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There is little doubt that the acquisition and availabil-
ity of airborne lidar (Light Detection and Ranging)
datasets have revolutionized archaeology (Chase
et al. 2012), and the utility of lidar has increased
as commercial datasets and derivative products
become publically available. For some, lidar-derived
products provide another avenue of data visualiza-

ABSTRACT

The availability of lidar datasets has led to several advances in archaeology, notably in the process of site prospection. Some remote
sensing practitioners have aimed to create automated feature extraction (AFE) techniques that increase the efficiency and efficacy of
identification and analysis. While these advances have been successful, many archaeological professionals who might have an interest in
lidar-derived products do not have the technical experience to modify or create AFE techniques for particular regions or environments.
Additionally, some features are not appropriate for AFE. Instead, the most widely used technique is still likely to be visually based manual
feature identification. Using authors of different experience levels, we seek to evaluate the use of manual techniques for feature
identification and subsequent analysis by implementing a publicly available lidar-derived digital elevation model (DEM). We demonstrate
that manual feature extraction (MFE) can be accurate when more than one researcher is involved in a sort of “checks and balances”
process. We also show that the use of confidence ratings can be an important part of this process if those ratings have some systematic
and clearly defined underpinning. Finally, we argue, using a case study from American Samoa, that manually identified features can be
analytically important as part of larger landscape studies.

La disponibilidad de conjuntos de datos lídar ha permitido varios avances en arqueología, notablemente en el proceso de prospección
de sitios. Algunos profesionales de teledetección han apuntado a crear técnicas de extracción de características automatizadas (AFE por
sus siglas en inglés) que aumentan la eficiencia y eficacia de la identificación y análisis. Aun cuando estos avances han sido exitosos,
muchos arqueólogos interesados en el conjunto de datos lídar no tienen la experiencia técnica para modificar o crear técnicas AFE para
su uso en regiones o ambientes particulares. Adicionalmente, algunos rasgos podrían no ser apropiados para el uso de AFE. Por lo tanto,
es probable que la técnica mayormente usada continúe siendo la identificación manual de características por medio visual. Usando tres
autores con diferentes niveles de experiencia, buscamos evaluar el uso de técnicas manuales para la identificación de rasgos y análisis
subsecuentes usando un modelo de elevación digital de acceso público derivado de datos lídar. Demostramos que la extracción manual
de características (MFE por sus siglas en inglés) puede ser precisa cuando más de un investigador participa en una especie de sistema de
controles y balances. Demostramos que el uso de índices de confianza puede ser una parte importante de este proceso si las
clasificaciones tienen bases claramente definidas y sistemáticas. Finalmente, usando el estudio de un caso de Samoa Estadounidense,
argumentamos que la identificación manual de características puede ser analíticamente importante como parte de estudios de paisaje
más amplios.

tion that aids in understanding the spatial relation-
ships among archaeological remains (Bennett et al.
2012; Challis et al. 2011; Pingel et al. 2015; Prufer
and Thompson 2016; Schindling andGibbes 2014;
Stark et al. 2015; Štular et al. 2012). For others, these
datasets have allowed the identification and analysis
of archaeological remains at regional scales in heavily
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vegetated environments that were previously unex-
plored (Chase et al. 2014; Yaeger et al. 2016). Cer-
tainly, these two objectives are not mutually exclusive,
and the use of lidar-derived imagery often encapsu-
lates both goals. In fact, the technology has been of
such influence that new finds routinely are made at
some of the best-known archaeological landscapes
in the world (Bewley et al. 2005; Evans and Fletcher
2015).

These global developments in remote sensing have also been
realized in the Pacific Islands. In Hawai’i, Ladefoged et al. (2011)
and McCoy et al. (2011) used lidar datasets to bridge previous
survey data in order to understand regional patterning in archae-
ological data and document the full extent of prehistoric dry-
land and wetland agricultural systems. Building on this earlier
research, Quintus et al. (2015) applied a semi-automated feature
extraction (AFE1) technique to the heavily forested environment
of Olosega Island, American Samoa, to document and analyze
the distribution of residential terraces in a highly topographic
environment. More recently, Freeland and colleagues (2016) used
two AFE techniques in addition to more limited manual feature
extraction (MFE2) to map the distribution of mound features
in the low-relief but vegetated landscape of Tongatapu Island,
Kingdom of Tonga.

The basic utility of lidar imagery for archaeological research has
been demonstrated, but questions persist regarding how far
these applications can be pushed to examine different feature
types and the analytical skill needed to identify archaeological
features in different environments. Whereas previous researchers
were often responsible for the processing of lidar point clouds
(see Devereux et al. 2005)—the raw datasets produced by any
lidar investigation—the publication of processed data, often
in the form of bare-earth DEMs (Digital Elevation Models; also
known as DTMs [Digital Terrain Models]), and open-source data
make the information more accessible to the archaeological
community. Many practitioners of archaeology do not have the
requisite knowledge of computer programming or access to spe-
cialized software that more easily enables the processing of raw
lidar datasets. Because of this, and even though strides are being
made to develop accurate and efficient AFE techniques (e.g.,
Freeland et al. 2016; Schneider et al. 2015), the more common
method to identify features remains visual interpretation using
publically available lidar-derived imagery.

MFE has a potentially important role to play for these reasons,
especially if the product can be shown to be analytically use-
ful. Although previous research has shown the effectiveness of
MFE for the simple identification of a wide range of archaeo-
logical features (Chase 2016; Johnson and Ouimet 2014, 2016;
Štular et al. 2012), very little research has focused on the analyt-
ical potential of these data. Here, we analyze a publically avail-
able DEM derived from a lidar dataset of Ta’u Island, American
Samoa, to examine the validity and utility of MFE. We compare
the visual interpretations of three individuals (the authors) to the
results of a field-based mapping program. We seek to address
two questions: (1) is MFE an effective means of documenting

anthropogenic landscape modifications; and (2) does assign-
ing a confidence rating to manually extracted features provide
analytically important information?

STUDY AREA
The island of Ta’u is located in the West Polynesian archipelago
of Samoa, which is divided into two modern political units: the
Independent State of Samoa in the west and the US territory of
American Samoa in the east. American Samoa is itself separated
into two groups. The islands of Tutuila and Aunu’u form one
group in the western half of the territory, and the islands of Ofu,
Olosega, and Ta’u collectively form the Manu’a Group to the east
(Figure 1). The uninhabited Rose Atoll and Swains Island are also
part of American Samoa.

The islands of the Manu’a Group are small even by Polynesian
standards. Ta’u is the largest at 36 km2, with the smaller islands
of Ofu (7.3 km2) and Olosega (5 km2) located some 10 km to
the northwest. These islands are volcanic in origin and feature
high topographic relief. Slopes range from near flat along the
coastline to between 5 and 40° within the habitable areas of the
interior. Their youthful age, less than 300,000 years (McDougall
2010), has precluded the development of dissected valleys,
but some streams have formed, which run following heavy
precipitation events. Given the amount of precipitation that
the islands receive (more than 3,000 mm annually), vegetation
cover is dense, especially in the interiors of these islands, where
canopies can grow as high as 25 m (Whistler 1992:14). Much of
the vegetation is the result of human manipulation, and forest
in the interior portions of all islands in Manu’a includes a high
proportion of secondary and economic species (Liu et al. 2011;
Whistler 1992).

While archaeological research has been conducted on the coast
of Ta’u (e.g., Addison 2008; Cleghorn and Shapiro 2000; Hunt
and Kirch 1988), knowledge of the interior uplands is limited (but
see Clark 1990; Herdrich et al. 1996). The documentation of the
full range and distribution of features in these areas is impeded
by several factors. The most important of these is the density of
vegetation that limits the size of survey programs, but the lack of
easy accessibility to some areas also hampers efforts. Fortunately,
most of these archaeological features are landscape modifica-
tions visible in imagery derived from a lidar dataset (Quintus et al.
2015).

This article concerns the northeast corner of the interior uplands
of Ta’u on the Luatele formation (Figure 2). The area is situated
above the modern village of Fitiuta, downslope and seaward of a
late Pleistocene volcanic crater (Luatele). Archaeological remains
are found in an elevation range between 100 and 375 m with
slope values from 5 to 25°. The area includes dense vegetation
comprised of secondary (e.g., Hibiscus tiliaceus) and economic
species (e.g., Cocos nucifera) and is bounded on the northwest
and southeast by stream banks.

Residential/agricultural terraces and stone/earth walls or
embankments are the most common archaeological features in
the project area. The walls, embankments, or low linear mounds
range in width from approximately 1 to 3 m and in length
between approximately 20 and 450 m. In the project area, these
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FIGURE 1.Manu‘a Islands with the area of interest outlined.

features run both parallel and perpendicular to the slope. Their
function is a matter of some speculation but, based on regional
analogy (Ladefoged et al. 2003; McCoy and Hartshorn 2007),
these might have served to mark boundaries between social units
or agricultural fields, reduce erosion, or act as surfaces for culti-
vation. Terraces in Samoa vary by size and morphology, but, in
general, are defined as flat features with 2–3 free-standing sides.
While those on Ofu and Olosega are constructed of earth with
minimal stone facing, those on Ta’u, at least in the project area,
exhibit a relatively higher proportion of stone. These features
likely served a variety of functions, ranging from domestic sleep-
ing and eating quarters to foundations for resting and/or working
during slope cultivation. The discrimination of function has been
difficult, but previous researchers have posited that the presence
of secondary features (e.g., coral or waterworn basalt paving,
curbing stones) might be used as an indicator of domestic func-
tion (Quintus 2015; Quintus and Clark 2012). The identification
and analysis of terraces is the subject of this study.

METHODS
Aerial lidar data were collected for American Samoa in June and
July of 2012 by the National Oceanic and Atmospheric Adminis-
tration (NOAA) Coastal Services Center in collaboration with the
American Samoa Government Department of Commerce and the
US National Park Service (Raber 2012). Data were collected by
Photo Science, Inc., using an Optech lidar system at a height of
1,219 m. Line spacing occurred at 395 m with 50% overlap. Aver-
age point spacing was 1.43 pts/m2 with a maximum point spacing
of .838 m and a root mean square error of 0.074. Point clouds
generated from data collection were processed and classified,
also by Photo Science, Inc., in TerraScan and TerraModeler. It
should be noted that classification is an imperfect process. Areas
of thick vegetation, like those within the project area, can reduce

the density of ground returns, and low vegetation might be erro-
neously classified as bare-earth returns. It is from these bare-
earth or ground-classified returns that a DEM (or DTM) was cre-
ated resulting in a raster with 1 m pixel resolution and better than
15 cm vertical accuracy. This research made use of this open-
source DEM (DTM) that is publically available through NOAA
with associated metadata.

The three authors have variable experience in the archaeology of
the region and the use of GIS for the analysis of spatial datasets.
One has extensive experience investigating the interior uplands
of the Manu’a Group and has modest experience using lidar
datasets for the identification and analysis of archaeological fea-
tures (R1). Another has extensive experience working with spatial
datasets, with a particular expertise in aerial and terrestrial laser
scanning systems, and modest knowledge of the archaeology
of the interior uplands of Manu’a (R2). The final author (R3) is a
student with limited experience in the archaeology of the interior
uplands and analysis of lidar datasets, but extensive knowledge
of GIS.

Pedestrian survey data used for ground-truthing purposes were
collected prior to digital survey during July of 2015 by a crew
of four individuals spaced 10 m apart. Terrace features were
recorded from three transects that spanned the length of the
field and settlement system in the seaward:inland direction
(Figure 2). Each feature was outlined as a polygon using iGIS
on an Apple iPad tablet with < 5 m accuracy (error range pro-
vided by software). Maximum length and width measurements
taken in the field with a 30 m tape were compared with these out-
lines. Photographs were taken of each feature, and other relevant
information was recorded (e.g., presence/absence of retaining
wall or secondary features). After fieldwork was complete, fea-
ture polygons were manually smoothed in ArcGIS to limit the
effects of GPS error. Feature area was measured in two ways, by
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FIGURE 2. (a) results of the initial 2015 pedestrian survey in the Luatele site; (b) stone retaining wall of terrace in foreground,
terrace in the background; (c) stone wall running seaward-inland.

multiplying length by width and by using the geometry tool in
ArcGIS after the feature polygons had been modified.

Roughly a year after pedestrian survey, each author was pro-
vided with the approximate location of the settlement zone and

a copy of the lidar-derived DEM. All derivative products (i.e.,
slope maps, hillshades) were created using the spatial analysis
toolkit in ESRI ArcGIS 10.3. The hillshades (grayscale images of
surface topography that use the sun’s relative position for shad-
ing), created by each author, used variable azimuths and altitudes
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FIGURE 3. An example of positive identification between field and digitally identified features overlying slope map.

to model the sun’s relative position. Slope maps with a Z-factor of
1 using stretched (percent clip) display in grayscale and in color
were generally most useful. The authors also found it useful to
classify the slope map in ArcGIS using a two-class technique (one
class below 10–15° slope and the other above this). This method
of visualization is similar to that successfully employed previously
in Oceania (McCoy et al. 2011; Quintus et al. 2015). R1 and R2
had knowledge of features in the project area, as these authors
were part of the crew that mapped the field features used in this
research for ground-truthing purposes, but digital feature identi-
fication was independent of these previously recorded field data
(blind identification). Neither R1 nor R2 knew the exact location
or number of terrace features prior to the completion of digi-
tal identification, though both did have knowledge of feature
morphology.

All digital identifications were completed independently of
the other authors within a set time period (approximately two
weeks). Each author assigned a three-scale (high [3], medium [2],
and low [1]) confidence rating to each digital feature identified.
Those rated high were features that the researcher thought had
a >75% chance of being a terrace based on morphology and
location; those in the medium category were rated to have a
50–75% chance of being a terrace; and those in the low category
were thought to have a < 50% chance of being a terrace but still
had some morphological attributes (e.g., contiguous areas of
low slope) that suggested they could be anthropogenic features.
Finally, a cumulative confidence rating was assigned to each dig-
itally identified feature, adding the confidence ratings of each
author together if more than one author identified the feature.
This cumulative score ranged from 1 to 9.

The field and digital datasets were integrated into a single GIS
and compared. If digitally identified features of two or more
authors overlapped, they were noted as a positive identifica-

TABLE 1. Definitions of Terms Used in the Text.

Term Definition

True Positive (TS) Field-identified terrace that was also
identified digitally

False Positive (FS) Digitally identified terraces that were not
documented in the field

False Negative (FN) Terraces recorded in the field that were
not identified digitally

Precision (P) Portion of positive identifications that are
true positives; calculated as TP/TP+FP

Sensitivity (R) True positive rate; calculated as
TP/TP+FN

tion. Positive identifications were further categorized based on
whether that identification was one-to-one (Figure 3) or multiple-
to-one (Figure 4) (overlap features; multiple features identified by
one author fitting within one feature identified by another). These
same principles were applied to the comparison between digi-
tally identified features and those mapped in the field. From this
analysis, we focused on and calculated the rate of true positives
(TP), false positives (FP), and false negatives (FN) (Table 1). This
was done so that the results of identification could be quantita-
tively assessed using the F1 measure (Freeland et al. 2016). This
is a measure of the accuracy of a binary classification that relies
on the calculation of the harmonic mean of sensitivity (R) and the
precision (P) (Table 1).

F1= 2PR/ (P + R)

This measure, as opposed to the use of confusion matrices,
does not take into account true negative results; these were not
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FIGURE 4. An example of a multiple-one (overlap) positive identification overlying slope map. The smaller features were given
separate feature numbers and referred to as overlap features.

considered since the project was not able to quantify this in any
meaningful way (area of each transect that did not include terrac-
ing would not be a realistic measure of true negative). The closer
the score is to 1, the better the classification.

RESULTS AND ANALYSIS

Results of Surveyed Tracts and Comparison
with Field Data
In total, 161 terraces were identified in the three field transects
using pedestrian survey; these have a mean area of 110 m2. Of
those terraces identified, 55 were identified in Transect 1 (T1),
59 in T2, and 47 in T3. Terraces in each transect exhibited
slightly different characteristics, notably in terms of size and
variance, which is probably the result of functional differ-
ences and social processes (e.g., residential status) (Table 2).
Even though these terrace samples are significantly different
(F = 13.48; p < 0.013), all three transects include a similar
number of terraces that measure less than 200 m2 (T1 = 46; T2
= 49; T3 = 47). T2 included more terraces measuring over 200 m2

than any other transect, with no terrace over 200 m2 identified
in T3.

Each author digitally identified a variable number of features
within the boundaries of these three transects. In total, R1
identified 145 (average area = 140 m2) features, R2 identi-
fied 103 (average area = 65 m2), and R3 identified 81 (average
area = 144 m2). In all three cases, TP outnumbered FP by a
substantial number (Table 3). However, precision and sensitiv-
ity ranged considerably among the authors, and the number of
FN recorded by each was over 45.

Results were more successful when author identifications were
considered together. Because many of the digital features were
recorded by more than one author, the total number of individ-
ual terraces identified was 181. Seventy-seven percent of the
features identified in the field were identified by at least one
of the authors. The vast majority of FP were recorded only by
one, instead of more than one, author (70%), while TP were often
recorded by two or three authors collectively (Table 4). Of the fea-
tures identified by all three authors (n = 53), 94% were TP. Given
the rate of TP within this group, it might be that three other fea-
tures identified by all three authors are TP but were not recorded
during field survey, given low visibility in this densely vegetated
environment. Not surprisingly, the cumulative confidence rat-
ings were related to the rate of TP and FP, with TP representing
90% of features with cumulative confidence ratings of 3 or higher
(87 of 97) (Table 5). The results of feature identification, however,
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TABLE 2. Descriptive Statistics of Features in Each Transect.

Field Mean Max (Min) Lidar Mean Max (Min)
Transect Count Size (m2) Size (m2) Variance Count Size (m2) Size (m2) Variance

1 55 122 390 (20) 6599 59 103 373 (17) 4,957
2 59 138 428 (24) 9428 69 132 404 (10) 6,651
3 47 61 162 (10) 1552 53 71 202 (14) 2,590

161 181

aAfter combining the datasets of the three authors.

TABLE 3. F1 Score Assessment of Feature Extraction.

Field Author
F1-Score FN FP TP Identified Total Precision Sensitivity

All 0.72 37 60 121 161 181 0.67 0.77
R1 0.71 48 37 108 161 145 0.74 0.69
R2 0.55 88 31 72 161 103 0.70 0.45
R3 0.62 82 9 72 161 81 0.89 0.47
>75 m2 0.73 8 60 91 94 151 0.60 0.92

TABLE 4. The Differences in True and False Positive Rates
When One or Multiple Authors Identify a Feature.

Number True False
Identified Positive Positive Total

1 32 42 74
2 39 15 54
3 50 3 53
Total 121 60 181

were not even across the three transects (Table 6). Instead, the
ratio of TP to FP was highest in T2, which also had a low number
of FN (n = 5).

The average size of terraces that were FN is significantly smaller
than those that were positively identified (U = 989; z = 5.24;
p < 0.014). In other words, larger terraces were more accurately
identified than smaller ones. Not surprisingly, but even more
telling, the average size of digital features (average of three
authors’ feature outlines) is correlated with cumulative confi-
dence rating (n = 181; rs = 0.47; p < 0.015). This signifies that the
authors themselves were more confident in the identification of
larger features. The impact of average size is confirmed by the
significant increase in the sensitivity of identification when field
features that measure less than 75 m2 are excluded from analysis
(Table 3).

The methods used to manually identify features relied heav-
ily on the contrast between the slope of terraces and that
of the surrounding area (similar to McCoy et al. 2011; Quin-
tus et al. 2015). Because of this, it was predicted that sur-
rounding slope might have been a limiting factor in identifi-

TABLE 5. The Relationship between Confidence Rating and
True and False Positive Rates.

True False
Rating Positive Positive Total

9 7 0 7
8 14 0 14
7 9 0 9
6 12 2 14
5 12 1 13
4 11 2 13
3 22 5 27
2 16 15 31
1 18 35 53
Total 121 60 181

cation; terraces that exhibit less contrast with the surrounding
slope would be more difficult to identify. This was assessed
by calculating the average slope within a 10 m buffer sur-
rounding field-observed terraces, with the overlaps between
buffers of different terraces dissolved. The results suggest
that there are no differences in the slope of areas surround-
ing terraces that were positively identified (mean = 15.71) by
the authors and those that were not (mean = 15.43; U = 2280;
z = −0.05; p = 0.96). Therefore, slope does not appear to have
been a factor in feature identification in this study.

For remotely sensed features to be analytically important, they
must be reasonable representations of on-the-ground features.
A correlation between the field-acquired and remotely sensed
data on terrace size discussed here is generally supported by
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TABLE 6. The Relationship between Transect Number and
the Results of Feature Identification.

True False False
Transect Positive Positive Negative

1 39 20 16
2 49 20 5
3 33 20 16
Total 121 60 37

the similarity of sample means6 (n = 103; Field = 123, Digital =
124; U = 5035; z = −0.63; p = 0.53), but this might mask signifi-
cant individual feature-level variation. To assess the relationship
between field and digital features in our dataset at a finer scale,
we compared terrace area measured in the field to that measured
digitally using features with a one-to-one positive identifica-
tion (n = 103). Simply, we calculated a proportion statistic (field-
measured area/average digitally measured area), subtracted that
statistic by 1 to examine distance from a perfect correlation, and
then made all numbers positive. The resulting average distance
away from a perfect correlation was 0.47. In other words, the
field-measured area was roughly 47% larger or smaller than that
measured digitally. While this seems large, the mean is affected
by a set of outliers with proportions over 1.5, and the median
measures 0.28. Moreover, there is a strong negative correlation
between confidence rating and variation, with those terraces pos-
sessing higher confidence ratings exhibiting less variation from
the field measurements (n = 103; rs = −0.40; p < 0.01). These
differences might also reflect the subjective placement of vertices
by the authors (see Figures 3 and 4). Still, it appears that there is
a general correlation between the field and digital dataset, and
that confidence ratings can be used to predict variation between
digital and field data.

Results of Non-Surveyed Tracts and
Intergroup Comparison
Similar methods of identification were used to digitally survey
previously unexplored regions of the Luatele site, with all authors
surveying the same area. R1 identified 701 features as terraces,
R2 identified 752, and R3 identified 484. On average, these
features measured 99 m2, 61 m2, and 111 m2 respectively, and
these differences in terrace size among samples were significant
(F = 55.15; p < 0.01). As was the case with feature identification
in field-surveyed areas, each author assigned a confidence rating
to their identifications. The details of these identifications are
provided in Table 7.

The majority of terraces documented by each author were doc-
umented by at least one other author, with the rate of repeat
identification ranging from 67.4% (R2) to 82.4% (R3). As would be
expected, the repeat identification rate correlates with the confi-
dence rating assigned by each author. The rate of repeat identi-
fication ranged from 83.1% (R1) to 100% (R3) for high confidence
features, from 65% (R1) to 91.5% (R2) for medium confidence fea-
tures, and from 52% (R2) to 68.7% (R3) for low confidence features
(Table 7).

TABLE 7. Attributes of Identified Features Also Identified by
Another Author.

Mean Not Proportion
ALL Count Size (m2) Identifieda Identified (%)

R1 701 99 500 201 71.30
R2 752 61 507 245 67.40
R3 484 111 399 85 82.40
High confidence
R1 337 127 280 57 83.10
R2 89 120 88 1 98.80
R3 76 186 76 0 100
Medium confidence
R1 223 79 145 78 65.00
R2 188 82 172 16 91.50
R3 207 96 185 22 89.40
Low confidence
R1 141 62 75 66 53.20
R2 475 42 247 228 52.00
R3 201 97 138 63 68.70

aFeature was identified by at least one other researcher.

The combination of the three datasets resulted in the identifi-
cation of 1,111 individual features, 1,009 of which either were
identified by a single author or were one-to-one positive iden-
tifications identified by multiple authors. One hundred and
two were overlap features. While these were not considered
cases of one-to-one identifications, they were considered pos-
itive repeat identifications in reference to the individual author
datasets. A total of 477 features were identified by more than
one researcher (mean = 95 m2), while the remaining 532 were
recorded by only one researcher (mean = 53 m2). Those recorded
by one researcher were significantly smaller than those recorded
by multiple researchers (U = 194005; z = −14.5; p < 0.01). As
was the case in regards to field data, there is a strong positive
correlation between confidence rating and average surface area
(n = 1009; rs = 0.63; p < 0.01). Those terraces possessing a com-
bined confidence rating of three or more (n = 483; mean = 100)
are larger than those with combined confidence ratings of two or
less (n = 526; mean = 48; U = 207071.5; z = −17.31; p < 0.01).

An analytical dataset was created for further analysis and com-
parison that included those features that were identified by more
than one researcher or were assigned a cumulative confidence
rating of three or more. These attributes were chosen based on
the ground-truthing results. Namely, a high percentage of fea-
tures with cumulative confidence ratings of three or higher were
true positives (90%), which was also the case for features identi-
fied by two or more researchers (83%). Unfortunately, it is likely
that this dataset includes a small proportion of FP and excludes
a small number of FN. Two separate analytical datasets are con-
sidered: one that includes overlap features (cumulative analyti-
cal dataset; n = 637) and one that does not (analytical dataset;
n = 535).

The proportion of terraces of different size classes is compara-
ble between the field and analytical datasets (Figure 5), hinting
that the digital sample is a valid representation of the terrace

Advances in Archaeological Practice A Journal of the Society for American Archaeology November 2017358

https://doi.org/10.1017/aap.2017.13 Published online by Cambridge University Press

https://doi.org/10.1017/aap.2017.13


The Efficacy and Analytical Importance of Manual Feature Extraction Using Lidar Datasets

FIGURE 5. Comparison of terrace sizes measured in lidar and the field. Note the discrepancy under 100 m2.

population. Furthermore, the mean of the analytical sample
(n = 535; mean = 96) is similar to that of the field sample
(n = 161; mean = 110), though differences between the samples
are significant (U = 47410, z = −1.94, p = 0.05). The differences
between the cumulative analytical dataset (n = 637;
mean = 101 m2) and field dataset are not significant (U = 54066,
z = −1.07, p = 0.28).

Digitally measured features are smaller on average relative to
those measured in the field. There could be several reasons for
this slight discrepancy, including that the digital datasets include
an underestimation of terrace size or that the difference reflects
real variation in features found throughout the project area. The
latter is more likely, as the digital datasets include more terraces
from higher elevations relative to the field dataset. Smaller ter-
race sizes have been demonstrated to correlate with higher ele-
vations elsewhere in Manu’a (Quintus 2015; Quintus and Clark
2016).

DISCUSSION
Archaeologists are an adventurous lot. We explore remote loca-
tions for evidence of past human activity. However adventurous
we are, some environments exhibit more difficult conditions of
site-prospecting than others, and it is not always possible to
achieve 100% coverage, especially across large spatial scales.
Tropical rainforests, including those throughout American Samoa,
have been especially problematic for traditional field-based
prospecting techniques, given the dense vegetation cover that
masks even large structures. It is in these environments that the
use of airborne lidar has been particularly helpful (Chase et al.
2012; Freeland et al. 2016; Ladefoged et al. 2011; McCoy et al.
2011; Opitz et al. 2015; Quintus et al. 2015). As an attempt to

build on this recent research, this article has sought to evaluate
the utility of MFE using preprocessed and publically available
DEMs. Notably, we have demonstrated the effectiveness of com-
mercial grade airborne lidar datasets for use in identifying and
analyzing archaeological landscapes in forested environments
(see also Howey et al. 2016). Moreover, we have documented that
digital surveys using lidar-derived DEMs, simple MFE techniques,
and limited training can provide positive results (F1 score of 0.72).
However, this exercise was not perfect, errors were common, and
limitations were demonstrated.

It should also be noted that feature and measurement ambiguity
is not unique to digital survey. As all practicing archaeologists
know, field survey suffers from ambiguity as well (e.g., measure-
ments, feature interpretations, etc.). For example, both field
and digital measurements suffer from surrounding “noise.” In
the field, this noise is created by the dense tropical vegetation
present in the project area. As mentioned above, it is conceivable
that we failed to field-record three features later digitally iden-
tified as terraces by all three authors as a result of vegetation.
Noise in digital settings is created by difficulties processing all
vegetation returns out of an image, especially when vegetation
is near ground surface, as well as by the error range built into
datasets and images used in the analysis (resulting from the cre-
ation of the DEM or by rounding surfaces with steep sides). At
least some of the FP identified by the authors might have been
caused by areas of contiguous, thick, and low-lying vegetation
classified as bare earth (see similar situation in Reese-Taylor et al.
2016). The elevation difference between the actual surface and
this vegetation might have caused these areas to appear anthro-
pogenic. Because of this, digital and field measurements allow
for a check of each other.

Based on ground-truthing results, MFE is more accurate when
the identifications of multiple researchers are combined. Our
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TABLE 8. Comparison among the Documented Settlement Zones of Manu’a.

Features Mean Terrace Terrace Size Settlement
Identified Area (m2) Range (m2) Zone Area (ha)

Luatele (field) 161 110 ± 84 10–418 ∼115
Luatele (lidar and field) 696 99 ± 78 10–658 ∼115
Luatele (comprehensive) 798 103 ± 79 10–658 ∼115
Tufu 58 174 ± 133 18–636 ∼18
A’ofa 50 194 ± 129 35–650 ∼49
Sili-i-uta 104 184 ± 103 34–701 ∼20
Tamatupu 188 289 ± 231 27–2,035 ∼120

quantitative results confirm that the analysis of a single user
includes lower levels of precision and sensitivity, no matter
their knowledge of feature morphology. It is essential, based
on these results, that researchers applying MFE techniques use
and compare the identification interpretations of multiple
individuals.

Our results also document some factors that might impact vari-
ation in identification. For the terrace feature class on Ta’u, the
most pronounced limitation is feature size, with the identification
of terraces smaller than 75 m2 being ambiguous. These small
terraces constituted the majority of both FP (77%) and FN (78%)
even though they represented only 45% of the collective digital
and 42% of the collective field datasets. When terraces of 75 m2

or less were excluded from comparison, the sensitivity of feature
identification improved dramatically, though precision dropped
because there was a higher ratio of FP to TP. While it was origi-
nally thought to be an important factor, the slope values of the
surrounding landscape do not appear to have had an effect on
the results of feature identification in this case. However, it might
be that the contrast between slope and terrace becomes more
pronounced with larger features; this lack of visible contrast in
small features might be a reason why they were difficult to iden-
tify. The density of vegetation in some of these areas might also
be a key factor in feature identification and the quality of the lidar
dataset, though this cannot be assessed here since we used a
publically available DEM. These limitations are in part reconciled
by the use of confidence ratings. These ratings are often thought
of as subjective evaluations, but we contend and have shown
that they provide a means to further refine the results of feature
identification when they are assigned in a systematic way and
have consistent definitions. Researchers must weigh increased
sensitivity against decreased precision.

Even with the limitations discussed above, our results indicate
that datasets built through MFE can be analytically important. In
our datasets, most features with higher confidence ratings were
better approximations of the field features than those of
lower confidence ratings; those features identified by a single
researcher as low confidence were particularly problematic.
The blind identification of features by three separate individu-
als, along with confidence ratings, allowed us to examine the
archaeological landscape beyond what has been previously
surveyed in the Luatele site. The utility of this is demonstrated
by comparison with the broader archaeological landscape of
Samoa.

Comparison with Previous Landscape Studies
in Manu’a and Regional Implications
The availability of airborne lidar datasets in Oceania has been
increasing rapidly. Focusing on Samoa, this ability to survey
large tracts of land under tropical vegetation has already proven
groundbreaking; airborne lidar is becoming an essential tool
for cultural resource management. Several extensive, but previ-
ously under-researched, areas in Manu’a have been documented
through visual investigation of lidar-derived imagery, including
Luatele on Ta’u and Sili-i-uta on Olosega. As modern develop-
ment continues to intrude on these interior landscapes, airborne
lidar will serve as a valuable tool to ensure that cultural resources
are identified and sufficiently protected.

With the addition of this analysis, at least partial investigations of
interior archaeological landscapes have now been completed on
all three islands of the Manu’a group (Quintus 2011, 2012, 2015;
Quintus and Clark 2012, 2016; Quintus et al. 2015). These areas,
which include the vast majority of habitable land on each island,
were virtually unknown just 10 years ago. What has become
apparent is the near continuous distribution of archaeological
remains across the landscape. Given the size of the islands in
Manu’a, the sheer density of terracing speaks to the size of the
prehistoric population and the carrying capacity of these environ-
ments.

As elsewhere in the world, the examination of variation within
and among settlement zones has led to advances in our under-
standing of a range of social practices in Manu’a (Quintus 2012,
2015; Quintus and Clark 2012, 2016; Quintus et al. 2016). The
localized nature of archaeological investigation prior to the avail-
ability of lidar in the archipelago largely prohibited this type of
comparative analysis. Of particular importance in the analysis of
variation, average terrace size differs significantly between docu-
mented settlement zones, which are perhaps comparable to the
Samoan nu’u, or, roughly, village, on the three islands. Whereas
there is broad comparability in average terrace size between
one settlement zone on Olosega (Sili-i-uta) and the two on Ofu
(A’ofa and Tufu), one settlement zone exhibits larger terraces
(Tamatupu on Olosega) and one has smaller terraces (Luatele on
Ta’u) (Table 8). The range of terrace sizes is consistent between all
but Tamatupu (Figure 6), though a higher proportion of small ter-
races appear to be present in Luatele relative to other settlement
zones (Figure 7). On almost all accounts, Tamatupu is an outlier in
the Manu’a group.
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FIGURE 6. Comparison between documented settlement zones in Manu’a. The Luatele sample is the comprehensive dataset
(field and all digital features).

FIGURE 7. Comparative histogram of the five settlement zones documented in Manu’a.

The difference between Tamatupu and the other settlement
zones has been hypothesized to relate to political considerations
(Quintus et al. 2015). This is based not only on the proportion
of large terraces that might reflect status but also on the num-
ber of star mounds, local examples of monumental architecture
(Herdrich and Clark 1993), associated with the settlement zone. In
contrast, the smaller average terrace size in Luatele might relate
to differences in activities undertaken in at least portions of the
zone. Luatele is unique in Manu’a in that small linear mounds of
earth and stone are situated running both perpendicular and par-
allel to the slope. It might be that the smaller terraces relate to
activities associated with these linear mounds, namely food pro-

duction. Such an interpretation could be assessed with additional
pedestrian survey to gather data on feature function. Alterna-
tively, it might be that the smaller average terrace size in Luatele
is a product of error associated with digital feature measurement.
This is unlikely to explain the entire variation apparent between
Luatele and other settlement zones, though, especially given the
general comparability between field-based measurements and
digital-based measurements discussed above.

The discovery and preliminary documentation of inte-
rior upland settlement zones in Manu’a hints of significant
unknown archaeological landscapes on the larger islands
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of the archipelago. This has already proven true for Tutu-
ila (Cochrane personal communication), but airborne lidar
datasets are just becoming available for the Independent
State of Samoa. Vast tracts of archaeological features have
already been documented in some areas of ‘Upolu and Savai’i
(Holmer 1980; Wallin and Martinsson-Wallin 2007), but the
vast majority of land on each island remains unexplored. If the
density of archaeological remains on adjacent Manono is any
indication (Sand et al. 2012), we can expect important finds
to be made if/when airborne lidar data is analyzed. We are
hopeful that continued demonstration of the utility of commer-
cial quality airborne lidar datasets serves as a proof-of-concept
to justify the acquisition of comparable datasets by small island
nations.

CONCLUSION
With the results of this research in mind, we make the following
recommendations about the use of lidar datasets in archaeologi-
cal research, especially in regards to MFE:

1. Airborne lidar should be paired with pedestrian survey data
and the process of feature interpretation should be iterative
(following Freeland et al. 2016; Opitz et al. 2015; Quintus et al.
2015; Reese-Taylor et al. 2016).

2. Projects employing MFE should include multiple individuals
who undertake feature identification independently of other
researchers.

3. Systematic and well-defined confidence ratings should be
assigned for all identified features as a quality-control mecha-
nism.

4. The relationship between field and digital data should be
assessed quantitatively.

5. The analysis of datasets derived from digital survey that
makes use of airborne lidar should provide a set of working
hypotheses from which expectations and predictions can be
formulated, evaluated, and refined as additional pedestrian
survey data are acquired.

We agree with the arguments of previous researchers that the
most effective use of lidar datasets is in conjunction with tradi-
tional field survey (after Optiz et al. 2015), and that remote sens-
ing does not and should not replace localized pedestrian survey
(Freeland et al. 2016). The data collected by different techniques
do not necessarily overlap, as they are situated at different analyt-
ical scales. Pedestrian survey remains an important tool for doc-
umenting the range of sites, both standing and dispersed, within
a region. In the case of Samoa, this is important, as secondary
features (e.g., foundations, pavings, artifacts) have important
implications for feature function analysis, as discussed above.
In other regions of the world, lack of pedestrian survey might
mask variation in construction materials, artifact densities, and
other important data frequently used by archaeologists. However
important lidar data might be, it is essential to recognize these
limitations. Field and digital surveys are complementary tools,
and it is the use of these strategies as complementary tools by all
archaeologists that presents an opportunity for the addition of
lidar to prove revolutionary in archaeology.
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NOTES
1. Extraction techniques that make use of machine learning algorithms or

similar techniques.
2. Extraction or identification of features based on visual interpretation.
3. ANOVA.

4. Mann-Whitney Test.
5. Spearman’s rank correlation coefficient.
6. Only true positives with one-to-one identification.
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