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THE NEAT EMBEDDING PROBLEM FOR ALGEBRAS OTHER THAN
CYLINDRIC ALGEBRAS AND FOR INFINITE DIMENSIONS

ROBIN HIRSCH AND TAREK SAYED AHMED

Abstract. Hirsch andHodkinson proved, for 3 ≤ m < � and any k < �, that the class SNrmCAm+k+1
is strictly contained in SNrmCAm+k and if k ≥ 1 then the former class cannot be defined by any finite set
of first-order formulas, within the latter class. We generalize this result to the following algebras of m-ary
relations for which the neat reduct operatorNrm is meaningful: polyadic algebras with or without equality
and substitution algebras. We also generalize this result to allow the case where m is an infinite ordinal,
using quasipolyadic algebras in place of polyadic algebras (with or without equality).

Cylindric algebra is an algebraic correspondent of first-order logic with no con-
stants or functions, more specifically n-dimensional cylindric algebra, CAn, is an
algebraic correspondent of first-order logic restricted to n indexed variables, for
finite n. An algebra inCAn is a boolean algebra together with a cylindrifier ci , which
acts as a unary operator and corresponds to existential quantification of the ith vari-
able, and a diagonaldij element corresponding to the equality of the ith and jth vari-
able, for i, j < n. Form < n, the neat reductNrmC of a C ∈ CAn is them-dimensional
cylindric algebra obtained by restricting to those elements c ∈ C such that ci c = c
for m ≤ i < n, and restricting to those cylindrifiers and diagonals indexed by m. If
K ⊆ CAn we write NrmK for {NrmC : C ∈ K}. It is not the case that every algebra
in CAm is the neat reduct of an algebra in CAn, nor need it even be a subalgebra of
a neat reduct of an algebra in CAn. Furthermore, SNrmCAm+k+1 �= SNrmCAm+k ,
whenever 3 ≤ m < � and k < � [10]. A consequence of this is that there are
m-variable formulas that can be proved with m + k + 1-variables, but not with
m + k-variables, in a certain, fairly typical, proof system.
Other algebras may be defined corresponding to restrictions or extensions of the
n-variable first-order logic described above. Because our focus is on neat reducts,
we will only consider n-dimensional algebras where the cylindrifiers ci are included,
or at least are definable, within the set of operators of the algebra. Without that
restriction it would not be possible to define a neat reduct and our algebras would
correspond to first-order logic without quantifiers, we do not consider that case
here. But we might choose to drop the diagonals from our signature (corresponding
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NEAT EMBEDDING PROBLEM FOR ALGEBRAS AND FOR INFINITE DIMENSIONS 209

to first-order logic without equality), or we may add permutation operators, cor-
responding to permutations of the variables in first-order logic. By generalizing
the results about neat reducts of m-dimensional cylindric algebras to other m-
dimensional algebras, such as polyadic algebras with or without equality, diagonal
free cylindric algebras and substitution algebras, one may deduce that there are
m-variable formulas provable withm+k+1-variables but not withm+k-variables
in logical proof systems similar to the one in [9], but with additional inference rules
(corresponding to polyadic equality algebras (PEA)) or fewer weaker inference
rules (corresponding to substitution algebras (Sc)).

§1. Preliminaries. For cardinalsm, n wewrite mn for the set ofmaps fromm to n.
IfU is an ultrafilter over ℘(I ) and ifAi is some structure (for i ∈ I ) we write either
Πi∈IAi /U orΠi/UAi for the ultraproduct of theAi overU . Fix some ordinal n ≥ 2.
For i, j < n the replacement [i/j] is the map that is like the identity on n except
that i is mapped to j and the transposition [i, j] is the like the identity on n except
that i is swapped with j. A map � : n → n is finitary if the set {i < n : �(i) �= i} is
finite, so if n is finite then all maps n → n are finitary. It is known, and not hard to
show, that any finitary permutation is a product of transpositions and any finitary
noninjective map is a product of replacements.
The standard reference for all the classes of algebras mentioned previously is
[5]. Each class in {Dfn,Scn,CAn,PAn,PEAn,QPAn,QPEAn} consists of boolean
algebras with extra operators, as shown in Figure 1, where dij is a nullary operator
(constant), ci , s� , s[i/j] and s[i,j] are unary operators, for i, j < n, � : n → n.
For finite n, polyadic algebras are the same as quasi-polyadic algebra and for the
infinite dimensional case we restrict our attention to quasi-polyadic algebras in
QPAn,QPEAn. Each class is defined by a finite set of equation schema. Existing
in a somewhat scattered form in the literature, equations defining Scn,QPAn, and
QPEAn are given in Section 4, Definition 4.1. For CAn we follow the standard
axiomatization given in [4, Definition 1.1.1]. For any operator o of any of these
signatures, we write dim(o) (⊆ n) for the set of dimension ordinals used by o,
e.g., dim(ci) = {i}, dim(s[i/j]) = dim(dij) = {i, j}. An algebra A in QPEAn
has operators that can define any operator of QPAn,CAn, Scn , and Dfn. Thus,
we may obtain the reducts RdK (A) for K ∈ {QPEAn,QPAn,CAn,Scn,Dfn} and
it turns out that the reduct always satisfies the equations defining the relevant

Class Extra operators
Dfn ci : i < n
Scn ci , s[i/j] : i, j < n
CAn ci , dij : i, j < n
PAn ci , s� : i < n, � ∈ nn
PEAn ci , dij , s� : i, j < n, � ∈ nn
QPAn ci , s[i/j], s[i,j] : i, j < n
QPEAn ci , dij , s[i/j], s[i,j] : i, j < n

Figure 1. Nonboolean operators for the classes.
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class so RdK(A) ∈ K . Similarly from any algebra A in any of the classes QPEAn,
QPAn,CAn,Scn we may obtain the reductRdSc(A) ∈ Scn [2].
Let K ∈ {QPEA,QPA,CA,Sc,Df}, let A ∈ Kn and let 2 ≤ m ≤ n (possibly
infinite ordinals). The reduct tom dimensionsRdm(A) ∈ Km is obtained fromA by
restricting to those operators o such that dim(o) ⊆ m. The neat reduct to m dimen-
sions is the algebra Nrm(A) ∈ Km with universe {a ∈ A : m ≤ i < n → ci a = a}
where all operators o with dim(o) ⊆ m are induced from A (see [4, Definition
2.6.28] for the CA case). More generally, for Γ ⊆ n we write NrΓA for the algebra
whose universe is {a ∈ A : i ∈ n \ Γ → ci a = a} with all the operators o of A
where dim(o) ⊆ Γ. Let A ∈ Km, B ∈ Kn. An injective homomorphism f : A → B
is a neat embedding if the range of f is a subalgebra of Nrm(B). The notions of
neat reducts and neat embeddings have proved useful in analyzing the number of
variables needed in proofs, as well as for proving representability results, via the
so-called neat embedding theorems [1,11,12].
Let m ≤ n be ordinals and let � : m → n be an injection. For any n-dimensional
algebra B (substitution, cylindric, or quasi-polyadic algebra with or without equal-
ity) we define an m-dimensional algebra Rd�(B), with the same universe and
boolean structure as B, where the (ij)th diagonal of Rd�(B) is d�(i)�(j) ∈ B (if
diagonals are included in the signature of the algebra), the ith cylindrifier is c�(i),
the i for j replacement operator is the operator s�(i)

�(j) ofAwhen it is not termdefinable
from the other operations, namely, in the two cases of Sc andQPA (in the presence
of diagonal elements and cylindrifiers these operations are term definable), the ij
transposition operator is s�(i)�(j) if included in the signature, for i, j < m. It is easy to
check, forK ∈ {Df,Sc,CA,QPA,QPEA}, that if B ∈ Kn thenRd�(B) ∈ Km. Also,
for B ∈ Kn and x ∈ B, we define Rlx(B) by ‘restriction to x’, so the universe is the
set of elements of B below x, where the boolean unit is x, boolean zero and sum are
not changed, boolean complementation is relative to x, and the result of applying
any nonboolean operator is obtained by using the operator for B and intersecting
with x. It is not always the case thatRlx(B) is a Kn (we can lose commutativity of
cylindrifiers).
The main question we address in this paper is whether SNrmKn = Km, where
m < n are possibly infinite ordinals and K ∈ {Df,Sc,CA,QPA,QPEA} and, if
not, whether SNrmKn may be defined within Km using only finitely many axioms
(or finitely many axiom schemas, when m is infinite). The case K = Df of diag-
onal free algebra is easily answered: SNrmDfn = Dfm, for 3 ≤ m ≤ n, see
[5, Theorem 5.1.31]. We show that in all the other cases, the answers are negative. In
order to generalize the results of [10] to these other classes of algebra, we define an
m-dimensional polyadic equality type algebra C(m, n, r) where 3 ≤ m ≤ n, r < �
(see Definition 2.2 below). These algebras are based on a relation algebra construc-
tion that first appeared in [6, 7] or see [8, Section 15.2], modified here so that the
elements become n-dimensional rather than two dimensional. Still, although they
are n-dimensional, all of their elements are generated by two dimensional elements.
We will then prove the following theorem.

Theorem 1.1. Let 3 ≤ m ≤ n and r < �.
I. C(m, n, r) ∈ NrmQPEAn,
II. RdScC(m, n, r) �∈ SNrmScn+1,
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III. Πr/UC(m, n, r) is elementarily equivalent to a countable polyadic equality
algebra C ∈ NrmQPEAn+1.

The proof of this theorem is the substantial part of this paper. The proofs are
similar to proofs of corresponding results in [7] but modified for the signatures
considered here and with some further modifications. To prove the first two parts,
the algebras we consider will only have elements generated by two dimensional
elements, however for the third partwewill also consider elements that are essentially
three dimensional (hence we will introduce three dimensional hypernetworks, for
this part only). From this theorem we deduce the following.

Corollary 1.2. Let K ∈ {QPEA,QPA,CA,Sc}, let 3 ≤ m < n < �. Then
SNrmKn+1 is a proper subclass ofSNrmKn which cannot be defined, within SNrmKn+1,
by any finite set of first-order sentences.

Proof. We remarked earlier that for each choice of K and each n, the opera-
tors of Scn are definable by the operators of Kn which are themselves definable
by the operators of QPEAn. Hence, it follows from (I) that RdKC(m, n, r) ∈
NrmKn, from (II) RdKC(m, n, r) �∈ SNrmKn+1, for r < �, and from (III)
RdK(C) ∈ NrmKn+1. Now suppose for contradiction that φ is a sentence defin-
ing SNrmKn within SNrmKn+1. Let U be any nonprincipal ultrafilter over �. Since
RdKC(m, n, r) ∈ NrmKn \ SNrmKn+1, RdK(C(m, n, r)) �|= φ, for each r < �. By
Łoś’s theorem, Πr/U RdKC(m, n, r) |= ¬φ. By elementary equivalence C |= ¬φ,
contradicting (III). �
Wewill prove (I), (II), (III) below, after we have defined the algebras C(m, n, r). For
some time to come we restrict our attention to finite ordinals, which we denote by
m, n . . . , etc.

§2. Main construction. Now we define algebras C(m, n, r) ∈ QPEAm for
3 ≤ m ≤ n < � and any linear order r. These algebras are based on the relation
algebras defined in [6, Section 3].

Definition 2.1. Define a function κ : �×� → � by κ(x, 0) = 0 (all x < �) and
κ(x, y + 1) = 1 + x × κ(x, y)) (all x, y < �). For n, r < � let

�(n, r) = κ((n − 1)r, (n − 1)r) + 1.
All of this is simply to ensure that �(n, r) is sufficiently big compared to n, r for the
proof of nonembeddability to work. The second parameter r < � may be considered
as a finite linear order of length r. We may extend the definition of� to the case where
its second parameter is an arbitrary linear order by letting�(n, r) = � for any infinite
linear order r. For any n < � and any linear order r, let

Bin(n, r) = {Id} ∪ {ak(i, j) : i < n − 1, j ∈ r, k < �(n, r)}
where Id, ak(i, j) are distinct objects indexed by k, i, j. For i < n − 1, j ∈ r,
k < �(n, r) let

a(i,−) = {ak(i, j) : j ∈ r, k < �(n, r))},
a(−, j) = {ak(i, j) : i < n − 1, k < �(n, r)},

ak = {ak(i, j) : i < n − 1, j ∈ r},
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a(i, j) = {ak(i, j) : k < �(n, r)},
a(−, > j) =

⋃
j<j′∈r

a(−, j′),

a(−,≤ j) =
⋃

j′≤j∈r
a(−, j′), and

a =
⋃
i<n−1

a(i,−).

Let 3 ≤ m ≤ n < � and let r be any linear order. Let F (m, n, r) be the set of all
functions f : m ×m → Bin(n, r) such that for all x, y, z < m we have f(x, x) = Id,
f(x, y) = f(y, x), and (f(x, y), f(y, z), f(x, z)) �∈ Forb, where Forb (the forbid-
den triples) is the following set of triples

{(Id, b, c) : b �= c ∈ Bin(n, r)}
∪

{(ak(i, j), ak′ (i, j), ak∗ (i, j′)) : k, k′, k∗ < �(n, r), i < n − 1, j′ ≤ j ∈ r}.
Since the variables x, y, z in the definition of F (m, n, r) are universally quantified,
it actually follows that (f(x, y), f(y, z), f(x, z)) avoids all Peirceans of forbid-
den triples, for f ∈ F (m, n, r), e.g., we cannot have (f(x, y), f(y, z), f(x, z)) =
(b, Id, c) for b �= c since this would entail (f(y, z), f(z, x), f(y, x)) =
(f(y, z), f(x, z), f(x, y)) = (Id, c, b) �∈ Forb, contrary to the definition of Forb.
For any f, g ∈ F (m, n, r) and x, y < m we write f ≡xy g if for all w, z ∈ m \ {x, y}
we havef(w, z) = g(w, z).Wemaywritef ≡x g instead off ≡xx g. For � : m → m
we write (f�) for the function defined by

(f�)(x, y) = f(�(x), �(y)). (1)

Clearly, if f ∈ F (m, n, r) then (f�) ∈ F (m, n, r).
For the next couple of sections we will consider cases where r < � is a finite
linear order. The idea behind these algebras C(m, n, r) ( formalized below) may be
sketched as follows. To prove Theorem 1.1(II) we will assume for contradiction that
RdScC(m, n, r) ⊆ NrC for some C ∈ Scn+1, some finite m, n, r. We will show, by an
inductive proof, that there must be a large set S of distinct elements of C, satisfying
certain inductive assumptions, which we outline next. For each s ∈ S and i, j <
n + 1 there is an element α(s, i, j) ∈ Bin(n, r) obtained from s by cylindrifying all
dimensions in (n+1) \ {i, j}, then using substitutions to replace i, j by 0, 1. We show
that (α(s, i, j), α(s, j, k), α(s, i, k)) �∈ Forb, for all s ∈ S and i, j, k < n + 1. Our
inductive assumptions state, among other things, that cn(s) is constant, for s ∈ S,
and for l < n there are fixed i < n − 1, j < r such that for all s ∈ S we have
α(s, l, n) ≤ a(i, j). This defines two functions I : n → (n − 1), J : n → r such that
α(s, l, n) ≤ a(I (l), J (l)) for all s ∈ S. The rank �(I, J ) of (I, J ) is the sum (over
i < n−1) of the maximum j with I (l) = i, J (l) = j (some l < n) or−1 if there is no
such l . We will prove that there is a set S′ with index functions (I ′, J ′), still relatively
large (large in terms of the number of times we need to repeat the induction step) where
the same induction hypotheses hold but where �(I ′, J ′) > �(I, J ). By repeating this
enough times (more than nr times) we obtain a nonempty set T with index functions
of rank strictly greater than (n − 1)× (r − 1), an impossibility.
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We sketch the induction step. Since I cannot be injective there must be distinct
l1, l2 < n such that I (l1) = I (l2) and J (l1) ≤ J (l2). We may use l1 as a “spare
dimension” (changing the index functions on l will not reduce the rank). Since cn(s)
is constant, we may fix s0 ∈ S so that for each s ∈ S \ {s0} we can pick b ∈ Bin(n, r)
such that s ′ = cl s0 · s[n/l ]cl s · α(b, l, n) is nonzero, using the complete additivity of
the operators. Let S∗ = {s ′ : s ∈ S \ {s0}}, we wish to re-establish the induction
hypotheses for S∗, and many of these are simple to check. But suitable functions I ′, J ′

might not exist because α(s, l, n) ∈ Bin(n, r) \ {Id} might vary as s ranges over
S \ {s0} ( for l ′ �= l < n we can let I ′(l ′) = I (l ′) and J ′(l ′) = J (l ′)). Still, because
there are just (n − 1)r possible values for the i, j indices of α(s, l, n) as s ranges
over S \ s0 there must be a subset S′ ⊆ S∗ with |S′| ≥ |S|−1

nr and where there exist
i < n− 1, j < r such that for all s ∈ S \ {s0} we have α(s, l, n) ≤ a(i, j). Now we let
I ′, J ′ be identical to I, J respectively, except I ′(l) = i, J ′(l) = j. With these index
functions, the required set is S′ and we check all the induction hypotheses. The size of
S′ is at least |S|−1

(n−1)r , still big enough to continue. It remains to show that the rank of
(I ′, J ′) is strictly greater than that of (I, J ). For this, we show that J ′(l) ≥ J (l) for
all l < n. Since (α(s, i, j), α(s, j, k), α(i, k)) �∈ Forb and by the definition of Forb
either rng(I ′) properly extends rng(I ) or there is l < n such that J ′(l) > J (l), hence
�(I ′, J ′) > �(I, J ).

Definition 2.2. The universe of C(m, n, r) is the power set of F (m, n, r) and the
operators are

• the boolean operators+,− are union and set complement,
• the diagonal dxy = {f ∈ F (m, n, r) : f(x, y) = Id},
• the cylindrifier cx(X ) = {f ∈ F (m, n, r) : ∃g ∈ X f ≡x g}, and
• the polyadic s�(X ) = {f ∈ F (m, n, r) : f� ∈ X},
for x, y < m, X ⊆ F (m, n, r) and � : m → m.
Let x, y < m and let b ∈ Bin(n, r). Define

bx,y = {f ∈ F (m, n, r) : f(x, y) = b} ∈ C(m, n, r) (2)

Observe, for any x, y, z < m and 
, �, � ∈ Bin(n, r), that
(u, v,w) ∈ Forb ⇐⇒ ux,y ∩ vy,z ∩ wx,z = ∅, (3)

in particular we will use the case (x, y, z) = (0, 1, 2), later.

Lemma 2.3. For 3 ≤ m, 2 ≤ n, and r < � the algebra C(m, n, r) satisfies all of the
axioms definingQPEAm (seeDefinition 4.1, noting that for finitem, PEAm is the same
asQPEAm) except, perhaps, the commutativity of cylindrifiers cxcy(X ) = cycx(X ).

Proof. Routine. �
Lemma 2.4. If 3 ≤ m ≤ m′ then C(m, n, r) ∼= NrmC(m′, n, r).

Proof. The isomorphismmapsX ⊆F (m, n, r) to {f ∈F (m′, n, r) : f�m×m ∈X}.
�

Lemma 2.5. For 3 ≤ m ≤ n and r < �, C(m, n, r) ∈ QPEAm.
Proof. If r = 0 then Bin(n, r) = {Id} so C(m, n, 0) is the trivial algebra hence

C(m, n, 0) ∈ QPEAm. Now assume r > 0. In view of Lemma 2.3 we only have
to check the commutativity of cylindrifiers: cxcyX = cycxX , for x, y < m. This
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equation is trivial if x = y so assume not. By complete additivity, it suffices to
check the case where X is an atom, X = {f} for some f ∈ F (m, n, r), that is
we must show that g ∈ cxcy{f} ⇐⇒ g ∈ cycx{f}. Thus given g ≡xy f, it
suffices to find h ∈ F (m, n, r) such that f ≡x h ≡y g. If there is z < m, z �= x, y
and f(y, z) = Id then the required h is g[y/z], or if g(z, x) = Id the required
h is f[x/z]. Suppose there is no such z, so for each z < m, z �= x, y we have
f(y, z), g(x, z) ∈ a. Let h : m × m → Bin(n, r) be identical to f on pairs not
involving x, be identical to g on pairs not involving y (this is well-defined, since
f ≡xy g) and let h(x, y) = h(y, x) = a0(i, 0), where i is the least number below n−1
such that it is not the case that there is z �= x, y < m and f(y, z), g(x, z) ∈ a(i,−).
Since m ≤ n and there are only m − 2 possible values of z in m \ {x, y} and n − 1
possible values of i , such an i must exist. This defines h. It is now easy to check that
h ∈ F (m, n, r). �
We can now prove Theorem 1.1 (I): if 3 ≤ m ≤ n and r < � then

C(m, n, r) ∼= Nrm(C(n, n, r)) by Lemma 2.4 and C(n, n, r) ∈ QPEAn by Lemma
2.5, so C(m, n, r) ∈ NrmQPEAn. Next, we prove Theorem 1.1 (II).

Lemma 2.6. Let 3 ≤ m < �, 2 ≤ n < �, r < �. RdScC(m, n, r) �∈ SNrmScn+1.
Proof. Suppose, for contradiction, that X ∈ Scn+1 and ′ : RdScC(m, n, r) →

NrmX is an isomorphism. Let B ⊆ Bin(n, r) and let i < j < n + 1. Define
α(B, i, j) =

∑
{s[0/i]s[1/j]f′ : f ∈ F (m, n, r), f(0, 1) ∈ B} ∈ X

For b ∈ Bin(n, r) we may write α(b, i, j) instead of α({b}, i, j). By additivity of the
substitutions ∑

b∈Bin(n,r)
α(b, i, j) = 1. (4)

Further, for i < j < k < n + 1 and b, c, d ∈ Bin(n, r), we have
α(b, i, j) · α(c, j, k) · α(d, i, k) = 0
⇐⇒ Σf∈F (m,n,r), f(0,1)=bs[0/i]s[1/j]f

′ · Σg(0,1)=cs[0/j]s[1/k]g ′
· Σh(0,1)=d s[0/i]s[1/k]h′ = 0

⇐⇒ ¬∃p ∈ F (m, n, r) (p(i, j) = b, p(j, k) = c, p(i, k) = d )
⇐⇒ (b, c, d ) ∈ Forb

Let
�k = α(ak(0, 0), 0, n) ·

∏
i<n

α(Id, 0, i) ∈ X .

Since there isf ∈ F (m, n, r) withf(0, 1) = ak(0, 0), letting  : n+1→ n+1be the
function (1) = n, (i) = 0 (i < n+1, i �= 1), we have 0 �= sf

′ ≤ �k , and clearly
for k �= k′ < �(n, r) we have �k · �k′ ≤ α(ak(0, 0), 0, n) · α(ak′ (0, 0), 0, n) = 0.
Let S0 = {�k : k < �(n, r)}. We will prove by induction over t that if t ≤ (n−1)r
there is a setSt with |St | > κ((n−1)r, (n−1)r−t) and functions It : {0, . . . , n−1} →
{0, . . . , n − 2}, Jt : {0, . . . , n − 1} → {0, . . . , r − 1}, such that for all �, � ′ ∈ St
1. if l < n then � ≤ α(a(It(l), Jt(l)), l, n),
2. there is k < �(n, r) unique to � ∈ St such that � ≤ α(ak, 0, n),
3. cn� = cn�

′,
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To see that the case t = 0 holds: let I0(i) = 0, J0(i) = 0 (all i < n).
Given functions It , Jt as above and i < n− 1 let the index of i with respect to It , Jt
be

ind (i, It , Jt) = max({Jt(l) : l < n − 1, It(l) = i} ∪ {−1}).
Define the rank �(It , Jt) =

∑
i<n−1 ind (i, It , Jt). Observe that ind (0, I0, J0) = 0 and

ind (i, I0, J0) = −1 for 0 < i < n− 1, so �(I0, J0) = 0+ (n− 2)× (−1) = 2− n. We
also assume, inductively,

4. �(It , Jt) ≥ 2− n + t.
We have seen that this last inductive condition also holds for t = 0.
Let 0 ≤ t < (n − 1)r and assume these properties hold. Since |dom(It)| = n and

|rng(It)| ≤ n− 1 there must be u < v < n with It(u) = It(v). Pick such a pair (u, v)
and let l = u if Jt(u) ≤ Jt(v), else let l = v. Note, by choice of l , that if I ′, J ′ are
functions identical to I, J , respectively, except perhaps on l , then �(I ′, J ′) ≥ �(I, J ).
Since t < (n−1)r we have |St | > κ((n−1)r, (n−1)r−t) ≥ κ((n−1)r, 1) = 1. Fix

some �0 ∈ St . For each � ∈ St \ {�0}, since cn� = cn�0, we have cncl s[n/l ]cl (�) =
cncl (�0), hence cl �0 · s[n/l ]cl � �= 0. By (4), there is b ∈ Bin(n, r) such that

� = cl �0 · s[n/l ]cl � · α(b, l, n) �= 0.

We know that �0 ≤ α(ak0 (0, 0), 0, n), � ≤ α(ak(0, 0), 0, n) for some k0 �=
k < �(n, r), so � ≤ α(ak0 (0, 0), 0, l) · α(ak(0, 0)(0, n)) · α(b, l, n). By (5),
(ak0 (0, 0), ak(0, 0), b) �∈ Forb and we cannot have b = Id . Hence b = ak′ (i, j)
for some i < n − 1, j < r, k′ < �(n, r). For i < n, j < r, let
S(i, j) = {cl �0 · s[n/l ]cl � · α(ak(i, j), l, n) : k < �(n, r), � ∈ St \ {�0}} \ {0}.

By cardinalities, there are fixed i0 < n−1 and j0 < r such that |S(i0, j0)| ≥ |St |−1
(n−1)r >

κ((n−1)r,(n−1)r−t)−1
(n−1)r = κ((n− 1)r, (n− 1)r− (t+1)). Let St+1 = S(i0, j0), let It+1 be

identical to It except that l �→ i0 and let Jt+1 be identical to Jt except that l �→ j0.
If i0 �∈ rng(It) then Ind (i0, It+1, Jt+1) = j0 ≥ 0 > −1 = Ind (i0, It , Jt), otherwise
for any p < n + 1 if It(p) = i0 then j0 > Jt(p), by (5) applied to (p, l, n), so
j0 = Ind (i0, It+1, Jt+1) > Ind (i0, It , Jt). Either way, �(It+1, Jt+1) > �(It , Jt). Hence
St+1, It+1, Jt+1 satisfies induction hypothesis 3. The other induction hypotheses are
straightforward.
By induction, the properties hold for all t ≤ (n − 1)r. Letting t = (n − 1)r, we
have a set S(n−1)r of size strictly greater than κ((n − 1)r, (n − 1)r − (n − 1)r) =
κ((n − 1)r, 0) = 0, i.e., nonempty, and there are functions It , Jt of rank at least
(2−n)+((n−1)r) = (n−1)(r−1)+1, an impossibility since for each i < n−1 the
maximum index i can have is r−1, hence themaximumpossible rank is (n−1)(r−1).
We conclude thatRdScC(m, n, r) �∈ SNrmScn+1. �
We now concentrate on proving (III), that Πr/U C(m, n, r) ∈ SNrmQPEAn+1,
for any nonprincipal ultrafilter U . A standard ultraproduct argument shows
that Πr/U C(m, n, r) ∼= C(m, n,Πr/U r) so we have to prove that C(m, n, �) ∈
SNrmQPEAn+1, where � = Πr/U r. Note that � is a linear order containing an
infinite ascending chain. First we define a game.
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Definition 2.7. Let m, n < �, let � be a linear order and let Λ = (n + 1)3. An
m-hypernetwork h = (f, g) consists of some f ∈ F (m, n, �) and a ternary function
g : 3m → Λ such that for all x, y, z, x′, y′, z′ < m, if f(x, x′) = f(y, y′) =
f(z, z′) = Id then g(x, y, z) = g(x′, y′, z′). For X ⊆ m we say that h = (f, g)
is strict over X if x �= y ∈ X ⇒ f(x, y) �= Id . If m′ ≤ m and h = (f, g) is an
m-hypernetwork then h�m′ denotes them′-hypernetworkobtained from h by restriction
tom′. As before, for x, y < m we write (f, g) ≡xy (f′, g ′) if for all v,w, z ∈ m \ x, y
we have f(v,w) = f′(v,w) and g(v,w, z) = g ′(v,w, z), also we write ≡x instead
of ≡xx.
We define a game G = G(m, n, �) as follows. A play of G is a sequence
h0, h1, . . . , ht, (t < �) of (n+1)-hypernetworks. In round t < � of the game, ∀ plays
either an m-dimensional move � by choosing any m-hypernetwork � or an amalga-
mation move (u, v, , �, x, y) where u, v < t, , � : n + 1 → n + 1, x, y < n + 1
and hu ≡xy hv�. In response to an m-dimensional move �, ∃ must play a
(n+1)-hypernetwork ht such that ht�m = �. In response to an amalgamation move
(u, v, , �, x, y), ∃ must play a (n + 1)-hypernetwork ht such that hu ≡x ht ≡y hv�.
If she fails to provide such a response to either kind of move then she loses the play in
that round. If ∃ does not lose in any of the � rounds of G then she wins the play.
Lemma 2.8. Let 3 ≤ m < n < � and let � be a linear order containing an infinite
ascending sequence. ∃ has a winning strategy in G(m, n, �).
Proof. Let j0 < j1 < j2 . . . ∈ � be an infinite ascending sequence, let J =

{j0, j1, . . .} ⊆ �. We describe ∃’s strategy. Consider round t of a play of the game.
Suppose, inductively, that∃ has successfully implemented her strategy in all previous
rounds s < t, the play so far is h0, h1, . . . , ht−1. Suppose ∀ plays an m-dimensional
move �. Let  : (n + 1)→ m be the function defined by

(i) =
{
i (i < m)
0 (m ≤ i < n + 1)

∃ plays the hypernetwork �. Observe that if X ⊆ (n + 1) and |X | > m then � is
not strict over X .
Now suppose ∀ plays an amalgamation move (u, v, , �, x, y) where hu ≡xy hv�.
To avoid trivialities assume x �= y. ∃ is required to find ht = (ft, gt) such that
hu ≡x ht ≡y hv�. These equivalences uniquely determine the value of ft on any
pair from n + 1 except (x, y) and (y, x) and they determine the value of gt on
any triple from n + 1 except those involving both x and y. If there is w < t and
� : n + 1 → n + 1 such that hu ≡x hw� ≡y hv� then ∃ lets ht = hw� (if there
is more than one possible solution, then any will do). Since such a move by ∀ is
clearly superfluous we will assume henceforth that ∀ never makes such a move.
Furthermore, we will assume that if ∀ plays the amalgamation move (u, v, , �, x, y)
then there is no u′ < u and  ′ : n + 1 → n + 1 such that hu ≡x hu′ ′ (if such a
u′ < u and  ′ existed then ∀ could instead play (u′, v,  ′, �, x, y)) and there is no
v′ < v and �′ : n + 1→ n + 1 such that hv� ≡y hv′�′.
Now, although we have not yet entirely defined ft , for each x′, y′ < n + 1 we
already know whether ft(x′, y′) = Id or not (we cannot have ft(x, y) = Id ,
by our assumption about ∀-moves). For any x1, y1, z1, x2, y2, z2 < n + 1 we write
(x1, y1, z1) ∼ (x2, y2, z2) iff ft(x1, x2) = ft(y1, y2) = ft(z1, z2) = Id .
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First ∃ defines gt :3 (n + 1) → Λ by defining gt on all triples involving both x
and y in such a way that if x is any triple involving x and y and if y is any triple
of elements of (n + 1) then gt(x) = gt(y) ⇐⇒ (x ∼ y). Since ∼ is clearly an
equivalence relation and since Λ = (n+1)3, the range of gt is large enough to allow
this.
Second, ∃ defines ft ∈ F (n + 1, n, �) by letting ft(x, y) = a0(i, j) where
• j ∈ J is greater than each element of the finite set {j′ ∈ J : ∃s < t, x′, y′ <
n + 1 fu(x′, y′) ∈ a(−, j′)}, least possible subject to that.

• i < n − 1 is least such that there is no w < n + 1 and j ∈ � \ J with
fs(y,w), fv�(w, x) ∈ a(i, j).

We will prove that the strategy may be implemented, in particular the i < n − 1
required in the second part may always be found. To prove our claim, suppose for
contradiction that there are w0, w1, . . . , wn−2 < n + 1 such that for each i < n − 1
there is j ∈ � \ J and fu(y,wi), (fv�)(wi , x) ∈ a(i, j). Observe that fu is strict
over {(y), (wi) : i < n− 1}, so fu was itself played in response to an amalgama-
tion move, say (u′, v′,  ′, �′, x′, y′). By our assumption that there is no u∗ < u and
∗ such that fu ≡x fu∗∗, we see that {(y′), (x′)} ⊆ {y,w0, w1, . . . , wn−2}.
Inductively, ∃ chose fu((y′), (x′)) ∈ a(−, k′) for some k′ ∈ K , hence
{(y′), (x′)} ⊆ {w0, . . . , wn−2}. Similarly, fv was played in response to an
amalgamation move (u∗, v∗, ∗, �∗, x∗, y∗), fv(�(y∗), �(x∗)) ∈ a(−, k∗) (some
k∗ ∈ K) and {�(y∗), �(x∗)} ⊆ {w0, . . . , wn−2}. By uniqueness of k′ and k∗ we
deduce that k′ = k∗, u = v, and {(y′), (x′)} = {�(y∗), �(x∗)}. When ∃ played
fu she ensured that for each wh (h < n − 1) the label gu((y′), (x′), (wh))
is unique but it is equal to gv(�(y′), �(x′), �(wh)) (since gu ≡xy gv�), hence
(wh) = �(wh). But then, define � : (n + 1) → (n + 1) by �(v) = (v), for
v ∈ (n + 1) \ {x}, and �(x) = �(x). Then hu ≡x hu� ≡y hv, contrary to
our assumption. This proves the claim and proves that ∃’s strategy can always be
implemented.
By choice of i, j it is clear that ft avoids all forbidden triples so indeed ft ∈
F (n + 1, n, �). �
Lemma 2.9. Let 3 ≤ m < n < � and let � be a countable linear order containing
an infinite ascending sequence. Then C(m, n, �) ∈ NrmQPEAn+1.

Proof. Consider a play ofG(m, n, �) in which ∃ plays her winning strategy and ∀
plays all possiblem-dimensional moves and all possible amalgamationmoves. Since
� is countable, this can be scheduled. LetH be the set of all hypernetworks occurring
in the play. As in Definition 2.2, the power set ℘(H ) is the universe of aQPEAn+1-
type algebra C, where dij = {(f, g) ∈ H : f(i, j) = Id}, ci(X ) = {h ∈ H : ∃h′ ∈
X, h′ ≡i h} and s�(X ) = {h ∈ H : h� ∈ X}, for i, j < n+1, � : (n+1)→ (n+1).
As with Lemma 2.3 it is easy to see that C satisfies all the QPEAn+1 axioms other
than commutativity of cylindrifiers, and since H is closed under amalgamation,
commutativity holds too, so C ∈ QPEAn+1. The map 
 : C(m, n, �) → NrmC
defined by �(f) = {(f′, g ′) ∈ H : f′�m = f} is easily shown to be an isomorphism.

�
Since Πr/UC(m, n, r) ∼= C(m, n,Πr/U r) and Πr/U r contains an infinite ascending
sequence, this proves Theorem 1.1(III) and completes the proof of Theorem 1.1.
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§3. Infinite dimensional case. Now we prove the infinite dimensional case, by
lifting the dimensions for the finite case to the transfinite; a trick due to Monk;
witness [5, Theorem 3.2.87] whereMonk lifts his classical nonfinite axiomatizability
result for RCAn (n > 2) to the transfinite. Our proof has the same structure as the
finite dimensional case, but naturally we need an infinite dimensional quasipolyadic
equality algebra. Let n be an infinite ordinal. For each finite subset Γ ⊆ n, let

�Γ be the unique order preserving bijection from |Γ| onto Γ.
Let I = {Γ : Γ ⊆ n, |Γ| < �}. For each Γ ∈ I , let MΓ = {Δ ∈ I : Γ ⊆ Δ}, and
let F be an ultrafilter on I such that ∀Γ ∈ I, MΓ ∈ F (such an ultrafilter exists
because MΓ1 ∩MΓ2 = MΓ1∪Γ2). Let r < �, 1 ≤ k < �, Γ ∈ I , and let CrΓ be an
algebra similar toQPEAn such that

Rd�ΓCrΓ = C(|Γ|, |Γ| + k, r).
Let

Br =
∏
Γ/F

CrΓ.

Theorem 3.1. Let U be any nonprincipal ultraproduct over �.

1. Br ∈ SNrnQPEAn+k ,
2. RdScB

r �∈ SNrnScn+k+1, and
3. Πr/UBr ∈ SNrnQPEAn+k+1.
But first a lemma.

Lemma 3.2. Let n be an infinite ordinal, let X be any finite subset of n, let I = {Γ :
X ⊆ Γ ⊆ n, |Γ| < �}. For each Γ ∈ I , letMΓ = {Δ ∈ I : Δ ⊇ Γ} and let F be any
ultrafilter over I such that for all Γ ∈ I we haveMΓ ∈ F. LetAΓ,BΓ beQPEAn-type
algebras. If for each Γ ∈ I we haveRd�ΓAΓ = Rd�ΓBΓ thenΠΓ/FAΓ = ΠΓ/FBΓ.
Furthermore, if Rd�ΓAΓ ∈ QPEA|Γ| for each Γ ∈ I , thenΠΓ/FAΓ ∈ QPEAn.
Proof. Standard proof, by Łoś’ theorem. For the first part, note that the universe
of ΠΓ/FAΓ is identical to that of ΠΓ/FRd�ΓAΓ which is identical to the universe of
ΠΓ/FBΓ, by the assumption in the first part of the lemma.Eachoperator o ofQPEAn
is the same for both ultraproducts because {Γ ∈ I : dim(o) ⊆ rng(�Γ) = Γ} ∈ F .
For the second part, it suffices to prove that each of the defining axioms for
QPEAn holds for ΠΓ/FAΓ. Let  = � be one of the defining equations for
QPEAn, the number of dimension variables involved is certainly finite, indeed it
can be at most four (see Definition 15.8). Take any i, j, k, l ∈ n, we must prove
that ΠΓ/FAΓ |= (i, j, k, l) = �(i, j, k, l). If i, j, k, l ∈ rng(�Γ), say i = �Γ(i0),
j = �Γ(j0), k = �Γ(r0), l = �Γ(l0), then Rd�ΓAΓ |= (i0, j0, k0, l0) =
�(i0, j0, k0, l0), since Rd�ΓAΓ ∈ QPEA|Γ|, soAΓ |= (i, j, k, l) = �(i, j, k, l). Hence
{Γ ∈ I : AΓ |= (i, j, k, l) = �(i, j, k, l)} ⊇ {Γ ∈ I : i, j, k, l ∈ rng(�Γ)} ∈ F ,
hence ΠΓ/FAΓ |= (i, j, k, l) = �(i, j, k, l). Thus ΠΓ/FAΓ ∈ QPEAn. �
Proof of theorem 3.1. For the first part, for each Γ ∈ I we know that C(|Γ| +
k, |Γ| + k, r) ∈ QPEA|Γ|+k and Nr|Γ|C(|Γ| + k, |Γ| + k, r) ∼= C(|Γ|, |Γ| + k, r) (by
(Lemmas 2.4 and 2.5). Let Γ be the one to one function (|Γ| + k) → (n + k)
where �Γ ⊆ Γ and Γ(|Γ| + i) = n + i for each i < k. Let AΓ be an algebra
similar to a QPEAn+k such that RdΓAΓ = C(|Γ| + k, |Γ| + k, r). By the second
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part of Lemma 3.2, with n + k in place of n, m ∪ {n + i : i < k} in place of X ,
{Γ ⊆ n + k : |Γ| < �, X ⊆ Γ} in place of I , and with Γ in place of �Γ, we know
that ΠΓ/FAΓ ∈ QPEAn+k .
We prove thatBr ⊆ NrnΠΓ/FAΓ. Recall thatBr = ΠΓ/FCrΓ. For each Γ ∈ I ,

Rd�ΓCrΓ = C((|Γ|, |Γ| + k, r)
∼= Nr|Γ|C(|Γ|+ k, |Γ|+ k, r)
= Nr|Γ|RdΓAΓ

= RdΓNrΓAΓ

= Rd�ΓNrΓAΓ.

By the first part of Lemma 3.2 we deduce that ΠΓ/FCrΓ ∼= ΠΓ/FNrΓAΓ ⊆
NrnΠΓ/FAΓ, proving (1).
Now we prove (2), RdScB

r �∈ SNrnScn+k+1. For this assume, seeking a contra-
diction, that RdScB

r ∈ SNrnScn+k+1, i.e., RdScB
r ⊆ NrnC, where C ∈ Scn+k+1.

Pick any 3 ≤ m < � (e.g., take m = 3) and let 
 : m + k + 1 → n + k + 1 be
the function defined by 
(i) = i for i < m and 
(m + i) = n + i for i < k + 1.
Then Rd
(C) ∈ Scm+k+1 and RdmRdScB

r ⊆ NrmRd
(C). Let A = RdmRdScB
r .

We have just shown that
A ∈ SNrmScm+k+1. (5)

For finite m+ > m, let

xm+ = {f ∈ F (m+, m+ + k, r) : m ≤ j < m+ → ∃i < m f(i, j) = Id}.
Then xm+ ∈ C(m+, m+ + k, r) and cixm+ · cjxm+ = s[i/j]xm+ · s[j/i]xm+ = xm+ for
distinct i, j < m. Furthermore

Im+ : C(m,m + k, r) ∼= Rlxm+RdmC(m+, m+ + k, r)

via

In(S) =
{
f ∈F (m+, m+ + k, r) : f � m×m ∈S,∀j(m ≤ j < m+→∃i < m f(i, j) = Id )}.

So for each Γ ∈ I , I|Γ| is an isomorphism
C(m,m + k, r) ∼= Rlx|Γ|RdmC(|Γ|, |Γ| + k, r).

Let x = (x|Γ| : Γ ∈ I )/F (∈ Br) and let �(b) = (I|Γ|b : Γ ∈ I )/F for
b ∈ C(m,m + k, r). Then � is an isomorphism from RdScC (m,m + k, r) into
RdScRlxRdmB

r = RlxRdmRdScB
r = RlxA. Now A∈SNrmScm+k+1, by (5), and

A |= s[i/j]x · s[j/i]x= x for any distinct i, j < m by Łoś’ theorem. It follows, by
[4, Theorem 2.6.38], that

RlxA ∈ SNrmScm+k+1. (6)

(Note that proof of the cited theorem makes no use of diagonal elements.) But
then RdScC(m,m + k, r) ⊆ RlxA ∈ SNrmScm+k+1, contrary to Theorem 1.1(II).
This proves (2).
Now we prove Theorem 3.1(3), putting the superscript r to use. Recall that

Br = ΠΓ/FCrΓ, where C
r
Γ has the type of QPEAn and Rd�ΓCrΓ = C(|Γ|, |Γ| + k, r).

We know that Πr/URd�ΓCrΓ = Πr/UC(|Γ|, |Γ| + k, r) ⊆ Nr|Γ|AΓ, for some AΓ ∈
QPEA|Γ|+k+1.
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Let 
Γ : |Γ|+ k + 1→ n + k + 1 extend �Γ : |Γ| → Γ (⊆ n) and satisfy

Γ(|Γ|+ i) = n + i

for i < k + 1. Let FΓ be a QPEAn+k+1 type algebra such that Rd
ΓFΓ = AΓ. As
before, by the second part of Lemma 3.2, ΠΓ/FFΓ ∈ QPEAn+k+1. And

Πr/UB
r = Πr/UΠΓ/FC

r
Γ

∼= ΠΓ/FΠr/UCrΓ
⊆ ΠΓ/FNr|Γ|AΓ
= ΠΓ/FNr|Γ|Rd
ΓFΓ

⊆ NrnΠΓ/FFΓ,

proving the last part of the theorem. �
Corollary 3.3. Let n be an infinite ordinal, let k ∈ �. Let K be any class between
Sc and QPEA. Then SNrnKn+k+1 ⊂ SNrnKn+k. Furthermore, SNrnKn+k+1 is not
finite schema axiomatizable over SNrnKn+k .

The first part of the corollary is credited to Pigozzi in [4, p. 464], for cylindric
algebras; however it seems that Pigozzi did not publish his proof, and we have not
found a published proof elsewhere. See [5, Definition 4.1.4] for the precise definition
of finitely schema axiomatizability and see [5, Theorem 4.1.7] to see how nonfinite
schema axiomatizability follows from Theorem 3.1.
We summarize the situation in Figure 2. The first table addresses the case when
3 ≤ n < � and the second table addresses the case when n ≥ �. For n = 0, 1, the
problem is trivial (SNrnKn+k = Kn). For n = 2, we have for K ∈ {Df,SC,QA} and
k > 0, SNr2K2+k = K2. The Df case is trivial, the SC and QA cases follow from

Algebras Status of the Neat Embedding Problem
for 3 ≤ n < �, k < �

Citation

Dfn SNrnDfn+k = Dfn [5, Theorem 5.1.31]
Scn SNrnScn+k+1 is n.f.a. over SNrnScn+k Corollary 1.2
CAn SNrnCAn+k+1 is n.f.a. over SNrnCAn+k [8, Theorem 15.1(4)]
QPAn SNrnQPAn+k+1 is n.f.a. over SNrnQPAn+k Corollary 1.2
QPEAn SNrnQPEAn+k+1 is n.f.a. over SNrnQPEAn+k Corollary 1.2

Algebras Status of the Neat Embedding Problem for n ≥
�, k < �

Citation

Dfn SNrnDfn+k = Dfn [5, Theorem 5.1.31]
Scn SNrnScn+k+1 is n.f.a. over SNrnScn+k Corollary 3.3
CAn SNrnCAn+k+1 is n.f.a. over SNrmCAn+k Corollary 3.3
QPAn SNrnQPAn+k+1 is n.f.a. over SNrnQPAn+k Corollary 3.3
QPEAn SNrnQPEAn+k+1 is n.f.a. over SNrnQPEAn+k Corollary 3.3
PAn SNrnPAn+k = PAn [3, Theorem 3.3]
PEAn SNrnPEAn+k = PEAn [5, Theorem 5.4.17]

Figure 2. Summary of Neat Embedding Problem.
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[5, Theorem 5.4.33] without much ado. On the other hand, for K ∈ {CA,PEA}
(where diagonal elements are present) and m > 0, SNr2K2+k = RK2 with RK2
denoting representable algebras in K2. This follows from [5, Theorems 3.2.65 and
5.4.34].

§4. Appendix.
Definition 4.1.
Substitution Algebra, Sc [13].
Let n be an ordinal. By a substitution algebra of dimension n, briefly an Scn, we
mean an algebra

A = (A,+,−, ci , s[i/j] : i, j < n)
where (A,+,−) is a boolean algebra, ci , s[i/j] are unary operations on A
( for i, j < n) satisfying the following equations for all i, j, k, l < n:
1. ci0 = 0, x ≤ cix, ci(x · ci y) = cix · ciy, and cicjx = cjcix,
2. s[i/i]x = x,
3. s[i/j] is a boolean endomorphisms,
4. s[i/j]cix = cix,
5. ci s[i/j]x = s[i/j]x whenever i �= j,
6. s[i/j]ckx = cks[i/j]x, whenever k /∈ {i, j},
7. ci s[j/i]x = cjs[i/j]x,
8. s[j/i]s[l/k]x = s[l/k]s[j/i]x, whenever |{i, j, k, l}| = 4,
9. s[i/j]s[i/k]x = s[i/k]x if i �= k,
10. s[l/i]s[j/l ]x = s[l/i]s[j/i]x.

Quasipolyadic algebra, QPA [14].
A quasipolyadic algebra of dimension n, briefly a QPAn, is an algebra

A = (A,+,−, ci , s[i/j], s[i,j] : i, j < n)
where the reduct to Scn is a substitution algebra (it satisfies (1)–(10) above) and
additionally it satisfies the following equations for all i, j, k < n:
2’ s[i/i](x) = s[i,i](x) = x, and s[i,j] = s[j,i],
3’ s[i/j] and s[i,j] are boolean endomorphisms
11. s[i,j]s[i,j]x = x,
12. s[i,j]s[i,k] = s[j,k]s[i,j] if |{i, j, k}| = 3,
13. s[i,j]s[j/i]x = s[i/j]x.

Quasipolyadic equality algebra, QPEA [14].
A quasipolyadic equality algebra of dimension n, briefly a QPEAn is an algebra

B = (A, dij)i,j<n
where A is a QPAn (i.e., it satisfies all the equations above), dij is a constant and
the following equations hold, for all i, j, k < n:
14. s[i/j]dij = 1,
15. x · dij ≤ s[i/j]x.
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