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Abstract
Objective: Electroencephalography (EEG) has an influential role in neuroscience and commercial applications.
Most of the tools available for EEG signal analysis use machine learning to extract the required information. So, the
study of robust techniques for feature extraction and classification is an important thing to understand the practical
use of EEG. The paper aims that if there is any special tool for a particular task. Which feature domain or classifier
has a significant role in EEG signal analysis?
Approach: It presents a detailed report of the current trend for bio-electrical signals classification focusing on
various classifiers’ advantages and disadvantages. This study includes literature from 2000 to 2021 with a brief
description of EEG signal origin and advancement in classification techniques.
Results: Randomly used classifiers for EEG signal can be categorized into five classes, namely Linear Classifiers,
Nearest Neighbor Classifiers, Nonlinear Bayesian Classifiers, Neural Networks, and Combinations of Classifiers.
Approximately 40% of studies use Support Vector Machine, Nearest Neighbor, and their combination with others.
For specific tasks, particular classifiers are recommended in the survey. Features can be defined into four categories,
namely TDFs, FDFs, TFDFs, and statistical features, where 39% of studies used TFDFs. Multi-domains features
are preferred when the required information cannot be obtained from one domain.
Significance: The paper summarizes the recent approaches for feature extraction and classification of EEG signals.
It describes the brain waves with their classification, related behavior, and task with the physiological correlation.
The comparative analysis of different classifiers, toolbox, the channel used, accuracy, and the number of subjects
from various studies can help the practitioners choose a suitable classifier. Furthermore, future directions can cope
up with the relevant problems and can lead to accurate classification.

1. Introduction

The biological signals are measured and monitored from the different parts of human body. A few of
them are Electromyography (EMG) (for muscular contraction), Electrocardiography (ECG) (for heart
waves), Electrooculography (EOG) (to record eye dipole field), Electroencephalography (EEG) (for
brain waves), and Electrogastrography (EGG) (to record muscular activity of stomach). With it, vari-
ous imaging techniques are also available as Single-Photon Emission Computed Tomography (SPECT),
Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Computed Tomography
(CT), and Functional Magnetic Resonance Imaging (fMRI). But the EEG signals play a significant role
in the biomedical field because it directly measures the electrical activity of the brain. [1] Mostly cited
and surveyed articles regarding feature extraction and EEG signal classification are briefly described in
Table I, which focuses on the significance of EEG signal.

EEG is an imaging technique that scans electrical activity of brain. If EEG signal is measured from
the cortical surface (exposed surface) of the brain called as electrocorticogram, when it is recorded
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Table I. Some important papers on EEG feature extraction and classification with citation.

Author/Year Key focus No. of citation

A S Al-Fahoum et al./2014. [2] Conventional techniques for EEG signal
feature extraction

96

Y L Chong et al./2015. [3] An improved version of quantum support
vector machine with an unknown kernel,
which predicts the label of EEG signal

39

A Al-Nafjan et al./2017. [4] To review the studies on emotion detection and
recognition and classification

31

F Lotte et al./2018. [5] Various EEG signal classification approaches
used in BCIs are described.

289

M Hamada et al./2018. [6] Systematic review for emotion classification,
feature extraction, comparison of groups
using EEG signal of the human brain

9

A Craik et al./2019 . [7] Which classification task and input
formulations are performed with deep
learning? Which specific deep learning
network structures are suitable for a
particular task?

47

Q Gao et al./2020. [8] Three emotions (neutral, happiness, and
sadness) classification using a fused feature
extraction method

32

Figure 1. Distinctive waves of EEG signal. (a) Movement/motor imagery (eye open/close)dataset,
(b) mental arithmetic task, (c) rapid serial visual presentation [9, 10, 11].

from scalp only called as electroencephalogram. Nowadays, it is a noninvasive procedure that can be
recorded repeatedly from patients, children, and adults without any risk or limitations. Figure 1 shows
some raw waveforms of EEG signals of three activities (motor imagery task, mental arithmetic task, and
rapid serial visual presentation) of the human brain. Figure 2 shows the acquisition and analysis of EEG
signals.

This survey is systematically performed for the existing literature to collect information from presti-
gious journals and conferences. Applying the related search strings gives about 1200 relevant articles,
out of which 96 are identified as the relevant articles after excluding the duplicate and irrelevant ones,
which represents the classification and feature extraction of brain waves. For the brief introduction of
EEG signal and its progression with time, few papers are included from 1924 to 2000. For the statistical
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Figure 2. EEG data acquisition with interfacing setup.

analysis, relevant articles are taken from the years 2000 to 2021. This survey provides detailed infor-
mation about all the brain waves. It presents how the classification of EEG signals started and became
more accurate with time. The paper shows the statistical analysis of feature domains and classifiers. It
also explains the research challenges in terms of future perspectives that should be focused on accurate
classification.

1.1. Brain wave classification

Usually, EEG signal is recorded with the eye open and eye closure in relax conditions. These signals are
measured from peak to peak and have amplitude of 0.5–100 μ Volt. EEG signal can be differentiated
into alpha (α), beta (β), gamma (γ ), theta (θ ), and delta (δ). If the power spectrum of raw EEG signal
is derived, sine wave contribution with frequency difference can be seen. The frequency spectrum is
obtained by applying Fourier transform that is described in Table II [12].

1.2. A little bit of history

EEG signal was identified in 1924 by Hans Berger. A few years later, in 1956, a neurological model and
time series representation of EEG was described. [13] Cross-correlation gives a relation of the electrical
activities of two locations. The autocorrelation of EEG signal was described on behalf of dominant fre-
quencies. [14] Near 1960 with the evolution of machine learning, Hirsch and colleagues recorded evoked
potential for the first time. J. J. Denier, V. D. Gon and Strackee, in 1966, elaborated the mathematical fre-
quency analysis of EEG signal. [15] With the resonant frequency, three characteristics (efficiency, time,
and frequency selectivity) of filters were observed more significant for this type of analysis. In 1969, a
new technique spatiotemporal phenomenon was evolved by Thelema Estrin and Robert Uzgalis to deter-
mined the characteristic pattern of EEG signal. [16] Simultaneously, in another study, the EEG signal
was classified into two parts; the first part is described as the feature reduction technique to reduce data
handling for linear classification. The second part carries the algorithm to classify the unknown samples
into any linearly inseparable classes. [17] The signal was classified in the form of abnormal transients
like sharp and spike waves in 1975 to treat epileptic patients. [18] With the hierarchy of previous mod-
els’ help, quantitative analysis of EEG was demonstrated by Arthur C et al.; an operator-independent
model could compress the data for complex signals and comfortable for classification techniques. [19]
In 1982, the invention of Recurrent Neural Network was like a breakthrough in the classification field.
Joseph D Bronzin O published the feature extraction and data reduction technique such as compressed
spectral arrays and spectral analysis. [20] A modal in,[21] Ocular Artifacts Removal (OAR), was capa-
ble of eliminating noises from almost all physiological situations, which helped in error-free analysis of
EEG signal.
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Table II. EEG waveform analysis based on frequency domain.

EEG signal range
(in Hz)

Delta wave (0.1–3) Theta wave (4–8) Alpha wave (8–12) Beta wave (12–30) Gamma wave (>30)

Classification Generally broad or
spread out

Normally local, may
contain two or more
lobes

Local, mostly contain
full lobe

Confined Very Confined

Feeling of Subject An unconscious,
deep, and
dreamless sleep

Very natural, imagery,
and laziness

Relaxing mode without
any agitation

Alertness,
Disturbance

Focused but arousal

Related task and
behaviors

Sleepy without any
movement or
attention

Inventive, emotional,
without focus

Concentration, deep
thought but not too
much active

Mind activity,
for example,
mathematics

Deep and focused
thought processing

Physical correlation Less movement, no
encouragement

Remedial, assimilation
of mind or body

Calm, curing Attentive and
effective

Knowledge-rich tasks
performed
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In 1986, a tree-structured approach, Classification and Regression Trees (CART), was investigated
where the authors implemented a partition method using iterative research for best binary “splits” of data.
[22] A. S. Gevins and N. H. Morganva described a model with five detectors for maximal classification
accuracy in a pattern recognition analysis. [23] In 1989, the evoked potential waveforms were classified
into different patterns, and 90% accuracy was reported. [24] A Time-Domain Analysis Tool (TDAT) was
evolved for displaying and analyzing multiple-channel EEG data. It was found that data modification
and quantification is relatively easy with the computer. The author concluded that more features and
productive results could be calculated using Digital Signal Processing (DSP). [25] The revolution in
machine learning classifiers was brought about by Support Vector Machine (SVM) in 1995. In ref. [26],
nonlinear effects were observed in EEG signal classification using Artificial Neural Network (ANN), and
results were compared with the linear Autoregressive (AR) model. The study concluded that nonlinearity
is an essential factor for EEG signals. The ocular effect was reduced using two adaptive filters and a
neural network. [27] This procedure was more accurate for real-time processing.

The breakthrough of EEG signal classification for different applications came in trend near 2000.
In 2000, Bigan C. and Woolfson M.S. increased the accuracy by combining the polynomial modeling
and phase compensation methods. [28] A comparison of SVM classifier was made with LDA and con-
ventional neural networks in a study of linear and nonlinear methods where SVM executed better than
others. [29] A new Adaptive Neuro-Fuzzy Inference System (ANFIS) application with five classifiers
was described in 2005 for a more accurate classification. [70]

A Common Spatial Pattern (CSP) algorithm reduced artifacts and improved the data transfer rate
(number of bits per trial) in an experiment of imagined limb movement activity in Brain–Computer
Interface (BCI). [31] A multi-class support vector machine and Probabilistic Neural Network (PNN)
classification results were better than a multilayer perceptron neural network. [32] In 2008, a com-
parison of different spectral signal representations was made by Pawel Herman et al. [71] The band
power features were extracted and used for motor imagery classification.In ref. [34], data of epileptic,
motor imagery, and mental imagery tasks were classified using the Clustering-Based Least Square SVM
(CT-LS-SVM) method with an accuracy of 94.18%, 84.17%, and 61.69%, respectively.

In ref. [35], the author described a kernel-based ensemble learning algorithm that can automati-
cally compute the most discriminative part of the EEG channel for internal emotion recognition. Three
techniques having ensemble type architecture are compared in ref. [36] to identify the best classifier
where KNN contributed more accurate results. Three feature extraction methods used in a study are
Wavelet-based Energy and Entropy (EngEnt), Band Power (BP), and Adaptive Autoregressive (AAR).
[37] Several techniques extracted from literature for classification are shown in Fig. 3.

2. Features and extraction methods

For EEG signal, classification and feature extraction are key technology. Classifiers use feature values
as input and predict the class for the classifier. A classifier has different parameters that can be learned
from training data. [38] Features are extracted in the form of. [39] TDFs, FDFs, TFDFs, and statistical
features are shown in Fig. 4. The feature extraction techniques are shown in Fig. 5.

Waveform morphological features contain First Half-Wave Duration (FHWD), First Half-Wave Slope
(FHWS), First Half-Wave Amplitude (FHWA), Second Half-Wave Duration (SHWD), Second Half-
Wave Amplitude (SHWA), and so on. These characteristics also include Waveform Length (WL), Simple
Square Integral (SSI), Root Mean Square (RMS), Mean Absolute Value (MAV), Variance (Var), Average
Amplitude Change (AAC), etc. Depending on the applications, various feature extraction techniques are
Fourier spectral analysis, Short-Time Fourier Transform (STFT), Discrete Wavelet Transform (DWT).
Fourier analysis represents EEG waveform in the frequency domain, and STFT extracts the density of
spectrum of the signal using one of the available sliding windows. DWT describes the waveform features
in both time or frequency domain. The nonlinear analysis of EEG wave gives the Approximate Entropy
(ApEn), Lyapunov Exponents (LyEx), Correlation Dimension (CorDim), etc. [37] Statistical features
include standard deviation, correlation coefficient, average value, and normal distribution.

https://doi.org/10.1017/S0263574721000382 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000382


82 Pooja et al.

Figure 3. Breakthrough in classifiers history.

2.1. Time-domain features (TDFs)

Among time-domain parameters, one variable features are Mean, Standard Deviation, RMS,[40] Peak to
Peak, Autocorrelation, Integral of Absolute Value, Zero Crossing (ZC), and Mean of Amplitude (MA).
Some more advanced features in the time domain are described below:

1. Histogram – It shows the distribution of EEG data samples.
2. Kurtosis – Kurtosis describes the sharpness of the peak of the frequency distribution curve compared

to a Gaussian distribution curve.
3. Skewness – It denotes asymmetry of the distribution curve in comparison to a Gaussian one.
4. Fractal Dimension – It is also called as Hurst Exponent, which is relevant to the long-term memory

of a time series.
5. Entropy – Entropy defines the regularity of waves and the unpredictability of fluctuations over our

time series.

2.2. Frequency domain features (FDFs)

2.2.1. Fast Fourier transform (FFT)
It is a mathematical tool that represents the signal from time to frequency domain. The examined
EEG signal features are calculated by estimating the Power Spectral Density (PSD). [2] The PSD is
computed by the autocorrelation function of EEG signal using Welch’s method. The information about
the sequence is as follows:

Xi(n) = x(n + iD), here n = 0, 1, 2. . . ., M-1, and i = 0, 1, 2. . . .. L-1.
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Figure 4. Feature extraction using different approaches .

Figure 5. Frequently adapted methods for feature extraction of EEG signal.

If Xi(n) is the sequence, iD will be the first point, and L shows the length of 2M, which is a segment
of information. The output is presented as

P≈(t)
xx (f ) = 1

MU

∣∣∣∣∣
M−1∑
n=0

xi(n)w(n)e−j2π fn

∣∣∣∣∣
2

. (1)
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In the above window function, U is the regularization feature of the power and it is denoted by

U = 1
M

M−1∑
n=0

w2(n) (2)

Here, w (n) is window function that describes Welch’s power spectral as

Pw
xx = 1

L

L−1∑
t=0

P≈(t)
xx (f ). (3)

2.3. Time and frequency domain features (TFDFs)

2.3.1. Short-time fourier transform (STFT)
It is used to determine the phase and frequency of the localized part of the signal when it shifts with time.
STFT divides the real frame into several frames, which are examined with a time-shifting window frame.
It derives a time-varying spectrum of the framed part using Discrete Wavelet Transform (DWT). This
framed part moves throughout the recorded signal. Using this method, spectral characteristics behave
as constant for each constant frame. STFT is exerted to EEG signal using the following equation:

X(u, w) =
∞∑

v=−∞
x(v)ψ(v −μ)e−jwv. (4)

Here, ψ (v) denotes the windowing function. [42]

2.3.2. Morlet wavelet transform (MWT)
The Morlet wavelet transform (MWT) is an efficient means of detecting and analyzing transient signals.
MWT is used to find the wavelet power spectrum for a linear frequency axis. The peak response displays
on a lower frequency value than the actual value. [94] On computational behalf, its efficiency is low.
When it is applied to a signal, it gives a complex and real part.

ψ(t) = e
−w2◦ t2

2 ejw◦t . (5)

2.3.3. Wavelet packet decomposition (WPD)
In electroencephalogram signal analysis, high-frequency and low-frequency components are related
to time and frequency domain, respectively. This type of signal can be solved using wavelets in both
domains (time or frequency).

W (j, k) =
√ ∑

n=1,...L

x2
j,k(n)/L, (6)

where L denotes the number of coefficients, and it can be calculated from depth level and the length of
the examined data as L = M2−j . [44]

2.3.4. Wavelet filter bank (WFB)
Discrete Wavelet Transform is used to reconstruct the signal. DWT decomposition gives two pairs of
functions on both sides are; scaling coefficients (xk+1(n)), and wavelet coefficients (yk+1(n)). The below
equation shows the use of two coefficients

Xk+1(n) =
2n∑

i=1

h(2n − i)Xk(n), yk+1(n) =
2n∑

i=1

h(2n − i)Xk(n).

Here k denotes the scaling coefficient.
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2.4. Autoregressive method

This method (AR) determines the Power Spectral Density (PSD) of the given brain wave. PSD is cal-
culated from coefficients of linear system parameters. In autoregressive method, parametric approach is
used so it does not have a spectral leakage problem and provides better frequency resolution. AR needs
less time to record the data. For the automatic regression technique, creating model properties is a bit
complex process. Inappropriate model order selection gives poor estimated results.

2.5. Independent component analysis (ICA)

It can also be defined as a Blind Source Separation (BSS) method. In BSS, without any prior information,
a source signal is recovered from mixed signals. If there are n linear mixtures x1,x2,. . . xnof n independent
components. Then vector x will be x = AS.

Where A denotes a mixing matrix of size n*n, and s is an independent component vector. The goal
of ICA is to finds a matrix W, which will be an inverse matrix of A to inverse the mixing effect. [45] It
will give an independent component as shown in the equation: y = Wx. ICA depends upon the linearity
of the signal and requires more area for computation when it decomposes the signal into a fixed and
independent component.

2.6. Principal component analysis (PCA)

It is a generally used technique to extract features and reduce the dimensions. The purpose of reducing
the dimensions is to decrease the degree of freedom and decrease space and time complications. This
classifier aims to present the data in space so that error variation can be observed. For a defined dataset
with z dimensions, mean vector μ and covariance matrix (z*z) summation are calculated. Then, eigen
values and eigen vectors are found and sorted toward decreasing eigenvalue. Name these eigenvectors
as e1 for value k1,e2 for k2, and so on. Usually, there will be a single dimension. [46] PCA accepts data
as linear and continuous, so it fails for more complex data. [44]

2.7. Empirical mode decomposition (EMD)

In the 90s, a new concept came for the classification of EEG signal was EMD. It is the applica-
tion of Hilbert transform and is called the Hilbert–Huang Transform. It extracts information about
time-frequency for a nonlinear and nonstationary signal. This classifier works on the principle of decom-
position of EEG signal into Intrinsic Mode Function (IMF). Due to mode mixing, this method is more
complicated than others. [47] EMD is a data-driven, adaptable technique, and multi-resolution presen-
tation of the signal. It is very sensitive to noise; it may enhance the complications because of mode
mixing.

3. Survey of classifier used for EEG signal

This section encapsulated the various classification methods used for EEG signal classification. These
classifiers are divided into five classes: Linear and Nonlinear Bayesian Classifiers, Nearest Neighbor
Classifiers, Neural Networks (NN), and fusion of classifiers. [48] A brief introduction of mostly used
classifiers is described below.

3.1. Linear classifier

Those classifier uses the linear discriminant algorithm to differentiate the classes and are called as linear
classifiers. The mostly used algorithms for BCIs are linear discriminant analysis and support vector
machine.
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3.1.1. Linear discriminant analysis (LDA)
It uses a hyperplane to distinguish the data in various classes. For two classes, feature vector classifi-
cation depends on where the vector lies either below or above the hyperplane. LDA assumes an equal
covariance matrix for both classes. For N-class problems, different hyperplanes are required. This strat-
egy distinguishes each class from all others using “one vs rest method” (OVR). This classifier aims to
generate a new variable that contains the original predictors [49] It is done by maximizing the difference
between the predetermined group and a new variable. The aim is to collect the predictor score to form
a new combined variable and discriminant score. LDA is more suitable for online BCIs because of its
low computation requirement. Usually, it gives good results with the drawback of its linearity, so it is
not useful for nonlinear data classification.

3.1.2. Support vector machines (SVMs)
SVM also contains a hyperplane to distinguish the classes; this hyperplane maximizes the margin. As
the margin is maximized, the accuracy of classification will increase. SVM uses linear boundaries for
classification, so-called linear SVM. For synchronous BCIs problems, it gives relatively successful clas-
sification results. By expanding the bit complexity of the classifier and varying the kernel value, it
can also be used for nonlinear data classification. It makes the input patterns fit into a higher dimen-
sional space by applying some nonlinear mapping. Then, linear decision surface is created in the
high-dimensional feature space. This classifier is linear and used for classification and regression prob-
lems, but it becomes a nonlinear classifier when data are mapped into nonlinear mapping. [50] Support
Vector Classifier is too much similar to the perceptron classifier.

3.2. Neural network

The most used category of the classifier for classification is Neural Network. It is a combined form
of various artificial neurons that help in creating nonlinear boundaries for decision. The below section
briefly represents the widely used classifier for EEG, that is, multilayer perceptron and other neural
networks.

3.2.1. Multilayer perceptron
MLP is a group of interconnected nodes and looks like a network of neurons in the brain. So it can
be defined as interconnections between different layers of the system. It is a three-layered structure;
the inner layer, the middle, the hidden one, and the output layer. The first layer transmits data through
synapses to the second one. This second layer of neurons sends data to the third layer (output layer)
through synapses. MLP and NN can approximate any continuous function by assembling the appropriate
neurons and layers. This classifier is compatible with all types of BCIs, synchronous or asynchronous,
linear or nonlinear, binary, and multi-class. It is more sensitive to noise and nonlinearity. Without hidden
layers, MLP behaves as a perceptron, which is the same as LDA.

3.3. Nonlinear bayesian classifiers

The mainly used Bayesian classifiers for EEG data are Hidden Markov Model (HMM) and Bayesian
Graphical Network (BGN). These classifiers also give nonlinear boundaries for decision-making. They
can reject uncertain samples more efficiently than the above classifiers.

3.3.1. Bayes quadratic
Bayesian classifiers assign the feature vector to that class, which has the maximum probability. When
this vector is associated with an existing class, the computed value is called posterior probability. As
its name suggests, it contains quadratic decision boundaries. This classifier is more suitable for motor
imagery tasks and mental tasks classification.

https://doi.org/10.1017/S0263574721000382 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000382


Robotica 87

Figure 6. Representation of individual classifier for particular application.

3.3.2. Hidden markov model
HMM is famous for EEG analyzing data in speech recognition. [48] It is the probabilistic automation
where the best sequence is selected from the given sequence of feature vectors. These probabilities are
usually Gaussian Mixture Models (GMM) for EEG signals. HMM algorithms are suitable for time series
classification. This classifier is helpful for temporal sequence and raw EEG signal classification.

Another type of HMM is Input–Output HMM (IOHMM). It is a discriminative classifier, not gener-
ative. It can discriminate various classes, but in the case of HMM, individual HMM is needed for each
class.

3.4. Nearest neighbor classifiers

These are relatively simple classifiers than others. Here the feature vectors are assigned to Nearest
Neighbor(s) class. If this feature vector belongs to a class from the training set, it is called K-Nearest
Neighbor (KNN).

3.4.1. K-nearest neighbors
It is a nonlinear technique in which a feature vector is assigned to the nearest neighbor within the training
set. For a large value of K and the sufficient training samples, KNN gives better results for any function.
It had been used for statistical estimation and pattern recognition.

4. Results and analysis

From the present survey of different feature extraction and classification techniques, some classifiers
are used repeatedly for a particular area, as shown in Fig. 4. SVM is recognized as a multi-purpose
classifier in applications like emotion recognition (sadness, happiness, and neutral). Here, it predicts
the label of EEG as signal recording during complex cognitive tasks and rest conditions with eyes open
and close. [3, 8] From literature, it can be said that neural network helps for mental task classification.
[42, 72] Cognitive problems can be solved using MLP, SVM, and ANN depending upon the individual
requirement. [62, 72] Convolution Neural Networks perform more accurately than other classifiers to
classify the sleep stages and motor imagery tasks,[64, 3] as shown in Fig. 6.
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Figure 7. (a) Statistical analysis of classifiers used in previous studies and (b) statistical analysis of
features extracted in various studies.

Statistical analysis of features extracted and classifiers used in previous studies are shown in Fig. 7(a)
and (b), respectively. Here, AR, ANN, LDA, SVM, KNN, NB, GA, MLP, MRMR, and ELM represents
Autoregression, Artificial Neural Network, Linear Discriminant Analysis, Support Vector Machine,
K-Nearest Neighbor, Naïve Bayes, Genetic Algorithm, Multilayer Perceptron, Minimum Redundancy
Maximum Relevance, and Extreme Learning Machine. The most used classifier is SVM, which is used
in 27% of studies. Table III mentioned the sensitivity, specificity, and accuracy of previously used clas-
sifiers. Table IV shows the number of channels used for data recording, toolbox, number of subjects,
and features (TDFs, FDFs, and TFDFs) extracted in various studies. It can be said that repeatedly used
classifiers in Table III. give more accuracy which helps the practitioner in a random analysis to determine
the suitable classifier. Features that can be discriminated against on time, frequency, and time–frequency
domains are shown in Fig. 7(b). The mostly used features are TFDFs. After that, TDFs features also play
a significant role in extracting the information. Different classifiers can be categorized as supervised,
unsupervised, and probabilistic learning. The pros and cons of each category classifiers are described
in Table V.

5. Conclusion

This paper presents a literature survey of widely used feature domains, extraction techniques, and clas-
sifiers used in biomedical applications for EEG signals. The mostly used feature domain is TFDFs,
which is analyzed using STFT or Wavelet Transform (WT) and it is used in 39% of studies out of total
extracted articles. Generally, TFDFs are applied in joint with statistical and amplitude-related parame-
ters. TDFs are also used in various studies, but different feature domains are combined in a single feature
vector to achieve complementary information. The classification approaches are divided into four main
categories: Linear, Neural Network, Nearest Neighbor, and Nonlinear Bayesian classification. Some
miscellaneous techniques are also used to enhance the classification accuracy. Nonlinear classifiers are
very accurate to improve reliability. In a number of studies, Support Vector Machine (SVM) classifier
with different kernels gives better results in terms of accuracy, sensitivity, and specificity. Comparison
tables of extracted studies with different parameters are explained to understand the feature domains
and classification in detail. Statistical analysis of surveyed feature domains and classifiers are illus-
trated graphically to understand the significance of the individual. No classifier guarantees for every
classification, but individuals give accuracy for a particular field.
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Table III. Detailed description of accuracies, sensitivity, and specificity of classifiers.

Researcher Year Classifier Sensitivity (%) Specificity (%) Accuracy (%)

B O Peters, G
Pfurtscheller, and H
Flyvbjerg. [51]

2001 Autoregressive Model (AR)
Artificial Neural Network (ANN)

– – For Male (A4) – 94
For Female
(B6) – 95
For Male (B8) – 91

E Yom-Tov, G F Inbar.
[52]

2002 Genetic Algorithms – – 87
Movements of Two Limbs 63
Multiple Limb

D Garrett et al. [53] 2003 Linear Discriminant Analysis (LDA) – – 66
Neural Networks 69.4
SVM 72.0

I Guler and E D Ubeyli.
[55]

2007 Support Vector Machine (SVM) Data A 99.25 99.84 75.6
B 99.38 99.84

Probabilistic Neural Network (PNN) C 99.25 99.75
D 99.38 99.65 72.0
E 99.13 100.00

MLPNN Data A 98.25 99.62
B 98.13 99.56
C 98.00 99.40
D 98.13 99.12 68.8
E 97.75 99.84
Data A 93.25 98.42
B 93.63 98.36
C 94.00 98.16
D 94.13 97.17
E 93.13 99.54
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Table III. Continued.

Researcher Year Classifier Sensitivity (%) Specificity (%) Accuracy (%)

P Herman et al. [55] 2008 LDA - - SVM perform
Regularized Fischer Discriminant (RFD)
SVM Better than others

J Li et al. [56] 2009 PSD - - 61.0
Common Spatial Patterns 75.6
Nonnegative Multiway Factorization 68.8
Tensor-Based Scheme (TbS) 76.3

Y U Khan, F Sepulveda.
[57]

2010 Radial Basis Function (RBF) 89 % 11 % About 90

L Guo et al. [58] 2011 1.Normal and seizure EEG 88.6
classification
KNN-alone classifier 99.2
GP-KNN classifier 67.2
2. Normal, seizure-free, and seizure 93.5
EEG classification
KNN-alone classifier
GP-KNN classifier (Normal)

10pt] Siuly, Y Li, and P
Wen. [34]

2011 Least Square SVM (EEG Dataset )
Epilepsy 94.92 93.44 94.18
Motor Imagery 83.98 84.37 84.17
Mental Imagery Tasks 64.61 58.77 61.69

W Yi et al. . [59] 2013 Support Vector Machine (SVM) - - 84

X W Wang, D Nie, and
B L Lu. [60]

2014 SVM with different kernels - -
Linear 87.53
Polynomial 82.09
RBF 72.43

M H Alomari et al. [61] 2014 Neural networks (NN)
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Table III. Continued.

Researcher Year Classifier Sensitivity (%) Specificity (%) Accuracy (%)

S Siuly, Y Li. [62] 2015 Optimum Allocated PCA with - - 89.11
Least Square SVM ECOC 99.97
Least Square SVM MOC 99.97
Least Square SVM 1v1 100.0
Least Square SVM 1vA 99.96
NB classifier 99.24
KNN classifier 98.82
LDA classifier 87.79

H U Amin. [63] 2015 For approximate coefficients (A4)
SVM 100% 97.50% 98.75
MLP 100% 96.40% 98.21
K-NN 98.60% 96.80% 98.21
Naive Bayes 75.00% 92.10% 83.57
For detailed coefficients (D4)
SVM 99.60 96.80 98.21
MLP 99.60 97.60 98.57
K-NN 98.90 95.40 97.14
Naive Bayes 84.60 81.40 83.03

J Atkinson, D Campos.
[64]

2016 Minimum Redundancy Maximum Relevance
(mRMR)

- -

1 Arousal 60.72
2 Valence 62.39
Genetic Algorithm SVM
1 Arousal
2 Valence 56.69

53.46
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Table III. Continued.

Researcher Year Classifier Sensitivity (%) Specificity (%) Accuracy (%)

H U Amin. [65] 2017 Dataset 1
(For approximate coefficients)
SVM 99.28 98.93 99.11
MLP 96.48 97.83 97.14
NB 88.24 90.77 89.63
k-NN 96.88 99.63 89.63
(For detailed coefficients)
SVM
MLP 97.89 99.28 98.57
NB 88.70 94.98 91.60
KNN 82.71 79.59 81.07
Dataset 2 98.22 98.56 98.39
(For approximate coefficients)
SVM 87.93 85.48 86.67
MLP 89.93 88.52 89.17
NB 77.42 79.31 78.33
KNN 80.95 84.21 82.50
(For detailed coefficients)
SVM 87.50 92.86 90
MLP 90.48 94.74 92.50
NB 82.54 85.96 84.17
KNN 91.94 94.83 93.33

Y Zhang et al. [37] 2018 1. MLP with one hidden layer - - 75.9
2. Conventional SVM 76.3
3. SVM (Gaussian Kernel) 76.7
4. SVM (Polynomial Kernel) 76.5
5. Multi-kernel SVM (Gaussian and 77.9
Polynomial Kernels)
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Table III. Continued.

Researcher Year Classifier Sensitivity (%) Specificity (%) Accuracy (%)

6. Extreme Learning Machine 77.0
7. ELM (Gaussian Kernel) 77.5
8. ELM (Polynomial Kernel) 77.9
9. Multi-Kernel ELM (Gaussian and Polynomial
Kernels)

78.9

A Datta and R Chatterjee.
[36]

2019 KNN (K=5) - - 79.76
KNN (K=7) 79.52
KNN (K=9) 78.81
SVM (RBF) 69.29
NB 76.43

C Ieracitano et al. [66] 2019 Autoencoder, Multilayer Perceptron, Logistic
Regression, SVM with three feature sets

Continuous Wavelet Transform, and bi-spectrum
representation (CWT + BiS) fusion of two gives
more accuracy than individual feature set

K Venkatachalam et al.
[67]

2020 PCA H-KELM gives the highest – 95.64
Fisher’s linear discriminant
Extreme Learning Machine (ELM)
Kernel ELM
H-KELM (Hybrid-Kernel ELM)

T H M Delsy et al. [68] 2020 Singular Value Decomposition (SVD) 75 90.41 84
Framelet 97.12 97.95 97.6
DWT 100 98.6 99.17
DCT 100 99.3 99.58

R G Andrzejak et al. [69] 2021 KNN - - 99.20
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Table IV. Summary of feature extraction, system channel, and toolbox used in different studies for analysis purpose.

System channel/
Study Year electrode used Toolbox No. of subjects No. of features

E Yom-Tov, G F
Inbar. [52]

2002 8 MATLAB Four males and one
female

Autoregressive Coefficients,
Power Spectral Density, Mean,
Amplitude, Standard Deviation

D Garrett et al.
[29]

2003 6 Channel Lab Master 12-bit A/D
converter mounted in an
IBM-AT computer

2 Autoregressive Coefficients

I Guler and E D
Ubeyli. [70]

2007 128- Channel
Amplifier System

MATLAB 7.0 with
neural-networks

5 Wavelet Transform (WT)

P Herman et al.
[71]

2008 2 Channel Pentium IV 3 GHz, 512MB
RAM)

11 Different Band Power Features

J Li et al. [56] 2009 62 Channel SynAmps2, Neuro scan,
Charlotte, NC

9 Wavelet Transform (WT)

Y U Khan and F
Sepulveda. [57]

2010 64 Channel Biosemi Active Two hardware
and MATLAB

5 Discrete Wavelet Transform
(DWT)

S Siuly, Y Li, and
P P Wen. [34]

2011 118 Electrode used
from 128

MATLAB (version7.7,
R2008b)

13 healthy volunteers
and 5 epileptic
patients

Mean, Median, and Mode,
Minimum, Maximum, First and
Third quartile

W Yi et al. [59] 2013 64 Neuroscan SynAmps2 3 males and 7 females Event-Related Spectral
Perturbation (ERSP), Power
Spectral Entropy (PSE), and
Spatial Distribution Coefficient
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Table IV. Continued..

System channel/
Study Year electrode used Toolbox No. of subjects No. of features

X W Wang, D Nie,
B L Lu. [60]

2014 128 ESI-128, Neuro Scan Labs),
SCAN4.2software, and
64-channel Quick Cap with
electrodes Ag/AgCl

3 males and 3 female Power Spectrum, Wavelet and
Nonlinear Dynamical Analysis

M H Alomari et al.
[61]

2014 64 BCI2000,MATLAB Toolbox
EEGLAB

109 healthy subjects RMS, Variance of EEG, MAV,
Integrated EEG, Simple Square
Integral (SSI), Average
Amplitude Change

S Siuly, Y Li. [62] 2015 128 MATLAB 7.14, R2012a 5 healthy volunteers Hyper parameters (γ , σ 2)
LS-SVM lab toolbox (version
1.8)

5 epileptic patients

H U Amin. [63] 2015 128 HydroCel Geodesic Net 8 males Wavelet Relative Energy
Polygraph Input Box (PIB)

J Atkinson, D
Campos. [64]

2016 14 Channel used
from 32

BCI device 32 human
subjects

Hjorth parameters, Band power
for different frequencies, and
fractal dimension for a Channel

H U Amin. [65] 2017 128 IBM-AT Dataset 1 Relative energy features

8 subjects Dataset 2
7 ubjects

Y Zhang et al. [37] 2018 118 - BCI Competition III
dataset IVa-

Using Common spatial pattern
(CSP)

5 Subject
BCI Competition IV
dataset IIb-9 Subject
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Table IV. Continued..

System channel/
Study Year electrode used Toolbox No. of subjects No. of features

A Datta, R
Chatterjee. [36]

2019 3 MATLAB 6 healthy females Wavelet energy and entropy

Band power (BP)
Adaptive Autoregressive
Parameters (AAR)

C Ieracitano et al.
[66]

2019 19 MATLAB toolbox EEGLab 189 subjects (63
patients of each –
Alzheimer’s disease
and Mild Cognitive
Impairment ), 63
healthy controls

Continuous Wavelet Transform
(CWT), Bi-spectrum, and
(CWT + BiS)

K Venkatachalam
et al. [67]

2020 - Matrix Laboratory
version R2016a

5 physically fit
persons

Band Power in the μ and β
rhythms

R G Andrzejak et
al. [69]

2021 1 MATLAB 2018a 100 segments Hamsi-Pat and iterative
neighborhood component
analysis (INCA) based feature
generation
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Table V. Pros/cons of frequently used classifiers.

Sr. No Classifier Supervised Learning

1. ANN Pros – It can handle the incomplete and noisy data. Capable to tolerate faults
in the system.
Cons – It is hardware dependent. Unable to work with small data. [75]–[78]

2. SVM Pros – It reduces the overfitting problems. Due to kernel function it can solve
difficult issues.
Cons – But to choose an appropriate kernel is a trouble. Perform less
accurately on small data. [79]–[82]

3. RF Pros – RF is an ensemble machine learning tool. It decreases the overfitting.
It is flexible and gives more accurate results. Data scaling is not mandatory.
Cons – But consumes more time and few times interpretation becomes
difficult. [96]–[84]

4. KNN Pros – Gives more approximate results if training samples are large.
Muscular for noisy data. Its implementation is easy.
Cons – “K”’ values must be known. It has high computation cost. [85]–[87]

5. DT Pros – It is an upgraded version of the C4.5 classifier. It is simple to under-
stand and can handle missing values. It makes regression and classification
like a tree structure.
Cons – It gives expectation based on results that may lead to inaccuracy.
[86],[88],[89]

6. LR Pros – It is an easily handable tool that can minimize the overfitting problem.
Cons – Outlier sensitivity is high. [91]

Unsupervised Learning

7. K-Means Pros – It can solve missing data problems. Less cost for computation.
Cons – Unable to choose cluster numbers. Gives less efficiency to work with
global cluster. [83],[92]

Deep Learning

8. RNN, CNN Pros – Accuracy is better than others. Weight sharing characteristic is also
good.
Cons – Needs large dataset to analyze the results and computational cost is
a bit high. [93],[94]

Probabilistic

9. NB Pros – It is easy to implement that can perform prediction also. It needs less
training data. It can execute probabilistic prediction also.
Cons – Provide less accurate result. [96],[82],[85],[95]

10. HMM Pros – This classifier is more comfortable to fit any dataset. Gives better
compression.
Cons – Interpretation is difficult. Requires comparatively more time and
memory for computation. [96]
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Future Directions. Research cannot be assumed sufficient until and unless the problem remains unresolved in the literature. It
makes the basic to accomplish further research by proposing a novel approach to fulfill the gaps pinpointed.

(1) During training, the runtime is calculated by any technique like Hamilton’s simulation and phase estimation module. During
testing, runtime depends upon the complexity of the system. But various classifiers follow the logarithmic or polylogarithmic
complexity in the classification part. So, this runtime period of the classifiers should be reduced to decrease the complexity
of the algorithm.

(2) Hybrid designs are giving reliable results for classification accuracy and precision still, it needs more in-depth research for
the use of a combination of classifiers.

(3) Excepting the classifier design, it also needs how the existing network interacts with noisy data. The demands for algorithms
that can work online and with nonstationary data are increasing day by day.

(4) By analyzing the quantum information, various other features can be extracted. Kernel-based nonlinear models can be
explored more for dimension reduction and nonlinear regression.

Acknowledgments. We are grateful to anonymous referees for their valuable suggestions and also to the authors of all the research
papers we have been through.
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