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FACTORIALS OF INFINITE CARDINALS IN ZF PART II:
CONSISTENCY RESULTS

GUOZHEN SHEN AND JIACHEN YUAN

Abstract. For a set x, let S(x) be the set of all permutations of x. We prove by the method of
permutation models that the following statements are consistent with ZF:
(1) There is an infinite set x such that |℘(x)| < | S(x)| < | seq1-1(x)| < | seq(x)|, where ℘(x) is the
power set of x, seq(x) is the set of all finite sequences of elements of x, and seq1-1(x) is the set of
all finite sequences of elements of x without repetition.

(2) There is a Dedekind infinite set x such that | S(x)| < |[x]3| and such that there exists a surjection
from x onto S(x).

(3) There is an infinite set x such that there is a finite-to-one function from S(x) into x.

§1. Introduction. Let x be an arbitrary set and let a = |x|. Let S(x) denote the
set of all permutations of x and let a! denote the cardinality of S(x). In this second
part of our work, we continue to investigate the properties of a! for infinite cardinals
a. We prove several consistency results concerning this notion by the method of
permutation models.
We mainly consider four permutation models. The first one is the basic Fraenkel
model in which several cardinals are shown to be incomparable with a! where a is
the cardinality of the set of atoms. The second one is the ordered Mostowski model
in which we have 2a < a! < seq1-1(a) < seq(a), where a is the cardinality of the
set of atoms, seq(a) is the cardinality of the set of all finite sequences of atoms,
and seq1-1(a) is the cardinality of the set of all finite sequences of atoms without
repetition.
The third one is a Shelah-type permutationmodel. In this model, | S(A)| < |[A]3|
and there exists a surjection from A onto S(A), where A is the set of atoms. Since
it follows from Cantor’s theorem that there are no surjections from A onto ℘(A),
we get that there are no surjections from S(A) onto ℘(A). This answers the Open
problem (8) of [17, Section 4].
The last one is a new permutation model. The atoms of this permutation model
form an infinite lattice A with a least element such that every initial segment deter-
mined by an element ofA is finite and such that every permutation of Amoves only
finitely many elements. Hence the function that maps each permutation u of A to
the least upper bound of the elements moved by u is a finite-to-one function from

Received October 10, 2018.
2010Mathematics Subject Classification. Primary 03E10, 03E25.
Key words and phrases. ZF, cardinal, factorial, permutation, permutation model, finite-to-one

function.

c© 2019, Association for Symbolic Logic
0022-4812/20/8501-0012
DOI:10.1017/jsl.2019.75

244

https://doi.org/10.1017/jsl.2019.75 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.75


FACTORIALS OF INFINITE CARDINALS II 245

S(A) intoA. Thus we establish the relative consistency of the existence of an infinite
set x such that there is a finite-to-one function from S(x) into x. This answers the
Open problem (7) of [17, Section 4].
These consistency results show that most of the ZF results proved in Part I are,
in a certain sense, optimal, which will be explained in more detail later. All the
preliminaries required in this part can be found in the Section 2 of Part I. However,
in order to make this part self-contained, we list some of them in the next section.

§2. Preliminaries. For a set x, we use |x| to denote the cardinality of x. We shall
use lower case German letters a, b, c, d for cardinals. For a function f, we shall use
dom(f) for the domain of f, ran(f) for the range of f, f[x] for the image of x
under f, f−1[x] for the inverse image of x under f, and f�x for the restriction of
f to x. For functions f, g, we use g ◦f for the composition of g and f. We use idx
to denote the identity permutation of x.

Definition 2.1. Let x, y be arbitrary sets, let a = |x|, and let b = |y|.
(1) x � y means that there exists an injection from x into y; a � b means that
x � y.

(2) x �∗ y means that there exists a surjection from a subset of y onto x; a �∗ b
means that x �∗ y.

(3) a � b denotes the negation of a � b; a �∗ b denotes the negation of a �∗ b.
(4) a < bmeans that a � b and b � a; a ‖ bmeans that a � b and b � a.

Clearly, if a � b and b � c then a � c. It is the same case when we replace � by
�∗. It is also clear that if a � b then a �∗ b, and that if a �∗ b then 2a � 2b. It
follows from the Cantor-Bernstein Theorem that if a � b and b � a then a = b.

Definition 2.2. Let x be an arbitrary set and let a = |x|.
(1) x is Dedekind infinite if � � x; otherwise x is Dedekind finite.
(2) x is powerDedekind infinite if� � ℘(x); otherwise x is powerDedekind finite.
(3) a is Dedekind infinite if x is Dedekind infinite; otherwise a is Dedekind finite.
(4) a is power Dedekind infinite if x is power Dedekind infinite; otherwise a is
power Dedekind finite.

Definition 2.3. Let f be a function.

(1) f is finite-to-one if for all z ∈ ran(f), f−1[{z}] is finite.
(2) f is Dedekind finite-to-one if for all z ∈ ran(f), f−1[{z}] is Dedekind finite.
Definition 2.4. Let x, y be arbitrary sets, let a = |x|, and let b = |y|.
(1) x �fto y means that there is a finite-to-one function from x into y; a �fto b
means that x �fto y.

(2) x �dfto y means that there exists a Dedekind finite-to-one function from x
into y; a �dfto b means that x �dfto y.

(3) a �fto b denotes the negation of a �fto b; a �dfto b denotes the negation of
a �dfto b.

Clearly, if a �fto b and b �fto c then a �fto c.
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2.1. Some special cardinals. For a permutation f of x, we write mov(f) for the
set {z ∈ x | f(z) �= z} (i.e., the elements of x moved by f).
Definition 2.5. Let x be an arbitrary set and let a = |x|.
(1) S(x) = {f | f is a permutation of x}; a! = | S(x)|.
(2) Spdfin(x) = {f ∈ S(x) | mov(f) is power Dedekind finite}; Spdfin(a) =

| Spdfin(x)|.
(3) Sfin(x) = {f ∈ S(x) | mov(f) is finite}; Sfin(a) = | Sfin(x)|.
(4) pdfin(x) = {y ⊆ x | y is power Dedekind finite}; pdfin(a) = | pdfin(x)|.
(5) fin(x) = {y ⊆ x | y is finite}; fin(a) = | fin(x)|.
(6) seq(x) = {f | f is a function from an n ∈ � into x}; seq(a) = | seq(x)|.
(7) seq1-1(x) = {f | f is an injection from an n ∈ � into x}; seq1-1(a) =

| seq1-1(x)|.
(8) [x]n = {y ⊆ x | |y| = n}; [a]n = |[x]n |.
(9) Sn(x) = {f ∈ S(x) | |mov(f)| � n}; Sn(a) = | Sn(x)|.
The following five facts are Facts 2.16–2.19 and Lemma 2.21 of [14], respectively.

Fact 2.6. For all power Dedekind finite cardinals a, a! is Dedekind finite.

Fact 2.7. For all cardinals a, Sfin(a) �fto fin(a).
Fact 2.8. For all cardinals a, Spdfin(a) �dfto pdfin(a).
Fact 2.9. For all nonzero cardinals a, seq(a) is Dedekind infinite.

Fact 2.10. For all nonzero cardinals a, seq(seq(a)) = seq(a).

For t ∈ seq1-1(x), we use (t(0); . . . ; t(n − 1))x , where n = dom(t), to denote the
permutation of x which moves t(0) to t(1), t(1) to t(2), . . . , t(n − 2) to t(n − 1),
and t(n− 1) to t(0), and fixes all other elements of x. In particular, for two distinct
elements z, v of x, (z; v)x is the transposition that interchanges z and v. The
following lemma is Lemma 2.26 of [14].

Lemma 2.11. For all nonzero cardinals a, if there are x, r such that |x| = a and r
is an ordering of x, then Sfin(a) � seq1-1(a) � seq(a) = ℵ0 · Sfin(a). Moreover, if in
addition a is Dedekind finite, then Sfin(a) < seq1-1(a) < seq(a) = ℵ0 · Sfin(a).

§3. Permutation models. We refer the readers to [5, Chapter 8] or [10, Chapter 4]
for an introduction to the theory of permutation models. Permutation models are
not models of ZF; they are models of ZFA (i.e., the Zermelo-Fraenkel set theory
with atoms). Let A be the set of atoms and let G be a group of permutations of A.
We shall write symG(x) for the set {� ∈ G | �(x) = x}. For any subset B of A, we
shall write fixG(B) for the set {� ∈ G | ∀a ∈ B (�(a) = a)}. Let I ⊆ ℘(A) be a
normal ideal. Then x belongs to the permutation model V determined by G and I
if and only if x ⊆ V and there exists a B ∈ I such that fixG(B) ⊆ symG(x); such a
B ∈ I is called a support of x. Notice that I ∈ V .
Although permutation models are not models of ZF, they indirectly give, via the
Jech-Sochor theorem (cf. [5, Theorem 17.2] or [10, Theorem 6.1]), models of ZF.
The Jech-Sochor theorem provides embeddings of arbitrarily large initial segments
of permutation models into ZF models. All statements whose consistency we prove
in the present article depend only on a very small initial segment of the permutation
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model, so they are preserved by the embedding and we thus obtain their consistency
with ZF.

3.1. The basic Fraenkel model. Let the set A of atoms be denumerable, let G =
S(A), and let I = fin(A). The permutation model determined by G and I is called
the basic Fraenkel model (cf. [5, pp. 195–196] or [10, Section 4.3]), and is denoted by
VF (F for Fraenkel). In VF, A is amorphous (cf. [5, Lemma 8.2]); that is, A is infinite
but every infinite subset of A is co-finite. Since it is obvious that all amorphous sets
are power Dedekind finite, it follows thatA is power Dedekind finite, and hence, by
Fact 2.6, S(A) is Dedekind finite.
Lemma 3.1. Let A be the set of atoms of VF and let a = |A|. In VF,
(i) [a]2 �fto seq(a);
(ii) seq1-1(a) � a!;
(iii) S3(a) � 2a+ℵ0 ;
(iv) [a]3 �fto (a+ ℵ0)!;
(v) ([a]2)2 � (a+ ℵ0)!.
Proof. (i) Assume towards a contradiction that there exists a finite-to-one func-
tion f ∈ VF from [A]2 into seq(A). Let B ∈ fin(A) be a support of f. Let us
fix two distinct elements a, b of A \ B and consider the sequence t = f({a, b}).
If there is an n ∈ dom(t) such that t(n) ∈ A \ (B ∪ {a, b}), take an arbitrary
c ∈ A \ (B ∪ {a, b, t(n)}) and let � = (t(n); c)A. Notice that � ∈ fixG(B ∪ {a, b})
but � moves t, contradicting the assumption that B is a support of f. Thus
t ∈ seq(B ∪ {a, b}). If there is an m ∈ dom(t) such that t(m) ∈ {a, b}, then
� = (a; b)A is a member of fixG(B) such that �({a, b}) = {a, b} and �(t) �= t,
which is also a contradiction. Therefore we have

∀a, b ∈ A \ B (
a �= b → f({a, b}) ∈ seq(B)). (1)

Now, for any p, q ∈ [A \ B]2, since it is easy to see that there is a permutation
� ∈ fixG(B) such that �(p) = q, it follows from (1) that f(p) = f(q). Therefore, f
maps all elements of [A \ B]2 to the same element of seq(B), contradicting the fact
that [A \ B]2 is infinite and f is finite-to-one.
(ii) Assume towards a contradiction that there exists an injection g ∈ VF from
seq1-1(A) into S(A). Let C ∈ fin(A) be a support of g. Without loss of generality,
assume C �= ∅. Let us fix an arbitrary t ∈ seq1-1(C ) and consider the permutation
u = g(t). If there is a c ∈ mov(u) \ C , take an arbitrary d ∈ A \ (C ∪ {c, u(c)})
and let � = (c; d )A. Notice that � ∈ fixG(C ∪ {u(c)}) but � moves u, which is
a contradiction. Therefore, for all t ∈ seq1-1(C ), we have mov(g(t)) ⊆ C . Thus
the function f defined on seq1-1(C ) given by f(t) = g(t)�C is an injection from
seq1-1(C ) into S(C ). Hence, if we take n = |C |, then n �= 0 and seq1-1(n) � n!,
which is absurd.
(iii) Assume towards a contradiction that there exists an injection h ∈ VF from

S3(A) into ℘(A∪�). LetD ∈ fin(A) be a support of h. Take three distinct elements
a, b, c of A \D, let � = (a; b; c)A, and let � = (b; a; c)A. Then �, � ∈ fixG(D), and
hence �(h) = �(h) = h. Since �(�) = �(�) = �, we get �(h(�)) = �(h(�)) = h(�).
Hence, if a ∈ h(�) then b = �(a) ∈ h(�), and if b ∈ h(�) then a = �(b) ∈ h(�);
that is, a ∈ h(�)↔ b ∈ h(�). Thus, if we set � = (a; b)A, then �(h(�)) = h(�). Since
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� ∈ fixG(D), it follows that �(h) = h, and hence h(�) = �(h(�)) = h(�(�)) = h(�),
contradicting that h is injective.
(iv) Assume towards a contradiction that there exists a finite-to-one function
f ∈ VF from [A]3 into S(A∪�). Let B ∈ fin(A) be a support of f. Let us fix three
distinct elements a, b, c of A \ B and consider the permutation u = f({a, b, c}).
If there is a d ∈ mov(u) \ (B ∪ � ∪ {a, b, c}), take an arbitrary e ∈ A \ (B ∪
{a, b, c, d, u(d )}) and let � = (d ; e)A. Notice that � ∈ fixG(B ∪{a, b, c}), �(d ) �= d ,
and �(u(d )) = u(d ). Hence � moves u, contradicting the assumption that B is a
support of f. Therefore, we have that mov(u) ⊆ B ∪ � ∪ {a, b, c}. If there is a v ∈
mov(u)∩{a, b, c}, then, since {a, b, c}\{v, u(v)} �= ∅, take aw ∈ {a, b, c}\{v, u(v)}
and let � = (v;w)A.Notice that � ∈ fixG(B), �({a, b, c}) = {a, b, c}, and �(u) �= u,
which is also a contradiction. Therefore mov(u) ⊆ B ∪ �. Thus we have

∀t ∈ [A \ B]3 (mov(f(t)) ⊆ B ∪ �). (2)

Now, for any p, q ∈ [A \ B]3, since it is easy to see that there is a permutation
� ∈ fixG(B) such that �(p) = q, it follows from (2) that f(p) = f(q). Therefore, f
maps all elements of [A \ B]3 to the same element of S(A ∪ �), contradicting the
fact that [A \ B]3 is infinite and f is finite-to-one.
(v) Assume towards a contradiction that there is an injection g ∈ VF from
[A]2 × [A]2 into S(A ∪ �). Let C ∈ fin(A) be a support of g. Take four distinct
a0, a1, b0, b1 ∈ A \ C , and let u = g({a0, a1}, {b0, b1}). If there is a c ∈ mov(u) \
(C ∪ � ∪ {a0, a1, b0, b1}), take an arbitrary d ∈ A \ (C ∪ {a0, a1, b0, b1, c, u(c)})
and let � = (c; d )A. Then we have � ∈ fixG(C ∪ {a0, a1, b0, b1}), �(c) �= c, and
�(u(c)) = u(c). Thus � moves u, contradicting the assumption that C is a support
of g. Therefore we have

mov(u) ⊆ C ∪ � ∪ {a0, a1, b0, b1}. (3)

We claim that
∀i � 1(u(ai) = a1−i and u(bi) = b1−i). (4)

In fact, if u(ai) /∈ {a0, a1}, then (a0; a1)A ∈ fixG(C ) fixes ({a0, a1}, {b0, b1}) but
moves u, contradicting that C is a support of g. Thus u(ai) ∈ {a0, a1}. Moreover,
u(ai) �= ai , since otherwise, if we take an arbitrary e ∈ A \ (C ∪ {a0, a1, b0, b1}),
then, by (3), u(e) = e, and therefore (ai ; e)A ∈ fixG(C ) fixes u but moves
({a0, a1}, {b0, b1}), contradicting that g is injective. Thus u(ai) = a1−i . Simi-
larly u(bi) = b1−i , and therefore (4) is proved. Hence, if we set � = (a0; b0)A ◦
(a1; b1)A, then it follows from (4) that �(u) = u, but �({a0, a1}, {b0, b1}) =
({b0, b1}, {a0, a1}) �= ({a0, a1}, {b0, b1}), contradicting again the assumption that
g is injective. �
Now we derive some consistency results from Lemma 3.1.

Proposition 3.2. The following statements are consistent with ZF:

(i) There is an infinite cardinal a such that a! ‖ seq1-1(a) and a! ‖ seq(a).
(ii) There is a Dedekind infinite cardinal b such that b! ‖ 2b, b! ‖ [b]3, and
[b]3 �fto b!.

(iii) There is a Dedekind infinite cardinal c such that ([c]2)2 � c!.
(iv) There is a Dedekind infinite cardinal d such that

[[
[d]2

]2]2
� d!.
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Proof. By the Jech-Sochor theorem, it suffices to show that there are such
cardinals in VF. Let A be the set of atoms of VF and let a = |A|.
(i) Notice that seq1-1(a) � seq(a) and [a]2 � a!. By Lemma 3.1(i), [a]2 � seq(a),
which implies that a! � seq(a) and a! � seq1-1(a). By Lemma 3.1(ii), seq1-1(a) � a!,
and hence seq(a) � a!, which completes the proof of (i).
(ii) Let b = a+ ℵ0. Notice that b is Dedekind infinite, [b]3 � 2b, and S3(b) � b!.
By Lemma 3.1(iii), S3(b) � 2b, and thus b! � 2b and b! � [b]3. By Lemma 3.1(iv),
[b]3 �fto b!, and hence [b]3 � b! and 2b � b!, which completes the proof of (ii).
(iii) Let c = a+ ℵ0. By Lemma 3.1(v), ([c]2)2 � c!.
(iv) Let d = a+ℵ0. For every set x, since all elements of x2 are 2-element subsets
of 2× x, it follows that x2 ⊆ [2× x]2. Since it is easy to verify that 2× y � [y]2 for
any infinite set y, we have(

[d]2
)2 � [

2 · [d]2]2 � [[
[d]2

]2]2
.

Now
[[
[d]2

]2]2
� d! follows from (iii). �

Remark 3.3. It is provable in ZF that for all infinite cardinals a and all n ∈ �,
an � seq1-1(a) (cf. [11, Lemma 2.5]). Proposition 3.2(i) shows that, in Corollary 3.29
of [14], we cannot replace an by seq1-1(a). Proposition 3.2(ii)–(iv) show that, in
Corollary 3.26 of [14],we cannot replace

[
[a]2

]2
by [a]3, ([a]2)2, or

[[
[a]2

]2]2
, even for

Dedekind infinite cardinals a. Proposition 3.2(iii) also shows that, in Theorem 3.14
of [14], we cannot conclude that seq(Spdfin(a)) < a!, since ([a]2)2 � seq(Spdfin(a)).
Proposition 3.4. The following statement is consistent with ZF: There exists a
Dedekind infinite cardinal b such that seq(b) < [b]2 and [b]2 �fto seq(b).
Proof. Let A be the set of atoms of VF, let a = |A|, and let b = seq(a). Then
by Fact 2.9, b is Dedekind infinite, and by Fact 2.10, seq(b) = b. By Lemma 3.1(i),
[a]2 �fto b, which implies that [b]2 �fto b and thus b < [b]2. Therefore, we get that
seq(b) = b < [b]2 and [b]2 �fto b = seq(b). �
3.2. The ordered Mostowski model. Let the set A of atoms be denumerable, and
let<M be an ordering ofAwith order type that of the rational numbers. Let G be the
group of all automorphisms of 〈A,<M〉 and let I = fin(A). The permutationmodel
determined by G and I is called the ordered Mostowski model (cf. [5, pp. 198–202]
or [10, Section 4.5]), and is denoted by VM (M forMostowski). Clearly, the relation
<M belongs to the model VM (cf. [5, Lemma 8.10]). In VM, A is infinite but power
Dedekind finite (cf. [5, Lemma 8.13]), and therefore, by Fact 2.6, S(A) is Dedekind
finite.

Fact 3.5. Let A be the set of atoms of VM. In VM, Sfin(A) = S(A).
Proof. Let f ∈ VM be a permutation of A, and let B ∈ fin(A) be a support of
f. If there exists an a ∈ mov(f) \ B, then take a � ∈ fixG(B ∪ {f(a)}) such that
�(a) �= a. Thus � moves f, contradicting the assumption that B is a support of f.
Therefore mov(f) ⊆ B, and hence f ∈ Sfin(A). �
Proposition 3.6. The following statement is consistent with ZF: There exists an
infinite cardinal a such that 2a < a! < seq1-1(a) < seq(a) = ℵ0 · a!.
Proof. LetA be the set of atoms of VM and let a = |A|. In VM,<M is an ordering
of A. Since A is Dedekind finite, by Lemma 2.11, Sfin(a) < seq1-1(a) < seq(a) =
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ℵ0 · Sfin(a). By Fact 3.5, we have Sfin(a) = a!, which implies that a! < seq1-1(a) <
seq(a) = ℵ0 · a!. Finally, 2a < a! was proved in [2]. �

Remark 3.7. Fact 3.5 shows that, in Corollary 3.21 of [14], the requirement
Sfin(x) �= S(x) cannot be replaced by the requirement that x is infinite. Proposi-
tion 3.6 shows that, in Corollary 3.16 of [14], the requirement that a! is Dedekind
infinite cannot be replaced by the requirement that a is infinite. Propositions 3.2(i)
and 3.6 show that, for an arbitrary infinite cardinal a, we cannot conclude any
relationship between a! and seq(a) except for Corollary 3.17 of [14].

For more cardinal relations that hold in VM, see [8, p. 249].
3.3. A Shelah-type permutation model. In [7, Section 1], Shelah constructed a
permutation model in which there is an infinite cardinal a such that seq(a) < fin(a).
Later, in [8, Section 7.3], a similar model was constructed in order to show that the
existence of an infinite cardinal a such that a2 < [a]2 is consistent with ZF. Recently,
in [6], Halbeisen generalized these two results by proving that the existence of an
infinite cardinal a such that seq(a) < [a]2 and [a]2 �fto seq(a) is consistent with
ZF. These permutation models are called Shelah-type permutation models (cf. [5,
pp. 209–211]). The atoms of Shelah-type permutation models are always con-
structed by recursion, where every atom encodes certain sets of atoms on a lower
level.
Here we construct a Shelah-type permutation model in which there exists a
Dedekind infinite cardinal a such that a! < [a]3, [a]3 �dfto a!, and a! �∗ a. Propo-
sition 3.4 shows that, in the basic Fraenkel model, there already exists a Dedekind
infinite cardinal b such that seq(b) < [b]2 and [b]2 �fto seq(b). Hence, in such
a case, we do not really need to construct new models. However, for our purpose
here, the proof of Proposition 3.4 does not work, because, unlike the case for seq(a),
(a!)! = a! does not hold; in fact, a! < (a!)! for any infinite cardinal a.
In this subsection, we shall work in ZFA+ AC. For a set x, let Sctbl(x) be the set
of all permutations of x which move only countably many elements. The atoms of
this Shelah-type permutation model are constructed as follows:

(i) A0 is an arbitrary uncountable set of atoms.
(ii) G0 = S(A0).
(iii) An+1 = An ∪ {(n, u, i) | u ∈ Sctbl(An) and i < 3}.
(iv) Gn+1 is the subgroup of S(An+1) such that for all h ∈ S(An+1), h ∈ Gn+1 if

and only if there exists a g ∈ Gn such that
• g = h�An ;
• for all u ∈ Sctbl(An), there is a permutation p of {0, 1, 2} such that
h(n, u, i) = (n, g ◦ u ◦ g−1, p(i)) for any i < 3.

Let A =
⋃
n∈� An . For each triple (n, u, i) ∈ A we assign a new atom an,u,i and

define the set of atoms by stipulating Ã = A0 ∪ {an,u,i | (n, u, i) ∈ A}. However, for
the sake of simplicity, we shall work with A as the set of atoms rather than with Ã.
Now, let

G = {
� ∈ S(A) ∣∣ ∀n ∈ � (

��An ∈ Gn
)}
,

and let
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I = {
B ⊆ A ∣∣ ∃n ∈ � (

B is a countable subset of An
)}
.

Clearly, G is a group of permutations ofA and I is a normal ideal. The permutation
model determined by G and I is denoted by VS (S for Shelah).
We say that a subset C of A is closed if for all triples (n, u, i) ∈ C , mov(u) ⊆ C
and {(n, u, j) | j < 3} ⊆ C . The closure of B ⊆ A is the least closed set that
includes B. Since we are working in ZFA + AC, it is easy to verify that the closure
of a countable subset of A is also countable, and therefore for all B ∈ I, the closure
of B belongs to I.
Lemma 3.8. For all closed subsets C of A and all m ∈ �, every g ∈ Gm fixing
C ∩ Am pointwise extends to a permutation � ∈ fixG(C ).
Proof. Define hn ∈ Gm+n by recursion on n as follows: h0 = g; hn+1 is the permu-
tation of Am+n+1 such that hn = hn+1�Am+n and such that for all u ∈ Sctbl(Am+n),
we have hn+1(m + n, u, i) = (m + n, hn ◦ u ◦ h−1n , i) for any i < 3. Now we prove by
induction on n that hn fixesC ∩Am+n pointwise. By the assumption, h0 fixesC ∩Am
pointwise. Assume, as an induction hypothesis, that hn fixes C ∩ Am+n pointwise.
Then hn+1 fixesC ∩Am+n pointwise, since hn+1 extends hn. For any (m+n, u, i) ∈ C ,
since C is closed, we have mov(u) ⊆ C ∩ Am+n , and therefore hn ◦ u ◦ h−1n = u,
which implies that hn+1(m + n, u, i) = (m + n, u, i). Hence hn+1 fixes C ∩ Am+n+1
pointwise. Let � =

⋃
n∈� hn. Then � ∈ G extends g and fixes C pointwise. �

Lemma 3.9. For all closed subsets C of A and all n ∈ �, if a, b are two distinct
elements of A such that a ∈ An+1 \ (An ∪ C ) and b ∈ An+1 ∪ C , then there exists a
permutation � ∈ fixG(C ∪ An ∪ {b}) such that �(a) �= a.
Proof. Let a = (n, t, j), where t ∈ Sctbl(An) and j < 3. Let l < 3 be the least
natural number such that (n, t, l) /∈ {a, b} and let p = (j; l)3. Since a /∈ C and
C is closed, (n, t, l) /∈ C . Let g be the permutation of An+1 such that g fixes An
pointwise and for allu ∈ Sctbl(An) and all i < 3,g(n, u, i) = (n, u, p(i)), if u = t, and
g(n, u, i) = (n, u, i), otherwise. Then g ∈ Gn+1 fixes An+1 \ {a, (n, t, l)} pointwise.
By Lemma 3.8, g extends to some � ∈ fixG(C ). Then � ∈ fixG(C ∪ An ∪ {b}) and
�(a) = (n, t, l) �= a. �
Lemma 3.10. In VS, S(A) = {u ∈ S(A) | mov(u) ∈ I}.
Proof. Let u ∈ VS be a permutation of A, and let B ∈ I be a support of u. Let
C be the closure of B. Then we have C ∈ I. Assume towards a contradiction that
there exists an a ∈ mov(u) \ C . Let b = u(a) �= a.
If a ∈ A0 and b ∈ A0 ∪ C , take an arbitrary c ∈ A0 \ (C ∪ {a, b}) and let
g = (a; c)A0 . By Lemma 3.8, g extends to some � ∈ fixG(C ). Then �(a) = c �= a
and �(b) = b. Hence � moves u, contradicting the assumption that B is a support
of u.
If there is an n ∈ � such thata ∈ An+1\An and b ∈ An+1∪C , then byLemma 3.9,
there is a permutation � ∈ fixG(C ∪ {b}) such that �(a) �= a. Therefore � moves u,
contradicting the assumption that B is a support of u.
Thus, b /∈ C and there exists an m ∈ � such that b ∈ Am+1 \ Am and a ∈ Am.
Again by Lemma 3.9, there is a permutation � ∈ fixG(C ∪ {a}) such that �(b) �= b.
Hence � moves u, which is also a contradiction.
Therefore, we have mov(u) ⊆ C , and hence mov(u) ∈ I. �
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For all n ∈ �, since �[An] = An for any � ∈ G, it follows that An ∈ VS, and
therefore the function that maps each n ∈ � to An belongs to VS. For every B ∈ I,
let kB be the least n ∈ � such that B ⊆ An. Since kB = k�[B] for all B ∈ I and all
� ∈ G, it follows that the function that maps each B ∈ I to kB belongs to VS.
Lemma 3.11. Let A be the set of atoms of VS and let a = |A|. In VS,
(i) a is Dedekind infinite;
(ii) a! � [a]3 and a! �∗ a;
(iii) [a]3 �dfto a!.

Proof. (i) Let q be an injection from � into A0. Then ran(q) ∈ I, and therefore
q ∈ VS. Hence, in VS, A is Dedekind infinite.
(ii) Let Φ be the function defined on {u ∈ S(A) | mov(u) ∈ I} given by

Φ(u) =
{
(kmov(u), u�Akmov(u) , i)

∣∣ i < 3}.
Then Φ is an injection from {u ∈ S(A) | mov(u) ∈ I} into [A]3 and the sets in
the range of Φ are pairwise disjoint. It is easy to verify that Φ ∈ VS. In VS, by
Lemma 3.10, S(A) = {u ∈ S(A) | mov(u) ∈ I}, and hence Φ is an injection from
S(A) into [A]3, which implies that a! � [a]3. Since the sets in the range of Φ are
pairwise disjoint, it follows that a! �∗ a.
(iii) Assume towards a contradiction that there is a function f ∈ VS from [A]3
into S(A) such that in VS,

f is a Dedekind finite-to-one function. (5)

Let B ∈ I be a support of f, and let C be the closure of B. Then C ∈ I.
Let us nowfix three distinct elementsa, b, c ofA0\C and consider the permutation
u = f({a, b, c}). We claim that

mov(u) ⊆ C ∪A0. (6)

Assume towards a contradiction that there exists a d ∈ mov(u) \ (C ∪ A0).
If there is an n ∈ � such that d ∈ An+1 \ An and u(d ) ∈ An+1 ∪ C , then
by Lemma 3.9, there exists a permutation �0 ∈ fixG(C ∪ A0 ∪ {u(d )}) such that
�0(d ) �= d . Hence �0 fixes {a, b, c} but moves u, contradicting the assumption that
B is a support of f.
Thus, u(d ) /∈ C and there exists an m ∈ � such that u(d ) ∈ Am+1 \ Am and
d ∈ Am. By Lemma 3.9, there is a permutation �1 ∈ fixG(C ∪ A0 ∪ {d}) such
that �1(u(d )) �= u(d ). Thus �1 fixes {a, b, c} but moves u, contradicting again the
assumption that B is a support of f. Hence (6) is proved.
If there exists an e ∈ mov(u) \ (C ∪{a, b, c}), then u(e) ∈ mov(u), and therefore
it follows from (6) that e ∈ A0 \ (C ∪ {a, b, c}) and u(e) ∈ C ∪ A0. Take an
arbitrary v ∈ A0 \ (C ∪ {a, b, c, e, u(e)}) and let g0 = (e; v)A0 . By Lemma 3.8, g0
extends to some �0 ∈ fixG(C ). Then �0 ∈ fixG(C ∪ {a, b, c}), �0(e) = v �= e, and
�0(u(e)) = u(e). Hence �0 fixes {a, b, c} but moves u, contradicting that B is a
support of f. Therefore mov(u) ⊆ C ∪ {a, b, c}.
If there exists a z ∈ mov(u) ∩ {a, b, c}, then u(z) ∈ mov(u), and hence, by (6),
u(z) ∈ C ∪ A0. Take a w ∈ {a, b, c} \ {z, u(z)} and let g1 = (z;w)A0 . Again
by Lemma 3.8, g1 extends to some �1 ∈ fixG(C ). Then �1(z) = w �= z and
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�1(u(z)) = u(z). Hence �1({a, b, c}) = {a, b, c} but �1(u) �= u, which is also a
contradiction. Therefore mov(u) ⊆ C . Thus we have

∀t ∈ [A0 \ C ]3
(
mov(f(t)) ⊆ C ). (7)

For any t0, t1 ∈ [A0 \C ]3, it is easy to see that there is an h ∈ G0 such that h fixes
C ∩ A0 pointwise and h[t0] = t1. By Lemma 3.8, h extends to some � ∈ fixG(C ).
Then �(f) = f and �(t0) = t1, and hence, by (7),f(t0) = f(t1). Therefore,fmaps
all elements of [A0 \C ]3 to the same element of S(A). Since A0 is uncountable and
C is countable, there is an injection p from � into A0 \C . Then ran(p) ∈ I, which
implies that p ∈ VS. Thus, in VS, A0 \ C is Dedekind infinite, and hence [A0 \ C ]3
is Dedekind infinite, contradicting (5). �
Theorem 3.12. The following statement is consistent with ZF: There exists a
Dedekind infinite cardinal a such that a! < [a]3, [a]3 �dfto a!, and a! �∗ a.

Proof. Let A be the set of atoms of VS and let a = |A|. Then by Lemma 3.11, a
is Dedekind infinite, a! � [a]3, a! �∗ a, and [a]3 �dfto a!. Since [a]3 �dfto a!, we have
that [a]3 � a!, and therefore a! < [a]3. �

§4. A new permutation model. In this section, we construct a new permutation
model in which there exists an infinite cardinal a such that a! �fto a. The strategy
of our construction is as follows:
We construct step-by-step an infinite lattice A with a least element such that
every initial segment determined by an element of A is finite. The permutation
model will then be determined by the group of all automorphisms of A and the
normal ideal fin(A). The lattice A is constructed in a way such that it has enough
automorphisms (but not toomuch) to guarantee that every permutation ofAwhich
has a finite support moves only finitely many elements. Since the function thatmaps
each finite subset of A to its least upper bound is a finite-to-one function from
fin(A) into A, it follows from Fact 2.7 that in the permutation model we have
S(A) = Sfin(A) �fto fin(A) �fto A.
This section is arranged as follows: In 4.1 and 4.2, we study two purely lattice-
theoretic notions. In 4.1, we define a covering condition for partially ordered sets
and prove some basic properties of it. In 4.2, we impose an additional quantitative
condition on a nonvoid finite lattice satisfying this covering condition and obtain
the notion of a building block. Then we prove a key property of building blocks
that allows us to extend automorphisms of building blocks. In 4.3, we define by
recursion a certain sequence of building blocks and then define the set of atoms
of the permutation model to be the union of this sequence. The key property of
building blocks guarantees that every permutation of the set of atoms which has a
finite support moves only finitely many elements.

4.1. A covering condition. Let 〈P,<〉 be a partially ordered set. For all a, b ∈ P,
a � b means that a < b or a = b; a � b denotes the negation of a � b.

Definition 4.1. Let a, b ∈ P.
(1) The (closed) interval from a to b is the set [a, b] = {c ∈ P | a � c � b}.
(2) a is covered by b (or b covers a), denoted by a � b, if a < b but a < c < b
for no c ∈ P.
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(3) cov(b) is the set {c ∈ P | c � b} (i.e., the elements of P covered by b).
(4) A saturated chain in [a, b] is a sequence t ∈ seq(P) of length (i.e., the domain
of t) n > 0 such that t(0) = a, t(n − 1) = b, and t(i) � t(i + 1) for any
i < n − 1.

(5) 〈P,<〉 is locally finite if for all a, b ∈ P, [a, b] is finite.
For all subsetsM of P, the least upper bound and the greatest lower bound of
M , if they exist, are denoted by supM and infM , respectively. Note that if 〈P,<〉
has a least element, then the least upper bound of ∅ exists and is the least element
of 〈P,<〉. We say that 〈P,<〉 is a lattice if any two elements of P have a least upper
bound and a greatest lower bound.Notice that if 〈P,<〉 is a lattice, then any nonvoid
finite subsetM of P has a least upper bound and a greatest lower bound.

Fact 4.2. Let 〈P,<〉 be a locally finite lattice with a least element and let a = |P|.
Then fin(a) �fto a.
Proof. The function that maps each M ∈ fin(P) to supM is a finite-to-one
function from fin(P) into P, and hence fin(a) �fto a. �
Definition 4.3. A partially ordered set 〈P,<〉 satisfies the finitary lower covering
condition if for allM ∈ fin(P) containing at least two elements,(∃b ∈ P ∀a ∈M (a � b)) → (∃c ∈ P ∀a ∈M (c � a)). (8)

Remark 4.4. Let 〈P,<〉 be a lattice. Then the statement that (8) holds for all
M ∈ [P]2 is equivalent to the condition (�′) of [1, p. 14], which is in turn equivalent
to the usual lower covering condition (cf. [4, p. 213]) if 〈P,<〉 is locally finite. Locally
finite lattices satisfying the lower covering condition are often calledBirkhoff lattices.

Lemma 4.5. Let 〈P,<〉 be a locally finite partially ordered set with a least element.
If 〈P,<〉 satisfies the finitary lower covering condition, then the Jordan-Dedekind chain
condition holds in 〈P,<〉; that is, for any a, b ∈ P such that a � b, all saturated chains
in [a, b] have the same length.

Proof. Cf. [1, p. 40, Theorem 14]. �
Definition 4.6. Let 〈P,<〉 be a locally finite partially ordered set with a least
element o, and assume that 〈P,<〉 satisfies the finitary lower covering condition. By
Lemma 4.5, for any b ∈ P, all saturated chains in [o, b] have the same length n > 0;
the height of b, denoted by ht(b), is defined to be n− 1. Notice that for all a, b ∈ P,
a � b if and only if a < b and ht(a) + 1 = ht(b). If 〈P,<〉 has a greatest element e,
the height of e is also called the height of 〈P,<〉.
Definition 4.7. Let 〈P,<〉 be a locally finite lattice with a least element, and
assume that 〈P,<〉 satisfies the finitary lower covering condition. For any b ∈ P,
the reflection point of b, denoted by b�, is defined to be inf cov(b). It follows from
(8) that for all b ∈ P covering at least two elements, we have

∀a � b (b� � a). (9)

Lemma 4.8. Let 〈P,<〉 be a locally finite lattice with a least element. If 〈P,<〉
satisfies the finitary lower covering condition, then for all a, b ∈ P such that a < b
and a � b�,
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(i) there exists a c � b� such that c � a and for all d � b�, if d < a then d � c;
(ii) a� � b�;
(iii) there exists a unique saturated chain in [a, b].

Proof. (i) Fix an arbitrary b ∈ P. We prove by induction on n < ht(b) that for
all a ∈ P such that a < b and a � b�, if ht(a) = ht(b) − n − 1, then there exists
a c � b� such that c � a and for all d � b�, if d < a then d � c. If n = 0, then
a � b and, by (9), it suffices to take c = b�. Now, let ht(a) = ht(b)− n − 2, where
n+1 < ht(b). Let v ∈ P be such that v < b and a�v. By the induction hypothesis,
there exists a w � b� such thatw � v and for all d � b�, if d < v then d � w. Take
c = inf{a,w}. Then c � w � b� and, since a,w � v, it follows from (8) that c � a.
Moreover, for all d � b�, if d < a, then, since d < a � v, we have d � w, and
hence d � c, which completes the proof of (i).
(ii) By (i), there exists a c � b� such that c � a, and therefore a� � c � b�.
(iii) Assume towards a contradiction that there are two distinct saturated chains
t, u in [a, b]. Then it follows from Lemma 4.5 that t and u have the same length
n > 0. Let m = max{i < n | t(i) �= u(i)}. Since b = t(n − 1) = u(n − 1), it
follows that m < n − 1. Let c = t(m + 1) = u(m + 1). Then c covers both t(m)
and u(m). By (9), c� is covered by t(m) and u(m). Thus c� = inf{t(m), u(m)}, and
hence a � c�. If c = b or c � b�, then a � b�, which is a contradiction. Otherwise,
c < b and c � b�, and thus it follows from (ii) that a � c� � b�, which is also a
contradiction. �
4.2. Building blocks. We define the notion of a building block as follows:

Definition 4.9. A building block is a nonvoid finite lattice 〈P,<〉 satisfying the
finitary lower covering condition and such that for all b ∈ P, if ht(b) = 2 then
| cov(b)| = 4, and if ht(b) > 2 then

∀c � b�
(∣∣{a ∈ cov(b) | a� = c}∣∣ = 4). (10)

Now we investigate what does a building block look like. Let 〈P,<〉 be a building
block, o the least element of 〈P,<〉, and e the greatest element of 〈P,<〉. We do not,
in general, know how to draw the Hasse diagram of 〈P,<〉, but if we already have
the Hasse diagram of 〈Q,<〉 at hand, where Q = {c ∈ P | c � e�} is a building
block of lower height than 〈P,<〉, then we can draw the Hasse diagram of 〈P,<〉 in
the following way:

(i) Draw the Hasse diagram of 〈Q,<〉 and add a point e above it (cf. Fig-
ure 1(a)).

(ii) For each d � e�, add four points covered by e such that they all cover e�

and associate d with them as their future reflection point (cf. Figure 1(b)).
By letting d range over elements of cov(e�), we obtain all points of height
ht(e)− 1 in 〈P,<〉.

(iii) For each b of height ht(e)− 1 in 〈P,<〉, if d is the associated reflection point
of b, then for each c � d , if c is not the reflection point of e�, then add four
points covered by b such that they all cover d and associate c with them as
their future reflection point, and for e�� (i.e., the reflection point of e�), only
add three points covered by b such that they all cover d and associate e��

with them as their future reflection point (cf. Figure 1(c)). For e�� we only
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Figure 1. Drawing the Hasse diagram of a building block.

add three points since e� is already a point covered by b such that it covers
d and its reflection point is e��. By letting b range over elements of height
ht(e)− 1, we obtain all points of height ht(e)− 2 in 〈P,<〉.

(iv) Let a be an element of P \Q of height ht(e)−2 in 〈P,<〉, let b be the unique
point covering a, let d be the reflection point of b, and let c be the associated
reflection point of a. For each y � c, if y is not the reflection point of d ,
then add four points covered by a such that they all cover c and associate y
with them as their future reflection point, and for d�, only add three points
covered by a such that they all cover c and associate d� with them as their
future reflection point (cf. Figure 1(d)). For d� we only add three points
since d is already a point covered by a such that it covers c and its reflection
point is d�. By letting a range over elements of P \Q of height ht(e)− 2, we
obtain all points of height ht(e)− 3 in 〈P,<〉.

(v) Continue this process to get elements of P \ Q of lower and lower height.
Suppose that all elements of P \ Q of height � 2 are obtained. For each
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z ∈ P \Q of height 2 in 〈P,<〉, add three points covered by z such that they
all cover o (cf. Figure 1(e)). We only add three points since there must be
a unique point in Q covered by z such that it covers o. By letting z range
over elements of P \Q of height 2, we obtain all points of height 1 in 〈P,<〉.
Since o is the unique element of P of height 0, we finish drawing the Hasse
diagram of 〈P,<〉.

Next we want to prove a key property which allows us to extend automorphisms
of building blocks. Let 〈P,<〉 be a building block, o the least element of 〈P,<〉,
and e the greatest element of 〈P,<〉. Notice that for all b ∈ P such that ht(b) � 2,
| cov(b)| � 4, and hence it follows from (9) that b� � a for any a � b. We first
formalize some of the ideas embodied in the above process.
Let Q = {c ∈ P | c � e�}. Let a ∈ P \ (Q∪{e}). By Lemma 4.8(iii), there exists
a unique saturated chain in [a, e], and therefore there exists a unique c ∈ P such
that a � c; we use succ(a) to denote the unique c ∈ P such that a � c. Clearly,

succ(a) ∈ P \Q ∧ a � succ(a) ∧ ∀b ∈ P (
a < b ↔ succ(a) � b). (11)

Let pred(a) = (succ(a))�. We claim that

pred(a) ∈ Q ∧ pred(a)� a ∧ ∀d ∈ Q (
d < a ↔ d � pred(a)

)
. (12)

In fact, by Lemma 4.8(ii), pred(a) ∈ Q. Since a /∈ Q, we have a �= o, and thus
ht(a) � 1 and ht(succ(a)) � 2, which implies that pred(a)� a. On the other hand,
by Lemma 4.8(i), there is a c ∈ Q such that c � a and for all d ∈ Q, if d < a then
d � c. Since pred(a) ∈ Q and pred(a)� a, it follows that pred(a) = c, and hence
for all d ∈ Q, d < a if and only if d � pred(a). Thus (12) is proved. Hence pred(a)
is the unique c ∈ Q such that c� a. Notice that if ht(a) � 2 then a��pred(a), and
hence if ht(a) > 2 then (pred(a))� � a�. For example, in Figure 1(d), succ(b) = e,
pred(b) = e�, succ(a) = b, and pred(a) = d .
Let C = {b ∈ P \Q | ht(b) = 2}, and let

D =
{
(b, c) ∈ (P \Q)× P ∣∣ ht(b) > 2 and c � b�}.

For any b ∈ C , let kb = | cov(b) \Q|, and for any (b, c) ∈ D, let
lb,c =

∣∣{a ∈ cov(b) | a� = c} \Q∣∣.
Then it is easy to verify that for all b ∈ C ,

kb =

{
3, if b �= e;
4, if b = e,

(13)

and that for all (b, c) ∈ D,

lb,c =

⎧⎪⎨
⎪⎩
3, if b �= e and (pred(b))� = c;
4, if b �= e and (pred(b))� �= c;
4, if b = e.

(14)

For example, in Figure 1(c), (e, d ), (b, c), (b, e��) ∈ D, le,d = lb,c = 4, and lb,e�� = 3.
Now, let f be an automorphism of 〈Q,<〉. Our purpose here is to show that f
can be extended to an automorphism of 〈P,<〉 in a very flexible way. The key point
is that, for any (b, c) ∈ D, we have at least three elements of P \ Q covered by b
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such that c is their common reflection point and hence 〈P,<〉 cannot distinguish
between them, and similarly, for any b ∈ C , we have at least three elements of P \Q
covered by b such that they all cover o and again 〈P,<〉 cannot distinguish between
them.
We use the following parameters to define an automorphism g of 〈P,<〉
extending f:

• The building block 〈P,<〉, which determines Q, C , D, and the functions succ,
pred, b �→ kb , and (b, c) �→ lb,c.

• A function � on C such that for all b ∈ C , �(b) is a bijection from cov(b) \Q
onto kb , and a function � onD such that for all (b, c) ∈ D, �(b, c) is a bijection
from {a ∈ cov(b) | a� = c} \Q onto lb,c . Such functions � and � exist since P
is finite.

• A function p on C such that for all b ∈ C , p(b) is a permutation of kb , and a
function q on D such that for all (b, c) ∈ D, q(b, c) is a permutation of lb,c .

• The automorphism f of 〈Q,<〉.
Functions �, �, p, q will be used to prescribe, at each stage, howwemove the elements
between which 〈P,<〉 cannot distinguish. For better readability, we write �b,c for
�(b, c), pb for p(b), and so on. The automorphism g is defined as follows:
For each d ∈ Q, take g(d ) = f(d ). We define g(a) for a ∈ P \ Q by recursion
on ht(e)− ht(a) as follows. Take g(e) = e. Now, let a ∈ P \ (Q ∪ {e}) and assume
that for all b ∈ P \ Q such that ht(b) = ht(a) + 1, g(b) is already defined and we
have:

g(b) ∈ P \Q ∧ ht(g(b)) = ht(b); (15)

(g(b))� = f(b�); (16)

b �= e → pred(g(b)) = f(pred(b)). (17)

Take b = succ(a). Then, by (11), a � b ∈ P \ Q, and thus ht(b) = ht(a) + 1,
which implies that g(b) is defined and (15)–(17) hold. We consider the following
two cases:
Case 1. ht(a) = 1. Then ht(b) = 2 and hence b ∈ C . By (15), g(b) ∈ P \Q and
ht(g(b)) = ht(b) = 2, which implies that g(b) ∈ C . Since g(b) = e if and only if
b = e, it follows from (13) that kg(b) = kb . Now we define

g(a) =
(
�g(b)

)−1(
pb(�b(a))

)
. (18)

Then g(a) ∈ cov(g(b)) \Q, and hence ht(g(a)) = ht(g(b))− 1 = 1 = ht(a). Since
cov(g(a)) = cov(a) = {o} and pred(g(a)) = pred(a) = o, we get that (15)–(17)
hold with b replaced by a. Notice that

succ(g(a)) = g(succ(a)). (19)

Case 2. ht(a) > 1. Then ht(b) > 2. Let c = a�. Then c � pred(a) ∈ Q, which
implies that c ∈ Q and (b, c) ∈ D. By (15), g(b) ∈ P \Q and ht(g(b)) = ht(b) > 2.
Since f is an automorphism of 〈Q,<〉, we have f(c) � f(b�), and thus, by (16),
f(c) � (g(b))�, which implies that (g(b), f(c)) ∈ D. Since ht(g(b)) = ht(b), it
follows that g(b) = e if and only if b = e. By (17) and the assumption that f
is an automorphism of 〈Q,<〉, if b �= e, then (pred(g(b)))� = f(c) if and only
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if f((pred(b))�) = f(c) if and only if (pred(b))� = c. Hence, by (14), we have
lg(b),f(c) = lb,c. Now we define

g(a) =
(
�g(b),f(c)

)−1(
qb,c(�b,c(a))

)
. (20)

Then g(a) ∈ {v ∈ cov(g(b)) | v� = f(c)} \Q; that is, g(a) ∈ P \Q, g(a) � g(b),
and (g(a))� = f(a�). Hence ht(g(a)) = ht(g(b)) − 1 = ht(b)− 1 = ht(a) and

succ(g(a)) = g(succ(a)). (21)

Thus, by (16), pred(g(a)) = (succ(g(a)))� = (g(b))� = f(b�) = f(pred(a)), and
therefore we get that (15)–(17) hold with b replaced by a.
Therefore, for all b ∈ P \ Q, g(b) is defined and (15)–(17) hold. Also it follows
from (19) and (21) that for all a ∈ P \ (Q ∪ {e}) we have

succ(g(a)) = g(succ(a)). (22)

We still have to prove that g is an automorphism of 〈P,<〉. For this, we first prove
that g is injective. Sinceg�Q = f is injective, by (15), it suffices to show that g�(P\Q)
is injective. We prove by induction on n < ht(e) that for all a0, a1 ∈ P \ Q such
that ht(a0) = ht(e) − n, if g(a0) = g(a1) then a0 = a1. The case n = 0 is obvious.
Now, let n < ht(e) − 1 and let a0, a1 ∈ P \ Q be such that ht(a0) = ht(e) − n − 1
and g(a0) = g(a1). By (15), ht(a1) = ht(g(a1)) = ht(g(a0)) = ht(a0) < ht(e),
and hence a0, a1 ∈ P \ (Q ∪ {e}). Let b0 = succ(a0) and let b1 = succ(a1).
Then, by (11), we have b0, b1 ∈ P \ Q and ht(b0) = ht(a0) + 1 = ht(e) − n,
and thus, by the induction hypothesis, if g(b0) = g(b1) then b0 = b1. By (22),
g(b0) = succ(g(a0)) = succ(g(a1)) = g(b1), which implies that b0 = b1. We
consider the following two cases:
Case 1. ht(a0) = 1. Then ht(a1) = 1. Since g(a0) = g(a1) and b0 = b1, by (18),
pb0 (�b0 (a0)) = pb1 (�b1 (a1)), and thus �b0 (a0) = �b1 (a1), which implies that a0 = a1.
Case 2. ht(a0) > 1. Thenwe haveht(a1) > 1. Let c0 = a�0 and let c1 = a

�
1 . By (16),

f(c0) = (g(a0))� = (g(a1))� = f(c1), and therefore c0 = c1. Since g(a0) = g(a1),
b0 = b1, and c0 = c1, it follows from (20) that qb0,c0 (�b0 ,c0 (a0)) = qb1,c1 (�b1,c1 (a1)),
and therefore �b0 ,c0 (a0) = �b1,c1 (a1), which implies that a0 = a1.
Hence g is injective, which implies that g is a permutation of P since P is finite.
It remains to show that for all a, b ∈ P,

a < b ↔ g(a) < g(b). (23)

Let a, b ∈ P. If b ∈ Q ∪ {e}, then obviously (23) holds. Suppose that b ∈ P \ (Q ∪
{e}). Then, by (15), we have g(b) ∈ P \(Q∪{e}). If a ∈ Q, then g(a) = f(a) ∈ Q,
and therefore, by (12) and (17),

a < b ↔ a � pred(b)↔ g(a) � pred(g(b))↔ g(a) < g(b).
Thus if a ∈ Q then (23) holds. Also, if a = e, then (23) holds trivially. Assume that
a ∈ P \ (Q ∪ {e}) and that for all c ∈ P \ Q such that ht(c) = ht(a) + 1, c < b if
and only if g(c) < g(b). Then, by (11) and the injectivity of g, succ(a) � b if and
only if g(succ(a)) � g(b). By (15), we have g(a) ∈ P \ (Q ∪ {e}), and hence, by
(11) and (22),

a < b ↔ succ(a) � b ↔ succ(g(a)) � g(b)↔ g(a) < g(b).
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Thus (23) is proved. We use Φ(P,<, �, �, p, q, f) to denote the function g. Hence
we have proved that

Φ(P,<, �, �, p, q, f) is an automorphism of 〈P,<〉 extending f. (24)

Now, let p′ be the function defined on C such that for all b ∈ C , p′(b) = idkb ,
and let q′ be the function defined on D such that for all (b, c) ∈ D, q′(b, c) = idlb,c .
Let Ψ(P,<, �, �, f) = Φ(P,<, �, �, p′, q′, f). Then, by (24), we have that

Ψ(P,<, �, �, f) is an automorphism of 〈P,<〉 extending f. (25)

Lemma 4.10. Let 〈P,<〉 be a building block, let e be the greatest element of 〈P,<〉,
and let Q = {c ∈ P | c � e�}. For all a ∈ P \ (Q ∪ {e}) and all d ∈ P \ {a} such
that either ht(d ) � ht(a) or d ∈ Q, there exists an automorphism g of 〈P,<〉 fixing
Q ∪ {d} pointwise and such that g(a) �= a.
Proof. Let � and � be functions as above. Let b0 = succ(a). We consider the
following two cases:
Case 1. ht(a) = 1. Then, let i = �b0 (a) < kb0 , and let j < kb0 be the least natural
number such that (�b0 )

−1(j) /∈ {a, d}. Let p be the function defined onC such that
for all b ∈ C ,

p(b) =

{
(i ; j)kb , if b = b0;
idkb , otherwise,

and let q be the function defined on D such that for all (b, c) ∈ D, q(b, c) = idlb,c .
Let g = Φ(P,<, �, �, p, q, idQ). Then, by (24), g is an automorphism of 〈P,<〉 fixing
Q pointwise. By (20) and a routine induction, for all v ∈ P \Q such that ht(v) > 1,
we have g(v) = v. Therefore, by (18), g(a) = (�b0 )

−1(j) �= a and for all w ∈ P \Q
such that ht(w) = 1, if w /∈ {a, (�b0 )−1(j)}, then g(w) = w. Hence g(d ) = d .
Case 2. ht(a) > 1. Then, let c0 = a�, let i = �b0,c0 (a) < lb0,c0 , and let j < lb0,c0
be the least natural number such that (�b0 ,c0 )

−1(j) /∈ {a, d}. Let p be the function
defined on C such that for all b ∈ C , p(b) = idkb , and let q be the function defined
on D such that for all (b, c) ∈ D,

q(b, c) =

{
(i ; j)lb,c , if b = b0 and c = c0;
idlb,c , otherwise.

Let g = Φ(P,<, �, �, p, q, idQ). Then it follows from (24) that g is an automorphism
of 〈P,<〉 fixingQ pointwise. By (20) and a routine induction, for all v ∈ P \Q such
that ht(v) > ht(a), we have g(v) = v. Hence, again by (20), g(a) = (�b0,c0 )

−1(j) �=
a and for all w ∈ P \ Q such that ht(w) = ht(a), if w /∈ {a, (�b0 ,c0 )−1(j)}, then
g(w) = w. Since d /∈ {a, (�b0,c0 )−1(j)} and either ht(d ) � ht(a) or d ∈ Q, we have
g(d ) = d , which completes the proof. �
4.3. Construction of the permutation model. For any quintuple (x0, x1, x2, x3, x4)
and for any j < 5, let prj(x0, x1, x2, x3, x4) = xj . Let o be an arbitrary atom.
The atoms of the permutation model are quintuples or o, which are constructed by
recursion as follows:

(i) e0 = o, A0 = {o}, and �0 = ∅.
(ii) e1 = (0, 0, ∅, o, 3), A1 = {o, e1}, and �1 = {(o, e1)}.

https://doi.org/10.1017/jsl.2019.75 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.75


FACTORIALS OF INFINITE CARDINALS II 261

(iii) For any n � 1, en+1 = (n, n, ∅, en−1, 3) and An+1 = An ∪
⋃
i�n Bn,i , where

Bn,i is defined by recursion on i � n as follows:
• Bn,0 = {en+1};
• Bn,n = {(n, 0, b, o, j) | b ∈ Bn,n−1 ∧ j < 3};
• Bn,i = {(n, n − i, b, c, j) | b ∈ Bn,i−1 ∧ c �n pr3 b ∧ j < Lb,c}, where
0 < i < n and

Lb,c =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
3, if b �= en+1 and pr3 pr3 pr2 b = c;
4, if b �= en+1 and pr3 pr3 pr2 b �= c;
3, if b = en+1 and c = en−2;
4, if b = en+1 and c �= en−2.

(iv) For any n � 1, �n+1 is defined as follows:

�n+1 = �n ∪
{
(en, en+1)

}
∪ {
(pr3 pr2 a, a)

∣∣ a ∈ An+1 \ (An ∪ {en+1})
}

∪ {
(a,pr2 a)

∣∣ a ∈ An+1 \ (An ∪ {en+1})
}
.

(v) For any n ∈ �, <n is the transitive closure of �n; that is, for all a, b, a <n b
if and only if there exists a sequence t of length m > 1 such that t(0) = a,
t(m − 1) = b, and t(j) �n t(j + 1) for any j < m − 1. Such a t is called a
�n-chain from a to b.

Let A =
⋃
n∈� An and let < =

⋃
n∈� <n. For the sake of simplicity we shall work

with A as the set of atoms. Let G be the group of all automorphisms of 〈A,<〉 and
let I = fin(A). The permutation model determined by G and I is denoted by VS (S
for the operator S).
The main idea of the construction is as follows. For each n ∈ �, we use An to
encode a building block of height n, and for each quintuple a in A, we use pr0(a)
to encode the unique n ∈ � such that a ∈ An+1 \ An , pr1(a) + 1 the height of a,
pr2(a) the successor of a in An+1 \ An (∅ if a has no successors in An+1 \ An),
pr3(a) the reflection point of a, and pr4(a) < 4 the position of a in the elements
between which 〈A,<〉 cannot distinguish. Hence, for all n, i ∈ � such that n � 1
and i � n, Bn,i is the set of elements of An+1 \ An of height n − i + 1. Notice that
An+1 is constructed from An in the same way as described after Definition 4.9, but
there is a slight difference: In (i) of the process described after Definition 4.9, we
add a point e which is two level higher than the greatest element of 〈Q,<〉, but the
greatest element en+1 of An+1 is only one level higher than the greatest element en
of An. So the process from An to An+1 is just (iii)–(v) of the process described after
Definition 4.9, where in (iii) we only consider one b, namely en+1, and the associated
reflection point d of b is en−1. We draw the Hasse diagram of 〈A4, <4〉 in Figure 2
(with some points of height 1 omitted), which illustrates the construction.
We still need to give a formal proof that 〈An,<n〉 is a building block for every
n ∈ �. We first note that, for all n ∈ �, we have en ∈ An and for all a ∈ An+1 \ An ,
pr0 a = n and if n � 1 then n − pr1 a is the unique i � n such that a ∈ Bn,i . Thus,
for all n � 1, An and

⋃
i�n Bn,i are disjoint, and the sets Bn,i (i � n) are pairwise
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o

e2

e1

e3

e4

Figure 2. The Hasse diagram of 〈A4, <4〉.

disjoint. Notice that for all n � 1 and all a ∈ An+1 \ (An ∪ {en+1}),
pr2 a ∈ An+1 \ An ∧ pr1 pr2 a = pr1 a + 1; (26)

pr1 a > 0→ pr3 a �n pr3 pr2 a. (27)

Lemma 4.11. For every n ∈ �, 〈An,<n〉 is a building block, �n is the covering
relation of<n, o is the least element of 〈An,<n〉, en is the greatest element of 〈An,<n〉,
and for all a ∈ An \ {o}, we have ht(a) = pr1 a + 1 and a� = pr3 a.
Proof. We prove this lemma by induction on n. The cases n = 0 and n = 1 are
obvious. Next, for the inductive step, let n � 1 and assume that the assertion holds
for n. The proof that the assertion holds for n + 1 proceeds in the following eight
steps.
Step 1.We prove some results about the relation <n+1:

a <n+1 b ∧ b ∈ An → a ∈ An ∧ a <n b; (28)

a <n+1 b ∧ a ∈ An+1 \ An → pr1 a < pr1 b; (29)

a <n+1 b ∧ a ∈ An+1 \ An → ∃!t(t is a �n+1-chain from a to b); (30)

a <n+1 b ∧ a, b ∈ An+1 \ (An ∪ {en+1})→ pr3 pr2 a <n pr3 pr2 b; (31)

a <n+1 b ∧ a ∈ An ∧ b ∈ An+1 \ (An ∪ {en+1})→ a �n pr3 pr2 b. (32)

Let a <n+1 b and let t be a �n+1-chain of length m > 1 from a to b. By (26) and
the definition of �n+1, if b ∈ An, then ran(t) ⊆ An and t is a �n-chain from a to b.
Thus (28) is proved. If a ∈ An+1\An, then t[m−1] ⊆ An+1\(An∪{en+1}), t(m−1) ∈
An+1\An, and for all j < m−1, t(j+1) = pr2 t(j) and thus pr1 t(j+1) = pr1 t(j)+1
by (26), which implies thatm = pr1 b−pr1 a+1 and thus t is uniquely determined
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by a and b. Therefore (29) and (30) are proved. If a, b ∈ An+1 \ (An ∪{en+1}), then
we have that ran(t) ⊆ An+1\(An∪{en+1}) and t(j+1) = pr2 t(j) for any j < m−1,
and hence, by (26) and (27), pr3 pr2 t(j)�n pr3 pr2 t(j+1) for any j < m− 1. Thus
(31) is proved. Finally, suppose that a ∈ An and that b ∈ An+1 \ (An ∪ {en+1}).
Let i be the least j < m such that t(j) ∈ An+1 \ An . Clearly, i > 0, t[i ] ⊆ An ,
t[m \ i ] ⊆ An+1 \ (An ∪ {en+1}), a �n t(i − 1), t(i − 1) = pr3 pr2 t(i), and
t(i) �n+1 b, which implies that, by (31), pr3 pr2 t(i) �n pr3 pr2 b. Therefore we have
a �n t(i − 1) = pr3 pr2 t(i) �n pr3 pr2 b. Thus (32) is proved.
Step 2. Now we prove that 〈An+1, <n+1〉 is a partially ordered set. Since <n+1 is
the transitive closure of �n+1, it suffices to prove that <n+1 is irreflexive. Assume
towards a contradiction that there is a b ∈ An+1 such that b <n+1 b. If b ∈ An , then,
by (28), b <n b, contradicting the assumption that <n is irreflexive. Otherwise, by
(29), pr1 b < pr1 b, which is also a contradiction.
Step 3. Now we prove that o and en+1 are the least and greatest elements of

〈An+1, <n+1〉. Since o is the least element of 〈An,<n〉, it follows that o �n en�n+1en+1
and for all a ∈ An+1 \ (An ∪ {en+1}) we have o �n pr3 pr2 a �n+1 a, which implies
that o is also the least element of 〈An+1, <n+1〉. Since en is the greatest element of
〈An,<n〉, we haved �n en�n+1en+1 for anyd ∈ An. For all a ∈ An+1\(An∪{en+1}),
the sequence t of length n−pr1 a+1 such that t(0) = a and t(j +1) = pr2 t(j) for
any j < n − pr1 a is a �n+1-chain from a to en+1, and therefore a <n+1 en+1, which
implies that en+1 is the greatest element of 〈An+1, <n+1〉.
Step 4.We prove that�n+1 is the covering relation of <n+1; that is, for all a, b,

a �n+1 b ↔ a <n+1 b ∧ ¬∃c(a <n+1 c <n+1 b). (33)

Clearly, if a <n+1 b but a <n+1 c <n+1 b for no c ∈ An+1, then a �n+1 b. For the
other direction, assume towards a contradiction that a�n+1 b and a <n+1 c <n+1 b
for some c ∈ An+1. We consider the following four cases:
Case 1. a �n b. Then b ∈ An and hence a <n c <n b by (28), contradicting the
assumption that�n is the covering relation of <n.
Case 2. a = en and b = en+1. Then we have c ∈ An+1 \ (An ∪ {en+1}) and the
sequence t of length n − pr1 c + 1 such that t(0) = c and t(j + 1) = pr2 t(j) for
any j < n − pr1 c is a �n+1-chain from c to en+1, and hence it follows from (32)
and (31) that en �n pr3 pr2 c �n pr3 pr2 t(n − pr1 c − 1) = pr3 en+1 = en−1, which
is absurd.
Case 3. b ∈ An+1 \ (An ∪ {en+1}) and a = pr3 pr2 b. If c ∈ An , then, by (32),
c �n pr3 pr2 b = a, contradicting that a <n+1 c. Therefore c ∈ An+1\(An∪{en+1}),
and hence it follows from (32) and (31) that a �n pr3 pr2 c <n pr3 pr2 b = a, which
is absurd.
Case 4. a ∈ An+1 \ (An ∪ {en+1}) and b = pr2 a. Then it follows from (29) and
(26) that pr1 a < pr1 c < pr1 b = pr1 a+1, which is also a contradiction. Thus (33)
is proved.
Step 5. Now we prove that 〈An+1, <n+1〉 is a finite lattice. Since An is finite,
it follows that An+1 is finite. Since An+1 is finite and 〈An+1, <n+1〉 has a greatest
element, we only need to prove that any two elements of An+1 have a greatest lower
bound. Let a, b ∈ An+1. If a �n+1 b or b �n+1 a, then obviously a and b have
a greatest lower bound. Suppose that a and b are incomparable. If a, b ∈ An ,
then, by (28), the greatest lower bound of a and b in 〈An,<n〉 is also their greatest
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lower bound in 〈An+1, <n+1〉. If a ∈ An and b ∈ An+1 \ (An ∪ {en+1}), then,
by (28) and (32), the greatest lower bound of a and pr3 pr2 b in 〈An,<n〉 is also
the greatest lower bound of a and b in 〈An+1, <n+1〉. Finally, we claim that if
a, b ∈ An+1 \ (An ∪{en+1}), then the greatest lower bound of pr3 pr2 a and pr3 pr2 b
in 〈An,<n〉 is the greatest lower bound of a and b in 〈An+1, <n+1〉. By (32), it suffices
to show that for all d ∈ An+1, if d �n+1 a and d �n+1 b, then d ∈ An. In fact,
for all c ∈ An+1 \ (An ∪ {en+1}), by (30), there is a unique �n+1-chain from c to
en+1, and thus, since a and b are incomparable, it cannot happen that c �n+1 a and
c �n+1 b simultaneously.
Step 6.We prove that 〈An+1, <n+1〉 satisfies the finitary lower covering condition.
Since 〈An,<n〉 satisfies the finitary lower covering condition, by (28), it suffices to
prove that for all b ∈ An+1 \An covering at least two elements, (9) holds. Let b be an
element ofAn+1 \An covering at least two elements. Then, by the definition of�n+1,
b covers some element of An+1 \ (An ∪ {en+1}). Let a be an arbitrary element of
An+1 \(An∪{en+1}) covered by b. Then b = pr2 a and thus pr3 b = pr3 pr2 a�n+1a.
Notice that if b = en+1 then cov(b) ∩ An = {en} and pr3 b = en−1 �n en, and if
b ∈ An+1 \ (An ∪ {en+1}) then cov(b) ∩ An = {pr3 pr2 b} and, by (26) and (27),
pr3 b �n pr3 pr2 b. Thus pr3 b = b

� and (9) holds. Hence 〈An+1, <n+1〉 satisfies the
finitary lower covering condition and

∀b ∈ An+1 \ An
(| cov(b)| � 2→ b� = pr3 b). (34)

Step 7. Now, by Lemma 4.5, in 〈An+1, <n+1〉, the height of b is well-defined for
any b ∈ An+1. Notice that for all d ∈ An, by (28), the height of d in 〈An+1, <n+1〉 is
the same as its height in 〈An,<n〉. We claim that

∀a ∈ An+1 \ {o}
(
ht(a) = pr1 a + 1

)
. (35)

Since in 〈An,<n〉we have ht(a) = pr1 a+1 for any a ∈ An \ {o}, it suffices to prove
that ht(b) = pr1 b + 1 for any b ∈ An+1 \ An. Let b ∈ An+1 \ An. If b = en+1, then
ht(b) = ht(en) + 1 = pr1 en + 2 = n + 1 = pr1 b + 1. Otherwise, the sequence t of
length n−pr1 b+1 such that t(0) = b and t(j +1) = pr2 t(j) for any j < n−pr1 b
is a �n+1-chain from b to en+1, which implies that ht(b) + n− pr1 b = ht(en+1) and
hence ht(b) = pr1 b + 1. Thus (35) is proved.
Step 8. Finally, we prove that 〈An+1, <n+1〉 is a building block and a� = pr3 a for
any a ∈ An+1 \ {o}. Since 〈An,<n〉 is a building block in which we have a� = pr3 a
for anya ∈ An\{o}, by (28), it suffices to prove that for all b ∈ An+1\An, b� = pr3 b,
if ht(b) = 2 then | cov(b)| = 4, and if ht(b) > 2 then (10) holds. Let b ∈ An+1 \An.
We consider the following three cases:
Case 1. ht(b) = 1. Then pr1 b = 0 by (35), and hence b

� = o = pr3 b.
Case 2. ht(b) = 2, Then pr1 b = 1 by (35), which implies that b ∈ Bn,n−1 and
cov(b) ∩ (An+1 \ An) = {(n, 0, b, o, j) | j < 3}. Since cov(b) ∩ An is a singleton, it
follows that | cov(b)| = 4, which implies that b� = pr3 b by (34).
Case 3. ht(b) > 2. Then pr1 b > 1 by (35). We further consider two subcases:
Case 3a. b = en+1. Then we have n = pr1 b > 1 and thus pr3 b = en−1 �= o. For
all c �n pr3 b, if c = en−2 then Lb,c = 3 and hence∣∣{a ∈ cov(b) | pr3 a = c}∣∣ = ∣∣{en} ∪ {(n, n − 1, b, c, j) | j < Lb,c}

∣∣ = 4,
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and if c �= en−2 then Lb,c = 4 and hence∣∣{a ∈ cov(b) | pr3 a = c}
∣∣ = ∣∣{(n, n − 1, b, c, j) | j < Lb,c}∣∣ = 4.

Thus we have | cov(b)| � 4, which implies that b� = pr3 b by (34).
Case 3b. b ∈ An+1\(An∪{en+1}). Then, by (27), we have pr3 b�npr3 pr2 b�n+1b,
which implies that ht(pr3 b) = ht(b) − 2 > 0 and therefore pr3 b �= o. For all
c �n pr3 b, if pr3 pr3 pr2 b = c then Lb,c = 3 and hence∣∣{a ∈ cov(b) | pr3 a = c}

∣∣ = ∣∣{pr3 pr2 b} ∪ {(n,pr1 b − 1, b, c, j) | j < Lb,c}
∣∣ = 4,

and if pr3 pr3 pr2 b �= c then Lb,c = 4 and hence∣∣{a ∈ cov(b) | pr3 a = c}
∣∣ = ∣∣{(n,pr1 b − 1, b, c, j) | j < Lb,c}∣∣ = 4.

Thus we have | cov(b)| � 4, which implies that b� = pr3 b by (34).
Now, since in all cases we have that b� = pr3 b, we can replace pr3 b by b

� and
pr3 a by a

� in the above two subcases, and hence (10) holds in both subcases, which
completes the proof. �
Corollary 4.12. 〈A,<〉 is a locally finite lattice with a least element.
Proof. By Lemma 4.11, for all n ∈ �, 〈An,<n〉 is a finite lattice and o is the least
element of 〈An,<n〉. Hence it follows from (28) that 〈A,<〉 is a locally finite lattice
and o is the least element of 〈A,<〉. �
Lemma 4.13. For all m ∈ �, every automorphism of 〈Am,<m〉 extends to an
automorphism of 〈A,<〉.
Proof. Let m ∈ � and let g be an automorphism of 〈Am,<m〉. We define an
automorphism � of 〈A,<〉 extending g as follows:
We want to use the function Ψ defined before Lemma 4.10 to extend g step by
step. For each n ∈ �, let

Cn =
{
b ∈ Am+2n+2 \ Am+2n

∣∣ pr1 b = 1},
let

Dn =
{
(b, c)

∣∣ b ∈ Am+2n+2 \ Am+2n ∧ pr1 b > 1 ∧ c �m+2n pr3 b},
let �n be the function defined on Cn such that for all b ∈ Cn, �n(b) is the function
defined on {a ∈ Am+2n+2 \ Am+2n | a �m+2n+2 b} given by �n(b)(a) = pr4 a, and
let �n be the function defined on Dn such that for all (b, c) ∈ Dn, �n(b, c) is the
function defined on {a ∈ Am+2n+2 \ Am+2n | a �m+2n+2 b ∧ pr3 a = c} given by
�n(b, c)(a) = pr4 a. Notice that, by Lemma 4.11, for each n ∈ �, Cn and Dn
correspond to the sets C and D in Section 4.2 respectively if we take 〈P,<〉 to be
〈Am+2n+2, <m+2n+2〉, and �n, �n satisfy the corresponding conditions satisfied by �, �
respectively. Now we define hn by recursion on n as follows:

h0 = g;

hn+1 = Ψ(Am+2n+2 , <m+2n+2, �n, �n, hn).

Then, by Lemma 4.11 and (25), it follows froma routine induction that for all n ∈ �,
hn+1 is an automorphism of 〈Am+2n+2, <m+2n+2〉 extending hn. Now it suffices to
take � =

⋃
n∈� hn. �

Now we are ready to prove our main lemma.
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Lemma 4.14. In VS , S(A) = Sfin(A).
Proof. Let u ∈ VS be a permutation of A, and let B ∈ fin(A) be a support of u.
Let k be the least natural number such that B ⊆ Ak . We claim that

mov(u) ⊆ Ak.
In fact, assume towards a contradiction that there is an a ∈ mov(u) \ Ak . Let
n = pr0 a and let b = u(a) �= a. Then a ∈ An+1 \ An and hence k � n.
If b ∈ An, or if b ∈ An+1 \ An and pr1 b � pr1 a, then, by Lemmas 4.11 and
4.10, there exists an automorphism g of 〈An+2, <n+2〉 fixingAn ∪{b} pointwise and
such that g(a) �= a. By Lemma 4.13, g extends to an automorphism � of 〈A,<〉.
Then we have � ∈ fixG(B ∪{b}) and �(a) �= a. Hence �moves u, contradicting the
assumption that B is a support of u.
Therefore, b /∈ An , and if b ∈ An+1 \ An then pr1 b < pr1 a. Let m = pr0 b.
Then b ∈ Am+1 \ Am and hence n � m, which implies that either a ∈ Am or
a ∈ Am+1 \ Am and pr1 a > pr1 b. Thus, by Lemmas 4.11 and 4.10, there exists an
automorphism h of 〈Am+2, <m+2〉 fixingAm∪{a} pointwise and such that h(b) �= b.
By Lemma 4.13, h extends to an automorphism � of 〈A,<〉. Then � ∈ fixG(B ∪
{a}) and �(b) �= b. Hence � moves u, contradicting again that B is a support
of u.
Thus mov(u) ⊆ Ak . Since Ak is finite, it follows that u ∈ Sfin(A). �
Corollary 4.15. LetA be the set of atoms of VS and let a = |A|. In VS , a! �fto a.
Proof. By Lemma 4.14, we have a! = Sfin(a), and by Fact 2.7, Sfin(a) �fto fin(a).
Also, it follows from Corollary 4.12 and Fact 4.2 that fin(a) �fto a. Therefore, we
have a! = Sfin(a) �fto fin(a) �fto a. �
Now the following theorem immediately follows from Corollary 4.15 and the
Jech-Sochor theorem.

Theorem 4.16. The following statement is consistent with ZF: There exists an
infinite cardinal a such that a! �fto a.

§5. Conclusion. In what follows, we first list some open problems which are
of interest for future work, and then summarize the relationships between a! and
some other cardinals considered in the two parts of this work. Finally, we make a
comparison of these relationships with those between 2a and some other cardinals.

5.1. Open problems. Now we propose three open problems as follows:
Question 5.1. Is it consistent with ZF that there exists an infinite cardinal a such
that a! < ℵ0 · a?
By Lemma 3.31 of [14], an affirmative answer to this question would yield a
generalization of Theorem 4.16.

Question 5.2. Is it consistent with ZF that there exists an infinite cardinal a � 2ℵ0
such that a! �fto a?
By Theorem 3.33 of [14], an affirmative answer to this question would give an
affirmative answer to Question 5.1.

Question 5.3. Is it consistent with ZF that there exists a cardinal a such that
a! = [a]3?
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Note that, by Theorem 3.12, the existence of an infinite cardinal a such that
a! < [a]3 is consistent with ZF.

5.2. Summary. Now we summarize the ZF results proved in Part I and the con-
sistency results obtained in this part. For all cardinals a, if a! is Dedekind infinite,
then a! cannot be too small, in the following sense:

• a! �dfto seq(Spdfin(a)) (cf. [14, Theorem 3.14]);
• 2ℵ0 ·a � 2ℵ0 · seq(a) � 2ℵ0 · Sfin(a) � 2ℵ0 · Spdfin(a) � a! (cf. [14, Theorem 3.9]);
• ℵ0 · a � seq(a) � ℵ0 · Sfin(a) � ℵ0 · Spdfin(a) < a! (cf. [14, Corollary 3.15]).

However, if we replace the requirement that a! is Dedekind infinite by the require-
ment that a is infinite, then it may consistently happen that a! �fto a (cf. Theo-
rem 4.16) and that a! < seq1-1(a) < seq(a) (cf. Proposition 3.6). It is an open
problemwhether or not it may consistently happen that a! < ℵ0 ·a (cf. Question 5.1).
Nevertheless, for all infinite cardinals a, we have:

• a! �= seq1-1(a) (cf. [15, Theorem 2.2]);
• a! �= seq(a) (cf. [14, Corollary 3.17]);
• a! �= ℵ0 · a (cf. [14, Corollary 3.19]);
• [a]2 � [

[a]2
]2
< a! (cf. [14, Corollary 3.26]);

• an < a! (cf. [14, Corollary 3.29]).

We also proved that for all infinite cardinals a, if there is a permutation without
fixed points on a set which is of cardinality a, then a! �fto an for any n ∈ � (cf. [14,
Corollary 3.30]). Theorem 4.16 shows that, in this result, we cannot remove the
assumption that there is a permutation without fixed points on a set which is of
cardinality a.
Even for Dedekind infinite cardinals a, it is not provable that

[[
[a]2

]2]2 � a! or
that ([a]2)2 � a! (cf. Proposition 3.2), and it may consistently happen that a! < [a]3

and a! �∗ a (cf. Theorem 3.12). It is an open problem whether or not it may
consistently happen that a! = [a]3 (cf. Question 5.3).
For infinite cardinals a, it may consistently happen that a! ‖ seq1-1(a), a! ‖ seq(a),

a! ‖ [a]3, and a! ‖ 2a (cf. Proposition 3.2). Also, it is easy to verify that a! ‖ ℵ0 · a for
any infinite but power Dedekind finite cardinal a, and therefore it may consistently
happen that a! ‖ ℵ0 · a.
Now, for infinite cardinals a, we list all the possible relationships between a! and

a, ℵ0 · a, seq1-1(a), seq(a), [a]3, or 2a in the following table.
We should also mention that it is consistent with ZF that there exists a power
Dedekind infinite cardinal a such that a! �fto ℵ0. The sketch of the proof is as
follows: Consider the permutation model N2(3) in [9]. In this permutation model,
the setA of atoms is the union of a denumerable setB of pairwise disjoint 3-element
sets, G is the group of all permutations of A that leave B pointwise fixed, and I is
the normal ideal fin(A). It is easy to verify that in N2(3), we have S(A) = Sfin(A)
and there is a three-to-one surjection from A onto �. Hence, if a = |A|, then a is
powerDedekind infinite, a �fto ℵ0, and a! = Sfin(a), which implies that, by Fact 2.7,
a! = Sfin(a) �fto fin(a) �fto fin(ℵ0) = ℵ0.
5.3. Comparison with powers. The relationships between 2a and some other car-
dinals are studied in [3,7,8,12,13,16,19]. In [12, Proposition 3.13], the first author
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a ℵ0 · a seq1-1(a) seq(a) [a]3 2a

a! > � � � � � �

a! = X X X X ? �

a! < X ? � � � �

a! ‖ X � � � � �

a! �fto � � � � � �

a! �∗ � � � � � �

proved that 2a �dfto seq1-1(pdfin(a)) for any power Dedekind infinite cardinal a. In
fact, for power Dedekind infinite cardinals a, we have:

• 2a �dfto seq(pdfin(a)),pdfin(seq(a)),fin(pdfin(a)),pdfin(fin(a));
• 2ℵ0 · a � 2ℵ0 · fin(a) � 2ℵ0 · pdfin(a) � 2a (cf. [12, Lemma 3.18]);
• ℵ0 · a � ℵ0 · fin(a) � ℵ0 · pdfin(a) < 2a (cf. [12, Proposition 3.19]).
We shall omit the proof here. It is an open problem whether or not it is prov-
able in ZF that 2a � pdfin(pdfin(a)) for any power Dedekind infinite cardinal a.
Hence, 2a has stronger properties than a!, in the sense that the requirement that a is
power Dedekind infinite is weaker than the requirement that a! is Dedekind infinite
(cf. Fact 2.6), and 2a �dfto seq(pdfin(a)) is stronger than 2a �dfto seq(Spdfin(a))
(cf. Fact 2.8). Also, for infinite cardinals a, we have:

• 2a �fto [a]n (cf. [13, Corollary 3.7]);
• 2a �fto an (cf. [12, Proposition 3.11]);
• 2a �fto ℵ0 · a;
• fin(a) < 2a (cf. [7, Theorem 3]);
• 2a �= seq1-1(a) (cf. [7, Theorem 4]);
• 2a �= seq(a) (cf. [7, Theorem 5]).
We also omit the proof here. Notice that, even for infinite cardinals a, 2a has
stronger properties than a!, in the sense that it may consistently happen that a! �fto
a (cf. Theorem 4.16) and that Sfin(a) = a! (cf. Fact 3.5). Nevertheless, it may
consistently happen that 2a < Sfin(a) = a! < seq1-1(a) < seq(a) (cf. Fact 3.5 and
Proposition 3.6) and hence, by Fact 2.7, 2a �fto fin(a).
For the relation �∗, on the one hand, it may consistently happen that a! �∗ a
(cf. Theorem 3.12), and on the other hand, by Cantor’s theorem, we have that
2a �∗ a for any cardinal a. Moreover, for all infinite cardinals a and all cardinals
b �fto a, we have that 2a �∗ b (cf. [12, Theorem 5.3]). Notice that, in [7, Theorem 1],
Halbeisen and Shelah proved that the existence of an infinite cardinal a such that
2a �∗ fin(a) is consistent withZF. Nowwe propose three open problems concerning
the relation �∗ as follows:
Question 5.4. Is it consistent with ZF that there exists an infinite cardinal a such
that 2a �∗ a2?
This question is known as the dual Specker problem and is asked in [18] (cf. also
[5, p. 133] or [12, Problem 5.8]).
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Question 5.5. Is it consistent with ZF that there exists an infinite cardinal a such
that 2a �∗ [a]2?

This question is asked in [6]. Notice that an affirmative answer to this question
would give an affirmative answer to Question 5.4.

Question 5.6. Is it consistent with ZF that there exists an infinite cardinal a such
that 2a �∗ ℵ0 · a?
In fact, an affirmative answer to this question would yield an affirmative answer
to Question 5.5. The sketch of the proof is as follows: Notice that for all power
Dedekind infinite cardinals a we have ℵ0 · a �∗ [a]2. Hence, we only need to prove
that for all infinite cardinals a, if 2a �∗ ℵ0 · a, then a is power Dedekind infinite. Let
x be a set such that |x| = a, and let f be a surjection from � × x onto ℘(x). Then
we can explicitly define a surjection g ⊆ f from a subset of � × x onto ℘(x) such
that for all z ∈ x, g�(� × {z}) is injective. If ℘(x) is Dedekind finite, then for all
z ∈ x, dom(g) ∩ (� × {z}) is finite, and hence there exists a finite-to-one function
from dom(g) into x, contradicting Theorem 5.3 of [12]. Therefore, we get that x is
power Dedekind infinite, and hence a is power Dedekind infinite.
Finally, for infinite cardinals a, we list all the possible relationships between 2a

and a, ℵ0 · a, a2, fin(a), seq1-1(a), or seq(a) in the following table.

a ℵ0 · a a2 fin(a) seq1-1(a) seq(a)

2a > � � � � � �

2a = X X X X X X

2a < X X X X � �

2a ‖ X � � X � �

2a �fto X X X � � �

2a �∗ X ? ? � � �
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