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We investigate the stability of the Prandtl model for katabatic slope flows using
both linear stability theory and direct numerical simulations. Starting from Prandtl’s
analytical solution for uniformly cooled laminar slope flows, we use linear stability
theory to identify the onset of instability and features of the most unstable modes.
Our results show that the Prandtl model for parallel katabatic slope flows is prone
to transverse and longitudinal modes of instability. The transverse mode of instability
manifests itself as stationary vortical flow structures aligned in the along-slope
direction, whereas the longitudinal mode of instability emerges as waves propagating
in the base-flow direction. Beyond the stability limits, these two modes of instability
coexist and form a complex flow structure crisscrossing the plane of flow. The
emergence of a particular form of these instabilities depends strongly on three
dimensionless parameters, which are the slope angle, the Prandtl number and a newly
introduced stratification perturbation parameter, which is proportional to the relative
importance of the disturbance to the background stratification due to the imposed
surface buoyancy flux. We demonstrate that when this parameter is sufficiently
large, then the stabilising effect of the background stratification can be overcome.
For shallow slopes, the transverse mode of instability emerges despite meeting the
Miles–Howard stability criterion of Ri> 0.25. At steep slope angles, slope flow can
remain linearly stable despite attaining Richardson numbers as low as 3× 10−3.

Key words: atmospheric flows, stratified flows

1. Introduction

Katabatic slope flows are gravity-driven winds that are common over continental-
scale ice sheets or over snow-covered mountainous terrain where cold air flows
downhill. Katabatic winds play a vital role in reliable weather predictions pertaining
to air quality, aviation and agriculture. A landmark study in understanding of katabatic
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FIGURE 1. Sketch of the slope flow and the rotated coordinate system.

winds is that of Prandtl (1942), in which an analytical solution was developed for a
viscous stably stratified quiescent fluid over an infinitely long and uniformly cooled
planar surface with a constant slope to it. Despite its simplicity, Prandtl’s solution
exhibits the vertical structure of katabatic winds observed in nature. The buoyancy
and velocity profile predicted by Prandtl’s laminar flow solution is an exponentially
dampened sinusoidal wave with growing height (Fedorovich & Shapiro 2009). The
solution produces a low-level strong jet along the slope descent, which is capped by
a weak reverse flow, as depicted in figure 1.

Despite its usefulness in explaining katabatic slope flows, the linear stability of
the Prandtl model and the parameter space in which the underlying assumptions
hold have not been investigated in the open literature. Fedorovich & Shapiro (2009)
introduced an integral slope flow Reynolds number, ReI , that is a function of the slope
angle, Brunt–Väisälä frequency, surface buoyancy flux and the kinematic viscosity.
They performed direct numerical simulation (DNS) of fully developed turbulence
with ReI ranging from 3000 to 10 000. Umphrey, DeLeon & Senocak (2017) adopted
the same definition of the Reynolds numbers and conducted laminar katabatic flow
computations for ReI = 20 to validate and verify a Navier–Stokes solver. In Shapiro
& Fedorovich (2014), it was hypothesised that katabatic slope flows are governed by
two independent dimensionless parameters, namely Reynolds and Prandtl numbers.
The slope angle appeared as a stretching factor in their Reynolds number definition
because Shapiro & Fedorovich worked with boundary-layer approximated equations.
As we show in the next section, linear stability of the Prandtl model strongly depends
on three non-dimensional parameters, which are the slope angle, the Prandtl number,
and a new dimensionless parameter that we introduce in § 3.

Recently, a number of numerical and experimental studies have been devoted to
study instabilities in stably stratified fluid cases. Facchini et al. (2018) investigated
linear instability of Couette flow with stable stratification via both experiments and
DNS, whereas Chen, Bai & Le Dizès (2016) studied stably stratified horizontal
boundary layers on a vertical wall; in both cases, the direction of stratification was
orthogonal to both the shear and base-flow directions. The case where the direction
of stratification was orthogonal to the base-flow direction but makes an angle with
the plane of shear was analysed by Candelier, Le Dizès & Le Dizès (2011), who
identified inviscid instabilities generated by a Bickley jet ejected onto a sloping
surface. The Prandtl model for slope flows is uniquely different from these cases
as the direction of stratification is oblique to both the base-flow direction and the
direction of shear due to the inclination of the surface. In the aforementioned studies,
linear stability analysis (LSA) has been used to identify the stability limits. Here,
we follow the same general strategy to identify the instabilities and conduct DNS to
support the findings of the LSA and visualise the nature of flow instabilities.
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Stability of the Prandtl model for katabatic slope flows

2. Governing equations

The idealised slope flow configuration is shown in figure 1, where α is the
constant slope angle and gravity acts in the vertical direction. Bs is the constant
heat flux imposed on the surface. For ease of analysis, the problem is studied in a
rotated Cartesian coordinate system whose x axis is aligned with the planar inclined
surface. Let u be the along-slope (longitudinal), v be the cross-slope (transverse),
and w be the slope-normal velocity components, such that ui = [u, v, w] is the
velocity vector. The gravity vector in the rotated coordinate system is then given by
gi = [g1, g2, g3] = [sin α, 0, cos α]. The buoyancy and the Brunt–Väisälä frequency
are denoted by b, N, respectively, where N2 is used as a measure of stratification.
Following the presentation in Fedorovich & Shapiro (2009), the momentum and the
buoyancy balance equations with a Boussinesq approximation are written as follows:

∂ui

∂t
+
∂uiuj

∂xj
= −

1
ρ

∂p
∂xi
+

∂

∂xj

(
ν
∂ui

∂xj

)
+ bgi, (2.1)

∂b
∂t
+
∂buj

∂xj
=

∂

∂xj

(
β
∂b
∂xj

)
−N2gjuj, (2.2)

where ν, β are the kinematic viscosity and thermal diffusivity of the fluid, respectively.
The conservation of mass principle is imposed by a divergence-free velocity field

∂ui

∂xi
= 0. (2.3)

In the following, the position and velocity vector components xi, ui are denoted as
[x, y, z]T and [u, v,w]T, respectively. Buoyancy is related to the potential temperature
as b= gθ/Θr, where Θr is a reference potential temperature value. At the surface, a
negative buoyancy flux Bs is imposed to create katabatic flow conditions.

In the Prandtl model, equation (2.1) reduces to a balance between buoyancy
and diffusion of along-slope momentum; and (2.2) reduces to a balance between
along-slope momentum and diffusion of buoyancy. For the case with a constant
buoyancy flux at the surface, Shapiro & Fedorovich (2004) provides the following
one-dimensional exact solution:

un =
√

2 sin(zn/
√

2) exp(−zn/
√

2), (2.4)

bn =
√

2 cos(zn/
√

2) exp(−zn/
√

2), (2.5)

where zn = z/l0, un = u/u0, bn = b/b0 are non-dimensional height, velocity, and
buoyancy, respectively, and the corresponding scales governing the flow problem are
given as (Fedorovich & Shapiro 2009)

l0 = (νβ)
1/4N−1/2 sin−1/2 α, (2.6)

u0 = (νβ)
−1/4N−3/2Bs sin−1/2 α, (2.7)

b0 = ν
1/4β−3/4N−1/2Bs sin−1/2 α, (2.8)

where Pr ≡ ν/β is the Prandtl number. A time scale t0 = l0/u0 can also be defined
from the above scales. Note that the above flow scales have different forms for the
case with a constant buoyancy condition at the surface.
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3. Linear stability analysis

Linearising (2.1)–(2.3) around Prandtl’s laminar solution given by (2.4) and (2.5),
and assuming that disturbances to the base flow given by Prandtl’s solution are waves
of the form q(x, y, z, t)= q̂(z) exp {i(kxx+ kyy)+ωt}, the resulting equations have the
form

ikxû+ ikyv̂ +
∂ŵ
∂z
= 0, (3.1)

ωû+ iunkxû+ u′nŵ=−ikxp̂+
Pr
Πs

sin α
(
−(k2

x + k2
y)û+

∂2û
∂z2
+ b̂
)
, (3.2)

ωv̂ + iunkxv̂ =−ikyp̂+
Pr
Πs

sin α
(
−(k2

x + k2
y)v̂ +

∂2v̂

∂z2

)
, (3.3)

ωŵ+ iunkxŵ=−
∂ p̂
∂z
+

Pr
Πs

sin α
(
−(k2

x + k2
y)ŵ+

∂2ŵ
∂z2
+ b̂ cot α

)
, (3.4)

ωb̂+ iunkxb̂+ b′nŵ=
sin α
Πs

(
−(k2

x + k2
y)b̂+

∂2b̂
∂z2
− (û+ ŵ cot α)

)
, (3.5)

where û, v̂, ŵ, p̂, b̂ are slope-normal-dependent flow disturbances normalised by the
flow scales given in (2.6)–(2.8). kx, ky are real wavenumbers in the x (along-slope)
and y (transverse) directions, respectively, whereas ω is a complex frequency. The
normalised Prandtl base-flow solution and its derivative in the slope-normal direction
in normalised coordinates are denoted by un, bn and u′n, b′n, respectively. It can
be seen from (2.4)–(2.5) that Prandtl’s laminar velocity profile is a dampened
sinusoidal oscillation, thus containing infinitely many inflection points, which opens
the possibility of inviscid instabilities. From (3.1)–(3.5), it is clear that there are
three dimensionless parameters characterising the idealised katabatic slope flow,
which can also be confirmed independently by applying the Buckingham π theorem.
These dimensionless parameters are: Prandtl number Pr, slope angle α, and a newly
introduced stratification perturbation parameter Πs, which is a measure of the ratio
between the imposed surface buoyancy gradient and the background stratification.
This unique parameter is determined from the externally imposed flow parameters as
follows:

Πs ≡
|Bs|β

−1

N2
=

∣∣∣∣∂b
∂z
(0)
∣∣∣∣

N2
. (3.6)

Since the buoyancy flux at the surface, Bs, is negative for katabatic slope flows and
positive for anabatic slope flows, the magnitude of Bs is used in the definition of
Πs. The slope flow is expected to become dynamically more unstable at higher Πs.
Note that Πs can also be related to the so-called internal Froude number as Πs =

Fr
√

Pr, and to the bulk Richardson number as Πs=
√

Pr/Ri. In relating Πs to Ri and
Fr, we have used the internal length and velocity scales defined in (2.6) and (2.7),
respectively. However, use of Fr or Ri are not preferred for the current flow problem
because there are no externally imposed velocity or length scales.

It is important to mention that Πs shares common terms with the flow forcing
parameter, FpB ≡ Bsν

−1/N2, that was introduced in Fedorovich & Shapiro (2009).
The apparent difference between these two dimensionless parameters is that thermal
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diffusivity, β, is used in Πs, whereas kinematic viscosity, ν, is used in FpB. The
physical interpretations of these dimensionless parameters are different. Fedorovich
& Shapiro interpreted FpB as the ratio between the energy production at the surface
and the work against buoyancy as well as viscous forces. In our proposition, we
interpret Πs as the degree of disturbance to the background stable stratification by
heat conduction at the surface, which is also evident by the appearance of Πs in (3.5).
These two dimensionless parameters are related to each other through the Prandtl
number as Πs = PrFpB. As we show later in § 3.3, stability characteristics of slope
flows depend strongly on the Prandtl number. Therefore, in our view, FpB and Πs
are distinct dimensionless parameters with unique interpretations.

The linearised equations can be written as a generalised eigenvalue problem as
follows:

A(kx, ky)q̂(z)=ωMq̂(z), (3.7)

where q̂(z)=[û(z), v̂(z), ŵ(z), p̂(z), b̂(z)]T is the vector of flow disturbances varying in
the slope-normal direction. M is a singular matrix arising from the primitive variable
formulation; it is created from the identity matrix by setting all diagonal entries
belonging to the continuity equation to zero. The appropriate boundary conditions for
this problem are no-slip for disturbance velocities at z= 0, free slip at z→∞, and for
buoyancy disturbance ∂ b̂/∂z|0 = 0, b̂|z→∞ = 0 are imposed. The pressure disturbance
p̂ is also set to zero at both z = 0 and z→∞. The generalised eigenvalue problem
(3.7) is solved via a collocated spectral method using Chebychev polynomials and
an algebraic map to cover the semi-infinite domain [0,∞). Two hundred collocation
points are used for discretisation, and the resulting generalised eigenvalue problem
is solved with the help of the eigs function in MATLAB. Linear stability of the
problem is associated with the real part of the eigenvalues ω, where Re{ω} > 0
represents a positive exponential growth for the corresponding eigenmode, thus an
unstable mode. The imaginary part of ω is the temporal oscillation frequency for the
corresponding eigenmode, and Im{ω} = 0 represents a stationary mode.

3.1. Linear growth rates
To explore the linear instability mechanism dependent on the longitudinal and
transverse wavenumbers, the maximal real value of the spectrum for a range of
normalised wavenumber vectors (kx, ky) is calculated at various fixed values of α
and Πs. Since our interest is in katabatic winds we assume Pr = 0.71, which is
a suitable value for air at approximately 2 ◦C. For a slope angle of α = 3◦ and
Πs = 1.66, the maximal possible growth rates for wavenumber vectors [kx, ky] within
the interval [0, 0.065] × [0, 0.5] are shown in figure 2(a). Only the positive growth
rates, i.e. unstable modes, are highlighted. It can be seen that the growth rates tend
to grow with decreasing kx component such that the maximal instabilities occur at
kx = 0, i.e. the most unstable modes are purely along the direction transverse to the
base-flow direction; the transverse wavenumber at which maximal possible growth
rate is attained is valued at approximately ky ≈ 0.33, as evident from an inspection
of the ky-axis of figure 2(a). The imaginary part of the eigenvalues corresponding to
the maximal positive growth rates are all zero, which indicates that the transverse
instabilities studied here are all stationary vortex rolls. This behaviour is in stark
contrast to other parallel flows such as the plane Poiseuille flow, for which Squire’s
theorem stipulates that the most unstable mode propagates parallel to the direction
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FIGURE 2. Growth rate contours depending on wavenumber vectors kx, ky for Pr= 0.71.
(a) α = 3◦, Πs = 1.6; (b) α = 66◦, Πs = 18.5.

of the base flow (Schmid & Henningson 2001). Thus, it could be inferred that the
negative buoyancy force acting simultaneously orthogonal as well as parallel to the
base-flow direction is responsible for the transverse mode of instability, which is
analogous to the role centrifugal force plays in other types of similar instabilities,
such as Görtler vortices or vortices appearing in Taylor–Couette flow (Taylor 1923;
Schmid & Henningson 2001). For instance, in an earlier work by Görtler (1959), the
normal buoyancy force as well as surface curvature have both been identified as key
ingredients for the creation of longitudinal vortices on a curved, cooled surface. From
the results of our work, it can be seen that even in the presence of stable stratification
with strength N2, if the buoyancy force due to surface cooling is sufficiently strong,
as measured by the perturbation parameter Πs, then the aforementioned instability
mechanism inherent in the unstratified cases will be able to overcome the stable
background stratification.

At the steep slope angle of α = 66◦ and with a higher stratification perturbation
number of Πs = 18.5, the maximal possible growth rates for wavenumber vectors
[kx, ky] within the interval [0.15, 0.33] × [0, 0.05] are displayed in figure 2(b). In
contrast to the situation at α = 3◦, figure 2(b) shows that the growth rates tend
to increase with decreasing ky component such that the maximal instabilities occur
at ky = 0; the longitudinal wavenumber at which maximal possible growth rate is
attained is valued at approximately kx ≈ 0.24, as evident from figure 2(b). The most
unstable mode are hence purely along the slope direction, parallel to the base-flow
direction. This behaviour agrees with instability in other types of parallel flow
such as plane Poiseuille flow or Rayleigh–Benard convection. This major deviation
from the behaviour of slope flows at the moderate slope angle of α = 3◦ could be
attributed to the stronger longitudinal gravity component which dominates the stable
stratification orthogonal to it at steeper slope angles. Another difference from the
moderate slope case (i.e. α= 3◦) is that the imaginary part, i.e. normalised oscillation
frequency of the most unstable mode, is approximately 0.115. Thus, in contrast
to the transverse instability at moderate slope angles, the longitudinal instability
on steep slopes is non-stationary. In both the moderate as well as the steep slope
configurations, however, the most unstable instability mode propagates either parallel
(ky = 0) or orthogonal (kx = 0) to the along-slope direction, but never in an oblique
direction(kx, ky 6= 0), which is a different behaviour than oblique instabilities observed
in the spanwise-stratified Couette flow studied by Facchini et al. (2018).
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FIGURE 3. Growth rate contours at α= 3◦ for (a) transverse and (b) longitudinal modes
and at α=66◦ for (c) longitudinal and (d) transverse modes. The most unstable eigenvalue
(ω ≈ 6.6 × 10−4) for the transverse mode with ky = 0.12 is highlighted with the marker
T in (a). The most unstable eigenvalue (ω ≈ 0.0013+ 0.115i) for the longitudinal mode
with kx= 0.25 is highlighted with the marker L in (d). DNS are performed for these two
marked cases in § 4.

3.2. Neutral curves and critical stability
The results from the previous subsection support the assertion that the most unstable
modes at each slope angle α and stratification perturbation Πs are propagating along
either the base-flow direction or the transverse direction, i.e. only one component
of the wavenumber vector [kx, ky] is non-zero in order to attain maximal growth
rates. Based on this discovery, the critical Πs for the onset of instability at a specific
slope angle α and Pr number can be found by plotting the growth rate contours
over a range of Πs separately for kx and ky, assuming that the other wavenumber
is zero, respectively. In the following, a constant Pr = 0.71 is assumed. For α = 3◦,
the results are shown in figure 3(a,b). It can be seen that the minimal Πs for
the transverse mode is approximately 5, whereas the longitudinal mode requires a
minimal Πs = 15.3 to become unstable. Thus, the most dominant instability in this
case is the transverse mode, in agreement with growth rate analysis of the previous
subsection (see figure 2a). In figure 3(c,d), the results for a steep angle of α = 66◦
are displayed. This time, it can be observed that the minimal Πs for the longitudinal
mode is approximately 17, whereas the transverse mode requires a minimal Πs≈ 19.5
to become unstable. This means that in contrast to the case of shallower slope angle,
the instability to be triggered first at α= 66◦ extends along the slope direction parallel
to the base flow, which is also supported by the previous growth rate analysis and
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FIGURE 4. (a) Πs − α instability map for katabatic slope flows at Pr = 0.71. The
labels delineate regions in the (Πs, α) parameter space within which a particular type
of instability is dominant. (b) Zoomed view of the low-angle region in the stability map
where instability occurs for Πs values with implied Ri> 0.25.

figure 2(b). In all cases, it can be observed from figure 3 that the unstable growth
rates increase with increasing Πs, hence pointing to general instability at Πs →∞

or ν→ 0. This implies that the instability mechanism must be caused by an inviscid
mechanism due to the oscillatory profile of Prandtl’s laminar solution.

3.3. Dependence on the slope angle and the Prandtl number
The previous subsections have demonstrated a drastic change in the nature of the flow
instability with increasing slope angle, characterised by a switch from the transverse to
the longitudinal direction at sufficiently steep angle due to the increasing longitudinal
gravity component driving the flow. To further explore the influence of slope angle,
α, on the instability, the critical stability threshold of Πs for both longitudinal and
transverse instabilities as functions of α over the interval [5◦, 80◦] are determined and
displayed in figure 4(a). It can be clearly observed that while the critical stratification
perturbation parameter, Πs, for the transverse instability is lower at shallow angles, it
increases for increasing α, and the critical value for the longitudinal instability stays
almost constant over the same range of slope angles. This means that the transverse
mode becomes increasingly stable with growing α, and the angle at which its critical
threshold value of Πs equals that of the longitudinal mode is approximately α ≈

62◦. From the relation Πs =
√

Pr/Ri given in § 3, the Πs value that corresponds to
a Richardson number of 0.25 at Pr = 0.7 is Πs ≈ 1.69 and is represented by the
horizontal line in figure 4(a). The region above this line implies Ri < 0.25, and it
can be seen from figure 4(a) that for steep slope angles α > 62◦ the critical value of
Πs for either instability mode is at least 17, and hence linearly stability holds for Ri
as low as 2.5× 10−3.

The effect of the Prandtl number on the stability diagram for the two different
modes are displayed in figure 5, which shows the minimal Πs needed to trigger
instability depending on the slope angle. It can be seen that for both transverse
and longitudinal modes, an increase in Pr tends to raise the critical Πs threshold
required for instability. This is readily explained by the fact that when all other
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FIGURE 5. Prandtl number dependence of the critical Πs values for the transverse mode
(a) and the longitudinal mode (b) of instability. The marker (×) highlights the transition
point from one mode to the other.

parameters in the flow configuration are held constant, a larger Pr corresponds to a
lower thermal diffusivity, β, which implies a smaller surface heat flux Bs at the same
surface buoyancy gradient and Πs, as evidenced by (3.6). The curves on figure 5(a,b)
also demonstrate that the stability threshold for the transverse mode is affected much
more strongly by Pr than the longitudinal mode; indeed, by increasing Pr from the
value of 0.7 for air to 6.7 for water at room temperature, the critical Πs of the
transverse mode becomes more than six times larger for nearly all angles, whereas
for the longitudinal mode the critical Πs only assume values approximately twice as
high as for the low-Pr case.

3.3.1. Stability behaviour at small slope angles
From figure 4(a), it can be seen that for slope angles with α < 20◦, the critical Πs

for the transverse mode, in contrast to the longitudinal mode, continues to decrease
with smaller angle, such that at α = 5◦ the critical value is Πs ≈ 1.61. A closer look
of the stability curve for small angles is shown in figure 4(b). Since Πs is related
to the Richardson number via Ri = Pr/Π 2

s , it follows that for slope angles α 6 5◦,
the Prandtl base flow satisfies Ri> 0.25 throughout, thus apparently not meeting the
stability criterion stipulated by the Miles–Howard theorem for parallel base flows
under stably stratified conditions (e.g. Drazin & Reid 2004). Hence, shallow-angle
Prandtl slope flows serve as an example of a parallel base flow that exhibits a
transverse mode of instability with Richardson number larger than 0.25 throughout.
However, the Miles–Howard theorem, as formulated by Miles (1961), is based on the
assumption of inviscid free flow without buoyancy force acting along the base-flow
direction; it also ignores viscous shear as well as heat conduction. Candelier et al.
(2011) have demonstrated that when shear is not aligned with stratification, a stably
stratified, inviscid flow can be unstable while Ri> 0.25 holds within the entire flow.
As shown by Miller & Gage (1972), the presence of viscous shear can also destabilise
a parallel flow under stable stratification despite satisfying Ri> 0.25 throughout. Thus,
we can conclude that viscous and heat conduction effects as well as misalignment
of shear and stratification contribute towards the formation of the transverse mode of
instability at Ri> 0.25 displayed in figure 4(b).

865 R2-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

13
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.132


C.-N. Xiao and I. Senocak

0 100 200
tnYn

Zn

300
1.0

1.1

1.2

1.3

1.4

1.5(b)

G
ro

w
th

 fa
ct

or

DNS
Linear stability

0

15

30(a)

25 50 75 100

-3.0 -1.5 0 1.5 3.0
(÷ 10-7)wn

FIGURE 6. Transverse mode at α = 3◦, Πs = 1.66: (a) disturbance flow vector field and
normalised slope-normal velocity wn on the y–z plane. Slope flow is into the page; (b)
temporal growth.

4. Direct numerical simulations

We carry out direct numerical simulations (DNS) to independently validate the
findings from the linear stability analysis and visualise flow structures induced by flow
instabilities. We solve the buoyancy-driven incompressible flow equations (2.1)–(2.3)
using a Cartesian mesh three-dimensional Navier–Stokes solver (Jacobsen & Senocak
2013). The code adopts a second-order accurate Adams–Bashforth scheme for time
advancement and second-order central difference scheme for spatial derivatives. The
pressure Poisson equation is solved with a geometric multigrid technique. Umphrey
et al. (2017) validated the current code using the Prandtl model and demonstrated
globally second-order accurate solutions. The simulation domains are rectangular
boxes of dimensional size Lx × Ly × Lz. The mesh resolution is such that there
are at least four points per characteristic length scale l0 along each direction in
all simulated cases except for the last one, which will be described separately.
Periodic boundary conditions are imposed in both the longitudinal and transverse
directions, whereas no-slip conditions with a constant buoyancy flux are applied on
the lower surface at z = 0, and the top surface is subject to an adiabatic free-slip
condition. The top boundary was placed at least 50 times the characteristic slope
length scale l0 given by (2.6) above the surface to capture quiescent conditions
aloft. The longitudinal and transverse size of the domain are chosen to be an integer
multiple of the targeted wavelength of an instability in the particular direction. The
initial conditions for velocity and buoyancy are Prandtl’s laminar solution (2.4)–(2.5)
without any explicitly added disturbances. Roundoff errors due to massively threaded
double-precision floating point computations on graphics processing units and arising
from interpolation of the Prandtl base solution onto the finite numerical grid as well
as due to the iterative nature of computations were sufficient to trigger instabilities
predicted by the linear theory.

4.1. Transverse mode of instability
For the case with α=3◦,Πs=1.66 and Pr=0.71, a DNS is carried out over a domain
with size 50l0× 106l0× 50l0, where l0 is the length scale defined in (2.6). The results
confirm a stationary purely transverse instability, agreeing with the LSA and growth
rate analysis in § 3.1. In figure 6(a), the instantaneous velocity disturbance profile
projected onto a plane normal to the main velocity is shown. It can be seen that the
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FIGURE 7. Longitudinal mode at α = 66◦, Πs = 18.5. (a) Disturbance flow-field vector
and normalised slope-normal velocity wn on the x–z plane. Slope flow is from right to
left; (b) temporal growth.

normalised wavelength of the simulated instability is approximately λn = λy/l0 ≈ 18,
corresponding to a normalised wave vector of ky = 2π/λn ≈ 0.35. To measure the
temporal growth of the instability, the growth factor G(t) =

√
〈w2〉(t)/

√
〈w2〉(t0)

for t > t0 is introduced, defined as the spatial root-mean-squared vertical velocity
normalised by the value at reference time t0. The simulated temporal growth of the
instability is plotted alongside the growth rate predicted by linear stability theory for
ky = 0.35, Πs = 1.66, as marked by point T in figure 3(a), which also corresponds to
[0, ky] in figure 2(a). The non-dimensional growth rate from the DNS has a value of
approximately 6.15× 10−4, closely agreeing with the value of 6.66× 10−4 predicted
via the linear stability theory.

4.2. Longitudinal mode of instability
For the case with the slope angle α = 66◦, Πs = 18.5 and Pr = 0.71, a DNS is
conducted on a domain with dimensions 50l0 × 25l0 × 50l0. In agreement with the
analysis in § 3.1, the simulation results show an oscillating instability propagating
along the slope direction. Figure 7(a) displays the instantaneous disturbance velocity
profile on a plane parallel to the base-flow direction and normal to the surface. It can
be seen that the normalised wavelength of the simulated instability is approximately
λn= λx/l0≈ 25, corresponding to a normalised wave vector of kx= 2π/λn≈ 0.25. The
temporal growth of the instability is tracked by the same growth factor G(t) used for
the analysis of transverse instability. The simulated temporal growth of the instability
is shown with the growth curve resulting from linear stability theory in figure 7(b).
The non-dimensional growth rate from the simulation has a value of approximately
1.2× 10−3, in close agreement with the prediction from LSA for kx= 0.25, Πs= 18.5,
highlighted with the marker L in figure 3(d), also visible as [kx, 0] on figure 2(b).
According to LSA, the normalised frequency of the longitudinal instability for this
particular set of parameters is approximately 0.115. The simulated instability has a
normalised frequency of 0.125, which is close to the LSA results.

4.3. Mixed mode of instability
For the case with α = 66◦ as discussed previously, if the flow is subjected to
more unstable conditions, i.e. Πs is further increased beyond 20, then according
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velocity wn; (b) comparison of the normalised mean velocity and buoyancy profiles against
the Prandtl solution.

to figure 4, both the transverse and longitudinal modes will become unstable. For
subsequent discussions, Πs is fixed at 25. Simulation for this case is carried out on a
comparatively larger domain of 400l0 × 400l0 × 50l0 to capture multiple vortex rolls
along all directions. Since, in this case, the horizontal dimensions of the simulation
domain are an order of magnitude larger than the height, a less refined grid resolution
is chosen for the along-slope and cross-slope directions than in the two previous cases
such that there are approximately two grid points per length scale l0 along these
directions. An instantaneous snapshot of the full flow field is shown in figure 8(a).
Here, the isocontour of the Q-criterion at 4 % of its maximal positive value is used
for vortex identification (cf. Kolář 2007). Both longitudinal and transverse vorticity
rolls are simultaneously present in the flow field, and are intricately interwoven with
each other.

Figure 8(b) compares the spatiotemporally averaged velocity and buoyancy profiles
from the simulated unstable flow field with the Prandtl’s solution with the same
laminar flow parameters. The total averaging time window is roughly 30 times the
flow-through-time based on the mean velocity at the jet tip. The comparison shows
that at low altitudes, there is very little difference between the averaged unstable
profile and the laminar Prandtl profile. At higher altitudes above the jet, however,
the flow pattern is visibly altered; the mean velocity magnitude of the unstable flow
decays more slowly with growing height than the laminar solution due to enhanced
mixing caused by the instability. On the other hand, modification of the mean
buoyancy field from the Prandtl profile is much weaker. As evident from the lack of
small scales in figure 8(a), the flow is not turbulent but the mixed-mode instability
is already influential in modifying Prandtl’s laminar velocity profile noticeably.

5. Conclusions

Despite its apparent simplicity, Prandtl’s katabatic slope flow model exhibits a
surprisingly rich structure in linear response to small perturbations. It is prone to
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distinct instabilities governed by three dimensionless parameters, which are the
Prandtl number, the slope angle, and a stratification perturbation parameter, Πs,
that we have introduced in the present work. For low to moderate slope angles, a
three-dimensional, stationary transverse mode of instability is predicted to develop,
even though Prandtl’s profile is a parallel flow; for steep slopes beyond 62◦, an
oscillatory longitudinal instability is triggered instead due to the growing gravity
component along the slope direction. At sufficiently small angles such that α. 5◦, the
transverse mode of instability can develop under conditions with implied Richardson
number exceeding the critical value of 0.25 as stipulated by the Miles–Howard
theorem. Thus, the Prandtl model for shallow slopes is an example of a parallel
flow that does not satisfy the well-known Ri > 0.25 condition for stability. The
disagreement with the Miles–Howard theorem can be explained by the presence of
viscous and heat conduction effects as well as misalignment of shear with stratification.
For sufficiently high values of Πs, both instabilities coexist, leading to an intricate
pattern of crisscrossing vortex rolls.

An important implication of our current study is that, for a given fluid, linear
stability of katabatic slope flows cannot simply be determined by a single dimension-
less parameter alone, such as the Richardson number. Indeed, recently, a growing
number of results have emerged to show that a single Ri-criterion given by the
Miles–Howard theorem is inadequate to reliably predict the onset of instability in
stably stratified flows (e.g. Miller & Gage 1972; Candelier et al. 2011; Kaminski,
Caulfield & Taylor 2017). Our study adds to this existing pile of evidence by
demonstrating that in the case of katabatic slope flows, slope inclination, background
stratification as well as heat transfer rate at the surface are all important parameters
governing the stability of the given flow configuration. Future prospective modelling
and parameterisations of stably stratified flows on complex surfaces may benefit from
considering this non-trivial dependence in their formulations.
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