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Abstract

Darwin’s theory of evolution emphasized that positive selection of functional proficiency pro-
vides the fitness that ultimately determines the structure of life, a view that has dominated
biochemical thinking of enzymes as perfectly optimized for their specific functions. The
20th-century modern synthesis, structural biology, and the central dogma explained the
machinery of evolution, and nearly neutral theory explained how selection competes with
random fixation dynamics that produce molecular clocks essential e.g. for dating evolutionary
histories. However, quantitative proteomics revealed that selection pressures not relating to
optimal function play much larger roles than previously thought, acting perhaps most impor-
tantly via protein expression levels. This paper first summarizes recent progress in the 21st
century toward recovering this universal selection pressure. Then, the paper argues that pro-
teome cost minimization is the dominant, underlying ‘non-function’ selection pressure con-
trolling most of the evolution of already functionally adapted living systems. A theory of
proteome cost minimization is described and argued to have consequences for understanding
evolutionary trade-offs, aging, cancer, and neurodegenerative protein-misfolding diseases.
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Introduction

Protein evolution occurs via mutations that change the composition or expression of the pro-
teome of a population, sometimes by random nearly neutral drift, and sometimes via selection
pressures imposed by the habitat (Bajaj and Blundell, 1984; DePristo et al., 2005; Pál et al.,
2006; Goldstein, 2008; Hurst, 2009; Worth et al., 2009) After Darwin’s theory of natural
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selection, Mendel’s laws of inheritance, the modern synthesis of
the 20th century, and the rise of structural biology and the central
dogma, we know that nature selects favorable traits if their impact
outweighs the random fixation dynamics, and we know how these
changes are actualized via mutations in the DNA that translate to
the proteome. Remaining major questions are: (1) how important
is selection versus random drift and can we predict their relative
importance? (Kimura, 1962; Blundell and Wood, 1975; Ohta
1992; Hurst, 2009). (2) What are the molecular properties selected
for, and are they universal? (Hurst, 2009; Lobkovsky et al., 2010;
Liberles et al., 2012). (3) How do we describe accurately and
completely the evolution of populations from the arising muta-
tion in the gene, via the molecular property of the protein, to
its fixation and ultimate effect on the population? According to
this view, the ultimate goal of biology is to bridge the genome,
proteome, phenotype, and population together in one quantitative
and predictive theory that explains the history, present, and future
of biological structure on this planet.

In the 1960s, the observation of nearly constant evolution of
homologous proteins (Margoliash, 1963; Zuckerkandl and
Pauling, 1965, 1962) led to the theory of (nearly) neutral evolu-
tion implying that most fitness effects are too subtle to dominate
over random fixation dynamics of the population, thus producing
an almost constant rate of evolution (Kimura, 1962; Ohta, 1992).
This resulting, widely applied molecular clock is essential for
dating phylogenies and evolutionary histories (Zuckerkandl and
Pauling, 1965; Kumar and Subramanian, 2002; Yi et al., 2002;
Meredith et al., 2011). When applied to single individuals, varia-
tions in the clock specific to the mutated site are used to indicate
pathogenicity of a human gene variant (Ng and Henikoff, 2003;
Flanagan et al., 2010; Shihab et al., 2013; Tang et al., 2019).
The evolution rate varies by many orders of magnitude between
sites and proteins (Zuckerkandl and Pauling, 1965; Gillespie,
1984, 1986; Drummond et al., 2005) and can be used to distin-
guish neutral evolution (Kimura, 1991; Ohta 1992; Fay et al.,
2002) from adaption or positive selection toward a new fitness
optimum (Hurst, 2009).

Darwin’s theory of evolution emphasized that positive selec-
tion of optimal function provides the fitness that ultimately deter-
mines the structure of life (survival of the fittest). This view has
dominated biochemical thinking of enzymes as perfectly opti-
mized catalysts, implying that evolution strives toward optimal
function per se, e.g. maximal substrate turnover (kcat/Km) of
highly optimized and conserved active sites as the main raison
d’être (Radzicka and Wolfenden, 1995; Cannon et al., 1996;
Zhang and Houk, 2005; Hurst, 2009; Soskine and Tawfik,
2010). The connectivity of many proteins (i.e. the extent of
their involvement in biochemical pathways) seemed to slow
their rate of evolution, consistent with functional constraints on
evolution (Fraser et al., 2002; Hahn and Kern, 2004; Wall et al.,
2005). However, proteins are also subject to ‘non-function’ selec-
tion pressures directed toward e.g. proteome stability and effi-
ciency of translation (Ehrenberg and Kurland, 1984; Hurst and
Smith, 1999; Bloom and Adami, 2003; 2004; Drummond et al.,
2005; Lobkovsky et al., 2010; Wylie and Shakhnovich, 2011).
During early evolution, fierce competition produced evolutionary
innovations in prokaryotes, and the rise of the eukaryotes (Lane
and Martin, 2010; Sousa et al., 2013) heralded major biochemical
innovations largely relating to advantages of size and metabolism,
rather than function per se (Lane, 2011). Under these conditions,
the ability to efficiently harvest energy and chemical components
was critical (Lane and Martin, 2010; Sousa et al., 2013).

The subsequent long periods of relatively stable evolution have
seen active sites of proteins highly conserved by purifying selec-
tion near their fitness optima (Blundell and Wood, 1975; Casari
et al., 1995) and most sequence variation occurs in other sites
where nearly neutral substitutions probably dominate most recent
evolution (Ohta, 1992). For the same reason, almost all protein
evolution involves sequence variations that maintain the already
adopted, highly conserved fold structure (Worth et al., 2009).
The nearly neutral sites that dominate this evolution are subject
to non-function selection pressures, i.e. selection pressures not
directly reflecting optimal chemical turnover of the protein.
Most importantly, they may contribute to optimal translational
efficiency under favorable growth conditions (Ikemura, 1985;
Andersson and Kurland, 1990). Selection at the gene level for
translational efficiency and precision (Ehrenberg and Kurland,
1984; Andersson and Kurland, 1990; Marais and Duret, 2001;
Akashi, 2003; Drummond et al., 2005) is evident e.g. from
codon bias and t-RNA isoforms (Robinson et al., 1984; Kanaya
et al., 1999; Tuller et al., 2010).

This review concerns the question: What drives protein evolu-
tion on most time scales where the function is already nearly opti-
mal? To address this question, we must first discuss the typical
properties of proteins. Proteins vary by three orders of magnitude
in length (from tens to ten thousands of amino acids), they vary
structurally via thousands of folds (Bajaj and Blundell, 1984;
Mirny and Shakhnovich, 1999; Qian et al., 2001; Koonin et al.,
2002), and by perhaps 5–7 orders of magnitude in abundance
in eukaryotic cells (Jansen and Gerstein, 2000; Beck et al., 2011;
Milo 2013).

In stark contrast to these enormous variations, proteins across
all domains of life are marginally stable in a narrow range of per-
haps 30–100 kJ mol−1, barely preventing denaturation (DePristo
et al., 2005; Goldstein, 2011). There are three possible origins of
this phenomenon: marginal stability is a selected beneficial trait,
it arises form random mutation-selection dynamics, or it reflects
stability-constrained functional optimization. In the first case,
marginal stability ensures efficient turnover of aged and damaged
proteins and reuse of amino acids; a too stable fold may be hard to
degrade. In the second case, because mutations arise randomly
and anything random done to an optimized system tends to
reduce optimality, protein stability is constantly challenged by
mutations that destabilize by perhaps 5 kJ mol−1 on average
(Tokuriki et al., 2007), and responsive selection keeps the protein
stable (Taverna and Goldstein, 2002; Goldstein, 2011). If so, mar-
ginal stability is not a selected trait but a consequence of the pre-
dominance of random drift, with mutation-selection dynamics
constantly playing out near the denaturation threshold. Third,
optimization of function occurs under the constraint of prevent-
ing denaturation. If so, marginal stability is not a selected trait or a
consequence of random drift but reflects maximal trading of
stability for function by investing protein fold-free energy to min-
imize transition state barriers of enzymes (Warshel, 1998). Each
explanation does not exclude the others, as trade-offs and drift
depend greatly on the protein, phenotype, and population, and
they can ultimately be linked to the cost of managing the overall
proteome, as discussed below.

The main determinants of evolution rate

To understand the main drivers of evolution we must first under-
stand the protein properties that mostly determine evolutionary
rates in proteins on longer time scales. This rate is also used to
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classify and predict the functional impact of human variants e.g.
in relation to disease (Glaser et al., 2003; Capra and Singh, 2007;
Thusberg et al., 2011; Tang et al., 2019). Table 1 provides an over-
view of the most important relationships between a protein’s
properties and its evolution rate. As easily verified from sequence
alignment, active sites in proteins are highly conserved due to
strong purifying selection, because random deleterious mutations
impair fitness more in highly optimized parts of the protein.
Related to this, solvent-exposed sites in contrast evolve faster
than average, consistent with their typically smaller functional
and structural effects on the overall protein (Overington et al.,
1992; Goldman et al., 1998; Ramsey et al., 2011).

The strongest descriptor of evolutionary rate is protein abun-
dance or equally, mRNA levels, as these correlate (Gygi et al.,
1999); it typically spans 5–7 orders of magnitude in eukaryotes
(Jansen and Gerstein, 2000; Ghaemmaghami et al., 2003; Beck
et al., 2011; Milo 2013). High expression is associated with slower
protein evolution in both prokaryotes (Sharp, 1991; Rocha and
Danchin, 2004) and eukaryotes (Pál et al., 2001), including
mammals (Jordan et al., 2004; Zhang and Li 2004), a phenome-
non known as the expression-rate (E-R) anti-correlation
(Drummond et al., 2005; Bloom et al., 2006a). Protein expression
may explain half of the evolutionary rate variation in yeast
(Drummond et al., 2006) indicating a universal driving force of
evolution. This remarkable relationship has been studied using
many biophysical models focusing on protein stability, misfolding
avoidance, and flexibility (Lobkovsky et al., 2010; Geiler-
Samerotte et al., 2011; Wylie and Shakhnovich, 2011; Liberles
et al., 2012; Serohijos et al., 2012; Yang et al., 2012; Kepp and
Dasmeh, 2014; Sikosek and Chan, 2014). All-else-being-equal, a
protein’s fitness impact should be proportional to its cellular
abundance regardless of the specific selection pressure. Thus,
any fitness function that scales with protein abundance may
seem reasonable. Such models can explain about 60% of site-
variations in the evolutionary rate (McInerney, 2006; Echave
et al., 2016). Protein stability has mainly been related to fitness
via the copy number of misfolded proteins, assuming one-step
unfolding (Serohijos et al., 2012; Dasmeh et al., 2014a). These
ideas are expanded further below. To summarize the tendencies
of Table 1, compared to the average protein, the slowly evolving
protein tends to be highly expressed, intracellular, smaller than
average, and have a higher functional density, i.e. more important
sites relatively to its size.

The E-R anti-correlation has been explained (Drummond and
Wilke, 2008, 2009) as a selection against inefficient translation leading
to toxic misfolded proteins, a theory originally proposed by Kurland
and Ehrenberg (Ehrenberg and Kurland, 1984; Kurland and
Ehrenberg, 1984, 1987). Protein synthesis is inherently error-prone,
and translation operates with typical missense error rates of 1/1000
to 1/10 000 (Kurland and Ehrenberg, 1987). Considering the typical
lengths (∼100–1000) and total abundance of proteins (108) in
eukaryotic cells, one can expect 1010–1011 protein-incorporated
amino acids to exist at any time. Without error correction this
could imply the constant existence of 106–108 erroneous amino
acids in a typical eukaryote cell. This would make translation-error
induced proteome variation of similar importance as typical, mostly
heterozygote, natural sequence variation in a population. This of
course raises the question howmuch of the actual observed proteome
variation is due to genetic inheritance, somatic mutations, and trans-
lation errors. To be sure, one needs to sequence each gene and protein
many times for several cells. Regardless of this complication, it is clear
that the proteome varies much more in composition than implied by
genetic variance alone.

Considering this, because the typical non-native residue desta-
bilizes by ∼5 kJ mol−1 (Tokuriki et al., 2007), as much as 10% of
a proteome could be less stable than commonly assumed purely
from wild-type sequence. For a cell with 108 proteins, this implies
that 107 protein copies are randomly destabilized and subject to
higher turnover that expected from their wild-type sequence.
Post-translationalmodifications and specific degrons further diver-
sify the proteome and complicate turnover further. Considering
this, the additional destabilization from new arising mutations
will aggravate costs only if the affected protein is quite abundant
or subject to high turnover.

If the misfolded protein is selected against, regardless of the rea-
son, highly expressed proteins are under stronger selection pressure
because the copy number of misfolded proteins Ui scales with the
total abundance of the proteinAi. Drummond and co-workers sug-
gested a fitness function Φ depending exponentially on the total
copy number of all misfolded proteins U =∑Ui, with an unknown
scaling constant c (Drummond and Wilke, 2008):

F/ exp (−cU) (1)
The constant c can be derived from fundamental and simple

assumptions and related directly to the cost of protein turnover,
as discussed below.

Table 1. Important correlators of the evolution rate and size of proteins

Features that slow
evolution Effect Name

Functional active sites Sites directly involved in e.g. recognition, substrate binding, and catalysis are
highly conserved (Blundell and Wood, 1975; Casari et al., 1995)

Function-rate (F-R) anti-correlation
(sequence conservation)

High expression Highly expressed proteins (measured by mRNA levels) evolve more slowly (Pál
et al., 2001; Drummond et al., 2005)

Expression-rate (E-R)
anti-correlation

Intracellular location Intracellular proteins evolve more slowly than extracellular proteins (Winter et al.,
2004; Julenius and Pedersen 2006)

Secretion-rate correlation

Buried amino acid sites Interior sites evolve more slowly than solvent-exposed sites (Overington et al.,
1992; Goldman et al., 1998; Ramsey et al., 2011)

Buried-rate (B-R) anti-correlation

Small size Smaller proteins, all-else being equal, evolve slowly (Bloom et al., 2006a). Small
proteins are less evolvable due to larger functional density (Zuckerkandl 1976)

Size-rate (S-R) correlation;
functional density

Small contact density/
fraction of buried sites

Proteins with smaller fractions of buried sites or contact density evolve slowly
(both strongly correlated with size)(Bloom et al., 2006a, 2006b)

Size-rate (S-R) correlation
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The theory of proteome cost minimization

Darwin’s theory of selection and the theory of nearly neutral evo-
lution (Kimura, 1962, 1991; Ohta, 1992) together explain evolution
as a process of selection and drift, whereas structural biology
explains the molecular language of evolution via the central
dogma. However, a complete theory of evolution requires us to
also know the properties of the evolving protein that contributes
to the organism phenotype, why it contributes, to what extent it
contributes, and how this affects the wider evolution of the popu-
lation in its ecological and historical context. As discussed exten-
sively in the literature, it is increasingly clear that the functional
traits selected for in classical positive Darwinian evolution have rel-
atively little importance in many cases relative to other, partly hid-
den and perhaps universal properties of the proteins (Hurst and
Smith, 1999; Bloom and Adami, 2003, 2004; Drummond et al.,
2005; Lobkovsky et al., 2010; Wylie and Shakhnovich, 2011).

The most obvious universal property subject to selection pres-
sure is arguably the cellular energy state. Before the era of struc-
tural biology and proteomics, Boltzmann (1886) and Schrödinger
(1944) already speculated that life characteristically represents a
well-defined organized (low-entropy) structure that maintains a
thermodynamic non-equilibrium state relative to its high-entropy
surroundings by constant energy turnover and associated heat
dispersion. By this definition, expansion of life (fitness) implies
expansion of this energy turnover. Lotka applied these ideas to
Darwin’s selection theory via his maximum power principle,
arguing that evolution occurs by selection of the most
energy-efficient organisms (Lotka, 1922). These ideas were then
expanded into a much broader ecological view by Odum
(1988). Thermodynamically, the system most capable of main-
taining its structure by energy dissipation and with the ability
to grow and reproduce these structures will prevail over other sim-
ilar systems, and thus, be most fit.

The theory of proteome cost minimization (PCM) presented
below was inspired by these views and further supported by the
observations of consistent cost-bias in amino acid use across all
kingdoms of life first discovered by Akashi and Gojobori
(2002). These findings were confirmed by Swire (2007) and
explained in a fitness model by Wagner who showed, among
other things, that gene duplications are highly selected against
in terms of cellular energy costs (Wagner, 2005). The theory
builds substantially on Wagner’s seminal quantitative consider-
ations (Wagner, 2005) and the important considerations of
Brown et al. (1993) who used Lotka’s ansatz to explain mass
and size optima of biological taxa in terms of evolutionary fitness
caused by the different scaling of metabolic rates and reproductive
rates with mass. The theory’s central ansatz, inspired by these
minds, is as follows: ‘Fitness is proportional to the energy per
time unit available for reproduction after subtracting (proteome)
maintenance costs’. Because fitness always has to be measured rel-
ative to a wild type after an instant of time, the energy of interest
becomes a power (measured in watts or J s−1) as in Lotka’s orig-
inal thinking, and as such directly relates to the respiration rate of
the organism, as discussed below.

The mechanistic basis for the theory is that (i) protein degra-
dation increases many-fold with the lack of structure and partial
unfolding in protein copies (Gsponer et al., 2008) and (ii) the cost
of protein turnover is more than half of total metabolic costs in
growing microorganisms (Harold, 1987), and at least 20% in
humans (Waterlow, 1995). Accordingly, any increase in these
costs reduces the energy available for other energy-demanding

processes, notably reproduction (fitness) of microorganisms
(Dasmeh and Kepp, 2017) and cell signaling (cognition) in higher
organisms (Kepp, 2019). One of many implications of the theory
is that selection against misfolded proteins and toxicity of mis-
folding proteins measured in cell viability assays is not due to a
specific toxic molecular mode of action as widely assumed, but to
the generic adenosine triphosphate (ATP) burden of turning over
the misfolded proteins within the cell.

In its simplest form, which is easily expanded, we assume a life
cycle of a protein i as:

mRNAi −ksi� Fi O
k1i

k2i
Ui −kdi� Di (2)

Fi represents the folded proteins, Ui represents misfolded pro-
teins, and Di represent the degradation products, many of which
are recycled for use in other proteins; the rate constant of each pro-
cess is specific to the protein in question. Because the ultimate
selection pressure acts only on Ui, one can easily relax the assump-
tion of one-step unfolding to account for complex situations.

kdi is the rate constant (in units of protein molecules per s) for
degrading the misfolded protein copies. The in vivo rate constants
reflect the half-life (t½) of the fully folded protein, and can thus be
written at steady state as:

k′di =
kdi k1i
k2i

= kdi
Kf i

= ln 2
t1/2

(3)

which varies substantially with the protein i, giving half-lives from
minutes to days (Hargrove and Schmidt, 1989). The model
assumes that unfolded protein copies are always kept at a very
small number in the cell, compared to folded copies, such that
k2i is much larger than kdi and k1i . This is generally a good
approximation, because k′di is typically of the order of 10−4 s−1

but with order-of-magnitude variations. In contrast, kdi acts
directly on already misfolded protein and represents the rate of
protein degradation if the chemical activation barrier to unfolding
has been removed. Thus, kdi is limited by the number of active
proteases, the diffusion and proper orientation of the exposed
peptide bond, and the actual kcat/KM of the proteases, with an
upper limit of perhaps 106 to 108 M−1 s−1 per peptide bond
hydrolysis (Wolfenden and Snider, 2001; Bar-Even et al., 2011).
In terms of steady-state turnover, misfolded proteins are immedi-
ately targeted for degradation (Gsponer et al., 2008) and recruited
by the ubiquitin–proteasome pathway that takes the protein out of
the pool, and thus this process is not rate-limiting the overall pro-
tein flux but arguably operates near the diffusion limit.

Assuming one-step misfolding, Ui is related to the folding free
energy of the protein ΔGi =−RT ln(Kf i ) via the equilibrium cons-
tant Kf i = Fi/Ui:

Ui = Ai
1

1+ exp (−DGi/RT)

( )
≈ Ai exp

DGi

RT

( )
(4)

The last expression follows if there are many more folded than
unfolded copies of the protein, which is almost always the case.
Because folding equilibrium constants easily reach 1011 for a pro-
tein of typical stability (65 kJ mol−1 at 37 °C), the number of mis-
folded proteins at any given time is typically negligible, as they are
immediately subject to turnover. Reasonable experimental values
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of kdi = 107 s−1, Kf i = 1011, and k′di = 10−4 s−1 satisfy the relation-
ship in Eq. (3) and thus justify the use of Eq. (2).

Equation (4) is well established and was first used in a fitness
function by Bloom et al. (2004) and has been specifically used to
explain some of the E-R anticorrelation (Serohijos et al., 2012)
and additional variations in evolutionary rates (Dasmeh et al.,
2014a). The advantage of this expression is that we can relate
the number of misfolded protein copies, which is the property
selected upon, directly to the total copy number Ai of the protein
within the cell and to its thermodynamic stability, via the free
energy of folding ΔGi (a negative number in kJ mol−1). RT is
the thermal energy of the cell, and thus temperature enters
directly as a fundamental physical parameter determining prote-
ome Ui and ultimately cellular proteome costs and fitness, as
discussed further below.

The critical step is now to write the fraction of the total
respiration rate (in watts, or J s−1) of the cell due to the mainte-
nance of a single protein i:

dEm,i

dt
= Ai exp

DGi

RT

( )
kdiNaai (Csi + Cdi ) (5)

In this equation, in addition to the parameters already described
above, Naai represents the number of amino acids in the protein i,
and the cost constants Csi and Cdi describe the average synthetic
and degradation cost per amino acid in protein i in units of J
(Kepp and Dasmeh, 2014).

For the whole proteome of the cell, we can write the total cost
per time unit as the sum of the costs of maintaining steady-state
folded protein copy numbers within the cell:

dEm
dt

= a
∑
i

dEm,i

dt
= a

∑
i

Ai exp
DGi

RT

( )
kdiNaai (Csi + Cdi ) (6)

Importantly, we see that the total energy costs scale with Ai.
Because Ai varies substantially for different proteins, e.g. from
zero to a million, some proteins are much more important to
the cell’s energy budget than others. The scaling constant α

represents the activity of the proteasome, which may be controlled
with proteasome inhibitors, but a slight expansion of this expres-
sion can be done to (α + β +⋯) taking into account the contribu-
tions of various degradation pathways (lysosome, proteasome,
effects of N-end rule, etc.) to the overall turnover. Figure 1 sum-
marizes some typical values for the parameters of the model
applicable to eukaryote cells.

Selection dynamics of PCM

To understand how protein turnover costs affect evolution, we
now use the central ansatz that fitness scales with the energy avail-
able for reproduction dEr/dt after subtracting the proteome costs
of Eq. (6) from the total energy available to the cell either by pro-
duction or supply, dEt/dt, divided by the respiration rate needed
to run an individual, also taken to dEt/dt:

F = dEr/dt
dEt/dt

= dEt/dt − dEm/dt
dEt/dt

= 1− dEm/dt
dEt/dt

(7)

The division by dEt/dt formally ensures a dimensionless fit-
ness function. For simplicity, we ignore the non-proteome energy
costs because the purpose is to show that the cost of the proteome
exerts a major effect on evolution by itself. Assuming that the
total energy production is constant for all competing cells, mini-
mization of dEm/dt maximizes fitness. When a new mutation
arises in protein i, the selection coefficient is:

si(M) = Fi(M)
Fi(WT)

− 1 = Fi(M)−Fi(WT)
Fi(WT)

= dEm/dt(WT)− dEm/dt(M)
dEt/dt(WT)− dEm/dt(WT)

(8)

For clarity, we have assumed that the mutation only affects
maintenance turnover costs and not energy production, and
thus the total energy produced is the same before and after muta-
tion and cancels in Eq. (8). If we further neglect epistasis,

Fig. 1. Schematic overview of order-of-magnitude terms of the PCM model. Typical values for yeast used as example. All values are subject to the well-known
variations in copy numbers of individual proteins, degradation constants, length of proteins, and total number of proteins copies in a cell.
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selection only acts on the mutated protein i:

si(M) =
Ai exp (DGi/RT)kdiNaai (Csi + Cdi )(WT)
−Ai exp (DGi/RT)kdiNaai (Csi + Cdi )(M)

dEt/dt(WT)− Ai exp (DGi/RT)kdiNaai (Csi + Cdi )(WT)

(9)
This selection coefficient is a function only of protein proper-

ties, scaled by the general energy spent for reproduction of the
organism, dEr/dt(WT), which can be taken as a constant of the
order of 10−11 J s−1 (Harold, 1987). It is perhaps more convenient
to write Eq. (9) in terms of copy numbers and half-lives (t½)
which can be measured in live cells:

si(M) =
AiNaai (Csi + Cdi )ln 2/t1/2(WT)
−AiNaai (Csi + Cdi )ln 2/t1/2(M)

dEr/dt(WT)
(10)

where we have used the relationship:

k′di =
ln 2
t1/2

= exp
DGi

RT

( )
kdi (11)

For a haploid organism, the probability of its fixation Pfix is
approximately (Kimura, 1962; Ohta 1992):

Pfix = 1− e−si

1− e−siN
� si

1− e−siN
(12)

where N is the effective population size, and the last term comes
from expanding the exponential of the small si. For neutral evolu-
tion, as si→ 0, Pfix→ 1/N, and does not depend on any properties
of the protein. At significant positive selection, si N is large, si is
positive, and Pfix→ si. Very similar behavior applies to diploid
organisms with slightly different factors of 2 and 4 (Kimura,
1962).

The simple kinetic scheme assumed for the PCM model is
highlighted in Fig. 2a. From Eq. (10), considering the variations
in the parameters, most of the proteome cost selection occurs
by affecting the ratio Ai/t½. Mutations that reduce the half-life
of abundant proteins are thus particularly selected against.
The typical behavior of Pfix with N and si is shown in Fig. 2b.
The absolute rate of evolution ω scales with the mutation rate
and the probability of fixating new arising mutations:

v = uNPfix = u
si

1− e−siN
(13)

where u is the absolute mutation rate; this expression can be
expanded by life history variables such as generation time
(Martin and Palumbi, 1993), but this is beyond the scope here,
as the proportionality of Eq. (13) generally applies, and Pfix thus
measures evolution rate. For an optimized evolutionary system,
a typical arising mutation has a negative selection coefficient; if
small relative to 1/N, it is subject to random fixation drift.
From Eq. (13), such mutations will reduce the probability of

Fig. 2. (a) Schematic overview of the processes of protein turnover, with the central dogma to the left and the proteome maintenance, the concern of the present
paper, to the right. (b) Probability of fixation (Pfix) plotted against selection coefficient s and log N (effective population size). Beneficial mutations with s > 0.001
have relevant Pfix of more than 1% for most populations. Only in very small populations (<100) do other mutations get fixated (Pfix∼ 1%), and neutral and slightly
deleterious mutations become fixated to a similar extent until s approaches −1/N, whence Pfix rapidly decreases.
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fixation (and evolution rate) in proportion to the size of the neg-
ative selection coefficient. Figure 2b also illustrates why the molec-
ular clock is generally successful at dating phylogenies, because
90% of randomly occurring mutations in the relevant selection-
fixation space are subject to neutral evolution.

To understand the slow evolution of abundant proteins dis-
cussed in the literature (Drummond et al., 2005; Bloom et al.,
2006a; Drummond and Wilke, 2008), we should identify low val-
ues of Pfix in the evolution rate space of Fig. 2b. Most arising
mutations (Fig. 2b) remain subject to nearly neutral evolution.
However, more extreme selection coefficients will occur for highly
abundant proteins, because the selection coefficient of a new aris-
ing mutation in a protein scales with the abundance and turnover
rate of the affected protein. In contrast, less abundant proteins will
typically have numerically smaller selection coefficients at any
given effective population size. The next section gives a quantita-
tive estimate of the fixation probabilities.

Typical PCM selection pressures and fixation probabilities
for yeast

Table 2 summarizes some typical selection scenarios in yeast cells.
A typical yeast cell respires at ∼1 J s−1 g−1 and has a mass of
3 × 10−11 g, giving dEt/dt≈ 3 × 10−11 J s−1. Cdi is perhaps 1 ATP
per peptide bond or 30 kJ mol−1 (Benaroudj et al., 2003). The bio-
synthetic costs of the amino acids vary from 10 to 80 ATP
(Wagner, 2005), the average amino acid composition of the
yeast proteome gives ∼25 ATP, or 750 kJ mol−1 as typical. If
half of the amino acids are recycled, neglecting amino acid trans-
port cost (Waterlow, 1995), this reduces to 375 kJ mol−1.
Additional costs of the polypeptide chain synthesis, neglecting
chaperones, is ∼11–19 ATP, or 330–660 kJ mol−1 (De Visser
et al., 1992). Amino acid transport and chaperones (which need
to be synthesized independently) increase costs further. Under
growth conditions where most selection probably occurred histor-
ically, very few amino acids are recycled, and thus the specific
turnover costs per amino acid in a protein molecule (Csi + Cdi )
may easily reach 1500 kJ mol−1. However, the amino acid-specific

values vary little compared to the protein-specific k′di and Ai, and
thus we use a value of 1500 kJ mol−1 in Table 2. With a typical
protein of 400 amino acids, this implies 10−15 J s−1 of turnover
cost per protein molecule, which varies perhaps by 3–4 orders
of magnitude, mostly due to Naai (protein length) and Csi (the
biosynthetic cost of the amino acids) consistent with the empiri-
cally known sequence biases (Akashi and Gojobori, 2002;
Wagner, 2005; Swire, 2007).

The exponential of Eq. (1) can be expanded as 1− cU because
the values of cU are much smaller than 1. Accordingly, the empir-
ically proposed (Drummond and Wilke, 2008) fitness cost cons-
tant c can be expressed in terms of fundamental protein
turnover parameters, and we argue that c is protein-specific.
The PCM fitness function, Eq. (7), can be written as:

F = dEt/dt −
∑

i Ai exp (DGi/RT)kdiNaai (Csi + Cdi )
dEt/dt

= 1−
∑

i UikdiNaai (Csi + Cdi )
dEt/dt

(14)

Comparing the exponential-expanded fitness functions 1− cU
proposed by Drummond and Wilke (2008) and Eq. (14), the
dimensionless protein-specific and effective total cost constants are:

ci = kdiNaai (Csi + Cdi )
dEt/dt

; c =
∑

i UikdiNaai (Csi + Cdi )
dEt/dt U

(15)

Separation of Ui from its cost constant ci does not apply in gene-
ral, as each type of unfolded protein has specific costs, and thus c
represents an average cost of handling all misfolded proteins
regardless of type. Using the typical values of kdi = 107 s−1 and
Naai (Csi + Cdi ) = 10−15 J s−1 (Fig. 1, Table 2) gives 10−8 J s−1 for
one molecule of protein i. When dividing by dEt/dt∼ 10−11 J s−1,
this gives a cost constant ci∼ 1000. Summing over all misfolded
copies (U∼ 10−3) gives a correction to the fitness function of the
order of unity, in agreement with energy allocated to reproduction
and proteome turnover being of the similar magnitudes as total res-
piration rates of growing cells (Harold, 1987).

Table 2. Effect of arising mutants in a haploid organism (Naai = 400; dEt/dt = 3 × 10−11 J s−1)

Ai
k′di (WT)
k′di (M ) Naai (Csi + Cdi ) dEm/dt(WT) dEm/dt(M ) si(M )

Pfix
N = 106

Pfix
N = 104

Slightly deleterious mutant that increase k′di or Ai 10-fold (e.g. from 60 to 54 kJ mol−1 stability at 37 °C)

Total proteome 108 10−4 s−1

10−3 s−1
10−15 J per protein 10−11 J s−1 10−10 J s−1 Cell dies (proteome destabilization

corresponds to T = 72 °C)

Typical protein 103 10−4 s−1

10−3 s−1
10−15 J per protein 10−16 J s−1 10−15 J s−1 −4.5 × 10−5 <10−20 7.9 × 10−5

Abundant protein 105 10−4 s−1

10−3 s−1
10−15 J per protein 10−14 J s−1 10−13 J s−1 −4.5 × 10−3 <10−20 <10−20

Short-lived protein 103 10−2 s−1

10−1 s−1
10−15 J per protein 10−14 J s−1 10−13 J s−1 −4.5 × 10−3 <10−20 <10−20

Positive selection of slightly beneficial mutant that decreases k′di 10-fold

Typical protein 103 10−4 s−1

10−5 s−1
10−15 J per protein 10−14 J s−1 10−15 J s−1 4.5 × 10−6 4.6 × 10−6 1.0 × 10−4

Abundant protein 105 10−4 s−1

10−5 s−1
10−15 J per protein 10−16 J s−1 10−17 J s−1 4.5 × 10−4 4.5 × 10−4 4.5 × 10−4

Neutral evolution (same for all protein properties, only depends on N ) 10−6 10−4

WT, wild-type value of property; M, Mutant value of property.
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A single protein’s contribution to fitness is proportional to
its relative abundance, all else being equal. If Ai = 1000, then
Ui = 10−8 misfolded copies of this particular protein exist at any
time, using the typical parameters given in Fig. 1 and Table 2,
giving a total contribution to fitness of 10−5. Typically arising,
slightly deleterious mutations in typical proteins will affect evolu-
tion rates in small populations of the order of N∼ 104, which
probably played a major role in evolution in the wild (Gillespie,
2001; Piganeau and Eyre-Walker, 2009), mainly because historic
population bottlenecks dominate the apparent effective popula-
tion size (Willis and Orr, 1993; Hawks et al., 2000; Bouzat,
2010). The calculation example in Table 2 gives a fixation proba-
bility of 7.9 × 10−5 for such typical mutations.

However, some proteins are much more systemically important
than such a typical protein. The most important contributor to ci
is the degradation rate constant kdi , which varies by many orders
of magnitude for different proteins, and to obtain the fitness we
need to multiply this constant by Ai, or equally, the fold-stability
weighted Ui. Abundance can span 5–7 orders of magnitude
(Jansen and Gerstein, 2000; Ghaemmaghami et al., 2003; Beck
et al., 2011; Milo 2013), whereas protein length Naai spans about
three orders of magnitude, up to ∼30 000 amino acids (e.g. titin),
with a reasonably small variance of gamma-distributed protein
sizes (Zhang, 2000). PCM theory thus suggests that selection acts
both on expression level and protein length, as indeed seen experi-
mentally (Bloom et al., 2006a). In small populations (N = 104), a typ-
ical slightly deleterious mutation (less stable by 5 kJ mol−1, or a
10-fold higher turnover rate) in a highly expressed protein (105 cop-
ies) will have essentially no probability of fixation (<10−20, middle
right, Table 2). Cost selection in such moderate-sized populations
can thus explain the relatively slower evolution of abundant proteins.

Large effective populations can also contribute to the E-R anti-
correlation: random mutation-selection dynamics resulting from
purifying or compensatory selection of new residues after accept-
ing slightly deleterious mutations occur more frequently in less
abundant proteins that have more neutral selection coefficients.
In contrast, these dynamics are less important near the steeper fit-
ness optimum of the more optimized, abundant proteins that
pose larger costs to the proteome. The relative importance of
these two mechanisms depends on the historic effective popula-
tion size and the population bottlenecks on long evolutionary
timescales. One can model such effects by explicit evolution sim-
ulations but this is beyond the scope of the current study.

For comparison to experiment, it is more convenient to use the
fitness function:

F = 1−
∑

i AiNaai (Csi + Cdi )ln 2/t1/2i
dEt/dt

(16)

where t½i is the experimental in vivo half-live of the protein i, which
accounts for real cellular life-times distinct from biophysical protein
stability, e.g. effects of the N-end rule (Varshavsky, 1997; Mogk
et al., 2007; Gibbs et al., 2014). All the properties in Eq. (16) are
either observable or deducible from the protein’s sequence.

Scaling relations of proteome costs: mass, metabolism,
and eukaryote evolution

The examples given have centered on yeast as model cell, with
∑Ai = 108. Eukaryote cells vary greatly in size, the total copy
number of proteins, and metabolic respiration rates, and

prokaryotes typically feature smaller volumes, protein copy num-
bers and lower metabolic total respiration rates by 2–3 orders of
magnitude (Milo, 2013). The question then emerges how these
orders-of-magnitude differences affect the proteome turnover
and the associated effects described above. Proteins are degraded
differently due to specific degrons of their sequences, but the
overall rate of protein turnover typically scales with the general
activity of the proteasome (except for those proteins that are
not degraded by the proteasome). Accordingly, a scale factor of
proteasome activity α (Eq. (6)), as modulated by proteasome
inhibitors, will be an important control parameter in experimen-
tal tests of the theory as well as in efforts to understand protein
turnover in relation to cellular energy costs, cell viability, and fit-
ness. Although long-term proteasome inhibition is toxic, mild
instantaneous proteasome inhibition should prove a useful tool
in testing some of the mechanisms described here.

Additional scaling relations are relevant to discuss. Notably,
from Eq. (8), any scaling of the metabolic rate by a number a
characteristic of the organism will not affect the selection coeffi-
cient, if the fraction of energy devoted to reproduction is constant,
commonly between 0.1 and 0.7 of total respiration costs (Harold,
1987; Hawkins, 1991), because the advantage of the mutation
with lowered maintenance costs can be considered a perturbation:

si(scaled)(M) = adEm/dt(WT)− adEm/dt(M)
adEt/dt(WT)− adEm/dt(WT)

= si(M) (17)

This relation requires comparison of the mutant and wild-type
proteins under the same growth conditions.

Based on cell volume and protein copy measurements and
associated calculations (Milo, 2013), and using the assumption
that a typical protein volume is 10 000 Å3, proteins take up
1–4% of the cell volume of any cell and more importantly, regard-
less of the cell type, across prokaryotes and eukaryotes, including
human cells. From this, we conclude that the total protein copy
number Ai scales approximately linearly with cell volume. In con-
trast, the basal specific metabolic rate of both cells and whole
organisms tends to scale with M3/4, rather than M (Kleiber’s
law) (Kleiber, 1932, 1947; Savage et al., 2007). Size, all-else-being
equal, lowers the specific surface area of the organism and thereby
increases metabolic efficiency by reducing the mass-weighted
thermodynamic force required to maintain the non-equilibrium
boundary (reduced heat dispersion per unit of biomass). Size
also potentially minimizes average, mass-specific chemical and
electric signaling distances within the organism. Such scaling
laws of mass and volume and their implication for bioenergetic
costs were discussed by Lynch and Marinov (2015).

For these reasons, the specific resting metabolism decreases
with volume or mass, and equally, with total protein copy number
of the organism. Accordingly, size carries an evolutionary advan-
tage of the order of the mass-specific metabolic rate, as explained
in detail by Brown and co-worker who developed the framework
relating mass to fitness (Brown et al., 1993). The advantage is of
the order of:

s(M) = F(M)
F(WT)

− 1 = dEr/dt(M)
dEr/dt(WT)

− 1

= −aM3/4(M)
−aM3/4(WT)

− 1 � M(M)
M(WT)

( )3/4

−1

(18)

However, as pointed out by Brown et al. (1993) whereas eco-
logical life-history variables (e.g. foraging efficiency) favor large
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organisms, the reproduction rate favors smaller organisms and
scales with M−1/4. Thus, organism size has an evolutionary opti-
mum with respect to both energy and time, which is distinct for
different taxa due to the different life-history variables and asso-
ciated scaling parameters (Brown et al., 1993). A yeast mutant
with a larger size of 1%, all-else being equal, would thus be
predicted by PCM theory to have a selective advantage of
(1.01/1)3/4 -1 = 0.007 if all the saved energy is spent on reproduc-
tion. This energy is clearly enough to enforce positive selection at
all relevant population sizes from 102 to 107, including early pop-
ulation bottlenecks (Fig. 2).

Combining the ansatz of PCM theory (that fitness scales with
the energy left for reproduction per time unit after subtracting
maintenance costs) with Kleiber’s law leads to several potentially
important explanations for size advantage relevant to emergence
of life in general and eukaryotes in particular. A central weakness
of endosymbiont theory, not mentioned by the otherwise impor-
tant reviews on this topic (Gray et al., 1999; Lane 2011), is the
problem of evolutionary advantage immediately after the symbio-
sis event. The argument goes as follows: at the very beginning, the
actual process of symbiosis must have had immediate costs of
intrusion and aligning the cellular machineries, and must thus
also have provided immediate selective advantages in competition
will non-symbiotic cells. According to PCM theory, fitness scales
with energy left for reproduction, and thus the immediate total
maintenance costs must have reduced.

Imagine a simple doubling of the cell size by a unification event.
All else being equal, the new organism would carry the double
amount of proteins, the double volume, the double mass, and
would require the double amount of energy to reproduce these
cell constituents, giving the same fitness as the competing non-
symbiont cells, but then reduced by the costs of the endosymbiosis
event itself. However, the immediate advantage offered by reducing
the specific surface area of the ancestral eukaryote cell would reduce
the basal metabolic maintenance rate. The saved energy could then
be immediately converted into a larger fraction of the total energy
budget being devoted to the proteome of larger cells and organisms,
thus compensating the cost of the actual symbiosis event. If this is
correct, endosymbiosis will be successful only when and if the
mass-specific metabolic rate saved by mass increase outweighs
the energy costs of the symbiosis event itself.

Evidence for PCM during evolution

Some support for the theory of proteome cost minimization is
summarized in Table 3. The following section discusses some of
these facts briefly.

Major evolutionary events mainly represented bioenergetic
advantages

During the longest and earliest timescales where much of the pri-
mary cellular biochemistry evolved, unicellular growth conditions
provided the context for the evolutionary innovation both in
terms of respiration and photosynthesis (Blankenship, 1992;
Sousa et al., 2013). Most of the important biochemical pathways
being at least qualitatively evolved at the point when eukaryotes
had formed (Nisbet and Sleep, 2001; McGuinness, 2010). Early
qualitative innovations such as the electron transport chain,
fatty acid and amino acid metabolism, and photosynthesis indi-
cate the primary importance of obtaining and maintaining the
bioenergy production (Sousa et al., 2013), a tendency further

documented by the rise of eukaryotes whose advantages largely
related to energy efficiency by outsourcing and optimizing energy
production as argued above and elsewhere (Margulis, 1968, 1975;
Gray et al., 1999; Lane 2011).

Energy surplus determines growth of microorganisms

For unicellular organisms, the cell cycle determining the decision
to grow (and thus contribute to population fitness) is largely
based on an assessment of available energy (Cai and Tu 2012):
thus, budding yeast grows during the G1 phase until the nutrient
level determines whether it commits to reproduction and enters
the DNA biosynthesis S phase and subsequent mitosis, or if cell
growth is arrested due to low resources (Cai and Tu 2012).

Protein turnover is very expensive

Protein turnover is typically the most or second-most expensive
process in cells: At one extreme, protein synthesis may account
for 3/4 of all energy spent in growing microorganisms (Harold,
1987). In humans, protein synthesis typically requires 20 kJ kg−1

body mass, or 20% of the basal metabolic rate to produce typically
300 g of protein per day (Reeds et al., 1985; Waterlow, 1995). This
number does not include regulation and degradation costs, RNA
synthesis, and uncertain costs relating to nitrogen metabolism,
reuse, transport, or synthesis of amino acids, which together are
substantial (Reeds et al., 1985; Hawkins, 1991). In mammals, pro-
tein degradation may cost 10–20% of total energy spent
(Hawkins, 1991; Fraser and Rogers, 2007). Ubiquitin requires
ATP to bind proteins targeted for degradation, and the lysosome
and calcium-dependent proteases require ATP for active calcium
and proton transport (Hawkins, 1991). These various features
render protein turnover (synthesis and degradation) the most or
second-most (next to ion pumping) energy-consuming process
even in mammals.

Life uses cheap amino acids

The synthetic costs of the 20 amino acids vary roughly from the
order of ∼10 (Glu, Ala, Gly, etc.) to ∼75 (Trp) phosphate bonds
(Akashi and Gojobori, 2002; Heizer et al., 2011). Biosynthetic
costs explain some of the amino acid bias in sequences not due
to translational efficiency and other effects (Craig and Weber,
1998; Akashi and Gojobori, 2002; Akashi, 2003) and can affect
the rate of evolution (Barton et al., 2010). Selection toward cheaper
amino acids or smaller proteins can reduce total energy expendi-
ture substantially, by an estimated 0.1% per ∼4 expensive amino
acids (Akashi and Gojobori, 2002). A general evolutionary prefer-
ence for synthetically cheap amino acids was first suggested (for
aromatic residues in Escherichia coli) (Lobry and Gautier, 1994)
and later demonstrated (Akashi and Gojobori, 2002) and con-
firmed by others (Wagner, 2005; Heizer et al., 2006) in prokaryotes,
where cheaper amino acids tend to be used more in highly
expressed proteins across functional classes, with similar observa-
tions seen for yeast (Raiford et al., 2008). These findings have
been confirmed in many cases (Garat and Musto, 2000; Kahali
et al., 2007; Raiford et al., 2008; Heizer et al., 2011) including mam-
mals (Heizer et al., 2011). Biosynthetic cost minimization as an
evolutionary driver was identified first in certain bacteria (Akashi
and Gojobori, 2002; Schaber et al., 2005) and later in all domains
of life (Swire, 2007). Cys is apparently not significantly selected
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for cost (Swire, 2007), perhaps relating to its unique involvement in
highly conserved cystine bridges and metal sites.

Prokaryote streamlining

The fact that prokaryotes have maintained their general morphol-
ogy until today whereas Eukarya is represented by rich morpho-
logical diversity reflects the existence of some selection pressure

that kept prokaryotes simple but afforded major degrees of free-
dom to Eukarya. The well-known intense streamlining of the
small efficient prokaryote genomes has led to the formulation
of the so-called streamlining theory of microbial evolution
(Lynch, 2006; Giovannoni et al., 2014), which argues that stream-
lining toward small efficient genomes have been an ongoing selec-
tion pressure of prokaryote evolution. Fold structures are the
phenotype ultimately selected upon, and structure-based

Table 3. Events and facts supporting the PCM theory

Observation Interpretation

Protein turnover is very expensive, in particular in growing microorganisms The cost of handling the proteome is the most or second-most costly process
in many cells (Reeds et al., 1985; Waterlow 1995; Fraser and Rogers 2007),
and can dominate total energy costs in growing microorganisms (Harold
1987)

Energy surplus determines growth of microorganisms In the yeast cell cycle, available energy determines whether the cell commits
to reproduction or if growth is arrested (Cai and Tu 2012)

All kingdoms of life favor synthetically cheap amino acids (Garat and Musto
2000; Akashi and Gojobori 2002; Schaber et al., 2005; Kahali et al., 2007;
Swire 2007; Raiford et al., 2008; Heizer et al., 2011)

Cheaper amino acids confer a selective advantage by lowering overall protein
synthesis costs of the organism

Cheap amino acids are more used in highly expressed proteins (Ikemura
1985; Seligmann 2003; Wagner 2005; Swire 2007)

Abundant proteins contribute more to total fitness, making cheaper amino
acids are particularly advantageous, supporting a relation to both
abundance and protein-specific costs

Extracellular proteins use cheaper amino acids (Smith and Chapman 2010) Extracellular proteins are not recycled and thus, their net amino acid costs
are larger per protein copy, this seems to have been selected against by
favoring cheap extracellular amino acid use

Highly expressed proteins tend to be smaller (Ikemura 1985; Bloom et al.,
2006a)

Seen in 27 of 31 functional categories of yeast, with 12 classes significant
(Ikemura 1985; Bloom et al., 2006a). Length is inversely related to gel-derived
protein abundance (Futcher et al., 1999)

Cheap amino acids are used in large proteins. (Ikemura 1985; Seligmann
2003)

All-else-being-equal, larger proteins constitute larger turnover costs
(weighted by their copy numbers) and thus are more relevant for overall
PCM.

Large proteins tend to be more stable Large proteins tend to be more stable (significant but with large variation)
(Sawle and Ghosh 2011)

Streamlining theory (the theory that selection favors minimal cell
complexity) (Giovannoni et al., 2014)

The intense streamlining of prokaryote genomes (Lynch 2006; Giovannoni
et al., 2014) reflects selection pressure either via energy, time, or both, and is
thus explained by PCM theory

Parasites feature reductive evolution on biosynthesis and metabolism
(Loftus et al., 2005)

Parasites mainly get their energy and nutrients from the host and thus can
increase fitness by adaptive loss of biosynthetic and metabolic pathways

Genes with less intronic DNA more highly expressed (Urrutia and Hurst
2003)

Less introns probably reduce the cost of protein translation

Protein synthesis efficiency affects the age-dependent growth of blue
mussels (Hawkins et al., 1986)

Genetic differences in protein turnover efficiency contribute to fitness in
some organisms

Misfolded proteins can reduce yeast fitness/growth by 3.2%
(Geiler-Samerotte et al., 2011)

Misfolded proteins impose a cost on the proteome in proportion to the
steady state level of misfolded copies and their turnover rate (Eq. (9))

The endosymbiosis leading to eukaryotes was an energy optimization event
(Margulis 1975; Lane 2011)

The specialized energy production in mitochondria and the associated
genomic asymmetry gave rise to enormous expansions and innovations
typical of Eukarya (Lane 2011)

Overflow metabolism (Warburg effect in cancer cells) (Basan et al., 2015) The shift in selection pressure from time to energy explains overflow
metabolism, because fermentation is faster but respiration is cheaper

Cancer cells use cheaper amino acids (Zhang et al., 2018) Cancer cells use ATP-wise cheap amino acids during very fast growth,
consistent with an advantage of minimizing proteome energy costs

Synthesis, not toxicity, explains evolution rates of overexpressed proteins
(Plata et al., 2010)

It is widely assumed that misfolded proteins are toxic by a specific mode of
action. Plata et al. showed that turnover costs are more important for E. coli
cell fate than toxicity at least for the studied proteins

Sickle-cell disease patients display doubling of protein turnover and 20%
increase in resting metabolism (Badaloo et al., 1989)

Mutations in hemoglobin lead to dysfunctional, instable proteins that are
compensated by enhanced turnover and synthesis. The numbers suggest
that 20% of the normal human metabolic rate is spent on protein turnover,
fully consistent with consensus in the field (Hawkins 1991; Waterlow 1995)
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phylogeny implies that ancestral organisms can have been quite
complex, but then later lost some of this complexity (Kurland
and Harish, 2015; Harish and Kurland, 2017). This distinction
between sequence and phenotype (fold structure) is also central
to the debate on two versus three kingdoms of life (Mayr, 1998;
Woese, 1998; Kurland and Harish, 2015). Streamlining can result
from both selection pressures on time, energy, and space and fits
the predictions of PCM theory, as discussed further below.

Highly expressed proteins are more streamlined

Highly expressed genes tend to code for smaller proteins (Jansen
and Gerstein, 2000) with less introns (Urrutia and Hurst, 2003),
in support of selection pressure toward minimizing proteome
handling costs. Selection against mistranslation can also be under-
stood as selection against biosynthetic cost because translational
efficiency is effectively a way to minimize the cost of expensive
‘proofreading’ and other machinery operating on mistranslated
gene products (Ikemura, 1985). Additional support for the selec-
tion on highly abundant proteins directly relating to turnover
costs is the well-known relationship between expression levels
and protein half-life (Belle et al., 2006).

Unstable proteins reduce cell growth

Support for the PCM theory also comes from studies that com-
pare the biophysical properties of overexpressed wild-type and
mutant proteins directly. Destabilizing mutants of lacZ in E. coli
reduce cell growth to a similar extent as wild-type protein
expressed at the same level, arguing for quantity (expression levels
subject to turnover) as the cause of toxicity rather than qualitative
features of the protein variants (Plata et al., 2010). An implication
of this is that reduced cell viability in assays of overexpressed mis-
folding proteins, often used as models of neurodegenerative dis-
ease, may in fact reflect energy deficits as described by PCM
theory. If so, misfolded proteins are generally not toxic by a spe-
cific mode of action (such as membrane pore formation or seed-
ing of misfolding leading to loss of function) but rather because of
the ATP costs (Kepp, 2019).

Trading function for cost

Classical Darwinian evolution considers the struggle and selection
for optimal function the primary mode of evolution (Richmond,
1970; Hurst, 2009). This aspect of Darwinism has dominated bio-
chemical views of enzymes as perfectly optimized proficient cata-
lysts that accelerate chemical reactions by orders of magnitude,
implying that evolution strives toward optimal function per se,
including maximal substrate turnover of enzymes (Radzicka and
Wolfenden, 1995; Cannon et al., 1996; Zhang and Houk, 2005).
However, proteins are also subject to non-function selection pres-
sures that are distinct from, and sometimes in conflict with, opti-
mality of function (Hurst and Smith, 1999; Bloom and Adami,
2003; 2004; Drummond et al., 2005; Lobkovsky et al., 2010;
Wylie and Shakhnovich, 2011). Indeed, actual comparison of
enzyme kinetic parameters shows that many enzymes are dis-
tinctly suboptimal, most likely because of evolutionary and bio-
physical constraints (Bar-Even et al., 2011).

A standard view is that proteins have evolved to use their excess
fold-free energy to optimize the active sites for function, the most
notable example being pre-organized active sites with electrostatic
fields favoring the free energy of the transition states, to increase

kcat/KM (Cannon et al., 1996; Warshel, 1998; Adamczyk et al.,
2011; Morgenstern et al., 2017; Fuller et al., 2019). Although not
directly pointed out by Warshel and co-workers, this mechanism
contributes to making proteins marginally stable because,
all-else-being equal, any potential excess fold-free energy has been
diverted into optimizing the electrostatic field of the folded structure
to reduce the transition state’s free energy and thereby increase cat-
alytic proficiency. The mechanism also largely explains the widely
observed stability-function trade-offs in protein engineering
(Tokuriki et al., 2008). Correspondingly, in the laboratory, without
many biological constraints, function of a high-stability starting pro-
teinmay be optimized beyond the level seen in thewild (Bloom et al.,
2006b; Tokuriki and Tawfik, 2009). This is particularly relevant in
the context of ‘directed evolution’, i.e. the intended human evolution
of new improved protein mutants employing yeast cells with short
generation times in static environments where selection pressure
can be effectively controlled (Francis andHansche, 1972; Hall 1981).

PCM theory argues that even functional proficiency often evolved
conditionally on cost. To appreciate this, we consider the require-
ment of a certain total substrate turnover of each enzyme per time
unit to maintain homeostasis. The proficiency of function is for
enzymes typically defined by kcat, measuring how many substrate
molecules convert into product per time unit per enzyme molecule.
At steady-state, both themaximum turnover (Vmax) and the turnover
at low substrate concentration are proportional to the total enzyme
concentration [E] and kcat (Northrop, 1998; English et al., 2005).

Now consider a typical arising mutation in an enzyme i required
to make a product at a certain rate, i.e. dPi/dt. Because the protein is
evolutionarily optimized (but not necessarily optimal), mutations
will tend on average to be hypomorphic and reduce the turnover
constant kcat,i but with a broad scatter and many nearly neutral
effects with a random chance of fixation. If the mutation reduces
kcat,i substantially, e.g. by modifying the active site, the substrate
turnover will be greatly reduced, and the organism will need to
increase the local enzyme concentration [E] by expressing more
enzyme per time unit to maintain a comparable substrate turnover
(compensatory expression), thereby increasing Ai. More specifi-
cally, the rate of product formed by enzyme i under Michaelis–
Menten kinetics is (Cannon et al., 1996; Northrop, 1998)

dPi
dt

= Ai kcat,i
[S]

KM,i + [S]
(19)

Equation (19) represents the standard equation multiplied on
both sides by the cell volume to convert from concentrations to
absolute copy numbers. For simplicity, we can ignore the last
term and assume zero-order kinetics in [S ], which represent
selection of the enzyme for maximum rate at saturated substrate
concentration when [S ] is much larger than the Michaelis cons-
tant KM,i. The cost of maintaining the enzyme is

dEm,i

dt
= Aik

′
diNaai (Csi + Cdi ) (20)

Accordingly, the specific cell-wide cost of maintaining steady
state produced concentration of Pi is

dEm,i

dPi
= Aik

′
diNaai (Csi + Cdi )

Aikcat,i
= k′di

kcat,i
Naai (Csi + Cdi ) (21)

If measured in concentrations instead, the cost scales with the
volume of the cell Vcell to which the steady state applies. We have
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ignored the costs associated with producing the substrate and
transporting the substrate and products, which can easily be
included into the model.

Equation (21) predicts that the ratio of the two time constants
for turnover of the enzyme and turnover of the substrate together
define the cost of producing Pi at steady state. The two time con-
stants are in units of s−1, and Naai (Csi + Cdi ) is of the order of
10−15 J for a typical protein. Considering again a typical arising
mutation, even if k′di is not increased (which it typically is), a
reduction in kcat,i of a typical hypomorphic mutation will require
compensatory expression of the enzyme, increasing Ai to main-
tain the rate of production of Pi, Eq. (19). This increase in Ai

will then increase the total cost of obtaining the product with
the same factor (Eq. (20)). Equation (21) summarizes this cost–
function relationship because kcat,i and Ai are inversely related if
homeostasis in Pi is required. If compensatory expression is
100%, a ten-fold reduction in the enzyme’s kcat,i requires a
10-fold increase in the enzyme’s expression, and the specific
and total costs of producing Pi increases 10-fold.

Accordingly, even mutations that only impair function also
increase the proteome costs: a 10-fold increase in k′di (loss of
kinetic stability, misfolding) or decrease in kcat,i will have approx-
imately the same 10-fold increase in cellular costs, according to
Eq. (21), ignoring the mutation-induced changes in the amino-
acid synthesis and degradation costs. If required, the assumption
of 100% compensatory expression can easily be modified by a
scale factor between 0 and 1 in the above equations. Evidence
for compensatory expression is well-known, a dramatic example
being homozygous sickle cell disease (Table 3), where dysfunc-
tional, instable hemoglobin mutants cause a doubling of protein
turnover and degradation in patients and a 20% increase in
total resting metabolism (Badaloo et al., 1989). Considerations
of loss and gain of function mutations associated with other dis-
eases may be viewed in this light (Kepp, 2015, 2019).

Because of the above considerations, we expect a function–cost
trade-off acting during evolution of many proteins. We obtain the
important possibility that the main advantage of a mutant may
not be a functional improvement of the protein per se, but a reduc-
tion of its cost per unit of function, in the simplest case the ratio
k′di/kcat,i. Co-optimization of cost versus function is fundamental
to many optimization processes and follows the basic principle
that if several inputs are available at different functionality and
price, the optimal system uses the input whose cost per unit of
function is lowest. Such systems will tend to use less functional
input if its cheaper price outweighs the loss of function. This sug-
gests that at least some of the widely observed inverse relation-
ships between function and stability (Tokuriki et al., 2008;
Bonet et al., 2018; Du et al., 2018) in reality reflect a cost–function
trade-off as summarized by Eq. (21). The laboratory can change
selection pressures drastically away from those in the wild, notably
in the form of ‘directed evolution’ (Francis and Hansche, 1972;
Hall 1981). In nature however, the situation is more complicated,
because the stability affects the proteome costs and thus fitness.
Newly arising mutations may impair both stability and function,
but both have a direct negative fitness effect in terms of cost.

The theory thus predicts that highly abundant proteins,
because they are more cost-selected, are more likely to display
suboptimal functionality, all else being equal (after adjusting for
other correlating variables such as size). The trade-offs will be
habitat- and strategy-dependent, and the preferential use of very
functional but expensive input may be restricted to high-nutrient
habitats and growth media.

Time or energy?

We expect that variations in the habitat’s selection pressure should
affect the proteome function–cost trade-offs. This should be evi-
dent when comparing organisms adapted to different environ-
ments. The most obvious biophysical properties of the habitat are
time, energy, space, and temperature, which all enter directly in
the model, Eq. (12). Selection for time, i.e. ‘survival of the fastest’,
can be considered the default mode, and enters via the central
ansatz of the theory, that ‘fitness is proportional to the energy
per time unit available for reproduction after subtracting mainte-
nance costs’, i.e. Eq. (6): Φ = dEr/dt = dEt/dt− dEm/dt. Fitness
scales inversely with the time step dt required for directing a unit
of surplus energy sufficient to complete a reproductive event.
Temperature enters as a modifier of the protein stability’s role in
the turnover ΔGi/RT. We also note that a model of protein minimi-
zation driven mainly by considering space as a limiting parameter
leads to some of the same consequences as protein cost minimiza-
tion (Brown, 1991). Accordingly, all these biophysical properties
may potentially act as selection pressures.

Reasonably, cells have been optimized to maximize growth
rates by enabling their proteomes to be produced as fast as possi-
ble within the necessary function and stability restrictions.
Translational speed and accuracy imply selection for smaller
and more streamlined genomes, and accuracy mainly reflects
the time–cost trade-off of correcting errors during protein synthe-
sis rather than correcting them later in e.g. a misfolded protein
(Kurland and Ehrenberg, 1984; Drummond et al., 2005). We
can thus reasonably view time as the ‘default mode’ of selection
when energy is plentiful (i.e. survival of the ‘fastest’). If the growth
rate is proportional to the synthesis rate of the proteome, then
large, highly expressed, and slowly folding proteins will be
growth-limiting either at the ribosome or during subsequent fold-
ing by chaperones of the rate-limiting proteins.

To account for both time and energy together, for simplicity
we only consider two processes, one that is energy-limited and
one that is time-limited:

(1) ATP+ cell � Budding cell (G1; S) (22)

(2) Budding cell � 2 cells (G2, M) (23)

In this simple model, if energy is limited, the cell will enter a dor-
mant state and growth rates are controlled by energy efficiency of the
proteome according to PCM theory. If energy is plentiful, growth rates
are limited by the rate of producing the new cell, restricted by the
speed of synthesizing the proteome rather than its cost. Other models
of proteome optimization have emphasized translational speed and
accuracy and minimization of protein size (Ehrenberg and Kurland,
1984; Brown, 1991) due to space restrictions on flux control. One
can also consider analogous microkinetic models such as:

(1) ATP+ R-chain � R-chain-ATP (24)

(2) R-chain-ATP+ aa � R-chain-ATP-aa (25)

Here, the ATP needed for the ribosome (R) to catalyze chain
elongation by an amino acid (aa) must be available to the ribo-
some, and if the concentration of ATP is low, then this step is
rate-limiting the protein synthesis. If energy is plenty, then step
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2, the chain elongation (and subsequent protein folding by e.g.
chaperones) is limiting growth and subject to selection pressure.

It should be clear that both the cell-cycle and microkinetic
model imply that both energy and time can be relevant selection
modes, i.e. survival of the ‘fastest’ (scenario 2) survival of the
‘cheapest’ (scenario 1). One can consider r- and k-strategies as
resulting from specialization toward these regimes.
Experimentally, one may test the two cases via competitive growth
assays with variable space and energy restrictions. Importantly, the
two selection modes (time and energy) lead to several of the same
implications, notably with a selective advantage for streamlining
and particular selection on highly expressed proteins as they may
limit both time and energy costs of growth (Wang et al., 2011).

One recent study that casts light on this is a study of pathways
choices among different sequenced organisms (Du et al., 2018).
The study found that different organisms select specific choices
of precursor pathways based on both metabolic cost and synthetic
efficiency. Cost selection occurs in energy-poor habitats, whereas
in energy-rich habitats, the default selection mode is time. There
are correlations between time and energy advantages. Notably, the
synthesis time of expensive amino acids is all-else-being-equal
long as more phosphate bonds must be recruited during synthesis.
The cost of handling misfolded proteins can limit growth substan-
tially, as seen in a case of ∼3% growth rate reduction in yeast upon
folding-stability-impaired mutants of only one protein (YFP)
(Geiler-Samerotte et al., 2011).

The shift in selection pressure from time to energy can also
explain the important phenomenon of overflow metabolism,
the tendency of using more expensive, but faster fermentation
rather than respiration during growth (Basan et al., 2015).
PCM theory implies that microorganisms shift to fermentation
in rich habitats and growth media, because time is the main
selection pressure, whereas in poorer habitats, respiration
becomes favored and selected upon because energy is restrictive,
although combinations of strategies will probably be common.
The choice between these options depending on energy avail-
ability could be relevant to many growth assays, but perhaps
also to the Warburg effect of cancer cells (Basan et al., 2015).
Cancer cells are remarkable by being under selection both for
time and space in competition with each other against the selec-
tion pressure of the body’s immune system. Cancer cells tend to
use cheaper amino acids (Zhang et al., 2018), in accordance with
PCM theory, but when energy is widely available, growth-
limiting space and time restrictions would favor the Warburg
effect over oxidative phosphorylation, although other contribut-
ing effects such as mutation impacts and oxygen availability are
relevant as well.

Temperature, thermostable proteins,
and thermophilic organisms

As mentioned above, the habitat temperature also imposes a selec-
tion pressure on evolution according to the PCM theory, because
it directly modifies protein stability ΔGi/RT and thereby, the fit-
ness function, Eq. (11). To appreciate this, we used a sign conven-
tion of negative ΔGi for a stable protein, and the ΔGi is the
optimal stability of the protein at its temperature of operation
(sometimes called T*), typically reflecting to some extent the
organism’s experienced extrema temperatures in the relevant hab-
itat (Robertson and Murphy, 1997). The protein has been opti-
mized to display its maximal stability at this T*, with ΔGi

typically harmonic in the temperature, and increasing or

decreasing the temperature away from T* will thus increase the
number of misfolded proteins Ui and increase the associated turn-
over costs, thereby reducing fitness, Eq. (11) (Robertson and
Murphy, 1997).

Using the theory, we can better understand adaptation of pro-
teomes to hot or cold environments (thermophiles and psychro-
philes, respectively) (Li et al., 2005; Mozo-Villiarías and Querol,
2006; Luke et al., 2007; Fu et al., 2010). Adaptations to a warmer
habitat is largely expected to be a question of optimizing the pro-
teome’s copy-number-weighted median protein T* (the most rep-
resentative T* of the proteome of the cell) toward the T of the
habitat, to minimize the average copy number of misfolded pro-
tein copies in the cell at any given time, again to minimize prote-
ome costs and maximize energy available for reproduction. Many
studies of thermophilic proteins and thermophilic adaptation may
be seen in this light, without going into further details, as this is a
large and complex topic (Tekaia et al., 2002; Sawle and Ghosh,
2011; Venev and Zeldovich, 2018), but the essential implications
should be clear. In particular, thermophilic organisms are pre-
dicted to adjust protein thermostability mainly for the most abun-
dant and quickly turned-over proteins that pose the largest
economical cost to the proteome.

PCM, aging, and neurodegenerative diseases

Proteome cost minimization has been argued to explain a sub-
stantial part of the evolution on longer evolutionary timescales,
producing clear biases in the use of amino acids and explaining
the E-R anti-correlation by slowing the probability of fixating
new mutations in abundant, expensive proteins, and giving
rise to important cost–function trade-offs. The evolution that
shaped these relations mainly occurred in single-cell organisms,
and it is thus of interest to consider whether the theory has impli-
cations also for evolution of higher organisms and in particular
the evolution of aging.

A note is required first on intrinsically disordered proteins
(IDPs), which make up a substantial fraction of all proteins in a
typical cell. IDPs are disordered as part of their natural function,
which can be expected to require structural plasticity or specific
conformational changes as the local environment changes, or
upon interaction with binding partners (Uversky et al., 2008).
The required disorder may lead to particular sensitivity and
potential elevated cost of turnover. The common involvement
of IDPs in protein misfolding diseases hints to the importance
of proteome maintenance, which we argue should be counted
in bioenergy units (Kepp, 2019).

All higher organisms use oxidative phosphorylation as the
most effective energy-producing process, using the O2 of the plan-
et’s atmosphere produced by the photosynthetic organisms as pri-
mary electron acceptor. The free radical theory of aging argues
that aging arises from the incurred damage due to the activity
of reducing O2 to water, as the radical side products of the respi-
ratory chain leads to a consistent mutagenic pressure that needs to
be countered by DNA repair and antioxidant defenses (Speakman
et al., 2002; Harman, 2003).

Different higher organisms have evolved different trade-offs
between life history variables relating mainly to the generation
time (Kirkwood and Rose, 1991; Shanley and Kirkwood, 2000;
Kirkwood, 2011). Shorter lifespan implies specialization toward
shorter generation time, which again implies less energy
invested in maintenance of the proteome. Based on the discus-
sion above, this specialization emphasizes time over energy.
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Each strategy probably involves an aging program to ‘dispose
the soma’ after reproduction to make space for the next
generation, although this remains debated (Westendorp and
Kirkwood, 1998; Speakman et al., 2002). Aging may thus be a
direct consequence of the reproductive strategy. Some organisms
specializing toward long lifespan (i.e. r- versus k-strategists) also
diversify toward complex lifestyles with capacity for technology
transfer, e.g. cetaceans and apes. Compared to primates, rodents
on average have shorter generation times, lifespans, larger litter
size, and have traded lifespan for fecundity (Speakman et al.,
2002; Wensink et al., 2012). In long-living organisms, proteome
misfolding may cause death, perhaps because PCM can no lon-
ger be afforded beyond what was evolutionarily beneficial. It is
reasonable to argue that the aging program of long-living mam-
mals largely reflect the (active or passive) giving up of the main-
tenance of the proteostatic machinery to enable the rise of the
next generation (Taylor and Dillin, 2011; Hipkiss, 2017).

This discussion is well illustrated by superoxide dismutase 1
(SOD1). SOD1 is one of the most abundant proteins in primates
and Ai can reach 100 000 copies per cell (Dasmeh and Kepp,
2017), it is the central antioxidant defense protein of the mito-
chondria thus directly linking energy and aging (Perry et al.,
2010), it is one of the few proteins known to directly extend life-
span upon induction (Tolmasoff et al., 1980; Landis and Tower,
2005), and one of the few genes of great apes known to have
undergone non-synonymous positive selection (Fukuhara
et al., 2002; Dasmeh and Kepp, 2017). Deposits of misfolded
SOD1 is a hallmark of age-triggered amyotrophic lateral sclero-
sis (Valentine et al., 2005). The tendency toward aggregation
and misfolding of natural human SOD1 variants correlates
with their pathogenicity (Lindberg et al., 2005; Wang et al.,
2008; Kepp 2015), and wild-type overexpression by itself is
enough to trigger disease (Wang et al., 2009). Recent amino
acid substitutions in SOD1 of great apes correlate with longer
life span and tend to increase the net charge and stability of
SOD1, thus increasing the thermodynamic and kinetic stability
of the protein (kd and ΔGi) (Dasmeh and Kepp, 2017). Via its
abundance and functional importance, any impairment of
SOD1 either in terms of function or stability will produce com-
paratively very large PCM costs. The combination of the features
summarized above strongly argues for a relationship between
PCM, evolution of aging, and age-triggered neurodegenerative
diseases.

According to the PCM theory, neurodegenerative diseases are
caused by the increased energy spent on maintaining the prote-
ome of old humans, which leaves less energy available for neuron
and motor neuron function. Protein turnover and neuron signal-
ing costs perhaps 20–25% and 50% of the brains energy budget
(Hawkins, 1991; Attwell and Laughlin, 2001; Raichle and
Gusnard, 2002), respectively, and as age advances, the supply of
energy may no longer satisfy the increasing maintenance costs
of the proteome (Kepp, 2019). Familial inherited mutations that
tend to produce more aggregation-prone protein will increase
turnover costs per time units according to PCM theory and will
accordingly also accelerate the time at which available energy
no longer satisfies the needs of synaptic transmission, leading to
earlier clinical age of onset of disease (Kepp, 2019).

Conclusions

Darwin’s theory of evolution emphasized ‘survival of the fittest’,
where the ‘fit’ represented optimal functional proficiency. This

concept has dominated the thinking of the field, including the
biochemical view of enzymes as optimally proficient for their cat-
alytic reaction (Radzicka and Wolfenden, 1995; Zhang and Houk,
2005). Proteomic data have shown that most effects on the speed
of evolution act via non-functional, universal selection pressures
(Pál et al., 2001, 2006; Drummond et al., 2006). The main out-
standing challenge in evolution is arguably to provide a predictive
quantitative theory that captures these universal selection pres-
sures and predicts real evolutionary histories, including the rela-
tive magnitude of drift and selection in specific cases, the
nature of the selection pressures, and how it acts upon a popula-
tion via the individual, the cell, the protein, and the gene.

This paper has reviewed the theory that a universal selection
pressure is minimization of the ATP cost of an organism’s prote-
ome (‘survival of the cheapest’). The magnitude and variations of
the fundamental parameters show that most of the proteome cost
selection acts via the ratio Ai/t½, i.e. the abundance to half-life
ratio of the protein. This selection combines with the selection
for functional proficiency, typically in a cost–function trade-off
between being ‘fit’ and ‘cheap’. The data in Table 2 suggest that
cost selection occurred both during the earliest period of prokary-
ote evolution, during the rise of eukaryotes, particularly explain-
ing the immediate advantages of the larger eukaryote cells due
to reduced mass-specific metabolic costs, and during the long
periods of relatively uneventful nearly neutral evolution that
maintains nearly constant molecular clocks of many phylogenies.

The theory has several implications e.g. for stability-function
and time-energy trade-offs, thermophile evolution, and human
neurodegenerative diseases. One implication of the theory is
that nature has not generally evolved the most proficient enzymes,
in terms of turnover numbers (kcat/KM), but the lowest cost of sub-
strate turnover, as given by the ratio of Eq. (21). The theory thus
predicts that most proteins may be engineered to obtain higher
functional proficiency but that this will typically come with an
associated increased total cost of the protein pool (e.g. via lower
stability), which may however be less of an issue in the laboratory.
The breakdown of this cost–function trade-off may be a central
reason why directed evolution and protein-engineering strategies
that aim to enhance protein performance even for natural func-
tions are successful at all.
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