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SUMMARY

An evaluation of the genetic diversity within Fasciola hepatica (liver fluke) may provide an insight into its potential to
respond to environmental changes, such as anthelmintic use or climate change. In this study, we determined the
mitochondrial DNAhaplotypes of >400 flukes from 29 individual cattle, from 2 farms in the Netherlands, as an exemplar of
fasciolosis in a European context. Analysis of this dataset has provided us with a measure of the genetic variation within
infrapopulations (individual hosts) and the diversity between infrapopulations within a herd of cattle. Temporal sampling
from one farm allowed for the measurement of the stability of genetic variation at a single location, whilst the comparison
between the two farms provided information on the variation in relation to distance and previous anthelmintic regimes. We
showed that the liver fluke population in this region is predominantly linked to 2 distinct clades. Individual infrapopulations
contain a leptokurtic distribution of genetically diverse flukes. The haplotypes present on a farm have been shown to change
significantly over a relatively short time-period.
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INTRODUCTION

Fasciolosis is an increasing problem (Pritchard et al.
2005) both from a veterinary perspective –with up to
80% of British dairy herds showing evidence of
infection (Salimi-Bejestani et al. 2005) – and also as
a zoonosis with 40 million people potentially at risk
of disease (Mas Coma et al. 2005). Although the
increased incidence of fasciolosis has been ascribed to
climatic fluctuations (Mitchell, 2002), an additional
cause for concern is the spread of resistance against
the drug of choice, the benzimidazole derivative
triclabendazole (TCBZ). Resistance to TCBZ, which
was first detected in Australia (Overend and Bowen,
1995), has now been reported from Ireland, Scotland,
the Netherlands and Spain (Anon, 1995; Mitchell
et al. 1998; Moll et al. 2000; Alvarez-Sanchez et al.
2006). At present, the mechanisms underlying the
loss of efficacy of TCBZ are poorly understood
(Fairweather, 2005), but it would appear that, in
contrast to benzimidazole resistance in nematodes
(Kwa et al. 1994), changes in β-tubulin, the presumed
target molecule, are not involved (Robinson et al.
2002; Ryan et al. 2008). Evidence suggests that differ-
ences in the metabolism and efflux of TCBZ may be

of greater importance in trematodes (Robinson et al.
2004;Mottier et al. 2006;Devine et al. 2009). Despite
our lack of information relating to the mechanism
of TCBZ resistance and the consequent lack of a
genetic marker for this phenotype, we can infer from
analogous studies in nematodes (Otsen et al. 2001)
that responses to varying environmental pressures, in
this case the selection of resistant flukes following
anthelmintic usage, will be more rapid if the infra-
populations (i.e. those flukes contained within an
individual host) involved are genetically diverse.
Studies of the mitochondrial lineages present in the
infrapopulations of flukes infecting cattle and sheep
from eastern Europe (Semyenova et al. 2006) and
elsewhere (Walker et al. 2007) have shown that each
definitive host may carry a large number of geneti-
cally diverse flukes, which tend to exhibit a lepto-
kurtic distribution (i.e. more peaked about the mode
than the normal distribution) of genotypes. A theor-
etical framework for the dispersal and spread of
trematodes in their definitive and intermediate hosts
has been proposed (Prugnolle et al. 2005). It may be
assumed that this model would also be applicable to
the liverfluke,butwehave comparatively little experi-
mental data to support this inference. In addition,
the economic constraints associated with high-value
farm animals impose limits on experimental designs
that would address this deficit directly. In this study,
we used parasite material collected as part of a
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study concerned with the spread of anthelmintic
resistance to determine the mitochondrial lineages
of F. hepatica from cattle present on farms in
the Netherlands. This has allowed us to assess the
stability of the populations within a locality and the
differences seen in fluke populations between 2 local-
ities separated by *100 km. The results from this
studywill be useful in the determination of the phylo-
geography of the liver fluke and in the interpretation
of studies of the genetic factors underlying the
response of fluke populations to environmental
changes, such as anthelmintic use or climate altera-
tion (Mas-Coma et al. 2009).

MATERIALS AND METHODS

Farms and fluke samples

Samples of F. hepatica from cattle from 2 farms were
used. Both farms were comparable in size and
stocking rates. The first of these was situated at
Beetsterzwaag (53.058° N 6.078° E) in the province
of Friesland. This farm kept both cattle and
sheep. While the cattle were born on the farm,
sheep were occasionally introduced from elsewhere in
the Netherlands. Triclabendazole was used approxi-
mately once a year as an anthelmintic, and the liver
fluke population on this farm is regarded as suscep-
tible for TCBZ. The second farm was situated at
Heiloo (52·364° N 4·427° E) in the province of
North-Holland. Both cattle and sheep were present
on this farm, again with all cattle being born on the
farm as well as the majority of the sheep. Whilst
triclabendazole had been used as an anthelmintic in
the past, due to the presence of TCBZ resistance
in this area (Moll et al. 2000; Borgsteede et al. 2005),
cattle are now treated 2 or 3 times a year with
clorsulon. The 2 farms were approximately 100 km
apart, but due to the IJsselmeer man-made lagoon
lying between them, the distance by land is closer to
150 km. All fluke samples were obtained from cattle
at post-mortem.

(i) Beetsterzwaag 2004 samples: 10 cattle were
used. The cattle were 6–7 months old and uninfected
when ‘turned out’ to pasture in mid-October 2004.
They were allowed to graze for 1 month and then re-
housed. Two weeks later all cows were slaughtered
and necropsies performed. Any flukes present thus
represented a sample of the pasture contamination
from the summer of 2004.

(ii) Beetsterwaag 2005 samples: the 10 cows used
were uninfected when turned out to pasture in mid-
May 2006 and were thus exposed to metacercariae
that had been encysted on the vegetation in the
summer and autumn of 2005 and to metacercariae
from infected snails that had survived the winter and
had started shedding in spring 2006. During
the winter of 2005/2006, sheep had been grazed on
the pasture, but they would not have contributed to

the liver fluke population in the cows due to the
inactivity of the intermediate host during the winter
months. The experimental design for the 2004 cows
was repeated with cows grazing for 4 weeks before re-
housing, subsequent slaughter and post-mortem ex-
amination for liver fluke infection.

(iii) Heiloo 2005 samples: the 10 cows used were
uninfected at turn-out in early May 2006 and were
thus exposed to metacercariae originating from the
same time-period as Beetsterzwaag 2005. The proto-
col for Beetsterzwaag 2004 was followed with regard
to grazing period, re-housing and slaughter.

Preparation of individual F. hepatica extracts
for PCR-based amplification

Adult F. hepatica were removed from the livers and
bile ducts at slaughter and washed in warm Heidon-
Fleig solution to remove contaminating host material
and allow for exvasation of gut contents. Approxi-
mately 25mm2 of fluke tissue were placed into 500 μl
of 10% Chelex® (Fluka) solution incorporating
10 μl of proteinase K (Sigma) at a concentration of
20mg/ml. This suspension was heated at 55 °C for
1 h, followed by gentle vortexing and a further
incubation at 95 °C for 30min. The mixture was
gently vortexed and centrifuged at 10000 g for 10 sec.
The supernatant (250 μl) was taken, diluted 1:10 in
deionized water and stored at −20 °C.

PCR-based mitochondrial DNA (mtDNA) analysis
of individual flukes

The distribution of variation within the F. hepatica
mitochondrial genome has been described previously
(Walker et al. 2007) and a region of high variability
identified. This region comprised 1400 bp of con-
tiguous mtDNA enclosing the regions coding for
cytochrome c oxidase subunit III (cox III), transfer
RNA histidine (tRNA-His) and cytochome b (cob).
Two primer sets were used to generate overlapping
fragments in PCR: Primer set 1: Fhmt1.1F 5′-
gcttgtgggttttcttaggg-3′, Fhmt1.1R 5′-caaccaaacctcaa-
caacct-3′; Primer set 2: Fhmt1.2F 5′-tgtggtgtcgga-
gagttctg-3′ and , Fhmt1.2R 5′-taaccataggatccgcctga-
3. Fragment 1 consisted of nucleotides 77 to 881 of
the complete F. hepatica mitochondrial sequence
(Le et al. 2001), whilst fragment 2 ran from nucleo-
tides 681 to 1480.

PCR conditions

The PCR reaction mix consisted of 20 μl of PCR
ReadyMix™ (Sigma), 13 μl of deionized water, 1 μl
(10 pmol) of primers followed by 5 μl of fluke extract
(1:10 dilution), giving a total of 40 μl. PCR amplifica-
tions were carried out as follows: 2 min at 94 °C
followed by 40 cycles of 1 min at 94 °C, 1min at 59 °C
and 1min at 72 °C, followed by a final extension at
72 °C for 10min. PCR products were purified using
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the GeneElute™ PCR Clean-Up Kit (Sigma) as
described in the manufacturer’s instructions and sent
for automated sequencing in forward and reverse
directions using the same primers as used for PCR.
(Macrogen Inc. Korea)

Data assembly and analysis of population structure

Sequences were visually checked against the electro-
pherograms. Forward and reverse sequences for both
mtDNA regions were aligned and DNA contigs con-
structed using ChromasPro software (Technelysium
Pty Ltd, Australia) and the alignment of assembled
sequences was carried out in Bioedit (Hall, 1999).
Levels of mtDNA sequence variation were estimated
as nucleotide and haplotype diversity using Arlequin
3.1. The extent of inter and intra-population gene-
tic structuring was assessed by analysis of molecu-
lar variance (AMOVA in Arlequin 3.1, with 1000
permutations). Median-joining networks were calcu-
lated using ‘Network 4.5’ (Flexus Technology Ltd)
software. An unrooted Neighbour-Joining (NJ) tree
was constructed using MEGA (version 4) software
(Tamura et al. 2007). The sequences of each unique
haplotype were submitted to GenBank and have been
assigned Accession numbers FJ936003, FJ93604,
FJ936006 to FJ936014, FJ936016, FJ936018 to
FJ936020, FJ936022 to FJ936031, FJ936033 to
FJ936051, FJ936054 to FJ936068, FJ936070 to
FJ936072, and FJ936076 to FJ936107.

RESULTS

Infection intensity and efficiency of sampling

For the Beetsterzwaag 2004 cohort, the infrapopu-
lations ranged in size from 82 to 558 flukes (mean
fluke burden 210). Twenty flukes from each infra-
population were processed for genetic analysis and
a total of 149 contigs of the 1400 bp fragment were
obtained.
For the Beetsterzwaag 2005 cohort, 10 infrapopu-

lations, ranging in size from 1 to 33 flukes (mean fluke
burden 20) were analysed and 96 contigs obtained.
Genetic analysis of these 245 flukes yielded 38
distinct mtDNA haplotypes. In order to assess whe-
ther the infrapopulations available provided a sample
representative of theF. hepatica in Beetsterzwaag, the
cumulative number of unique haplotypes found was
plotted against the sequentially analysed infrapopu-
lations. Figure 1 shows that the curves derived ap-
proached the asymptote after approximately 8
infrapopulations, indicating that sufficient material
hadbeenexamined toprovide acomprehensive assess-
ment of haplotype diversity.

Genetic structure of fluke infrapopulations in cattle
from Beetsterzwaag

In all instances, distribution of haplotypes con-
formed to a leptokurtic curve (see Fig. 2 for

examples). Although some haplotypes (e.g. haplo-
types 3 and 5) were present in most infrapopulations,
each cow carried some haplotypes present at much
lower frequencies. Analysis of molecular variance
(AMOVA) resulted in an overall significant Fst of
0·0228. Thus, while more than 97% of the mtDNA
haplotypic variability was present within the infra-
populations, the remaining 3% of the genetic vari-
ation was inferred to be due to differences between
these infrapopulations.

Stability of the Beetsterzwaag metapopulation
with time

The incidence of individual haplotypes present in the
Beetsterzwaag infrapopulations is shown in Fig. 3.
Thirteen (44·8%) of the 29 haplotypes present in
the 2004 population were still present in the 2005
infrapopulations. These haplotypes included those
present at the highest frequency: haplotypes 3, 15,
10 and 4. Sixteen haplotypes present in the 2004
sample were not seen in the 2005 sample which, in
turn, contained 9 novel haplotypes (31·0%). A test
of sample differentiation, based on haplotype

Beetsterzwaag 2004
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Fig. 1. Analysis of the efficiency of sampling. The
cumulative number of unique haplotypes found in each
successive infrapopulation sampled was plotted to
ascertain at what point the curves approached the
asymptote.
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frequencies, gave a P value of 0·0016 – indicating that
the fluke population present on this farm had
significantly changed over the period of 18 months.
The nucleotide diversity and mean number of pair-
wise differences was calculated for the Beetsterzwaag
2004 and 2005 populations. This gave values of 0·877
and 0·893 for nucleotide diversity and 5·074 and
5·343 for pairwise diversity, respectively, indicating
that the degree of diversity was beingmaintained over
the time-period.

Genetic structure of the Beetsterzwaag fluke population

In order to determine the genetic relationships
among haplotypes found in the two Beetsterzwaag
samples, a Median Joining Network was constructed
(Fig. 4). The haplotypes were clearly divided into
2 distinct clades centred on the haplotypes 3 and 12,
respectively. These two clades were separated by 15
nucleotide changes. A third clade, centred on a puta-
tive ancestral haplotype (not observed in the dataset)
was formed by haplotypes 17, 30, 32 and 33.
Haplotypes unique to either the 2004 samples or
those from 2005 were seen in each clade. Statistical
support for 3 clades was provided by the construction
of a NJ tree with 500 bootstrap replicates

(supplementary material 1), which indicates boot-
strap support of >50% for the three putative clades.

Effect of spatial separation – comparison of the
Beetsterzwaag with the Heiloo metapopulations

In total, 177 flukes from 10 infrapopulations
from Heiloo were analysed genetically. The
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Fig. 2. Pie charts showing distribution of haplotypes in typical infrapopulations. Cows 70 (total number of flukes in the
liver, N=152) and 130 (N=232) from Beetsterzwaag 2004; cows T1 (N=11) and T3 (N=27) from Beetsterzwaag 2005.
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Fig. 3. Frequency of haplotypes in the Beetsterzwaag
samples. Black columns 2004, N=149. Grey columns
2005, N=96.
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infrapopulations ranged in size from 35 to 168, with a
mean of 153, and 56 haplotypes were observed in
these infrapopulations. Fig. 5 shows the incidence
of haplotypes present for this metapopulation. Of
the 91 unique haplotypes found among a total of
422 flukes analysed from Beetsterzwaag and Heiloo,
only haplotypes 3, 5 and 12 were found in both the
Beetsterzwaag metapopulation and that from Heiloo.
However, haplotype 3 occurred at the highest fre-
quency in all populations and comprised almost a
third of the Heiloo population. A test of sample
differentiation based on haplotype frequencies gave a
P value of <0·001, indicating that the Beetsterzwaag
and Heiloo populations were significantly different
genetically. Individual infrapopulations from Heiloo
were similar in structure to those from Beetsterzwaag
in that the frequency of the haplotypes within them
was distributed leptokurtically. The nucleotide di-
versity and mean number of pairwise differences was
calculated for theHeiloo population. This calculation
gave values of 0·873 and 4·461, respectively, indicat-
ing that, although the Heiloo population contained a
proportionately greater number of haplotypes, the
metapopulation atHeiloo was less divergent than that
of Beetsterzwaag. A Median Joining network was
constructed for the Beetsterzwaag and Heiloo popu-
lations (Fig. 6). This network shows that the
haplotypes in the Heiloo population were distributed
across the three previously identified clades.

DISCUSSION

As reported previously for flukes from Ireland
(Walker et al. 2007), the infrapopulations present in
Dutch cattle showed extensive genetic diversity with
92 haplotypes being observed in a total sample size
of 422 F. hepatica adults on the Dutch farms in
comparison with 35 out of 154 examined in Ireland.
Each infrapopulation contained >8 mitochondrial
haplotypes, with their individual frequencies con-
forming to a leptokurtic distribution. Although on
analysis the molecular variance statistics indicated

Fig. 4. Median Joining Network derived from the Beetsterzwaag samples. Haplotype identities are in black text. Circles
are proportional in size to the frequency of the haplotype and yellow signifies 2004 samples, black 2005 samples.
Distances are approximately proportional to the number of nucleotide changes, the positions of these changes in the
edited sequences are indicated by red numerals. The red dot represents a virtual node.
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Fig. 5. Frequency of haplotypes in the Heiloo sample,
N=177.
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that most of the variance lay within rather than
between the infrapopulations, we would interpret
these statistics with caution, as the biology of the liver
fluke (breeding restricted to limited infrapopulations,
polyembryony, potential for parthenogenesis) vio-
lates many of the assumptions underlying these
analytical tools. This pattern of distribution appears
to be typical of infrapopulations sampled from di-
verse locations (Walker et al. 2007) and may be a
function of the patterns of cercarial release from
intermediate hosts (Walker et. al. 2006). As all the
cattle were <1 year old, and had been raised on the
same farm, it is suggested that the distribution of
the different clonal populations of metacercariae on
the pasture is extremely ‘patchy’. The diversity of
haplotypes was particularly remarkable as the cows
were fluke-free at ‘turn out’ and had only grazed
on the pasture for 4 weeks. Although differences in
methodology make comparisons with previous
studies of F. hepatica or other trematodes challen-
ging, the high level of diversity both within and
between infrapopulations in this study is of the same
order as that reported recently for populations of
Echinococcus granulosus (Eucestoda: Taeniidae) from
China (Nakao et al. 2010). Itwill provide ametapopu-
lation likely to be able to respond to changes in en-
vironmental conditions arising directly or indirectly
from climatic change or anthelmintic usage.

The analysis of the Beetsterzwaag populations
showed that there were 3 well-supported clades.
The 2 major clades centred on haplotypes 3 and 12
which, from their central nodal position and com-
paratively high frequencies conformed to the criteria
for ancestral haplotypes (Donnelly and Tavaré,
1986). Both clades I and III were similar in their
divergence, in that 35 of the 73 daughter populations
potentially derived from haplotype 3 differed from
it by one nucleotide change. The comparable figures
for haplotype 12 and its daughter populations were
13 out of 23. The presence of such star-shaped
genealogies may be indicative of a relatively recent
population expansion. Haplotypes 3 and 12 are also
found in Irish, English and Polish F. hepatica and as
suchmay be common in northern Europe (S.Walker,
unpublished data). This information suggests that
the colonization of northern Europe by the liver
fluke involved at least 2 populations with distinct
origins. Within the same infrapopulation, we com-
monly observed haplotypes from more than one
clade, indicating that there is now no spatial
separation of the clades at the farm level. Assuming
a rate of nucleotide substitution for F. hepatica com-
parable with that reported for Schistosoma mansoni
(see Morgan et al. 2005) of 4% per million years,
the separation of the two clades centred on haplotypes
3 and 12 can be calculated to have occurred

Fig. 6. Median Joining Network using flukes from Beetsterzwaag (white) and Heiloo (black). Size of nodes is
proportional to frequency within the dataset and distance between nodes is approximately proportional to the number of
nucleotide changes. Red dots indicate virtual nodes. The identities of the more frequent haplotypes are indicated.
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*250 000 years ago. However, our deliberate choice
of informative areas of the mitochondrial genome,
which consequently show high levels of variability
and the possibility that there has been a relatively
recent population expansion allowing the fixation of
new haplotypes, may bias this calculation towards an
over estimate of the age of the clades. It will be
interesting to determine whether F. hepatica popu-
lations from regions of southern Europe, such as
Iberia or the Balkans, which may have provided
refugia during the most recent glaciation (Hewitt,
2000), contain flukes with haplotypes representing
the same clades. The large dataset presented in this
study will facilitate future studies of the phyloge-
netics of F. hepatica.
The opportunity to sample the metapopulations

present at Beetsterzwaag on 2 occasions has provided
an insight into the changes that may occur with
regard to the distribution of haplotypes within a
population with time. Under the conditions pertain-
ing in northern Europe, a single year will encompass
1 to (possibly) 2 liver fluke life cycles (Boray and
Enigk, 1964). As the cows at Beetsterzwaag were only
exposed to the pasture for 4 weeks, it is likely that
their infrapopulations represent the diversity present
in the population resulting from a single liver fluke
life cycle. The data from Beetsterzwaag indicate that
during an 18-month period, there was a significant
change in the haplotypes making up the cattle
infrapopulations. The 2004 cows were ‘sampling’
the pasture in the autumn and the 2005 cows were
turned out in the early summer of 2006, making the
magnitude of apparent genetic difference in the 2004
and 2005 populations surprising. It is possible that
the observed difference in haplotype frequency was
due to insufficient sampling but the data presented in
Fig. 1 appear to contradict this, suggesting that in as
much as the adult flukes present in the definitive hosts
represent the metacercarial contamination of the
pasture, the change is real. Most of the haplotypes
unique to the 2005 cows differed from those seen in
2004 by more than a single nucleotide change,
making it unlikely that they had arisen as a result of
mutations occurring in the 2004 population. Levels
of infection in the spring of 2006 were, on average,
only a tenth of those seen in autumn 2004. This may
be due to a lower level of contamination of the pasture
in early summer comparedwith autumn (Gaasenbeek
et al. 1992).
In the light of the changes observed at

Beetsterzwaag over a relatively short time, it is per-
haps not surprising that differences were seen when
the Beetsterzwaag populations were compared with
the Heiloo population. Both geographical separation
and previous selection for anthelmintic resistance in
the Heiloo area may have been causative factors. The
flukes from Heiloo were slightly less diverse in their
range of haplotypes based on pairwise differences
when compared with those from Beetsterzwaag.

Whilst this may be partly due to the sample from
Beetsterwaag containing material from 2 seasons,
it may also be a consequence of the anthelmintic
regime used at Heiloo in previous years. The
haplotypes detected belonged to the same 3 clades
as the population from Beetsterzwaag. It may be
significant that 2 of the 3 haplotypes common to both
Heiloo and Beetsterzwaag were possibly ancestral
haplotypes, which would suggest that following the
initial colonization of a locality, there may be
considerable local structuring of fluke populations.
This could occur either as a result of selection for
variants best adapted to that environment or by
genetic drift. In species which reproduce panmicti-
cally and exclusively by sexual means there is a
tendency for any nuclear mutations that occur in a
population to be lost as a result of subsequent sexual
reproduction. In contrast, the flukes forming the
infrapopulation in the mammalian definitive host
have the potential for self fertilization or asexual
reproduction (reviewed by Fletcher et al. 2004),
which is followed by asexual polyembryony in the
intermediate host. These processes may favour the
relatively rapid establishment in the population of
neutral or favourable mutations.
The Heiloo fluke population is known to contain

TCBZ-resistant individuals: can we infer anything
with regard to anthelmintic resistance in the liver
fluke from its population structure? The haplotypes
found in this population were associated with all
three clades, including the potentially ancestral clades
centring on haplotypes 3 and 12. These findings
indicate that the mitochondrial haplotypes are acting
as neutral markers with regard to TCBZ resistance.
However, the absence of any evidence for recent
‘bottle-necking’ (Heiloo – 56 haplotypes from a
sample of 177 flukes, Beetsterzwaag – 38 haplotypes
from a sample of 244 flukes) makes it unlikely
that resistance to TBCZ in the liver fluke has arisen
as the result of the selection of individuals carrying
a variant of a single gene – as may occur with ben-
zimidazole resistance in nematodes (Wolstenholme
et al. 2004) – and the subsequent expansion of the
resistant population. The population structure ob-
served in the Heiloo sample is consistent with the
selection for the TCBZ-resistant phenotype working
on a multigenic system in the nuclear genome to
bring about a quantitative change in drug suscepti-
bility.
In conclusion, we have shown that F. hepatica

populations in these regions of the Netherlands are
genetically diverse. Within a single farm the haplo-
types detected in the metapopulation may change
significantly over a relatively short time-period
and spatially separated localities have significantly
different populations. These factors, along with the
leptokurtic distribution of haplotypes within infra-
populations, are likely to facilitate the selection of
anthelmintic-resistant flukes.
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