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Abstract We study properties of two-sided and one-sided ideals of A-rings, i.e. rings that are sums
of their nil left ideals. We show that the question as to whether one-sided ideals of A-rings are again
A-rings is equivalent to the famous Koethe problem. We also obtain some results on another related
open problem that asks whether annihilators of elements of non-zero A-rings are non-zero.
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1. Introduction

All rings considered in this paper are associative but do not necessarily have identities.
We denote by R∗ the ring (or algebra if we consider algebras) obtained by adjoining an
identity to a ring (or algebra) R if R has no identity, and set R∗ = R otherwise. To
denote that I is a two-sided ideal (left ideal, right ideal) of a ring R we write I � R

(I <l R, I <r R, respectively). Obviously, if L is a left ideal of R, then the two-sided
ideal of R generated by L is equal to LR∗.

For a given ring R we set A(R) =
∑

{L <l R | L nil}. If R = A(R), then we say that
R is an A-ring. It is well known and not hard to check (see [8]) that A(R) =

∑
{K <r

R | K nil} and consequently A(R) � R. Moreover, if R is an algebra over a field F , it
suffices to take the sum of all nil left (equivalently, right) F -ideals of R. Consequently,
A(R) is an F -ideal in this case.

The ideal A(R) was introduced by Andrunakievich [1] and we call it the Andrunakievich
ideal. Koethe’s problem [6] asks whether the nil radical Nil(R) of any ring R contains all
the nil left (equivalently, right [9]) ideals of R, that is, Nil(R) = A(R).
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For an arbitrary ring R, define Nil(R) =
⋂

{I � R | A(R/I) = 0}. It is not hard to
see that Nil is the smallest radical (in the Kurosh–Amitsur sense [5]) such that Nil(R)
contains all the nil one-sided ideals of R for every ring R. Koethe’s problem is obviously
also equivalent to the question as to whether the radicals Nil and Nil coincide.

Andrunakievich posed the following question, which was open for a long time.

Problem 1.1 (Andrunakievich [1]). Does A(R/A(R)) = 0 hold for every ring R?

It is clear that this problem asks whether Nil(R) = A(R) for every ring R. It turned
out [2,8] that this problem is equivalent to Koethe’s problem.

Not knowing whether the radicals Nil and Nil coincide, one can ask whether Nil at
least enjoys the most important properties of the nil radical. Positive results of that sort
would give approximations of a positive solution of Koethe’s problem, whereas if any of
these questions turned out to be equivalent to Koethe’s problem, it would show some
extra properties that a potential counterexample to Koethe’s problem would have to
satisfy. One such question was raised already by Andrunakievich in [1].

Problem 1.2 (Andrunakievich [1]). Can every ring R with A(R) = 0 be mapped
homomorphically onto a prime ring R′ with A(R′) = 0?

This problem is still open. It can also be formulated as whether Nil-semi-simple rings
are subdirect products of prime Nil-semi-simple rings. It is well known that nil-semi-
simple rings are subdirect products of prime nil-semi-simple rings.

One of the most obvious properties of nil rings is that their subrings are also nil
rings. However, it is not hard to check [8] that the counterpart to this property for the
Nil radical is already equivalent to Koethe’s problem. On the other hand, it is known [8]
that one-sided ideals of Nil-radical rings are again Nil-radical. In that context it is natural
to ask whether the ideals of A-rings are also A-rings. It does not look evident and Sands
asked the following question.

Problem 1.3 (Sands [8]). Is Koethe’s problem equivalent to showing that the ideals
of A-rings are A-rings?

One can also ask another question.

Problem 1.4 (Chebotar et al . [3]). Is Koethe’s problem equivalent to showing that
the left ideals of A-rings are A-rings?

In this paper we will prove that Problem 1.4 has a positive answer. We will also obtain
some results related to the following open problem [8].

For a ∈ R we denote by lR(a) the left annihilator of a in R, that is, lR(a) = {x ∈ R |
xa = 0}. The right annihilator rR(a) of a in R is defined in the dual way.

Problem 1.5. Let L be a nil left ideal of a non-zero ring R.

(i) Is it true that lR(a) �= 0 for all a ∈ LR∗?

(ii) Is it true that rR(a) �= 0 for all a ∈ LR∗?
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It is also not known whether Problems 1.5 (i) and (ii) are equivalent.
We will need the following well-known result proved by Krempa.

Theorem 1.6 (Krempa [7] and Chebotar et al . [2, Lemma 4.1]). Koethe’s
problem has a negative solution if and only if there exists a non-zero nil-semi-simple
A-algebra over a field.

2. Properties of the Andrunakievich ideal

We start by describing some relations between A(R) and A(I), where I is an ideal or a
left ideal of R.

Obviously, A(A(R)) = A(R) for an arbitrary ring R, so A(R) is an A-ring.
For a subring S of a ring R, we define AR(S) =

∑
{L | L <l R, L ⊆ S, L nil}. Just

like A(R), if R is an algebra over a field F and S is an F -subalgebra, it suffices to take
the sum of all nil left (right) F -ideals of R contained in S.

It is clear that AR(S) ⊆ A(S) for every subring S of a ring R and AR(S) ⊆ AR(T ) for
subrings S and T of R with S ⊆ T .

Proposition 2.1. If L <l R, then

(1) LA(L) ⊆ AR(L) ⊆ A(L),

(2) A(R)L ⊆ AR(L) and

(3) if R = A(R), then A(L) <l R and (L/A(L))2 = 0.

Proof. (1) Suppose that K <l L and that K is nil. Obviously, LK <l R and LK ⊆
K. Thus, LK is a nil left ideal of R contained in L, so LK ⊆ AR(L). Consequently,
LA(L) ⊆ AR(L).

(2) Suppose that K <l R and that K is nil. Take l ∈ L. Then Kl is a nil left ideal
of R contained in L, so Kl ⊆ AR(L). Consequently, A(R)L ⊆ AR(L).

(3) If R = A(R), then RL = A(R)L ⊆ AR(L) ⊆ A(L) by (2), so A(L) <l R. Moreover,
L2 ⊆ RL ⊆ A(L) and so (L/A(L))2 = 0. �

Proposition 2.2. Let I � R. Then the following hold.

(1) A(I) = AR(I) ⊆ A(R). In particular, if I = A(I), then I ⊆ A(R).

(2) A(I) � R.

(3) If A(R) ⊆ I, then A(I) = A(R).

Proof. (1) Suppose that K <l I and that K is nil. Obviously, R∗K <l R and
R∗K ⊆ I. Moreover, R∗K is nil since (R∗K)2 ⊆ IK ⊆ K. This shows that K ⊆ AR(I).
Consequently, A(I) ⊆ AR(I). The rest is clear.
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(2) From (1) we get A(I) = AR(I) <l R. As was mentioned in the introduction,
A(I) =

∑
{K | K <r I, K nil}. Applying arguments dual to those in the proof of (1),

one gets that
∑

{K | K <r I, K nil} =
∑

{K | K <r R, K ⊆ I, K nil}. Hence,
A(I) <r R and A(I) � R.

(3) If A(R) ⊆ I, then A(R) � I and I � R, so it follows from (1) that A(R) =
A(A(R)) ⊆ A(I) ⊆ A(R), and hence A(I) = A(R). �

Remark 2.3. Note that the one-sided variant of Proposition 2.2 does not hold. For
instance, let R = M2(F ) be the ring of 2×2 matrices over a field F and let L = ( F 0

F 0 ) <l

R. Since every nilpotent element in L is of the form ( 0 0
a 0 ) for some a ∈ F , it follows that

A(L) = ( 0 0
F 0 ), which is not a left ideal of R. Moreover, A(R) = 0, so A(L) �⊆ A(R).

From Proposition 2.2 (1) it follows that Problem 1.3 can be expressed as asking whether
Koethe’s problem is equivalent to the statement that I = AR(I) for every ideal I of an
arbitrary A-ring R. However, the remark above shows that it is not evident whether
Problem 1.4 is equivalent to the following one.

Problem 2.4. Is Koethe’s problem equivalent to whether AR(L) = L for every left
ideal L of an A-ring R?

The second part of the following result is dual in a sense to Proposition 2.1 (3).

Proposition 2.5. For an arbitrary L <l R:

(1) if L is nil, then A(LR∗) = LR∗;

(2) if A(L) = L, then (LR∗/A(LR∗))2 = 0.

Proof. (1) Since L is nil, L ⊆ A(LR∗). By Proposition 2.2, A(LR∗) � R. These imply
that LR∗ ⊆ A(LR∗) and so A(LR∗) = LR∗.

(2) Applying Proposition 2.1, we obtain L2 = LA(L) ⊆ AR(L) ⊆ AR(LR∗) ⊆ A(LR∗).
Hence, L2R∗ ⊆ A(LR∗) since A(LR∗) is an ideal of R by Proposition 2.2 (2). Now,
(LR∗)2 ⊆ L2R∗ ⊆ A(LR∗), so (LR∗/A(LR∗))2 = 0. �

It is natural to ask the following question.

Problem 2.6. Is Koethe’s problem equivalent to whether A(LR∗) = LR∗ for every
L <l R with A(L) = L?

3. Main results

First we answer Problems 1.4 and 2.4 in the affirmative.

Theorem 3.1. The following conditions are equivalent:

(i) Koethe’s problem has a positive solution;

(ii) every left ideal of an A-ring is itself an A-ring;

(iii) AR(L) = L for every A-ring R and L <l R.
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Proof. It is evident that (i) implies (ii).
Assume that (ii) is satisfied and suppose that L <l R = A(R). Since A(R) = R, we

have A(M2(R)) = M2(R), by [2, Corollary 3.2]. Now, T = ( R L
R L ) <l M2(R), so A(T ) = T

by the assumption. Hence, T =
∑

Vi, where all the Vi are nil left ideals of T . Let V be
one of Vi and let U = Ui be the set of right-upper entries of matrices from Vi. Clearly,
U ⊆ L. Let u ∈ U . Then there are x, y ∈ R and z ∈ L such that ( x u

y z ) ∈ V . For any
r ∈ R, we have (

rx ru

0 0

)
=

(
r 0
0 0

) (
x u

y z

)
∈ V

and so ru ∈ U . Consequently, U <l R. Since(
0 0
ux u2

)
=

(
0 0
u 0

) (
x u

y z

)
∈ V,

it is a nilpotent matrix of T and so u2 is a nilpotent element of R. Hence U is nil. Thus,
all the Ui are nil left ideals of R contained in L. From T =

∑
Vi it follows that L =

∑
Ui.

Therefore, L = AR(L) and we get (iii).
Assume now that Koethe’s problem has a negative solution. Then there is a nil-semi-

simple A-algebra R over a field F by Theorem 1.6. Suppose that AR(L) = L for every left
ideal L of R. Let r be a non-nilpotent element of R and take L = R∗r, a left F -ideal of
R. Since L = AR(L), there are nil left F -ideals L1, . . . , Ln of R contained in L such that
r = l1+· · ·+ln, where li ∈ Li. Now, each li = (αi+ai)r for some αi ∈ F and ai ∈ R. Note
that R is a Jacobson radical algebra since R = A(R) by assumption. Hence, if αi �= 0 for
some i, then there are βi ∈ F and bi ∈ R such that (βi + bi)(αi + ai) = 1. Consequently,
r = (βi + bi)li ∈ Li, which is impossible as r is non-nilpotent. Thus, all αi = 0 and so
(1 − a1 − · · · − an)r = 0. Since R is a Jacobson radical algebra, we get that r = 0, a
contradiction. This proves that (iii) does not hold. The proof is now complete. �

Now we will show that Problem 2.6 has a positive answer.

Theorem 3.2. Koethe’s problem has a positive solution if and only if A(LR∗) = LR∗

for arbitrary L <l R with A(L) = L.

Proof. The ‘only if’ part is clear. Thus, suppose that Koethe’s problem has a negative
solution. Then, by Theorem 1.6, there exists a non-nil A-algebra S over a field F . Let R

be the subalgebra ( S S∗

S S ) of M2(S∗) over F . In the proof of [2, Theorem 4.6] it was shown
that A(R) = M2(S) for such an S. Note that L = ( 0 S∗

0 S ) <l R and I = ( 0 S∗

0 0 ) � L. Since
L/I � S, A(S) = S and I2 = 0, we have that A(L) = L. Note that LR∗ = ( S S∗

S2 S
). By

Proposition 2.2 (1), we have A(LR∗) ⊆ A(R) = M2(S), so A(LR∗) �= LR∗. �

We now obtain some results related to Problem 1.5.

Proposition 3.3. Let R be a non-zero Jacobson radical algebra over a field and let
r ∈ R. If r is a sum of nilpotent elements in R∗r, then lR(r) �= 0.
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Proof. If r = 0, then lR(r) = R �= 0. So assume that r �= 0. Since R is a Jacobson
radical algebra and r �= 0, we have r �∈ Rr. Hence, there are a1, . . . , an ∈ R∗, not all in R,
such that r = a1r + · · ·+ anr and each air is a non-zero nilpotent element. Suppose that
a1 �∈ R and set b = a2 + · · · + an. Then, (1 − a1 − b)r = 0. Since R is a Jacobson radical
algebra over a field, all elements in R∗ \ R are invertible in R∗. Hence, if 1 − a1 − b �∈ R,
then it is invertible in R∗ and so r = 0, a contradiction. Thus, 1 − a1 − b ∈ R. However,
a1 �∈ R, so 1 − b �∈ R either, and hence 1 − b is invertible in R∗. Since (1 − b)r = a1r is a
non-zero nilpotent element, there exists an integer m > 1 such that ((1 − b)r)m = 0 but
((1−b)r)m−1 �= 0. Hence, t = ((1−b)r)m−1(1−b) �= 0. However, tr = 0, so lR(r) �= 0. �

We shall need the following lemma, which slightly generalizes [4, Lemma 3.11] and can
be obtained by applying essentially the same arguments.

Lemma 3.4. Let R be a ring, r ∈ R and L <l R. Then:

(1) rlR(r) � rR, rR(r)r � Rr and (rlR(r))2 = (rR(r)r)2 = 0;

(2) the map rx + rlR(r) → xr + rR(r)r for x ∈ L is an isomorphism of (rL +
rlR(r))/rlR(r) onto (Lr + rR(r)r)/rR(r)r.

It is evident that if L is a nil left ideal of a ring R, then all elements in LR∗ are sums
of nilpotent elements. The following theorem shows, in particular, that the answer to
Problem 1.5 is positive if all left ideals of LR∗ have this property.

Theorem 3.5. Let R be a non-zero Jacobson radical ring. Suppose that, for every
L <l R, each element of L is a sum of nilpotent elements in L. Then, lR(r) �= 0 and
rR(r) �= 0 for each r ∈ R.

Proof. Suppose first that R is an algebra over a field F and take any r ∈ R. By
assumption, r is a sum of nilpotent elements in R∗r. Hence, lR(r) �= 0 by Proposition 3.3.
By Lemma 3.4 we see that rR∗/rlR∗(r) � R∗r/rR∗(r)r and (rlR∗(r))2 = (rR∗(r)r)2 = 0.
Hence, r is also a sum of nilpotent elements in rR∗. Thus, Rop, the ring opposite to R,
and r satisfy the assumptions of Proposition 3.3. Consequently, rR(r) = lRop(r) �= 0.

Suppose now that R is a ring and r ∈ R. We will show that both lR(r) and rR(r)
are non-zero for r �= 0. Assume first that nr = 0 for an integer n > 1 and n is the
smallest possible. Obviously, nRr = rnR = 0. Hence, we are done if nR �= 0. Thus,
assume that nR = 0. If n is a prime number, then R is an algebra over a field and
we are done. Thus, assume that there is a prime p such that n = pk for an integer
k > 1. Let I = {x ∈ R | kx = 0}. Obviously, I � R and r �∈ I, by the minimality
of n. Write R̄ = R/I and x̄ = x + I for x ∈ R. Then pR̄ = 0, so R̄ is a non-zero
algebra over a field. It is also clear that R̄ satisfies the assumption of the theorem.
Consequently, lR̄(r̄) �= 0 and rR̄(r̄) �= 0. That is, there are a, b ∈ R \ I such that ar ∈ I

and rb ∈ I. Hence, ka �= 0 and kb �= 0 but kar = krb = 0. Thus, 0 �= ka ∈ lR(r) and
0 �= kb ∈ rR(r), so we are done. Assume next that nr �= 0 for every positive integer n.
Let T = {x ∈ R | nx = 0 for some positive integer n}. It is clear that T � R, r �∈ T and
nx �= 0 for every non-zero integer n and every non-zero element x ∈ R/T . It is not hard
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to see that the localization S of R/T at the set of non-zero integers is an algebra over
the field F of rational numbers and every left F -ideal of S satisfies the assumption of
the theorem. Hence, by the preceding paragraph, there are a, b ∈ R \ T such that ar ∈ T

and rb ∈ T . Now, there is a non-zero integer k such that kar = krb = 0. Obviously,
0 �= ka ∈ lR(r) and 0 �= kb ∈ rR(r). The result follows. �

We know from Theorem 3.1 that if all left ideals of A-rings were A-rings, then Koethe’s
problem would have a positive solution. However, even Koethe’s problem has a negative
solution; there are rings all of whose left ideals are A-rings. From Theorem 3.5 we obtain
immediately that for such rings we have the following corollary.

Corollary 3.6. Let R be a non-zero ring such that L = A(L) for every left ideal L

of R. Then lR(r) �= 0 and rR(r) �= 0 for each r ∈ R.

In the context of the above theorem and corollary, the following questions arise.

Problem 3.7.

(a) Suppose that L <l R = A(R). Is every element in L a sum of nilpotent elements
in L?

(b) Suppose that R = Nil(R). Is every element in R a sum of nilpotent elements in R?

(c) Is lR(a) �= 0 for every non-zero a ∈ Nil(R)?

Obviously, Problem 3.7 (c) is more general than Problem 1.5. Since left ideals of Nil-
rings are Nil-rings, Problem 3.7 (b) is more general than Problem 3.7 (a) and from The-
orem 3.5 it follows that Problem 3.7 (b) is more general than Problem 3.7 (c).
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