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Abstract

Let p : C→ C be a polynomial. The Gauss–Lucas theorem states that its critical points, p′(z) = 0, are
contained in the convex hull of its roots. We prove a stability version whose simplest form is as follows:
suppose that p has n + m roots, where n are inside the unit disk,

max
1≤i≤n

|ai| ≤ 1 and m are outside min
n+1≤i≤n+m

|ai| ≥ d > 1 +
2m
n

;

then p′ has n − 1 roots inside the unit disk and m roots at distance at least (dn − m)/(n + m) > 1 from the
origin and the involved constants are sharp. We also discuss a pairing result: in the setting above, for n
sufficiently large, each of the m roots has a critical point at distance ∼n−1.
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1. Introduction

The Gauss–Lucas theorem, first stated by Gauss [7] in 1836 and first proved by Lucas
[12] in 1879, states that if p : C→ C is a polynomial of degree n, then the n − 1 zeros
of p′ lie inside the convex hull of the n zeros of p. This has been refined in various
ways [2–6, 9, 11, 13, 14, 16, 18, 20–24, 26]. It was recently established by Totik [25]
that, for sequences of polynomials pn with deg(pn)→∞, if n − o(n) roots of p lie
inside a convex domain K, then any fixed neighborhood of K contains n − o(n) roots
of p′. We prove a sharp, nonasymptotic result in the same spirit (see Figure 1).

Theorem 1.1. Let p : C→ C be a polynomial having n roots a1, . . . , an inside the unit
disk and m roots an+1, . . . , an+m outside. If the roots outside are bounded away from the
disk

min
n+1≤i≤n+m

|ai| ≥ d > 1 +
2m
n
,
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Figure 1. Roots outside create critical points outside the disk.

then p′ has n − 1 roots inside the unit disk and m roots of modulus at least (dn − m)/
(n + m) > 1.

Theorem 1.1 is sharp: consider p(x) = (x + 1)n(x − d)m for some real d > 1. The
derivative p′ has n − 1 roots in −1, m − 1 roots in d and one root r in

r =
dn − m
n + m

which requires d > 1 +
2m
n

to be outside the unit disk.

The case m = 1 is essentially known, though phrased in a somewhat different language,
and is due to Rahman [19] (see also Aziz [1] for higher derivatives). We now formulate
a version for general convex domains; d(z,K) denotes the distance from a point z ∈ C
to a set K ⊂ C.

Theorem 1.2 (Stable Gauss–Lucas). Let p : C→ C be a polynomial having n roots
a1, . . . , an inside the convex domain K ⊂ C and m roots an+1, . . . , an+m outside. If the
roots outside satisfy

min
n+1≤i≤n+m

d(ai,K) ≥ 2 diam(K)

√
m2

n2 +
m
n
,

then p′ has n − 1 roots close to K in the sense that

d(z,K) ≤
diam(K)

√
m

√
m + n

and m other roots satisfying d(z,K) ≥ diam(K)
√

m/(n + m).

We note that the result has a different scaling than Theorem 1.1 (the scaling in
Theorem 1.1 is a consequence of the boundary of the unit disk having curvature
bounded from below). The proof has various degrees of freedom (how to set which
parameter etc) and it is possible to obtain a variety of other results of a similar flavor
with the same approach.

1.1. Pairings of roots and critical points. There is recent renewed interest in the
interplay between roots of a polynomial and the location of its critical points in the
random setting (see, for example, [8, 10, 17]). Kabluchko [10] has shown that if
a random polynomial is constructed by picking its n roots from some probability
measure µ, then the roots of the derivative converge to the same measure µ as n→∞.
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Figure 2. Roots outside (filled) have critical points (empty) nearby.

The following recent result is due to O’Rourke and Williams [15]: suppose that µ
is a compactly supported probability measure, z1, . . . , zn are randomly drawn from µ
and ξ ∈ C is a deterministic point outside the support of µ. If p denotes the random
polynomial

p(z) = (z − ξ)
n∏

k=1

(z − zk),

then p′ has a root at distance ∼n−1 from ξ with high likelihood. We give a deterministic
variant (see Figure 2).

Theorem 1.3 (Pairing of roots and critical points). Let K ⊂ C be a closed convex
domain and ξ1, . . . , ξm ∈ C \ K. Then there exist n0 ∈ N and c > 0, both depending on m,
diam(K) and min1≤i≤m minz∈K ‖ξi − z‖, such that for all n > n0 and all z1, . . . , zn ∈ K,
the polynomial

p(z) =

( m∏
`=1

(z − ξ`)
) n∏

k=1

(z − zk)

has exactly m critical points outside K and all of them are at distance ≤c/n from
{ξ1, . . . , ξm}. Conversely, for each ξi, there is a critical point in a (c/n)-neighborhood.

We observe that this is somewhat different from the version of O’Rourke and Williams
[15]: it is completely deterministic but also requires that the ξi are not contained inside
the convex hull of the support of µ. It turns out that this condition (or some condition
in that direction) is necessary in the deterministic setting (as was already observed
in [15]): let K be an annulus centered at the origin containing the boundary of the unit
disk, let ξ = 0 and consider the polynomial

p(z) = (z − ξ)(zn − 1) = z
n∏

k=1

(z − e2πik/n).

For every ε > 0 and n sufficiently large (depending on ε), all the critical points are
contained in the annulus {z ∈ C : 1 − ε ≤ |z| ≤ 1} and none of them are particularly
close to ξ = 0. The proof of Theorem 1.3 is fairly explicit and the constant c could be
made explicit in terms of everything else if one so desired. The proof also yields the
other direction as a byproduct: the critical points either coincide with an ξi (which can
happen in the case of multiplicity) or are indeed at distance & c2/n away from ξi for a
constant c2 (depending on the same things as c).

https://doi.org/10.1017/S1446788719000284 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788719000284


[4] A stability version of the Gauss–Lucas theorem and applications 265

2. Proofs

2.1. Proof of Theorem 1.1.
Proof. Let p : C→ C be a polynomial of degree n + m, having n roots {a1, . . . , an+m},
where |ai| ≤ 1 for all 1 ≤ i ≤ n and

d := min{|an+1|, |an+2|, |an+3|, . . . , |an+m|} ≥ 1.

For our argument it is not important whether the roots are distinct or occur with
multiplicity. The derivative p′ has n + m − 1 roots whose location is determined by
the logarithmic derivative

p′(z)
p(z)

=

n+m∑
k=1

1
z − ak

.

We start by obtaining a lower bound on the size of the quantity outside the unit disk
caused by the terms contained inside the unit disk. An elementary inequality for real
x > 1 and complex |y| ≤ 1 is given by

Re
1

x − reit ≥
1

x + 1
with equality for (r, t) = (1, π).

This implies, for z = reit with r > 1, that∣∣∣∣∣ n∑
k=1

1
z − ak

∣∣∣∣∣ =

∣∣∣∣∣ 1
eit

n∑
k=1

1
ze−it − ake−it

∣∣∣∣∣ ≥ Re
n∑

k=1

1
ze−it − ake−it ≥

n
|z| + 1

.

We now estimate the size of the remaining term for |z| < d. Clearly,∣∣∣∣∣ n+m∑
k=n+1

1
z − ak

∣∣∣∣∣ ≤ n+m∑
k=n+1

1
|z − ak|

≤
m

d − |z|
.

In the location of a new root outside the unit disk, the electrostatic forces add up to 0
and we therefore have to have

n
|z| + 1

≤

∣∣∣∣∣ n∑
k=1

1
z − ak

∣∣∣∣∣ =

∣∣∣∣∣ n+m∑
k=n+1

1
z − ak

∣∣∣∣∣ ≤ m
d − |z|

,

which then simplifies to

|z| ≥
dn − m
n + m

.

It remains to show that the derivative still has m roots outside the unit disk (which, by
the preceding argument, are then necessarily at least a controlled distance away from
the unit disk). This is done by showing that p′ has n − 1 roots inside the unit disk. We
introduce a polynomial collecting all roots inside the unit disk

q(x) =

n∏
k=1

(z − ak)
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and observe that critical points of p are zeros of the function

h(z) = q′(z) + q(z)
n+m∑

k=n+1

1
z − ak

.

The function h is holomorphic in a neighborhood of the unit disk. The argument above
shows that

|q′(z)| ≥
n
|z| + 1

|q(z)| for z outside the unit disk.

We now apply Rouché’s theorem on the boundary of the unit disk (or a slightly larger
disk if there happens to be a root |ai| = 1). Since

d > 1 +
2m
n

we have
n
|z| + 1

>
m

|d| − |z|
for |z| = 1 and thus ∣∣∣∣∣q(z)

n+m∑
k=n+1

1
z − ak

∣∣∣∣∣ < |q′(z)|.

This shows that the number of roots of p′ inside the unit disk, which is the number of
roots of h, is exactly the same as the number of roots of q′, which, by the Gauss–Lucas
theorem, is n − 1. �

2.2. Proof of Theorem 1.2.
Proof. The structure of the argument is completely identical to that of Theorem 1.1;
however, some of the computational aspects change. As before we assume that
a1, . . . , an ∈ K and abbreviate

d := min{d(an+1,K), d(an+2,K), d(an+3,K), . . . , d(an+m,K)}.

Let z ∈ C \ K; then we first require a lower bound on∣∣∣∣∣ n∑
k=1

1
z − ak

∣∣∣∣∣.
By rotational and translational variance, we can again assume that z ∈ R, that (0,0) ∈ K
is the closest point in K and

z > sup
y∈K

Re k = 0.

A simple computation shows that for all k ∈ K,

Re
1

z − k
= Re

1
z − k1 − ik2

=
z − k1

(z − k1)2 + k2
2

.

We know that k1 ≤ 0 and that k2
1 + k2

2 ≤ diam(K)2. An explicit optimization yields that

z − k1

(z − k1)2 + k2
2

≥


d(z,K)

d(z,K)2 + diam(K)2 if diam(K) ≥ d(z,K),

1
d(z,K) + diam(K)

if diam(K) ≤ d(z,K),

≥
d(z,K)

d(z,K)2 + diam(K)2 .
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Altogether, this implies that∣∣∣∣∣ n∑
k=1

1
z − ak

∣∣∣∣∣ ≥ n · d(z,K)
d(z,K)2 + diam(K)2 for z ∈ C \ K.

The upper bound on the effect from outside K is unchanged:∣∣∣∣∣ n+m∑
k=n+1

1
z − ak

∣∣∣∣∣ ≤ n+m∑
k=n+1

1
|z − ak|

≤
m

d − d(z,K)
.

This shows that the argument in the proof of Theorem 1.1 is applicable as soon as

n · d(z,K)
d(z,K)2 + diam(K)2 >

m
d − d(z,K)

.

This is satisfied as soon as

d > d(z,K)
(
1 +

m
n

)
+

diam(K)2

d(z,K)
m
n
.

Minimizing this quantity in the variable d(z, K) shows that we would like to apply it
for

d(z,K) =
diam(K)

√
m

√
m + n

,

which ends up requiring that

d > 2 diam(K)

√
m2

n2 +
m
n
. �

2.3. Proof of Theorem 1.3.
Proof. Theorem 1.2 immediately implies that for {ξ1, . . . , ξm} and n sufficiently large,
there are exactly m critical points outside K. It remains to understand their location.
Denoting the roots inside K by z1, . . . , zn, we obtain that any critical point z satisfies∣∣∣∣∣ n∑

`=1

1
z − z`

∣∣∣∣∣ =

∣∣∣∣∣ m∑
`=1

1
ξ` − z

∣∣∣∣∣ ≤ m
min1≤`≤k |z − ξ`|

.

We know from the proof of Theorem 1.2 that the left-hand side grows like∣∣∣∣∣ n∑
`=1

1
z − z`

∣∣∣∣∣ ≥ n · d(z,K)
d(z,K)2 + diam(K)2 for z ∈ C \ K.

This requires the right-hand side to be in a ∼n−1-neighborhood of {ξ1, . . . , ξm}. It also
shows that the constant c depends on m, the distance of {ξ1, . . . , ξm} to K and the
diameter of K. It remains to show that a (c/n)-neighborhood of ξ1 necessarily contains
a critical point. Critical points satisfy

mult(ξ1)
z − ξ1

=

m∑
k=2

1
ξk − z

+

n∑
k=1

1
zk − z

,
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where mult(ξ1) denotes the number of times ξ1 appears in the list and thus without loss
of generality ξ1 , ξi for all 2 ≤ i ≤ m. This equation can be rewritten as

(z − ξ1) −mult(ξ1)
( m∑

k=2

1
ξk − z

+

n∑
k=1

1
zk − z

)−1
= 0. (�)

By construction, the first term in parentheses is bounded by a constant in a sufficiently
small neighborhood of ξ1, that is, there exists ε > 0 such that for all |z − ξ1| ≤ ε,∣∣∣∣∣ m∑

k=2

1
ξk − z

∣∣∣∣∣ ≤ C.

The second term is growing linearly in n. For n sufficiently large,

c1

n
≤

∣∣∣∣∣mult(ξ1)
( m∑

k=2

1
ξk − z

+

n∑
k=1

1
zk − z

)−1∣∣∣∣∣ ≤ c2

n

in a sufficiently small neighborhood of ξ1. Applying Rouché’s theorem to (�) on the
boundary of the disk {z : |z − ξ1| = 2c2n−1} shows the existence of a critical point in a
2c2n−1-neighborhood. Applying it in the other direction on the boundary of the disk
{z : |z − ξ1| = c1n−1/2} shows that the scaling is optimal, that is, that the critical point
is actually at distance ∼n−1 from ξ1. �
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