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Abstract

Modeling plus simulations using the one-dimensional Lagrangian radiation-hydrodynamics code HYADES are com-
pared with data from classical and ablative Rayleigh—Taylor experiments conducted on the Nova laser. Comparisons
between the experiments and modeling for both the gross hydrodynamic motion and the perturbation evolution are made
and show good agreement. A third order perturbation analysis is applied to demonstrate the onset of nonlinearity. A
simple, physically intuitive saturation model is used to describe the growth further into the nonlinear regime. Finally, we
present the first comparison of the Betti ablation front theory with indirect-drive RT data and obtain good agreement.
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1. INTRODUCTION smooth, constant acceleration in the ideal case, the RM in-
stability is the opposite extreme of an impulsive accelera-
Hydrodynamic instabilities arise in a variety of fields, rang- tion of an interface between two fluids of different densities.
ing from large-scale astrophysical phenomena such as su- Since complex physical systems such as ICF capsules tend
pernovagMuller et al, 1991; Herant & Woosley, 19940  to undergo a series of shock transversals and accelerations,
the implosion of inertial confinement fusi¢fCF) capsules  an understanding of both of these instabilities and their
(Lindl & Mead, 1975; Takabet al, 1983. Each of these interaction is crucial. To test our abilities to model and
systems, which can consist of many layers of fluids of dif-understand such systems, planar hydrodynamic instability ex-
ferent densities, undergoes a temporal evolution characteperiments were conducted on the Nova laser, as illustrated
ized by periods of radial acceleration or deceleration and thgchematically in Figure {Budil et al., 1996; Remington
passage of one or more shocks. These conditions give rise ta al., 1992, 1995. Data analysis and preliminary modeling
several commonly discussed hydrodynamic instabilitiesshowed nearly classical RT growth at the embedded inter-
such as the Rayleigh—-Tayl¢Chandrasehkar, 196&nd  face, with the largest growth factors occurring at the shortest
Richtmyer—MeshkoyRichtmyer, 1960; Meshkov, 196B-  wavelengths, as shown by the dashed curve in Figure 2. Con-
stabilities. In this work we focus on the Rayleigh—Taylor versely, atthe ablation front, RT growth of the shortest wave-
(RT) instability in laser-driven experiments. length perturbations was significantly inhibited, as illustrated
The RT instability occurs when a heavier fluid is acceler-py the solid curve. In this paper we describe the details be-
ated by a lighter fluid and is important at both ablative andhind the two calculations shown in Figure 2.
embedded interfaces. The growth of ablation front pertur-
bations has been shown to be reduced relative to the growth
of perturbations at an embedded, or classical, interface dué RADIATION HYDRODYNAMICS
to the stabilizing effects of ablation and density gradients. SIMULATION
(Budil et al, 1996 While the RT instability is seen as a

2.1. Experiment
*Current address: Department of Physics, University of California at
Berkeley, Berkeley, CA 94720, USA. ___The design used in these experiments is shown in Figure 1
Address correspondence and reprint requests to: Bruce Remmgtor}:i disd ibed i detail el h diletal. 1996:
Lawrence Livermore National Laboratory, L-021, Livermore, CA 94550, ndis described in more detail elsewheBedil etal., '

USA; E-mail: remington2@IInl.gov Remingtoret al,, 1992, 1995. We studied planar foils with
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Backlighter beams

Fig. 1. A schematic representation of the experiment. Eight beams of the n
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Fig. 3. Characteristic laser powésolid curve and radiation drive tem-
peratured, (dashed curveprofiles for these experiments. The simulations
used standard, profiles that were scaled by the laser powers of each shot:
T, = (Po/P)YAT,.

Nova laser are used to create an x-ray drive inside of the hohlraum which

accelerates the CiBr) pusher(white) into the Ti payload(black. The
remaining two beams are used to irradiate backlighter féitsor Mo to
generate X rays for side-on or face-on radiography.

embedded or ablation front interfaces accelerated by thﬁ,
X-ray drive generated by high-intensity laser beams inci
dent on a gold hohlraum inside of the Nova laser chambe

The embedded interfagelassical RT or CRTtargets were
composed of a 3am thick foil, or “ablator,” of brominated
plastic(CsgH4/Br3, hereafter referred to as GBr)) of den-
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sity p = 1.26 g/cm?® backed by a 15um thick titanium(Ti)
payload of density = 4.5 g/cm? with a well-characterized
initial perturbation machined at the @BIr)-Tiinterface. The
ablation front RT targets consisted of 50—@M of CH(Br)

ith the initial perturbation molded into the ablation front
side of the target. The 750m diameter experimental pack-

rages were mounted andt 3 mmlong X 1.6 mm diameter

gold cylindrical hohlraum which was driven by 8 beams of
the Nova laser at@ (wherew refers to the base frequency of
the original input lasgr A = 350 nm, in a 3.3 ns shaped
pulse. Nova is capable of generating laser light &1056,
528, and 350 nm, which corresponds to frequencies,of
2w, and 3Jv, respectively.

Figure 3 shows the total representative laser power pro-
file used in the experiments and the corresponding radiation
temperature generated in the hohlraum. Figure 4 shows the
drive spectrum corresponding to the radiation drive near peak
power. The solid line in Figure 4 is a measured spectrum
from a Nova experiment while the dashed line represents a
Planckian blackbody spectrum at 173 eV. As can be seen in
the figure, the spectral energy density does not decrease as
rapidly as a Planckian distribution at photon energi@skeV.

The L-edge of Bris at 1.7 ke\dark vertical ling, and the Br
doped into the CH serves as a partial shield against X-ray
preheat.

The remaining two Nova beams ab2\ = 528 nm, were
focused n a 3 nssquare pulse onto either an ir¢ior the
embedded interface targetsr molybdenum(for the abla-

Fig. 2. Normalized perturbation growth factor vs. wavelength at 3.4 ns fortion front targets disk to generate a hard X-ray source to
the embedded interfadei) and ablation interfacéai) experiments. The  pack-illuminate the accelerating foils. The Fe foil generated
corresponding simulated curves are based on 1-D HYADES hydrodynami%I backlighter spectrum dominated by Hes-rays at 6.7 keV
calculations. The. = 30-, 70-, and 10Q:m ablation-front data were ob- . .

tained from previous experiments done on N¢R&mingtonet al., 1992, while the Mo spectrum was domlnateq by a br_chatjand
1995. The simulated growth factors decrease with increasing wavelengtte€ntered around 2.6 keV. To obtain optical density measure-

past the limit of 100Qum shown in this plot. ments to be later converted into relative perturbation ampli-
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S 10° S , r 2 tion amplitude as a function of time. This quantity was con-
é“ E Br edge » || <Kr edge§ verted to a growth factdiGF), the ratio of the amplitude of
"’E 10* r ___________________ _ the perturbation at a given time to its initial amplitude, for
2 ..o 3 comparison with the data, thereby taking into account the
E’ 10° F i effect of the finite instrument resolution.
= A major advantage of working with 1D codes is the abil-
5 5T ] ity to rapidly observe the changes caused by varying the
< 10 3 parameters of the simulation. Some of the mostimportant of
E‘o F ] these parameters include the method of zoning, the equation
2 10 3 E of state(EOS), the ionization and opacity models, and the
o r . method of energy deposition. We will briefly discuss and
£ 10° A Planckian T,=173 eV E illustrate the sensitivity of the results to these parameters
S F —— Real Spectrum f below.
& 10" dussssslssdanteluiutal St Based on the convergence of the simulations, we chose
0.1 photon energly (keV) to use 100 zones for these simulations, 70 in the(BxH

ablator and 30 in the Ti payload. This resulted in zone sizes

Fig. 4. The hohlraum is not in perfect thermal equilibrium because thethat were sufficiently small to track both temperature and

laser intensity varies during the drive pulse and the time scale is too shotadiative diffusion over appropriate scales. For our simu-

for equilibrium to be reached. Therefore the measured spectrum of the X-rajations the CHBr) slab was divided into sections of equa|

drive (solid curve is not purely Planckiaidashed curve mass and the Ti was featheréat a ratio of about 1.25
into the CHBr)-Ti interface.

The EOS model used in a simulation can make a dramatic
tudes, a gated x-ray framing caméBudil etal, 1995 was  difference in the behavior of the modeled material. A calcu-
used to record a series of radiographs of the target. Embediation done using a realistic, tabular EOS differs signifi-
ded interface targets were studied with single-mode initiaktantly from one using an ideal gas model. We used the
perturbations at wavelengths »f 10, 20, 50, and 100m  SESAME tabular EO$Kerley, 1972, but the degeneracy
and amplitudes ranging from, = 0.5 to 2.0um while the  effects are included in the in-line QE@Blore et al., 1988
ablation front targets consisted of side-by-side 20 and  model as well. In either case, a realistic EOS model is re-
50um perturbations with an initialamplitude gf = 0.5um.  quired to accurately model the shock trajectory and com-
To complete the ablation front data set, results from the priopression through the various target materials.
experiments of Remingtoet al. (1995 are included here. We used an average-atom ionization mod@mraning,
1973 for the radiation opacity calculations. Only minor dif-
ferences were observed between the average-atom model
and a Saha ionization mod@Rybicki & Lightman, 1979.

The purpose of this study was to develop a predictive capa-
bility based on modeling with one-dimensioriaD) simu-
lations for the linear regime and early nonlinear regime of a
perturbed interface undergoing a series of shocks and accel-
erations. In the linear regime, where amplitudgsare typ- 100
ically less than 10% of the wavelength, the instability
growth and hydrodynamics are separable. This allows the=  gg
instability growth to be calculated from a time-dependent 5
acceleration profile generated from a 1D calculation of :
the gross hydrodynamics of the system. With this as a start-©
ing point we used the 1D radiation-hydrodynamics code, o 40
HYADES (Larsen & Lane, 1994 to model the hydro-

2.2. Simulations
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dynamic behavior of the previously described experimental 20 ‘ 20
packages. The hydrodynamic calculations generated the time§ W 3 0
dependent acceleration, velocity, and position of the targets. E 3

. . e . . E E N
The experlmental and SImU|ated pOSItlon traJeCtorleS for the “20 E"IIII|IIIIll|II|IIIllJlLllJllIlllll|IllllllllllIII{E '20
embedded interface configurati@inangles and dashed line, 0 1 2 3 4 5
respectively are shown in Figure 5, along with the simu- time (nsec)

lated acceleration profilésolid ling). The results of the 1D . . ) ) i

hvdrodvnamic calculations. including densit ressure tem-FIg' 5. Experimental trajectory profile of the back side of the Ti fiii-
y y L. . ! 9 Y’ P . ! angles versusa HYADES simulation(dotted curve The calculated accel-

perature, and ionization levels are shown in Figure 6. Th&ration profile is for the CKBr)-Ti interface from the simulatiofisolid

simulations were post-processed to calculate the perturbaurve.
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Fig. 6. (a) The simulated evolution of the target densjiyg/cm?), versusposition(um) at various times. The front side of the target
is initially at 0 um, the CHBFr)-Ti interface is at 35um, and the back side of the target begins af#0 consists of CKBr) from
0-35um. (b) The simulated evolution of the target press(vbar) versusposition(um). (c) The simulated evolution of the target
temperaturéeV) versusposition(um). (d) The simulated evolution of the target ionization levetsusposition(um).

2.2.1. Radiation drive spectrum ing can make the Ti less compressible, thus affecting the
HYADES uses a multigroup diffusiofRybicki & Light- target behavior. Figure 7 shows the affect this has on the
man, 1979 method for calculating the effects of radiation compressibility of the Ti. For these simulations, we com-
transport. It is important to treat the radiation in a multi- pared a Planckian radiation temperature source with a re-
group manner because even for a purely Planckian spectrualistic photon group source and a photon group source that
the mean free path of the photons goes as the cube of theas artificially enhanced at higher energies. This was done
photon energy. We found that 30 photon groups, exponerto confirm that HYADES could simulate the effects of pre-
tially scaled from 1ueV-20 keV, provided good conver- heating if it were occurring. As can be seen in Figure 7,
gence for the simulations. The diffusion of each photon groupgvith a high enough enhancement of X rays above 1.7 keV,
is calculated separately in HYADES. A radiation tempera-the Ti becomes less compressible. The plots are for a time
ture drive was used, so the populations of the photon groupsf 2.2 ns. This change in compressibility can result in a
were based on a Planckian distribution. This is not a comehange in perturbation growth because it can modify the
pletely accurate treatment of the problem, as the X-rays gertarget hydrodynamics.
erated by the gold plasma are not from a source in thermal Forthiswork, we performed several simulations with non-
equilibrium, and there is some excess of higher energy X-rayBlanckian profiles which matched the drive spectra more
as shown in Figure 4Remingtonet al,, 1995. closely and observed little or no preheating effect. Since the
The simulations were actually done using & = 36), actual drive spectra antl profiles were not available for
which has an L-edge at 1.8 kelighter vertical ling, in-  each experiment but the laser powers were, a representative
stead of Br(Z = 35), which has an edge at 1.7 keV, to T, was scaled by the laser power for each experiment using
calculate opacities, but they are very close in absorptionthe relationshipP o« T,*, whereP is the laser power. The
In either case, there is a window below the L-edge whereagreement of the non-Planckian simulations with those using
X-rays could penetrate the QBr) and preheat the Ti at a Planckian source confirmed the validity of the results ob-
the interface before the main shock arrives. This preheatained using a scaletl source.

https://doi.org/10.1017/50263034600184022 Published online by Cambridge University Press


https://doi.org/10.1017/S0263034600184022

Computational modeling of classical and ablative RT instabilities 587

§ 102 rroy - - -
~ — H -
14 P T Y "8 102k glar:lezanp'gsunv (b)
s ] O U e ealistic source
12F T source @ J 8 4| ——— Enhanced PGS source
[ - Realistic ] ) 0 E
i 10F - Enhanced 3 e
g C ] ._B‘ 10%° -
G : g
L - U
2 6F 3 s 10 T
e f ] B 8
_SJ 4 3 5 10 .
E ] g
2F E - 0 ]
- y ] B
0 re == = wu A WEWE FUTTE FEUTS FURWE FW o 10 sl sl sl )
-20 -10 0 10 20 2 0001 0.01 01 1 10
distance from interface (xm) energy (keV) ‘

Fig. 7. (a) Calculated density profiles as a function of distance from thé®HHTi interface for the T source(top curve for positive
position), a realistic photon group sour¢®GS (middle curve for positive positionand a PGS source with an enhanced M-band
componentbottom curve for positive positigrat a time of 2.2 ngb) The spectral composition of the drives used for these simulations
at a representative time of 2.2 ns.

3. EMBEDDED INTERFACE Our first step was to compare the measured side-on radio-
RAYLEIGH-TAYLOR MODEL graph of the trajectory of the rear surface of an embedded
interface target with the results of the HYADES simulation.
No perturbations were placed at the embedded interface. A
1D simulation should reproduce this 1D experiment. Using
The goal of this work was to calculate perturbation growththe measured X-ray drive temperature from the hohlraum
for a variety of initial conditions based on the time-dependenshown in Figure 3 and a SESAME EOS tatherley, 1972
hydrodynamic evolution of the target predicted by simula-for the CHBr) and Ti, we observed good agreement be-
tions using the HYADES code. In Figure 6 we examine thetween the measured rear-edge trajectory and simulation as
hydrodynamic evolution of the target in detail. The responseshown in Figure 5. The calculated acceleration profile of the
of the target to the initial shock can be seen in these ploteembedded interface is also shown. Peak accelerations are
The density profile shown in Figure 6a shows the propaga-~60 um/ns? i.e. 6 X 10%?g,, whereg, is the acceleration
tion of the shock through the material. The (B#) is com-  due to gravity at the surface of the Earth.
pressed by the passage of the shock and eventiirahy2 ng
reaches four times its normal densisge Fig. 6a Once the 3.2. Analysis
shock reaches the interface, the Ti begins to move and also
reaches a maximum compression of roughly four times it 2 1. Embedded interface perturbation growth
normal density. When the shock reaches the rear surface of Haying confirmed the gross hydrodynamics of our sim-
the Ti, the target begins to move and decompress. The pregtations we post-processed the results with a theoretical
sure profiles shown in Figure 6b show similar behavior butmodel to calculate perturbation growth. Using an analytic
show the ablated CHBr) as a pressure profile decaying from approach, we calculated the linear regime perturbation
the front of the target. The pressure reaches a peak of 4growth factors for these experiments using time-dependent
Mbar at the interface and decays slowly behind the shockparameters from the 1D calculations. The linearized equa-
This is in contrast to the density, which I‘apldly decreases aﬁon governing perturbation growth for imcompressib'e, in-

material is ablated away behind the shock. The(Bhiis  viscid fluids is (Chandrasehkar, 1968; Landau & Lifshitz,
directly heated by thd, source and turns into a plasma, 1987

which results in mass loss from the front of the @+). Itis

this_ ablation _of material that can stabilize growth of pertur- n"(t) — y2n(t) = 0, (1)
bations at this surface. The temperature profiles shown in

Figure 6¢ illustrate the heating of the target from an initialwhere n is the perturbation spatial amplitude, =
temperature of 28 meV to a maximum temperature of 180-4/Akg/(1 + kL) is the growth rate(Sharp, 1984; Munro,
190 eV. The high temperature plasma generated by the X-ra}988; Mikaelian, 1989; Ofeet al,, 1992, A= (py — pL)/
drive can be clearly seen streaming away from the front of p,; + p, ) is the linear regime Rayleigh—Taylor Atwood num-
the target. The temperature remains high longer than the preber, wherep,; andp, are the densities of the heavy and light
sure, which trails off due to decompression of the tafget materials next to the interface, respectivelys the accel-
seen in Fig. 6a eration of the interface& = 277/A is the wavenumber of the

3.1. Gross hydrodynamics
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initial perturbation, andl = p.,4/(dp/9z) is the density gra- 1.0 preveprresprrer e T T

dient scale length. We usext), g(t), andL(t), that is, the T 3 i ]
instantaneous values from the simulation, in our calculations. & F
We first applied the standard steady-state linear regime = 0'8;'
approximation for perturbation growth due to a slowly vary- 'E -

ing accelerationg/g < 1/ygr, (Chandrasehkar, 1968; Lan- ® 06E E

dau & Lifshitz, 1987 < E

g f E

. g 04f 7

n(t) = no expf ydt. 2 % 3 3

0 Ny - 3

g 0.2;— 3

Inthese experiments the Tilayer was originally only.df E 3 E

thick and was compressed during the experiment down to 0-00 'i‘i'é"'l' 2

8 um, so we had to account for finite-foil thickness effects.
When a bubble is rising through a semi-infinite fluid, there
must be a lateral flow of displaced material around the bubFig. 8. The perturbation growth calculations used the acceleration profile
ble to account for the displacement caused by the growin%ﬁee,':'g- $and the time-dependent Atwood numiteslid curvg, density
turbation. In the case of a finite fluid. this lateral flow is radient scale length, (dotted curvg, and finite foil thickness correction
per ) o . factor, (Eq. (4)) for a A = 20 um perturbation(dashed curvefrom the
impeded by the lack of a large reservoir of fluid “above” the yyaDES simulations.
growing bubbles. We account for this by correcting the

growth ratey, via

time (nsec)

N(ty) = n(th-1) + Aty'(t,-1) + % At?y?n(t, 1), (5)
y?= [ Akg ] f &)
1+kL |’ 1
7' (th-2) = n(th-2) + 5 Aty?[n(t,-1) + n(th-2)]. (6)
where
First the accelerations were extracted from the HYADES
oL+ P output file and theny?(t) andn(t,) were calculated from

(4) Egs.(3), (5), and(6). At was the time interval chosen for
successive outputs of the hydrodynamic data, in this case
100 picoseconds.
is a scaling factor to account for the finite thickness of the To test the validity of this formula, it was applied to three
foil (Remingtoretal, 1992; Landau & Lifshitz, 1987Here  limiting cases with analytic solution$l) an impulsive ac-
h, andhy are the CHBr) and Ti foil thicknesses, respec- celeration represented gyt) = 5(t) vsina (pure RM), which
tively, defined as the distance from the density maximum ofin the linear regime is known to yield growth linear in time
each material to its half-density as a function of time. In our(Richtmyer, 1960; Chandrasehkar, 1968; Meyer & Blewett,
simulations, the CKBr) was compressed at peak drive to 1972; Haan, 1989; Hansoet al,, 1990; Brouillette & Stur-
~10um, and the Tiwas compressed#®@ um, as shown in  tevant, 1993; Hecet al., 1994; Peyseet al, 1995, (2) a
Figure 6. Typical values oA, L, andf are shown as a func- constant acceleration given lgft) = constant(pure RT)
tion of time in Figure 8. EquatiofB) combines the density whichinthe linear regime yields growth exponential in time
gradient scale length and the Atwood number in an asymptChandrasehkar, 1968; Sharp, 18&hd(3) a constant neg-
totically consistent manner. In the limit as» O andf — 1,  ative acceleration, which yields simple oscillatory motion.
we recovery? = Akgas required. In all three limiting cases the agreement between the numer-
Since the acceleration profile used in these experiments iigal and analytic solutions was excellent. When this prescrip-
neither constant nor slowly varying, it may not be valid to tion was applied to the HYADES hydrodynamic calculations
approximate the perturbation amplitude as a function of timeof the Nova laser experiments, good agreement was ob-
as in Eq.(2). A simplee”* growth calculation will tend to  tained in the linear regime with the CRT experimental data,
overestimate the growth by not taking into account the someas shown in Figure 9. We use the perturbation growth factor,
times negative and often quickly changing accelerations oGGF = 7n(t)/no, wheren is the spatial perturbation ampli-
the target. Itis more accurate to numerically solve the secondude, for comparison with the results of the simulations.

f= ;
pL coth(kh,) + py coth(khy)

order ordinary differential equatiq®DE) [Eq. (1)] for the The results shown in Figure 9 demonstrate the validity of
amplitude as a function of the growth rateThe ODE was using 1D simulations to model perturbation growth. The
solved by using a Taylor series and Ef). to obtain: growth factors calculated based on the HYADES simula-
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) . . _technique and the classical approximation at a wavelength pfi20
Fig. 9. Observed perturbation growth factor versus time compared with

simulation results for embedded interface perturbation wavelengths-of
10, 20, and 5Qum.

due to the RM and RT instabilities. Even though it neglects
RM growth, the classical calculation is not too far off be-

tions reproduce the experimental growth reasonably well ircause the shock transit time across the T+8.8 ns. The
the linear regime. The full ODE calculation shows goodRM instability growth begins with the first sho¢kt 2.0 ng
agreement with experimental data for bats 10 and 2Qum  and then grows linearly in time. The RT instability does not
until the experimental data starts to roll over, signaling thebegin until the entire package begins to move as a whole,
onset of nonlinearity. Note that far=10um, an amplitude ~ Which does not commence until the shock reaches the rear
of 1 um is already in the nonlinear regime. The calculationsside of the Ti at 2.9 ns, but its exponential nature leads it to
agree qualitatively with the data until the roll-off due to quickly overtake the RM growth.
growth of second and higher harmonics. ket 50 um, the
calculations slightly over predict the observed growtiith
the full ODE calculation being closer than the classidabr
A =100um, both the experiment and the simulations showAfter confirming our initial results in the linear regime, we
very little growth(not shown. turned to different techniques of extending our perturbation

In making this comparison, we implicitly have assumedgrowth calculations into the nonlinear regime. We explored
that the growth factor of perturbation spatial amplitudethe amplitude saturation model of Ha&1®89 and a 3rd
(from the modeling is equivalent to the growth factor of order perturbation theory expansi@acobs & Catton, 1988
optical depth(from the face-on radiography experimental (see Fig. 1L The third order perturbation theory expansion
measuremenjsi.e., G um) ~ GF(OD). This equiva- isimplemented by calculating
lence is rigorously correct only for incompressible flows.
It is approximately correct here only because the post- B 1.,
shock hydrodynamics are nearly incompressible, and this = "L<l_ 2K "L>’
is when the RT growth is at a maximum, that is, the largest
growth occurs in a quasi-incompressible flow. wheren, is the amplitude of the fundamental mode, and

The full ODE calculation shows closer agreement withis obtained assuming linear regime gro\ls calculated by
the data(i.e. lower growth, see Fig. 32@han the classical Eqgs.(5) and(6)]. The third-order results are shown in Fig-
steady-state formula due to its better treatment of rapidlyre 11(lower dotted curvke which qualitatively shows the
changing and occasionally negative accelerations. Notice thalowing of the perturbation growth upon entry into the non-
the most significant relative deviation between the classicalinear regimgt = 3 ng. But the third-order calculation very
and ODE solutions occurs when the variation in accelerarapidly begins to diverge since the perturbation theory has a
tion is greatest2 to 3 n3. This is because GE e/ is limited range of applicability. We found that a variation of
always growing exponentially with time. But for a shock the Haan’s theory showed good qualitative agreement with our
perturbation growth is linear in time, and if the accelerationdata. Haan extends a single-mode saturation formula origi-
reverses sign, so doég so the perturbation growth is re- nally devised by Fermisee Layzer, 1995to the case of
duced. This complete treatment of time dependent accelemultimode saturation, and generalizes it to non-exponential
ations means that the ODE calculation includes growth botlyrowth rates using a suggestion of Crow(@®70:

3.3. The Nonlinear Regime

™

https://doi.org/10.1017/50263034600184022 Published online by Cambridge University Press


https://doi.org/10.1017/S0263034600184022

590 W.M. Wood-Vasey et al.

25 T ] capsule, the RT growth is reduced because the outer parts of

- O exp.data, A=10 um Sﬁ/ ] the perturbations are ablated aw@ipurned off”) by the
M o9 — linear 3 drive. This leads to a correction to the growth ratede-
Q 20F —— Haan, x =50 % / - : if
B aan, x = 0/0 / 3 pendent upon the rate of material ablation. In a modified
& 150 ?Zan’g =10% / ] formulation based on the work of TakalWeberet al, 1994,
E [ ra order ] the growth rate is approximated by the expression
e [ ]
R @ ]
© [ ] Y= |:<l+kL>f:| _Bkva- (9)
= 5F ]
oD ¢ ]

L wherek, g, L, andf are defined as in Eq$3) and(4), v, =

0 o i """ é 4'1 “““ 5 M/p is the ablation velocityhis the mass ablation rate per

. unit area, ang is an adjustable, empirically determined pa-
time (HSQC) rameter which can vary from 1 to 4. Figure 12 shawsL,
Fig. 11. The linear perturbation growth theory quickly breaks down atlaterar_]dg over time a_s calculated by Our_SImmatlons' To deter-
times. By including the effects of saturation, the perturbation growth can bdNin€e the appropriatg for these experiments, we calculated
better modeledHaan, 1988 This figure shows several different approx- growth factors for different wavelengths and matched them
imations in the nonlinear regime. The amplitude saturation criterion of Haanto the experimental data. To illustrate the affecﬁojver a
yvith a saturation criterion of 50%, gives the best agreement with exper- range of wavelengths, Figure 13 shows plots of calculated
imental measurement. . . .
perturbation growth factoversuswavelength, that is, dis-
persion curves, for various values@fThere is a clear de-
pendence of the calculated perturbation growth factor on the
esmed(t) = X/\[lJr n ﬂ]’ g Vvalue chosen fo, with the growth decreasing g in-
X creases. We found that a valug®¥£ 3 best fit the full time
evolution of the data for our experiments as shown in Fig-
wherex is the percentage of a wavelength at which the amure 14 forA = 50 um andA = 20 um. The estimates af
plitude of the perturbation begins to saturatg,is the  from Eqgs.(2) and(9) apply only for positive values of?
expected linear regime amplitude, ahds the perturbation  and assume that? is constant or slowly changing. The pro-
wavelength. This is implemented by solving E@9.and(6)  files of v,(t) andL(t) vary only slowly in time. The accel-
for n < xA, and Eq(8) for n = xA. The resultis that the RT eration has one spike at 3 ns due to shock breakout, but
evolution transitions smoothly to terminal bubble velocity subsequently the variation with time is reasonably slow
growth aty = xA. Since oug(t) is not constant, we multiply  contrast to the 4-spike profile @f(t) for the embedded in-
the asymptotic velocity by the scaling faci@(t)/g, -, 1%, terface target shown in Fig) 8Hence, for the ablation front
as analytic theories of the asymptotic nonlinear RT growthcalculations, we solve E@2).
givewvg o« \gA (see Alonet al,, 1995.
In our simulations, we found that E) with a value of
x = 50%(dashed lingprovided the best agreement with our

data. This 50% criterion represents an average over the tran- 4 e 100
sition from the linear, to the weakly nonlinear, and then fi- _ """"""" v, (um/ns) ]
nally to the strongly nonlinear regime. Haan’s theory is 'g [ ---- L (um) 180 2
applicable as a limiting saturation case, i.e. in the strongly 2 3F — acc. (ﬂm/nsz) ] a
nonlinear regime, so it is not surprising that the common s 160 &

. . -, . 32 C 1 =t
10% criterion for the transition from the linear to the non- =, [ , 4 =
linear regime under predicts the observed growth, as can b% 2F, Ao 7140 8
seen in Figure 1imiddle dotted curve The value of 50% g - g <
provides a qualitative sense of the gradual transition from»g J 20 i
the linear to deeply nonlinear regimes. 21 WS N ) ] gN

- 0o -
4. ABLATION FRONT RT MODEL
A A X 0’llIllLlIllllllLLLllLlllLllllllljlllLlIllllIllLl‘-20

In the ablation front experiments, 5060 um thick CH(BTr) 0 1 2 3 4 5
foils were ablatively accelerated by the radiation drive shown time (nsec)

in Figure 3. Perturbations on the X-ray drive side of the foils _. _ . . .

d as a function of time for evidence of ablativ Fig. 12. The ablation front perturbation growth calculations used the time-
Were, _megsure - %ependent accelerati¢solid curve, density gradient scale length(dashed
stabilization in the RT growth. For perturbations at a surfac&yrve, and ablation front velocitya (dotted curvg, from the HYADES

exposed to the x-ray drive, such as on the outside of an ICEimulations.
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Fig. 13. Simulated ablation front perturbation growth factersuswvave-
length at 3.4 ns for several values of the Takabe parangeiue lines are
provided as a guide to the eye. Although it is not shown on this plot, the
simulated growth factors decrease to zero with decreasing wavelength.

growth factor

12 ¢

O

M)

RS = I S Sy S S S S
:g!g;a’.Z---.A----A ----- ey AR *
0 20 40 60 80 100

wavelength (pum)
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p/pa, Wherep, is the peak densidyis fitted using the fol-
lowing differential equatioriBetti et al., 1998:

& _

_5”“(1— £)
dy '

Lo (10
wherey is the spatial coordinate; is the thermal con-
ductivity power index(k ~ T%), and L, is the charac-
teristic thickness of the ablation front, which is related
to our density gradient scale length= p/Vp by Ly =
L[»*/(v + 1)*"P]. Sov andL, are varied until the den-
sity profile from the 1D simulation in the vicinity of the
ablation front is reproduced by E(LO0).

The normalized pressure profil@l = p/p., wherep, is
the pressure at the point of peak densig/fit using

1 dII 1d
_lde ¢

Mdy ¢2dy Frig

(11)

wherell, = v,/(\/pa/pa) represents the normalized abla-
tion velocity at the point of peak density, and+12/(gL,)
is the Froude number, wheggs the acceleration at the ab-

Amore rigorous approach to the ablation front problem islation front(i.e. the “interface” accelerationSouv, (i.e.,I1,)

given by Bettiet al., (Betti et al, 1996; Bettiet al, 1998,

and Fr(i.e.,g) are varied until the pressure profile from the

where the density and pressure profiles at the ablation frorgimulation in the vicinity of the ablation front is reproduced
from a 1D radiation-hydrodynamics code simulation are fit-by Eq.(11).
ted to obtain five parameters used in calculating the pertur- With the four parametens, Lo, v,, and Fr the growth rate

bation growth rate. The normalized density profie =

growth factor

Fig. 14. Calculated normalized ablation front perturbation growth fac-
tors (dashed and solid lineand experimental daf@ircles and triangles

20

15

10

SRR R RN AR AR R RS AR RRRRE
- O A=20um B=3 ]
A A=50um ,;%_
- —— planckian A=20 um T
: .............. planckian }\'=50 um §;I_I :
R realistic A=20 ym ' ]
- ---- realistic A=50 um &7’ .
o g ]
: ]
:f‘nl|l||||ll|||l|||1|||||I|||||||11I|1“|l|||ll|||+—
0 1 2 3 4 5

time (nsec)

can be determined using E®) in Bettiet al. (1998, which
is reproduced in Appendix A for reference.

The exact nature of the ablation front is very sensitive to
preheat which is dependent on the drive spectra. We used the
result of Remingtoret al. (1995 to determine the spectrum
needed to obtain the correct density and pressure profiles.
Remingtoret al,, found that to reproduced the inferred level
of preheat in the CKBr) foil required that the X-ray drive
spectrum deviate from a purely Planckian black-body by a
10 times enhancement of hard X rays = 1.4 keV) in the
first 2 ns.

We used both the analytical fits of Eq4.0) and(11) as
described in Betit al.(1998 and separate numerical fits as
described above to obtain values fgrlLg, v,, and Fr. We
defined the ablation front region to be the material before
the peak densityg, extending from 1.5% to 99% of,. We
found both methods to be in agreement and at a character-
istic time of 3.0 ns we obtained values of= 0.95,L, =
0.17 um, v, = 2.3 um/ns, and Fr= 0.7 for the Planckian
drive drive spectrum compared with= 0.79,L = 0.42um,
va=2.9um/ns, and Fr= 0.67 for the realistic drive spec-
trum. These values correspond to interface accelerations of
g = v2/(LoFr) = 40 um/ns® andg = 31 um/ns respec-

The “realistic” curve is based on a Betti analysis using a realistic drivetively. The definition used for the position of the ablation
spectra, and the “planckian” curve is using a Planckian radiation temperfront in Figure 12 is different than the more general ablation
ature drive. The simulations have been normalized to the data at 2.7 "$ront used in the Betti analysis. In Figure 12, we computed

Note the over prediction of growth of both the Planckian and realistic
drives atA = 20um. This implies that the both the Planckian drive dis-

the position of the ablation front as the position where the

persion curve in Figure 15a and the realistic drive Figure 15b do not faldensity was at half of its peak value on the front side of the
off as rapidly as the data at short wavelengths.
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are fit by Eqs.(10) and(11) and the acceleratioy, of the 5. CONCLUSIONS

H H — ,,2
ablation front is computed ag= v5/(FrLy). . .
The RT dispersion curves predicted by the Betti theory_Comparlng the two targett)_/pésn bedded an_d ablation front
Lo . . interface$, allowed us to directly show the influence of ab-
are shown in Figure 15. The differences between using ei-__. . .
. . L . lation. According to theory, embedded interface perturba-
ther a Planckian drive or a more realistic source are quit

striking. Notice the difference in the location of the peak%onS should grow faster at shorter wavelengths, which is a

growth rate between Figures 15a and 15b. The PIanckiaROtem'aHY serious pr_oblem for ICF when considering that
.even precisely machined ICF targets would have some sur-

drive implies a peak at. a shorter.wgvelgngth than EXPeTlz e roughness, but ablation should stabilize these short
mentally observed, while the realistic drive of Remington

et al. yields a dispersion curve with a peak near @ in wavelengths. Figure 2, which compares normalized growth

a re.e):nent with tr?e experimental dé&eg Fig. 2 It should factors for the embedded interface to those for the ablation
9 - exper g. £ 1 front, clearly shows the effect of ablative stabilizatidu-

be noted that our simulations do not use sophisticated opag i o 1996

ities but rather a simple average on model and so we do We have found that the 1D Lagrangian, radiation-hydro-
not expect the agreement with Figure 2 to be perfect. To . S .

. . . .dynamics code HYADES used together with incompressible
our knowledge, this is the first comparison of the Betti

theory to indirect-drive ablation-front RT data, and our re_hydrodynamic theory can be.u-sed to predict t_he perturbatipn
sults are quite promising. growth due t_o. the RT .|nstab|l|ty under a variety of experi-
mental conditions. This approach strengthens both the va-
lidity of the simulations and the theoretical models. The 1D
model is limited in the behaviors it can describe, but it gives
15 , . us an excellent opportunity to solidify our theoretical under-
T (a) 1 standing of the inherently complex RT instability.

Planckian Spectrum
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APPENDIX A. BETTI FORMULA

The following set of equations was published in Bettal. (1998
and is reproduced here for the convenience of those interested.

“. .. the asymptotic formula can be written in the following
form:

R 1 R
y = \/AT kg+ 62k4L202 + <w2 - E) k202 — 6k2Lov, — Bkua
|

where

. &= &

A = ——=
T &t é

gn= (L4 Kye /o)
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