the adjoint system,

plotted as functions of η and at the critical value of T0, are illustrated in figure 3.
The adjoint eigenfunctions are such that

V n
1 = 0, n even, (4.5a)

V n
3 = 0, n odd. (4.5b)

In addition solutions for the fundamental, mean flow correction and first harmonic
at O(β) were calculated in a similar fashion and hence the integral coefficients of the
amplitude equations (2.18), (3.19) could be calculated, in this case using Simpson’s
rule.

Before proceeding we first simplify the linear amplitude equation, so that the
solution may be expressed in terms of known functions. Using the transformations

d1 = e

(
− α2

2 (ζ−γ)2
)
e(−λζ)Zl, (4.6a)

ζ = Θ + γ, (4.6b)

we may re-write (2.18) as

Z
′′
l + µ

(
H + CPTT1

µ
− ζ2

)
Zl = 0, (4.7)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

98
00

32
79

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112098003279


158 T. A. Shortis and P. Hall

0.8

0.6

0.4

0

–0.2

0.2

0 2 4 6 8 10 12

u–1
11 Real

u–3
11 Real

u–3
11 Imag

u–1
11 Imag

w0�
11

Figure 2. The eigenfunctions u−1
11 , u

−3
11 and w0

11, plotted as a function of η for the critical value of T0.

where

µ =

(
α4

2
+
IS

IM

)
, (4.8a)

H = λ2 − γ2µ+
IP

IM
− α2 − γ

(
IR

IM
− IQ

IM
α2

)
− λ IS

IM
, (4.8b)

CPT =
IPT

IM
, (4.8c)

In the above transformations, α, λ and γ are suitably chosen constants, depending on
the integral coefficients of (3.19). Since we have assumed in (4.1) that the coefficients
of the Fourier expansion depend only on η, we find that λ and γ are both equal to
zero. The amplitude function d1, and hence, Zl , must decay as |Θ| → ∞, and hence
the solutions to (4.7) are

Zl(ζ) = Zln(ζ) = Un

(− (n+ 1
2

)
, 21/2µ1/4ζ

)
, (4.9)

where Un is the nth parabolic cylinder function, and the corresponding value of T1 is

T1 = T1n =
2µ1/2(n+ 1

2
)−H

CPT
. (4.10)

The functions Zln(ζ) have n − 1 zeros for ζ ∈ (−∞,+∞) and depending on the
odd/even nature of n, are odd or even in ζ. All the functions tend to zero like
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Figure 3. The eigenfunctions V−1
1 and V 0

3 for the adjoint problem corresponding to the critical
Taylor number, T0.

exp(−µ1/2ζ2/2) and the least-stable mode corresponds to the n = 0 case, when

Zl0 = exp

(
−µ1/2 ζ

2

2

)
,

and

T1 = T1C =
µ1/2 −H
CPT

. (4.11)

Our calculations showed that T1C = 3.005.
Returning to the nonlinear amplitude equation (3.19), using the transformation

(4.6a,b) this maybe re-written in the following form:

Z
′′

+ µ

(
H + CPTT1

µ
− ζ2

)
Z = −CTZ |Z |2F(ζ), (4.12)

where

F(ζ) = |e−λζe α2

2 (ζ−γ)2 |2, (4.13a)

CT =
IT

IM
, (4.13b)

and H, µ, CPT are given by (4.8a–c).
In order to progress analytically, and provide some comparison with the numerical
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–1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5 3.0

Z (0)

T1

Figure 4. The numerically calculated bifurcating solution of the normalized nonlinear amplitude
equation (4.12).

solution to (4.12), we expand Z and T1 in terms of some small parameter ε̂,

Z = ε̂1/2Z1 + ε̂3/2Z3 + · · · ,
T1 = TC + ε̂TP + · · · ,

substitute these into (4.12) and successively equate like powers of ε̂1/2. At leading
order, Z1 satisfies the linear amplitude equation (4.7) and hence

Z1 = φZl,

where φ is an arbitrary constant determined at higher order. In addition, TC = T1C ,
where T1C is given by (4.11). At O(ε̂3/2), we find that Z3 satisfies

Z
′′
3 + µ

(
H + CPTTC

µ
− ζ2

)
Z3 = −CTφZl |φZl |2F(ζ)− CPTTPφZl. (4.14)

In order for solutions to the above equation to exist, a solvability condition must
be satisfied. By this we mean that the right-hand side of the differential equation must
be orthogonal to the solution of the adjoint problem to (4.7). It should be noted that
(4.7) is self-adjoint. After some manipulation, the solvability condition reduces to

|φ|2 = −CPT
CT

J1

J2

TP (4.15)
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Figure 5. Comparison of solutions for T1 = 2.9. The solid line represents the solution of the full
problem (4.12) and the ◦ symbol the approximate solution (4.14).

where

J1 =

∫ ∞
−∞
|Zl |2dζ, J2 =

∫ ∞
−∞
|Zl |4F(ζ)dζ.

If we assume that |T1 − TC | � 1 then (4.15) maybe be written in the form

|Z |2 ∼ −CPT
CT

(T1 − TC)|Zl |2 J1

J2

. (4.16)

In this analysis, only the quantities CPT and CT are needed to calculate the nature of
the instability, and since CPT/CT was found to be positive, finite-amplitude solutions
of (4.12) only exist locally near T1 = T1C for T1 < T1C . Thus the solutions to (4.12)
will bifurcate subcritically from the eigenvalues of the linear problem. The subcritical
nature of the bifurcation was confirmed by numerically integrating (4.12) using a
shooting procedure. We note that, since the differential operator in (4.12) is even in
ζ, and F(ζ) is also an even function for λ = 0, we can expect that the solution Z(ζ)
is either even or odd in ζ, depending on the conditions applied, with even solutions
corresponding to Z ′(0) = 0 and odd solutions to Z ′(0+) = Z ′(0−), and in this case the
former condition was applied. The results are shown in figure 4, where we have plotted
the amplitude of the first mode, evaluated at ζ = 0, as a function of T1. It is possible
that higher-order nonlinear effects may reverse this result, producing supercritical
equilibrium solutions; however, higher-order calculations would be required in order
to substantiate/disprove this conjecture.
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Figure 6. Comparison of |Z(0)|2 from (4.12) (solid line) (4.14) (small-dashed line)
and (4.16) (dashed line).

Subcritical solutions are known to be unstable, and by allowing the amplitude
function Z to be dependent on some slow time variable this may be shown. Thus the
fully nonlinear problem must be solved numerically in order to find out how the flow
develops.

In figure 5 we compare the results obtained from numerically integrating (4.12)
(solid line) with those from the expansion procedure carried out in the neighbourhood
of T1C . We took T1 = 2.9, and as illustrated the results were found to be almost
identical.

The results obtained by numerically integrating the nonlinear amplitude equation
(4.12) (solid line), are compared with those obtained from the expansion about T1C

(small-dashed line) and the approximate value for |Z |2 from (4.16) (dashed line) in
figure 6. As expected the results from the two approximate methods are in good
agreement with those from the numerical integration in the neighbourhood of T1C .

5. Conclusions
We have obtained the equation governing the nonlinear evolution of the leading-

order vortex amplitude function d11(Θ). As expected, the linear terms of this equation
are of the same form as those of the equivalent equation found from the linear
stability analysis. Indeed, we would also expect that the coefficients of the linear
terms, IM, IN, IP , IQ, IR, IS , will be identical to those for the linear evolution equation,
found by Papageorgiou (1987), taking account of the differences in notation.

The results of our numerical calculations predict that the instability is subcritical in
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nature, and thus we presume that close to the critical Taylor number, sufficiently large
perturbations to the basic state will grow. These disturbances might tend to some
equilibrium, due to stabilization by higher-order nonlinear effects, and thus some
form of steady state reached. Alternatively, even if no stabilization takes place, due
to the localized nature of the instability, we might expect that some periodicity along
the pipe exists. For example, Tollmien–Schlichting waves are subcritical in nature,
but can be observed in parallel or nearly parallel flows. The fully nonlinear problem
would need to be solved numerically in order to investigate the subcritical nature of
the bifurcation, and find the flow into which the disturbance evolves.

In the Introduction, we mentioned the relevance of the model to the study of
the fluid mechanics of blood flow in large arteries and in particular the aortic arch.
Typically for the canine cardiovascular system, the ascending aorta is 1.5 cm in
diameter, the mean velocity is approximately 20 cm s−1, Rs ≈ 4000, β ≈ 0.1, and δ has
a value of about 0.2. Our analysis is not inconsistent with these values, assuming that
the mechanics of the blood flow are not significantly altered in the limit δ → 0.

However, one important feature of physiological flows is that in general the pressure
gradient has a non-zero mean component, and thus the Dean number, D, must be
included as a parameter in the problem. For the canine aorta this has a value of
≈2000. The problem under consideration here becomes physiologically viable if we
consider the case β → 0, D 6 Rs (see Papageorgiou). In this case, the flow field within
the Stokes layer, to leading order, is described by Lyne’s analysis and the stability of
the solution is as described here.
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