
J. Fluid Mech. (2025), vol. 1007, A36, doi:10.1017/jfm.2025.69

Numerical study of particle suspensions in duct
flow of elastoviscoplastic fluids

Shahriar Habibi
1

, Kazi Tassawar Iqbal
1

, Mehdi Niazi Ardekani
1

,
Emad Chaparian

2
, Luca Brandt

1,3,4
and Outi Tammisola

1

1FLOW and SeRC (Swedish e-Science Research Centre), Engineering Mechanics, KTH Royal Institute of
Technology, Stockholm, Sweden
2James Weir Fluid Laboratory, Department of Mechanical and Aerospace Engineering, University of
Strathclyde, Glasgow, UK
3Department of Energy and Process Engineering (EPT), Norwegian University of Science and Technology
(NTNU), Trondheim, Norway
4Department of Environmental, Land, and Infrastructure Engineering (DIATI), Politecnico di Torino,
Corso Duca degli Abruzzi 24 10129, Turin, Italy
Corresponding author: Shahriar Habibi, shabibi@kth.se

(Received 22 May 2024; revised 6 January 2025; accepted 6 January 2025)

The transport of particles in elastoviscoplastic (EVP) fluids is of significant interest
across various industrial and scientific domains. However, the physical mechanisms
underlying the various particle distribution patterns observed in experimental studies
remain inadequately understood in the current literature. To bridge this gap, we perform
interface-resolved direct numerical simulations to study the collective dynamics of
spherical particles suspended in a pressure-driven EVP duct flow. In particular, we
investigate the effects of solid volume fraction, yield stress, inertia, elasticity, shear-
thinning viscosity, and secondary flows on particle migration and formation of plug
regions in the suspending fluid. Various cross-streamline migration patterns are observed
depending on the rheological parameters of the carrier fluid. In EVP fluids with constant
plastic viscosity, particles aggregate into a large cluster at the duct centre. Conversely,
EVP fluids with shear-thinning plastic viscosity induce particle migration towards the
duct walls, leading to formation of particle trains at the corners. Notably, we observe
significant secondary flows (O(10−2) compared to the mean velocity) in shear-thinning
EVP suspensions, arising from the interplay of elasticity, shear-thinning viscosity and
particle presence, which further enhances corner-ward particle migration. We elucidate
the physical mechanism by which yield stress augments the first normal stress difference,
thereby significantly amplifying elastic effects. Furthermore, through a comprehensive
analysis of various EVP suspensions, we identify critical thresholds for elasticity and yield
stress necessary to achieve particle focusing at the duct corners.
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1. Introduction
Elastoviscoplastic (EVP) fluids are ubiquitous in nature and industry, from biological
fluids such as blood flow in arteries (Beris et al. 2021) and cell cytoskeleton (Saramito
2016), and food products such as chocolate and mayonnaise (Bonn et al. 2017), to
applications such as concrete pumping (Fataei 2022), hydraulic fracturing (Barbati et al.
2016) and three-dimensional (3-D) printing (Comminal et al. 2020). The common feature
of EVP fluids is that they behave like soft solids where the imposed stress is below a
certain threshold value, namely the yield stress (τy), whereas they flow like liquids when
the imposed stresses are sufficiently large (Dimitriou & McKinley 2014; Balmforth et al.
2014). In other words, these materials simultaneously exhibit viscous, plastic and elastic
behaviours. In many natural and technical applications, EVP fluids contain particles that
either move with the local flow or are trapped in fouling zones (Merkak et al. 2008). While
the dynamics of particles in Newtonian (Lashgari et al. 2017) and viscoelastic (McKinley
2002; Li et al. 2015)fluids has been studiedextensively, the interaction between particles
and EVP fluids is still not well-characterised in the existing literature. In this context, the
purpose of the current paper is to investigate the effects of the volume fraction of particles,
and material properties such as yield stress, elasticity, shear-thinning viscosity and flow
inertia (Reynolds number), on the migration of particles and formation of unyielded
regions in the suspending fluid.

The most significant non-dimensional numbers of our problem are the Bingham number,
Weissenberg number and Reynolds number representing the effects of yield stress,
elasticity of the fluid, and inertial forces, respectively. The Bingham number is defined
as Bi = τy H/μU , where τy is the yield stress, μ is the total viscosity of the fluid
(including the solvent and polymer viscosity), U is the characteristic velocity, which is
here the mean flow velocity, and H is the characteristic length scale, which is the duct
half-height. The Reynolds number Re = ρU H/μ introduces the density of the fluid ρ,
whereas the Weissenberg number is defined as Wi = λU/H , where λ represents the fluid
relaxation time. Furthermore, results can be interpreted in terms of the elasticity number,
defined as El = Wi/Re = λμ/ρH2, a dimensionless quantity that characterises the ratio
of elastic forces to inertial forces in the EVP material. Other relevant non-dimensional
numbers are the blockage ratio, the ratio of the particle diameter to the duct height, and
the shear-thinning factor α representing the shear-thinning strength of the EVP fluid.

Segre & Silberberg (1961) were the first to discover particle cross-streamline motion
in a Newtonian fluid. They observed that in a dilute suspension of particles that are
initially randomly distributed in a circular tube, the particles gradually migrate towards
an equilibrium position, resulting in the formation of a narrow annulus of particles at
approximately 0.6of the tube radius from its centre. Similar patterns are observed in square
or rectangular duct flows, where particles accumulate in the middle of the duct walls
at approximately 30 % of the channel width from the cross-section centre (Miura et al.
2014). A series of experimental (AOKl et al. 1979; Choi et al. 2011; Morita et al. 2017)
and analytical (Ho & Leal 1974; Schonberg & Hinch 1989)studies conducted afterwards
confirmed the lateral migration phenomenon. It was also found that the equilibrium
position of the particles moves closer to the walls when the fluid inertia (Re) increases
(Matas et al. 2004a,b). The equilibrium position of the particles is affectedmainly by two
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forces. In a Newtonian fluid, the particles are pushed away from the centreline by the
shear gradient lift force (Asmolov 1999), and away from the wall by the wall repulsion
force (Zeng et al. 2005; Martel & Toner 2014). The competition between these two forces
determines where the particles will accumulate. The shear gradient lift force is caused by
the curvature of the Poiseuille velocity profile (Ho & Leal 1974), while the wall repulsion
force is produced by the compression of streamlines between a particle and a wall (pressure
gradient between the top and bottom sides of the particle) (Feng et al. 1994).

The rheology of the carrier fluid is a crucial factor influencing the particle migration
(Tehrani 1996; Leshansky et al. 2007; D’Avino et al. 2017; Stoecklein & Di Carlo 2018).
While inertia drives particles towards equilibrium positions near the centre of the duct
walls, fluid elasticity induces lateral motion towards the centreline or corners of the duct,
depending on the particle initial position and shear-thinning effect (Villone et al. 2013).
Li et al. (2015) studied the elasto-inertial migration of a single particle in both Giesekus
and Oldroyd-B duct flows. They found that in the Oldroyd-B fluid, for a sufficiently large
elasticity number (El > 0.01 based on their definition), the elastic forces are dominant
and push the particles towards the duct core, while a Giesekus fluid exhibits both shear-
thinning viscosity (α = 0.2) and secondary flows that drive particles to the closest wall.
In the context of particle suspensions, Raffiee et al. (2019) investigated the migration of
soft particles, such as cells, in Oldroyd-B viscoelastic fluids. Their study indicated that
an increase in fluid elasticity causes cells to migrate closer to the centreline. Additionally,
Tanriverdi et al. (2024) found that increasing the aspect ratio of microchannels enhances
the efficiency of elasto-inertial focusing, and facilitates particle migration towards the duct
centreline. For a detailed discussion of forces on particles in viscoelastic fluids, see Yuan
et al. (2018) and Zhou & Papautsky (2020).

Previous studies have focused predominantly on flows where either inertial or elastic
forces dominate, while the presence of yield stress is negligible (τy = 0). However, the
interaction between elastic forces and yield stress can lead to intriguing phenomena.
Experiments on a particle sedimenting in Carbopol – a typical model yield stress fluid
– have revealed, among otherthings, the loss of fore–aft symmetry of the flow field and
yield surface around a settling particle (Putz et al. 2008), and the formation of a negative
wake behind it (Holenberg et al. 2012). Similarly, elastic effects have been discovered
for bubbles and droplets in yield stress fluids (Lopez et al. 2018; Pourzahedi et al.
2021). Comparisons between experimental observations and simulations have consistently
indicated that elasticity is the primary driving force behind the aforementioned phenomena
observed in yield stress fluids (Fraggedakis et al. 2016). Furthermore, Izbassarov &
Tammisola (2020) reported that for an EVP droplet in Couette flow, the combined effects
of elasticity and yield stress are more pronounced than the individual influence of either
property alone, resulting in different yielding patterns and droplet deformation. These
findings underscore the importance of considering both properties simultaneously to
accurately capture the behaviour of EVP fluids in various flow conditions (Cheddadi et al.
2011; Chaparian & Tammisola 2019; Moschopoulos et al. 2021; Villalba et al. 2023).

Chaparian et al. (2020a) studied the migration of spherical particles in the channel
flows of an EVP fluid via particle-resolved direct numerical simulations(DNS). They
demonstrated that at certain Weissenberg numbers, a single particle can penetrate to
the central plug region and migrate to the channel centreline, unlike the viscoelastic
counterpart with the same elasticity number, where the particle cannot reach the central
axis, and focuses somewhere between the centre and the channel wall. In other words,
the existence of a yield stress enhances the effect of elastic forces and pushes the particle
further towards the centre of the channel. Zade et al. (2020) conducted an experimental
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study on the suspensions of finite-size spherical particles in Carbopol duct flows over a
wide range of Reynolds and Bingham numbers (Re ∼ 1−200, Bi ∼ 0.01−0.35, based on
their definition of dimensionless numbers). First, they noted the presence of a moving plug
region at the centre of the duct, which was accompanied by the emergence of secondary
flows consisting of eight circulating vortices between the corners and centre of the duct.
Furthermore, they observed cross-streamline migration of particles in suspensions with
volume fractions φ = 5 % and 10 %, depending on the particle inertia: particles with low
inertia concentrate at the corners, while a uniform distribution of particles around the plug
region is observed when increasing the particle inertia. However, particles trapped in the
unyielded regions do not migrate, and instead translate with the same velocity as the plug
region.

Despite these previous studies, little is known about the combined effects of fluid
rheological properties such as elasticity and yield stress, and particle–particle/wall
interactions on the collective behaviour of particles. To remedy this, numerical simulations
are essential for acquiring time-resolved data on 3-D velocity fields, stress fields and
unyielded zones, as these details are not easily obtained in laboratory experiments.
To fill this gap, we perform particle-resolved 3-D DNS of particle suspensions in a
pressure-driven EVP duct flow. We consider the effects of the volume fraction of particles
(φ = 0−20 %), yield stress (Bi = 0−4), elasticity (Wi = 0−1), inertia (Re = 20), shear-
thinning viscosity, and secondary flows on the group migration of particles and the
development of unyielded regions in the EVP fluid. To the best of our knowledge, the
present paper is the first to use DNS of particle suspensions in EVP fluid flows.

2. Problem statement
The non-colloidal suspension of rigid spherical particles of diameter D in a laminar EVP
fluid flowing in a square cross-section straight duct is studied numerically. We perform the
simulations in a Cartesian computational domain of size Lx = 6H , L y = 2H and Lz =
2H , where H is the half-height of the square-duct cross-section, and x , y and z denote
the streamwise, vertical and spanwise directions, respectively (see figure 1). Particles are
initially at rest and distributed randomly in the computational domain. The blockage ratio
κ , defined as the ratio of the particle diameter to the channel height D/(2H), is fixed at
0.2 in all the simulations. We assume that particle size is large enough that the effects of
Brownian motion can be neglected. The particles are neutrally buoyant, meaning that their
density is equal to that of the carrier fluid. In what follows, velocity is scaled by the mean
velocity of the flow Ub, length by the half-height of the channel H , and time by H/Ub.
Pressure and the extra stress tensor are scaled by ρUb

2. The total viscosity of the material
(μ) is defined as the sum of the solvent and polymer viscosities (μ = μs + μp). (See also
the discussion in § 1 for the definitions of non-dimensional numbers.)

The computational domain (see figure 1) is discretised by 480 × 160 × 160 Eulerian
grid points in the streamwise, vertical and spanwise directions. The number of Eulerian
grid points across the particle diameter is 32, with 3219 Lagrangian grid points uniformly
distributed over the surface of the particles. The resolution (32 points per particle diameter)
is chosen sufficiently large to ensure that the interactions between the fluid and particles
are fully resolved. Nonetheless, for the validation cases against the experiments discussed
in § 2.3, a resolution of 24 points per particle diameter is adopted due to the significantly
smaller particle size. All the simulations are performed with a constant bulk velocity
Ub through the duct to guarantee a fixed Reynolds number Re = 20. Periodic boundary
conditions are imposed for both fluid and particles in the streamwise direction, whereas
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Figure 1. A 3-D view of the computational domain with solid volume fraction φ = 10 %. Trains of particles
are formed at the duct corners due to the particle migration towards the walls.Here, N1, U and τxz represent
the first normal stress difference, streamwise velocity, and EVP shear stress in their corresponding planes.

the no-slip and no-penetration boundary conditions are applied at the top, bottom, left and
right walls of the domain.

2.1. Governing equations
The suspending fluid motion is governed by the incompressibility constraint and
conservation of momentum as follows:

∇ · u = 0, (2.1)
∂u
∂t

+ (u · ∇)u = −∇ p + βs

Re
∇2u + ∇ · τ p + f . (2.2)

Here, u is the fluid velocity, p is the pressure field, τ p is the polymeric stress tensor,
and Re is the Reynolds number. The extra term f on the right-hand side of (2.2) is the
immersed boundary force field representing the particle–fluid interaction; details of the
immersed boundary method are given in § 2.2. Note that the stress tensor τ is composed of
the contributions from the solvent (Newtonian fluid) and polymer stresses as τ = τ s + τ p.
The solvent stress tensor is defined as τ s = βs(∇u + ∇uT), where βs = μs/μ is the ratio
of the solvent viscosity to the total viscosity. In all our simulations, the viscosity ratio is
fixed at βs = 0.1. In addition to the equations mentioned earlier, a constitutive equation
is needed to model the evolution of the non-Newtonian contribution (τ p) of the EVP
material. Since the Saramito model predicts a constant polymeric viscosity, we incorporate
the Giesekus modification of the Saramito equation to account for the second normal stress
difference and the shear-thinning behaviour of the EVP carrier fluid:

Wi
�
τ p + F

(
τ p + Wi α

1 − βs
(τ p · τ p)

)
= 2(1 − βs)

Re
D, (2.3)

where D ≡ 1/2(∇u + ∇uT), F = max(0, (|τ p
d | − Bi/Re)/(|τ p

d |)) represents the exis-
tence of yield stress in the model, Bi is the Bingham number, α is the shear-thinning

factor with 0 < α < 1 corresponding to shear-thinning behaviour, and |τ p
d | ≡

√
τ

p
d : τ p

d /2,

with τ
p
d = τ p − (tr τ p/tr I) I the deviatoric part of τ p, and I the identity tensor. The
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upper-convected derivative of the polymer stress tensor,
�
τ p, is defined as

�
τ p ≡ ∂τ p

∂t
+ u · ∇τ p − ∇uT · τ p − τ p · ∇u. (2.4)

The particle translational and rotational velocities are obtained by solving Newton–Euler
equations for each particle as follows:

ρp Vp
dup

dt
=

∮
∂V

σ · n dA + Fc, (2.5)

Ip
dωp

dt
=

∮
∂V

r × (σ · n) dA + T c, (2.6)

where up and ωp are the linear velocity of the centre of mass and angular velocity of the
particle, and the density, volume and moment of inertia of the particle are denoted by ρp,
Vp and Ip, respectively. Moreover, r denotes the distance from the centre of the particle,
and ∂V represents the particle volume. Finally, the Cauchy stress tensor σ = −p I + τ p +
βs(∇u + ∇uT) and Fc and T c represent the total force and torque generated by particle–
particle/wall collisions. To model these short-range particle–particle/wall interactions, a
soft-sphere collision model with lubrication correction is employed as described by Costa
et al. (2015).

2.2. Numerical method
The numerical code is based on a direct forcing immersed boundary method (IBM)
to simulate the dispersed phase as moving Lagrangian grids, while the carrier fluid is
discretised on a fixed Eulerian frame, in which the fluid momentum and the constitutive
equations are discretised using finite differences. The fluid momentum solver employs
a projection method (pressure correction) to decouple the computations of the velocity
and pressure fields, and implements a highly efficient and scalable fast Fourier transform
based method to solve the pressure Poisson equation. In addition, spatial derivatives in
flow equations are approximated by a central finite difference scheme, with the exception
of the advection term in the constitutive equation, which is discretised using the fifth-
order WENO method (Shu 2009). A third-order Runge–Kutta scheme is used to integrate
the governing equations in time.

The fluid–solid interaction is simulated by a direct forcing IBM first proposed by
Uhlmann (2005) and further improved by Breugem (2012) to simulate particle motions
with second-order spatial accuracy. In the IBM, the fluid is represented by a uniform
(	x = 	y = 	z) staggered Cartesian grid, and the particle interface is represented by
a collection of moving Lagrangian points that are uniformly distributed on the surface
of the particle. The fluid momentum equations are solved on the entire grid, and the
effect of the presence of the particles is modelled by adding an extra force f on the
right-hand side of (2.2), active in the immediate vicinity of the solid boundary to enforce
the no-slip/no-penetration condition on the surface of the particles (Mittal & Iaccarino
2005). The obtained immersed boundary force is applied to both dispersed and carrier
phases to update the velocities in time. The reader can find detailed explanations of the
numerical approach used in the present work in our previous studies (Ardekani et al.
2016; Izbassarov et al. 2018; Niazi Ardekani 2019). Note finally that we conduct box
size and resolution studies to confirm that our results are not affected by any numerical
artefacts (see Appendix A). Due to the high resolution employed and the relatively low
lateral velocity of the particles, each simulation may require up to four weeks, utilising
160 computational cores, depending on the focusing length necessary to achieve the final
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Wi Re Bi βs n φ κ

EVP suspension 1 0.26 36.7 0.14 0.11 0.48 5 % 1/12
EVP suspension 2 0.182 13 0.2 0.16 0.48 5 % 1/12

Table 1. The non-dimensional numbers used for the numerical simulations from the experimental data of
Zade et al. (2020).

steady state. In cases where we compare with experimental data (see § 2.3), we used 768
cores for up to eight weeks to capture the statistically steady-state particle distribution.

2.3. Comparison with experiments
In this subsection, we validate our numerical simulations of particle suspensions in EVP
duct flows by comparing them with the experiments conductedpreviously by Zade et al.
(2020). These authors examined the collective behaviour of finite-size spherical particles
in a square duct flow of a Carbopol solution (with a concentration of 0.25 % w/w). The
experimental paper provides the steady shear flow curve that reveals the key rheological
properties of the Carbopol fluid, including its yield stress, plastic viscosity and shear-
thinning factor. Furthermore, by determining the value of the storage modulus (G ′) at the
lowest strain value from the strain amplitude sweep oscillatory test, an approximation of
the material’s shear modulus (G) was obtained. With the known values of plastic viscosity
(μp) and shear modulus (G), the relaxation time (λ) of the material could be calculated
using the relationship λ= μp/G. The corresponding non-dimensional numbers for two
distinct particle suspension cases are calculated using the non-dimensional parameters
adopted in the current paper, and are presented in table 1.

In figures 2(a,b), we compare the experimental velocity profiles of the EVP suspension
with our numerical predictions, utilising the Saramito (2009) model (depicted in blue
lines). In particular, we report the mean streamwise fluid velocity profiles U (y),
normalised by the bulk velocity (Ub) at various spanwise locations (z/H ), and at two
different sets of parameters (see figure caption). Our simulations demonstrate remarkable
agreement with the experimental mean flow profiles of the EVP duct flow in the presence
of particles. Additionally, for the first parameter set, we compare the particle distribution
from our simulations with the experimental results. We present a 3-D snapshot of the
flow field with particle distribution in figure 2(c), alongside the statistically steady-state
distribution of particles within the EVP flow shown in figure 2(d). The statistical particle
distribution Φ(y, z) represents the time and spatial averaged concentration of the solid
phase in the duct cross-section (see Appendix D for the definition of averaged solid
concentration Φ). This visualisation demonstrates that the particles accumulate in a ring-
like formation between the centre of the duct and the walls. This prediction aligns with
the experimental findings. However, our simulations reveal an additional feature: a small
fraction of the particles accumulates at the corners of the duct. This behaviour was not
observed in the experiments, likely due to the limited duct length (5 m in the laboratory
experiments), which may not have been sufficient for the particles to reach their stable
positions. In contrast, our simulations, which were conducted over times significantly
longer than those needed to travel 5 m, capture the migration of some particles towards
the corners. In § 3, we comprehensively discuss the effects of the particle volume fraction,
yield stress, elasticity, inertia (Reynolds number) and shear-thinning on the particle
distribution.
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Figure 2. Validation of numerical simulations against experiments by Zade et al. (2020). Simulated mean
streamwise fluid velocity profiles (U/Ubulk ), denoted by blue lines, compared against the experimental data
represented by red symbols at (a) Re = 36.7, Bi = 0.14, Wi = 0.26, βs = 0.11, κ = 1/12, φ = 5 %, and (b)
Re = 13, Bi = 0.2, Wi = 0.182, βs = 0.16, κ = 1/12, φ = 5 %. (c) A 3-D snapshot of particle suspension
showing particle distribution and contours of the first normal stress difference (N1) and streamwise velocity
(U ). (d) Statistical distribution of the particles across the duct section from our simulations.

φ ( %) Re Bi El α κ Lx × L y × Lz Nx × Ny × Nz

0−20 20 0−4 0−0.05 0.2 0.2 15 × 5 × 5 480 × 160 × 160

Table 2. Overview of the range of non-dimensional numbers used in our simulations. Here, Lx , L y and Lz are
given in units of particle diameter.

3. Results
In this section, numerical simulations of particle migration in EVP duct flow are discussed.
The study explores a range of parameters, including particle volume fractions (φ) from 0
% to 20 %, Bingham numbers (Bi) from 0 to 4, and Weissenberg numbers (Wi) from 0 to
1, while accounting for shear-thinning viscosity. In § 3.1, we first examine the steady-state
flow field for three representative cases. Subsequently, we analyse the dynamics governing
particle migration by investigating stress fields and secondary flows. Finally, in §§ 3.2–
3.4, we explore the effect of the governing parameters on the distribution of particles. A
summary of the simulated cases is provided in table 2.
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Figure 3. Instantaneous snapshots of flow field (left-hand column) and mean particle concentration Φ(x, z)
(right-hand column) across the duct section in (a) Newtonian, (b) Saramito EVP with El = 0.05, Bi = 0.2,
and (c) Saramito–Giesekus with El = 0.05, Bi = 0.2, α = 0.2 carrier fluids. In all cases, the volume fraction φ

is 10 %, and Re = 20. Contours in the 3-D snapshotsdepict: (a) streamwise velocity (U ) and secondary flows
(
√

V 2 + W 2); (b,c) the first normal stress difference (N1) and U .

3.1. Steady-state particle distribution
Figure 3 presents 3-D instantaneous snapshots of the flow field and the particle distribution
in Newtonian (figure 3a), Saramito (figure 3b), and Saramito–Giesekus (figure 3c) carrier
fluids after the flow field and particle positions have reached their statistically steady state.
In addition, to provide a better understanding of particle distribution across the duct cross-
section, the mean particle concentration Φ(y, z) of solid spheres is illustrated for each of
the suspensions. In all cases, the Reynolds number is Re = 20, the solid volume fraction
is φ = 10 %, and the blockage ratio is κ = 0.2. For EVP suspensions, the elasticity number
is fixed at El = 0.05, and the Bingham number is Bi = 0.2. The Saramito fluid assumes a
zero shear-thinning factor (indicating a constant polymer viscosity), while the Saramito–
Giesekus case uses α = 0.2, introducing shear-thinning behaviour to the carrier fluid.
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In the Newtonian case, particles eventually accumulate between the duct centre and the
walls, forming a square shape with the highest concentration of particles at the corners
of the square. In contrast, the Saramito (EVP) fluid induces central migration, enabling
particles to penetrate the central plug region and form a large cluster. On the other hand,
the Saramito–Giesekus fluid causes particles to migrate towards the duct walls, leading to
distinct particle chain formations at the corners. These varied behaviours can be largely
attributed to the rheological characteristics of the carrier fluids.

The distribution of the first normal stress difference, defined as N1 = τ
p
xx − τ

p
yy , is

depicted across various planes in 3-D snapshots. This normal stress difference reflects the
tension acting in the direction of the streamlines. Streamlines under tension curve around
the particles, and the lateral forces exerted on each side of a particle create a hoop thrust
that drives the particle towards the region with the lowest normal stress difference (Ho &
Leal 1976). As illustrated in the figure, N1 reaches its peak values near the duct walls, while
it is considerably lower in proximity to the centre and corners of the duct. Consequently,
the gradient of the first normal stress difference tends to propel particles towards the duct
centre, where they experience the least elastic stress. This aggregation phenomenon is
especially notable in the Saramito fluid model, where particles concentrate significantly in
the central region of the duct (see figure 3b).

The shear-thinning viscosity, represented by the nonlinear term in the Saramito–
Giesekus equation (Wi α/(1 − βs))(τ

p · τ p), contributes to the concentration of particles
at the corners of the duct. The influence of shear-thinning on particle migration is twofold.
First, the reduction in viscosity with increasing shear rate within shear-thinning fluids
promotes a more uniform velocity profile, characterised by a flattened centre and steeper
gradients near the walls. The elevated shear gradients adjacent to the walls generate
stronger inertial forces that drive the particles towards the duct walls. Additionally, the
nonlinear term in the constitutive equation attenuates the first normal stress difference in
EVP fluid flow, as reflected in the N1 contours from the snapshots. The Saramito fluid
exhibits first normal stress difference values ranging from 0 to 2, while the Saramito–
Giesekus fluid demonstrates lower N1 values, between 0 and 0.5. This decrease in N1
leads to a reduction in viscoelastic forces, which consequently weakens the tendency of
particles to migrate towards the central region of the flow. As a result, in highly shear-
thinning fluids, such as the Saramito–Giesekus fluid (α = 0.2), particles are preferentially
directed towards the walls and corners of the duct, rather than towards its centre.

Figure 4 illustrates different components of the polymeric stress tensor in the duct cross-
section of the Saramito–Giesekus suspension. The values are obtained by calculating the
average of the polymeric stress in several cross-sections along the streamwise direction
and over time. The primary component of shear polymeric stress, τ

p
xy , ranges between

−0.08 and 0.08. The values of τ
p
xz exhibit a similar range, but are rotated by 90◦ due to

symmetry (τ p
xz is not included in the plot to avoid redundancy). On the other hand, the

values of τ
p
yz are one order of magnitude lower, ranging from −5.5 × 10−3 to 5.5 × 10−3.

The first and second normal stresses, N1 = τ
p
xx − τ

p
yy and N2 = τ

p
yy − τ

p
zz , are displayed in

figures 4(b,d), and represent the tension present along and perpendicular to the direction
of flow (Bird et al. 1987). For the flow under consideration, the maximum of N2 is about
one order of magnitude smaller than the maximum of N1.

Despite its low magnitude, the second normal stress difference can cause secondary
flows within the cross-section of viscoelastic duct flows, which can significantly affect the
migration of particles. Figure 5 depicts the secondary flows consisting of eight vortices
develop in both Newtonian and EVP suspensions at particle volume fraction φ = 10 %.
The maximum magnitude of secondary flows in the EVP suspension is 8.4 × 10−3, which
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Figure 4. Polymeric stress components in the suspension with solid volume fraction φ = 10 % in the EVP
carrier fluid: (a) τ

p
xy , (b) N1 = τ

p
xx − τ

p
yy , (c) τ
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yz , and (d) N2 = τ
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yy − τ

p
zz .

2.60

(a) (b)

1.95

1.30

0.65

0

×10–3

8.4

6.3

4.2

2.1

0

×10–3

√V
 2  

+ 
W

 2

Figure 5. Secondary flows in (a) Newtonian suspension and (b) EVP suspension, with Bi = 0.2, El = 0.05
and α = 0.2. For both cases, φ = 10 % and Re = 20.
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Figure 6. The steady distributions of particles at φ = 3.5 %,10 % and 20 %, respectively, across the duct
sections of (a,b,c) Newtonian and (d,e,f ) Saramito–Giesekus carrier fluids with Re = 20, Bi = 0.2, El = 0.05
and α = 0.2.

is 3.2 times greater than in the Newtonian suspension. This suggests that the second normal
stress differences present in the EVP fluid enhance the secondary flows that are solely
induced by the particles in Newtonian suspensions. Since the magnitude of secondary
flows reaches O(10−2) of the mean flow velocity, which is comparable to cross-streamline
migration velocity O(10−3), these secondary flows are strong enough to push the particles
away from the centre towards the walls and corners.

To summarise, in the Saramito–Giesekus carrier fluid, with a high enough elasticity,
the combination of elastic forces, shear-thinning viscosity, and the presence of secondary
flows, causes particles to concentrate at the duct corners, leaving the core of the duct
almost particle-free.

In the following subsections, we provide further insight into the physical mechanisms
driving particle migration in EVP fluids by investigating the effects of solid volume
fraction, elasticity and yield stress on the final distribution of particles.

3.2. Effect of solid volume fraction
Figure 6 shows the mean concentration of particles forφ = 3.5 %, 10 % and 20 % in
Newtonian and Saramito–Giesekus carrier fluids with Re = 20, κ = 0.2, El = 0.05 and
Bi = 0.2. In the Newtonian dilute suspension φ = 3.5 %, inertial effects are dominant and
the particles accumulate near the centre of duct walls at a distance approximately 0.3 from
the duct centre (see figure 6a). A similar pattern occurs in the suspension with φ = 10 %,
where particles focus in a square between the centre and the walls (figure 6b). Most of the
particles are preferentially accumulated at the corners of this smaller square, and less at
the wall middle planes. It is worth mentioning that the duct core is depleted of particles in
both dilute and semi-dilute Newtonian suspensions. This is due to the inertial lift force that
makes the duct core an unstable location by pushing the particles towards the walls. At the
highest volume fraction φ = 20 %, inertial focusing completely breaks down, and particles
accumulate at the duct core (figure 6c). The increase in solid volume fraction enhances the
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Figure 7. (a) The streamwise mean velocity profile for the EVP suspensions at φ = 0 %, 3.5 %, 10 % and 20 %.
(b) Comparison of particle and fluid velocities at z/H = 0.8 (near the wall) and z/H = 0 (duct centre) for EVP
suspensions with φ = 20 % (left) and φ = 10 % (right).

particle–wall and particle–particle collisions, and increases shear-induced migration that
makes particles in concentrated suspensions migrate to low-shear regions (Leighton &
Acrivos 1987), which results in particles leaving the walls and preferentially moving in the
centre of the duct. At Reynolds number 20, inertial effects are not strong enough to push
the particles away from the centre and counterbalance collision-dominated shear-induced
migration (Kazerooni et al. 2017). In other words, the particle–particle collisions overcome
the inertial effects and make the duct core a stable position for the particles.

In the Saramito–Giesekus suspension, the distribution of particles displays a similar
pattern for φ = 3.5 % and φ = 10 %, where the particles are mainly focused at the duct
corners and walls, while the duct core is completely free of particles. Even when the
solid volume fraction is at its highest, φ = 20 %, the majority of particles still tend to
aggregate near the corners and walls of the duct. Nonetheless, excluded volume effects
cannot be neglected at the solid volume fraction φ = 20 %, and we observe a more uniform
distribution across the cross-section, including some particles reaching the duct centre.

The effect of solid volume fraction on the streamwise velocity, normalised by the bulk
velocity, is shown in figure 7(a) for the three particle suspensions under investigation and
the single-phase EVP flow. In the single-phase case, a plug region appears in the middle
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of the duct due to the lack of sufficient shear stress to yield the EVP material. As a result,
the material in the duct core has a solid-like behaviour, and the velocity profile of the
single-phase EVP flow is flat at the centre. When compared to the single-phase Newtonian
flow, the presence of the plug region reduces the maximum velocity at the core (from
Umax = 2.2 in Newtonian single-phaseflow to Umax = 1.6 in EVP single-phase flow).
Interestingly, in the particulate cases, no flat profile appears at this value of the Bingham
number when the particle-induced stresses can break and yield the plug regions, causing
the velocity field to more closely resemble that of a single-phase Newtonian flow. As a
result, the maximum velocity of the suspension flow exceeds the maximum velocity in the
single-phase flow (from Umax = 1.6 in EVP single-phaseflow to Umax = 1.7−1.9 in the
particulate flows). Closer to the wall, the maximum velocity of the single phase is greater
than in particulate cases due to the additional resistance imposed by the particle wall layer.
It is noteworthy that the central velocity of the EVP suspension with φ = 20 % is lower
than that of the suspension with φ = 10 %. This can be attributed to the homogeneous
distribution of particles across the cross-section of the duct at the highest volume fraction,
which reduces the maximum velocity of the flow.

To further examine this behaviour, we present the streamwise velocities of both particles
(Up) and fluid (U f ) at z/H = 0.8 (near the wall) and z/H = 0 (duct midplane) along
they-axis for EVP suspensions with φ = 20 % (left) and φ = 10 % (right) in figure 7(b).
In general, particle velocities closely align with the streamwise fluid velocities, except for
the φ = 10 % suspension, where particles are completely absent from the duct core. Our
findings reveal a significant lag between particle and fluid velocities, particularly in regions
near the walls and corners (particle trains), with the solid phase moving more slowly than
the surrounding fluid.

3.3. Effect of elasticity
We now consider the role of fluid elasticity on particle migration in yield-stress fluids.
Figure 8 illustrates the mean concentration of particles in an EVP suspension with three
different elasticity numbers, namely El = 0.005, 0.025, 0.05. In the case with the lowest
elasticity number, figure 8(a), the particle distribution is similar to the distribution of
particles in a Newtonian fluid, where inertial effects are dominant, and particles find
their equilibrium positions in a square located between the duct centre and the walls. As
the elasticity number increases (see figures 8b,c), the elastic forces overcome the inertial
effects and the particles are pushed towards the duct corners. At the intermediate value
considered here, El = 0.025, particles are observed everywhere along the walls, whereas
when further increasing elasticity to El = 0.05, the particles appear to be heavily focused
on the corners. It is worth noting that while most of the particles are collected in the
corners, some are also attached to the duct walls. While remaining in contact with the
walls, these particles tend to find a place in the duct corners by making a slow rolling
motion perpendicular to the flow direction with a velocity ∼ O(10−3) of the particle
streamwise velocity.

To further interpret these observations, we consider the first normal stress difference N1
and its average cross-stream variation when varying El; see contour plots in figure 8. The
core and corners of the duct consistently exhibit the lowest values of N1, while the walls
of the duct consistently display the highest values. Increasing the elasticity number leads
to changes in the magnitude and gradients of N1. Specifically, the average of N1 increases
from 0.067 at El = 0.005 to 0.16 at El = 0.025, and the gradient of N1 becomes steeper,
suggesting a stronger influence of elastic forces on the suspended particles. The gradient
is particularly pronounced around the corners and in the region between the centre and
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Figure 8. The steady distribution of particles (Φ), along with the first normal stress difference (N1) across the
duct section in Saramito–Giesekus EVP carrier fluids at three different elasticity numbers: (a,d) El = 0.005,
(b,e) El = 0.025, and (c,f ) El = 0.05. For all cases, Re = 20, Bi = 0.2 and α = 0.2.

corners (see figure 8c), which explains why particles are almost trapped in the areas with
lower elastic force, i.e. the corners of the duct (see also the discussion in § 3.1 on the steady
distribution of particles).

3.4. Effect of the yield stress
Figure 9 depicts the mean concentration of particles in a suspension flow with φ = 10 %
in Saramito–Giesekus fluids with different yield stress values. In all cases, Re = 20,
El = 0.005, α = 0.2, κ = 0.2, while Bi increases from 0.2, to 1 and 4. Because the flow
has low elasticity, we retrieve a Newtonian-like behaviour at Bi = 0.2, with particles
accumulating between the core and the duct walls. However, as Bi increases, particles
migrate towards the walls, and ultimately at Bi = 4 accumulate at the duct corners. This
finding suggests that the yield stress magnitude alone can alter particle distribution in EVP
suspensions. Moreover, the effect of yield stress is consistent with the effect of elasticity
in driving particles towards the walls. Nevertheless, at Bi = 4, certain particles remain
trapped in the central plug region (see figure 9c). Since the shear gradient in the plug
is zero, there is no shear gradient lift force on the particles originally situated in the
core. Consequently, the particles are trapped inside the plug region and move at the same
constant velocity as the plug itself.

Previous studies have suggested that particle migration towards duct corners is driven
primarily by the presence of a central plug region, which enhances shear gradient lift
forces by reducing the effective flow area (Chaparian et al. 2020a; Zade et al. 2020).
This results in inertial forces dominating elastic forces, thereby facilitating particle
migration towards the walls rather than the centre. Here, we examine whether the plug
region directly influences particle migration. Figure 10(a) provides a 3-D instantaneous
snapshot of the suspension, highlighting the plug contour in the middle plane, particle
distribution, and the first normal stress difference (N1), at the steady-state distribution
of the particles.Figure 10(b) illustrates the probability density function (PDF) of the
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Figure 9. The mean particle concentration Φ(y, z) along with the first normal stress difference N1 across the
duct section in EVP carrier fluids at (a,d) Bi = 0.2, (b,e) Bi = 1, and (c,f ) Bi = 4. For all cases, φ = 10 % and
El = 0.005.
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Figure 10. (a) The instantaneous snapshot of the EVP suspension with φ = 10 %, El = 0.05 and Bi = 0.2.
The central plane depicts the unyielded region in cyan, while the yielded regions are represented in yellow.
Other planes illustrate the distribution of N1 in the EVP suspension. For visual clarity, only a subset of the
particles residing along the bottom edges is displayed. (b) The plug contour (P) across the duct section. Yellow
colour means that 100 % of the material is yielded.

yielded regions in the EVP suspension across the duct section (refer to Appendix D for
the definition of P). For the suspension with El = 0.05 and Bi = 0.2, particle-induced
stresses fragment the central unyielded region into smaller, disconnected plugs. The PDF
further reveals that the majority of regions are statistically in a yielded state (P = 100 %).
Despite the absence of a significant plug region, particles continue to migrate towards
the duct walls and form particle trains at the corners. This indicates that the presence of
plug regions may not be the primary mechanism driving particle migration. Therefore, we
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Figure 11. (a) The first normal stress difference (N1) versus Bingham number (Bi) for EVP suspensions with
different elasticity numbers. For all cases, φ = 10 %, βs = 0.1 and α = 0.2. (b) The square root of the average
trace of the conformation tensor Cii plotted against the distance from the wall in the normal direction for
two distinct Bingham numbers (Bi). The black dotted line denotes the polymer’s rest configuration, in which√

C̄ii = √
3. The inset presents the average distribution of particles (Φ) along z/(2H) = 0 for two Bingham

numbers.

propose an alternative explanation for how yield stress contributes to the particle focusing
at the duct corners.

The lift force acting on a sphere due to elastic effects can be attributed to the uneven
distribution of N1 across the surface of the particle, Fe ∝ |∇N1| (Karimi et al. 2013). In
the case with the lowest yield stress (Bi = 0.2), the average of N1 is 0.068, and except for
the centre of the duct walls, which has the highest values of N1, it is distributed uniformly
across the duct section. In the high yield stress fluid (Bi = 4), however, the average of
N1 increases to 0.27, and its gradient becomes more pronounced between the corners and
in the middle region between the core and corners (see figure 9f ). This indicates that
increasing yield stress of the EVP fluid enhances the first normal stress difference in the
duct flow. The higher gradient of N1 is most probably the main reason behind the more
intense accumulation of particles in the corners observed in the EVP suspensions than in
their viscoelastic counterparts.

From a rheological perspective, elastic stresses in viscoelastic and EVP fluids arise
due to deformations of elastic microstructures (Bird et al. 1987). Simultaneously, in
viscoelastic and EVP fluids, there is a restoring mechanism towards an equilibrium
conformation through relaxation processes inherent in the material, which act to dissipate
elastic strain energy. The magnitude of the elastic stresses that persist in the flow is
determined by the balance between the rate of deformation imposed on the fluid and its
intrinsic relaxation time. In EVP flows governed by Saramito-type constitutive equations,
the relaxation mechanism is further modulated by the effective stress driving the plastic
flow, characterised by the nonlinear coefficient (|τ p

d | − Bi/Re)/|τ p
d | (see (2.3)). As the

Bingham number increases, the relaxation process slows for a given strain rate, leading to
a greater persistence of elastic stresses in the flow, and consequently enhancing the elastic
effects.

To further corroborate this finding, figure 11(a) presents the temporally and spatially
averaged values of the first normal stress difference (N̄1) for various EVP suspensions as a
function of the elasticity and Bingham numbers. It is observed that N̄1 increases with both
the Bingham and elasticity numbers. As a result, the yield stress can significantly increase
the first normal stress difference, thereby influencing particle migration. Previous studies
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have presented force scaling to study particle migration in a second-order viscoelastic fluid
(Ho & Leal 1976; Li et al. 2015), but they did not account for the effects of yield stress on
elastic forces acting on particles. Here, we wish to consider the effects of both Bingham
and elasticity numbers on the first normal stress difference (N̄1), and estimate the relative
magnitudes of the different forces acting on the particles.

These elastic forces can then be compared to the inertial forces (estimated using the
shear gradient lift force scaling) to determine the particle final positions in the duct. The
magnitude of the inertial force Fi is determined using the scaling proposed by Asmolov
(1999) for the shear gradient lift force, which can be expressed as Fi ∝ ρ f γ̇

2 D4, where
ρ f is the density of the fluid, γ̇ is the shear rate (in our scenario it is U/H ), and D is
the diameter of the particles. The magnitudes of the viscoelastic forces are estimated in a
similar way, using the formula Fe ∝ (N1 + 2N2)D2 as proposed by D’Avino et al. (2012).
The line of |Fe|/|Fi | ≈ 1 is added in figure 11(a) (black dashed line), where the values
of N̄1 are obtained from the data in the same figure, assumingthat N̄2 is one order of
magnitude smaller than N̄1 (see figures 4b,d).

The relative magnitudes of the elastic and inertial forces exert a significant influence on
the particle distribution within the duct. In scenarios where the elastic forces substantially
outweigh the inertial forces (|Fe| 
 |Fi |), the elastic effects become predominant, leading
to the accumulation of particles at the corners of the duct. Conversely, when the inertial
forces are significantly larger than the elastic forces (|Fe| � |Fi |), the inertial effects
dominate, resulting in the particles accumulating in an annular region between the centre
of the duct and the walls.

The critical elasticity value Elc, i.e. the minimum elasticity required to cause particle
accumulation in the corners, varies depending on both the elasticity number and the
Bingham number. For example, when the elasticity number is 0.005, inertial forces are
dominant (|Fe| � |Fi |) for Bi = 0.1 and 1, which means that particles tend to concentrate
between the centre and walls of the duct. When the Bingham number exceeds 2, the
elastic forces are dominant, and the ratio changes to |Fe| 
 |Fi |, indicating that the
particles accumulate at the corners (as shown in figure 9). On the other hand, when the
elasticity number is increased to 0.05, the ratio |Fe|/|Fi | is greater than 1 already in a
pure viscoelastic fluid, (i.e. Bi = 0), meaning that particles migrate towards the walls and
corners independently of the fluid yield stress (Bi).

The data in figure 11(b) illustrate the wall-normal profile of the square root of the mean
trace of the conformation tensor (

√
Cii ), for two distinct Bingham numbers, Bi = 0.2

and Bi = 1, and same volume fraction (φ = 10 %) and elasticity number (El = 0.05). The
black dotted line in the figure represents the polymer rest configuration, i.e. τ

p
ii = 0 and

Cii = 3. The figure reveals that the trace of the conformation tensor is uniformly higher
for larger Bingham values. This indicates that the higher yield stress of the carrier fluid
leads to increased elastic stretching of the material, which aligns with our observation that
yield stress enhances the elastic effects in EVP particle suspensions. Moreover, regardless
of the Bingham number, the trace of the conformation tensor is maximum near the
wall (y/H = 1) and decreases towards the duct centre (y/H = 0), where it reaches its
equilibrium state (minimal stretching). Near the wall, where the shear rates are high, the
material experiences maximal stretching, while reduced shear rates towards the centre of
the duct lead to attenuation in the stretching of the elastic microstructures. Comparing the
Cii values at the duct centre, we note slightly larger values at Bi = 1 than at Bi = 0.2. This
is attributed to the presence of particles and the collapse of the central plug region (see
figure 10) so that the polymer molecules are still stretched, although they do not display
any preferential mean orientation (zero tangential stresses on average).
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The presence of a plateau followed by a kink at approximately y/H = 0.4−0.5 for
both Bingham numbers is also noteworthy in figure 11(b). We hypothesise that this
is associated with the transition to the particle-depleted core region. To support this
hypothesis, we display the steady distribution of particles (Φ) along the centreline of
the duct (z/(2H) = 0) in the inset of the same figure. This confirms that the kink at
approximately y/H = 0.5−0.7 corresponds to the edge of the particle wall layer, where a
significant accumulation of particles occurs. This suggests that the region from the wall to
the kink is characterised by strong interactions between the fluid and the particle surface.
Consequently, maximal elastic strain occurs in the vicinity of the wall and particle surface
due to the higher local shear rates. Finally, it should be noted that yield stress affects
particle distribution through several mechanisms beyond its influence on N1. As yield
stress increases, two key phenomena are observed: first, the expansion of the central plug
region enhances particle trapping within the duct core; second, when the plug region
becomes large enough to remain undisturbed by particles, it reduces the effective flow
area, thereby intensifying both the wall shear gradient and first normal stress difference,
further driving particles to the duct walls and corners (as shown in figure 9c).

4. Concluding remarks
We conducted three-dimensional, interface-resolved direct numerical simulations to
investigate, for the first time, the collective dynamics of rigid spherical particles
suspended in the duct flow of elastoviscoplastic (EVP) fluids. We utilised the Saramito
model to simulate the EVP carrier fluid, and employed the immersed boundary
method to capture particle–fluid interactions. Additionally, a soft-sphere collision model
with lubrication correction is applied to model particle–particle/wall interactions. Our
numerical simulations were successfully validated through quantitative agreement with
available experimental data, highlighting the accuracy and capability of the developed
code. Our study demonstrates that particle migration in EVP suspensions is influenced
by the complex interplay of various parameters, including solid volume fraction, yield
stress, inertia, elasticity, secondary flows and shear-thinning viscosity. This analysis leads
to several important conclusions.

(i) Carrier fluid rheology significantly influences cross-streamline particle migration and
distribution within the duct. In suspensions in yield stress fluids with low elasticity,
particles tend to concentrate between the duct centre and the walls in the presence
of inertia. However, as the fluid elasticity increases, particles accumulate either at
the centre of the duct or in the duct corners. The EVP fluids modelled by the
Saramito equation induce central migration, with particles penetrating the central
plug region to form large clusters. Conversely, shear-thinning EVP fluids described
by the Saramito–Giesekus model promote wall migration, resulting in distinct corner
chain formations.

(ii) The distribution of the first normal stress difference (N1) plays a crucial role in
particle migration in EVP suspensions. Particles are driven towards regions with
the lowest normal stress difference, which typically occur near the centre and
corners of the duct. The combination of elasticity and shear-thinning behaviour
in Saramito–Giesekus fluids introduces more complex dynamics, including the
formation of slow-moving particle chains at the duct corners. We demonstrated that
N1 in EVP suspensions is influenced not only by the elasticity of the material but
also by variations in the yield stress of the carrier fluid. By calculating normal
stress differences across various yield stress and elasticity numbers, we identified
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critical thresholds for achieving particle focusing at the corners. These findings
could potentially be applied to the design of microfluidic ducts that promote particle
focusing at the corners.

(iii) Several mechanisms influence how yield stress alters flow behaviour and particle
distribution. Yield stress can lead to the formation of unyielded regions that trap
particles. However, we find that in Saramito–Giesekus duct flows, sufficient yield
stress can enhance elastic effects, causing particles to concentrate at the duct corners,
even in the presence of very low fluid elasticity. Contrary to previous literature, we
observed that the presence of a plug region is not necessary; instead, the increase
in first normal stress difference induced by yield stress is the primary driver of this
behaviour. However, as the yield stress increasesprogressively, the central plug region
expands, leading to enhanced particle trapping within the duct core region.

(iv) Particle migration patterns remain consistent across various volume fractions in
EVP suspensions, from dilute to dense regimes (0–20 %). In contrast, in Newtonian
suspensions, particle focusing breaks down at high volume fractions (>20 %), leading
to central accumulation. Furthermore, we demonstrated that particles can generate
secondary flows in Newtonian fluids, even under laminar conditions. However,
these secondary flows are an order of magnitude stronger in Saramito–Giesekus
fluids due to the influence of the second normal stress difference (N2). Since
the magnitude of the secondary flows is comparable to the migration velocity of
particles, they influence the particle migration in EVP fluids. This study provides a
comprehensive understanding of particle dynamics in EVP duct flows, elucidating the
physical mechanisms that govern the diverse particle distribution patterns observed
in experimental studies, which have often been inadequately explained. The insights
gained from this research will be valuable for improving process designs in industries
such as oil and gas, food processing, and pharmaceutical manufacturing, where the
behaviour of particle-laden non-Newtonian fluids is of paramount importance.
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Appendix A. Resolution study and code validation
The numerical code has been widely used and validated in our previous publications,
for simulating the sedimentation of rigid particles in an EVP medium (Sarabian et al.
2020), for soft particles and droplets in an EVP flow (Izbassarov et al. 2018; Izbassarov
& Tammisola 2020), for EVP flow in porous media (De Vita et al. 2018; Chaparian
et al. 2020b) and for turbulent EVP flows (Rosti et al. 2018; Izbassarov et al. 2021). For
completeness, we provide two additional validation cases. First, we explore the impact
of domain size and grid resolution on particle dynamics. We establish a baseline using a
square duct measuring 6h × 2h × 2h, discretised with 480 × 160 × 160 grid points along
the streamwise and cross-flow directions. To evaluate the effect of streamwise periodicity,
we extend the domain length to 8h while preserving grid resolution, resulting in a
640 × 160 × 160 mesh, labelled as the ‘Long’ case. We also investigate a ‘Res40’ scenario,
maintaining the reference domain size but increasing the resolution to 600 × 200 × 200
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Figure 12. Comparison of the time evolution of (a) migration velocity, (b) angular velocity, (c) vertical
position of the particle. The corresponding parameters are Re = 20, Wi = 1, α = 0.2 and κ = 0.2.

points. The high-resolution case employs 40 Eulerian grid points per particle diameter, and
5036 Lagrangian points on the sphere’s surface. We track a spherical particle (H/Dp = 5)
in a Giesekus fluid at Re = 20, Wi = 1 and α = 0.2 across these three configurations, with
results shown in figure 12. Our findings reveal consistent particle lateral velocity, angular
velocity, trajectory and equilibrium position across all cases. Given this consistency, we
adopt the reference case (‘Res32’) as the standard for our simulations.

We present an additional validation case, focusing on the rotation of a spherical particle
in a viscoelastic Couette flow, aiming to reassess the accuracy of our viscoelastic solver
and the IBM. Specifically, we consider a spherical particle of radius R positioned in the
centre of an elastic Couette flow. The computational domain, measuring 4R × 8R × 8R,
is discretised with 24 grid points per particle diameter. The top and bottom walls exhibit
opposite velocities ±Vw, generating a shear rate γ̇ = 2Vw/8R, while periodic boundary
conditions are applied in the remaining directions. The particle is neutrally buoyant (the
density of the particle and the carrier fluid are the same), and the Reynolds number
Re = ργ̇ R2/μ is fixed at 0.025. The fluid is described by the Oldroyd-B equation, and
the Weissenberg number Wi = λγ̇ varies from 0 to 2. The movement of the planes
induces rotation in the particle. The magnitude of this rotation is a function of Re
and Wi . We compute the particle angular velocity with respect to the x-axis across
various Weissenberg numbers, and validate our results with the experiments conducted by
Snijkers et al. (2011). Figure 13 shows great agreement between our numerical simulations
and the experiments from Snijkers et al. (2011). This underscores the accuracy of our
numerical solver and the effectiveness of the IBM implemented in our code to accurately
resolve the interfacial stresses. It is noticeable that the magnitude of the particle’s rotation
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Figure 13. The angular velocity of the particle relative to the x-axis normalised by the shear rate is calculated
across different Weissenberg numbers. The blue circles denote our numerical results, the red starsdenote the
experiments of Snijkers et al. (2011), and the black squares are from the numerical code in Goyal & Derksen
(2012). A sketch of the immersed particle in a viscoelastic shear flow is also depicted as an inset.

decreases with an increase in the fluid’s elasticity, as is evident from the simulations and
experiments.

Appendix B. Start-up shear flow for the Saramito–Gieskesus model
We present the predictions of the rheological model for transient flows, including start-
up shear and duct flows, of an EVP material modelled using the Saramito–Giesekus
equation. First, we examine planar Couette flow of the Saramito–Giesekus fluid. The
material is at rest at t = 0 until a constant shear rate (γ̇0) is applied. The Weissenberg
and Bingham numbers are defined as Wi = λγ̇0 and Bi = τ0/(μγ̇0). Figure 14 illustrates
the temporal evolution of the shear stress (τxy) and the first normal stress difference (N1).
These results are obtained by numerically solving the Saramito–Giesekus equation for the
parameters Re = 0.05, Bi = 0.2−1, El = 0.005−0.05, βs = 1/9 and α = 0.2. We observe
a considerable increase in N1 as Bi increases from 0.2 to 1.

The same analysis is applied to the start-up duct flow of a Saramito–Giesekus fluid.
Figure 15 depicts the temporal evolution of the shear stress (τxy), first normal stress
difference (N1), and duct central velocity (Uc) for the same parameters as those used in
the simple shear flow. Similar to simple shear, we also observe an increase in N1 as Bi
rises from 0 to 1.

Appendix C. Drag of the EVP suspension flow
In this appendix, we investigate the influence of solid volume fraction, yield stress and
elasticity on the wall drag force experienced by EVP suspensions flowing through a square
duct. Previous works have studied the drag reduction in single-phase laminar and turbulent
flows of viscoelastic (Shahmardi et al. 2019) and EVP (Rosti et al. 2018; Izbassarov
et al. 2021)fluids, as well as the increase in turbulent drag resulting from the addition
of polymers in particle suspensions (Rosti & Brandt 2020). It is important to note that
there are fundamental distinctions between drag behaviours in turbulent and laminar flows
(the object of the work presented here).

The percentage increase in drag with the particle volume fraction in the flow of EVP
suspensions is first shown in figure 16(a). The suspension properties are Re = 20, El =
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Figure 14. Transient τ
p
xy and N1 growth in start-up shear for the Saramito–Giesekus constitutive equation as a

function of El and Bi : (a,d) Bi = 0, (b,e) Bi = 0.2, (c,f ) Bi = 1.Here, βs = 0.1, α = 0.2.

0.05, Bi = 0.2, α = 0.2 and κ = 0.2. The results show 10.2 %, 39.9 % and 78.1 % increases
in the drag for φ = 3.5, and 10 % and 20 % when compared to the single-phase EVP flow
(φ = 0 %). To further investigate the causes of the drag increase, we consider the polymeric
(EVP), viscous (Newtonian) and particle contributions to the normalised wall shear stress,
shown in figure 16(b), where τw represents the mean wall shear stress of the particulate
flows, and τ 0

w denotes the mean value of the wall shear stress of the single-phase EVP
flow. The viscous contribution is calculated by multiplying the solvent viscosity with the
wall shear rate (τ s = μs(∇u + ∇uT)), while the EVP contribution (τ p

i j ) is derived from
the value of the EVP stress tensor at the wall. The particle contribution is calculated by
subtracting the viscous and polymeric contributions from the averaged imposed pressure
gradient (total drag). This is because the pressure gradient is also affected by the particle–
wall collisions. Subtracting these stresses from the total drag isolates the component due
solely to the particles.

The data reveal that the viscous, polymeric and particle contributions increase with
the particle volume fraction, with the viscous contribution displaying the most significant
growth. Although the particle contribution represents a relatively minor component of the
total drag in this laminar flow, it consistently grows with higher solid phase concentrations.
Notably, the increase in the particle contribution displays an almost linear relationship
with the increasing particle volume fraction, underscoring the significance of particle–
wall interactions to the total drag force. The trend of increasing drag at Bi = 4 is similar to
that observed at Bi = 0.2 (see figure 16c). However, the rate of drag increase is slower for
suspensions with higher yield stress compared to those with lower yield stress. Additional
details on the effect of yield stress on drag can be found in figure 18.

The introduction of particles into the fluid causes disruptions in the flow field, leading to
locally high strain rates and consequently higher velocity gradients at the walls, resulting
in increased viscous dissipation. To futher clarify this point, we depict the velocity profile
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Figure 15. Transient Uc, τ
p
xy and N1 growth in start-up duct flow for the Saramito–Giesekus equation as a

function of El and Bi : (a,d,g) Bi = 0, (b,e,h) Bi = 0.2, (c,f ,i) Bi = 1.Here, βs = 0.1, α = 0.2.

of EVP suspensions (U/Ubulk) for varying volume fractions in figure 17(a). For better
visualisation, the tangents to the velocity profiles at the wall are represented as black dotted
lines in the figure. It is evident that as the volume fraction increases, so does the velocity
gradient at the wall (du/dy), reflecting an increase in viscous dissipation (τ s

w ∝ (∇uw +
∇uT

w)).
To examine the increase of the elastic (EVP) contribution, we display in figure 17(b) the

mean EVP shear stress (τ̄ p
xy) as a function of the distance from the wall for different volume

fractions: φ = 0 %, 3.5 %, 10 %, 20 %. First, we observe that the maximum polymeric
shear stress occurs at y/H = 0 due to higher shear rate values at the wall. This value
gradually decreases towards the duct core (y/H = 1), where it reaches zero in the absence
of any shear rate, owing to the symmetry at the centre of the duct. The maximum polymeric
shear stress at the wall is found at the largest volume fraction (φ = 20 %), and it gradually
decreases as the volume fraction is reduced to φ = 0 %. We also note the presence of a
secondary peak at the highest volume fractions, located in correspondence to the edge of
the particle wall layer, similar to what was observed in figure 11(b) for the trace of the
conformation tensor. This is further confirmed in the upper inset of figure 17(b), where
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Figure 16. (a) The drag increase percentage for EVP suspensions versus solid volume fraction (φ). (b) The
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w), where the viscous (Newtonian) and polymeric contributions are depicted by blue and
red, respectively. (c) The change in drag relative to particle volume fraction for Bi = 0.2 and Bi = 4. Here,
El = 0.05 for all cases.
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0 %−20 %). (b) The mean polymeric shear stress (τ p

xy) and its components for different Bi . Here, φ = 3.5 %,
and the flow and rheological parameters are Re = 20, El = 0.05 and α = 0.2.

we present the particle distribution along the duct wall midplane z/(2H) = 0 for volume
fractions φ = 3.5% and 20 %. As previously discussed, elastic stretching of the material is
maximal in this region owing to the elevated shear rate near the particle wall layer (Zade
et al. 2020).

We next extend our analysis by examining the effect of yield stress on the drag
of the EVP suspension flow. Figure 18(a) illustrates the percentage increase in drag
with Bi of the carrier fluid in both EVP single-phase (φ = 0 %) and particulate
(φ = 3.5 %−20 %)flows, while keeping the other parameters constant at Re = 20, El =
0.05, α = 0.2. The reference for both unladen and laden cases is the single-phase
viscoelastic flow (Bi = 0). As the Bingham number increases, the pressure gradient
needed to drive the flow also increases. Notably, this increase in drag is less pronounced
as the Bingham number increases. For instance, at φ = 10 %, the drag force is 36 % larger
than the corresponding single-phase flow at Bi = 0, and 56.6 % more at Bi = 1. However,
the increment from Bi = 1 to Bi = 4 is only 5.7 %.

To explain this observation, we depict the different contributions of the drag for various
Bingham numbers, Bi = 0.2, 1, 4, as presented in figure 18(b). For the cases in the
figure, the volume fraction is φ = 3.5 %, and the other flow parameters are Re = 20,
El = 0.05 and α = 0.2. As the Bingham number increases, both the polymer and viscous
contributions increase, with the polymeric contribution exhibiting a more pronounced
growth. The particle contribution displays a distinctive behaviour, initially increasing with
the Bingham number until Bi = 1, beyond which it decreases. This trend can be explained
by the particle distribution patterns discussed in § 3.4. At Bi = 1, a significant proportion
of particles are in direct contact with the duct walls, whereas at lower Bingham values,
fewer particles interact with the walls. Furthermore, at Bi = 4, a considerable fraction of
particles become entrapped within the central plug region, resulting in a reduced number
of particles in contact with the walls when compared to Bi = 1. Consequently, the particle
contribution to the total drag is expected to be higher for Bi = 1 than for Bi = 4.

The final part of this appendix focuses on the impact of the elasticity of the carrier
fluid on the drag of the EVP suspension flows. Contrary to the increased drag observed
at higher Bingham numbers and volume fractions, increasing elasticity can lead to a
reduction of drag in Saramito–Giesekus suspensions. Here, we utilise the single-phase
EVP flow at Bi = 0.2 and El = 0 as the reference for calculating the drag reduction
of suspensions with different elasticity values. Figure 19(a) illustrates the percentage
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Figure 19. (a) The drag reduction percentage for EVP single-phase (pink) and suspension (blue) versus
elasticity number. The inset illustrates the decrease in apparent viscosity (μ/μ0) with increasing El.
(b) The ratio of the mean wall shear stress for EVP suspensions to the mean wall shear stress of the reference
suspension. The viscous (Newtonian) and polymeric contributions of wall shear stress are depicted by blue and
red, respectively.

of drag increase in both unladen EVP (φ = 0 %) and laden (φ = 10 %)flows versus the
elasticity number of the carrier fluid. Other rheological parameters are held constant at
Re = 20, Bi = 0.2, α = 0.2 and βs = 0.1. The findings reveal a 52.62 % reduction in drag
for φ = 0 % when increasing the elasticity number from 0.005 to 0.05. Similarly, there
is a 51.72 % drag reduction for φ = 10 %, with the same increase in elasticity number
from 0.005 to 0.05. To support this observation, we included a plot of the effective
apparent viscosity of the suspensions with φ = 10 % in the inset of figure 19(a). This
plot demonstrates that as the elasticity number (El) increases, the apparent viscosity
experiences a significant decrease, indicating a reduction in the total dissipation due to
the increase in the fluid’s elasticity. This phenomenon has also been presented in the study
by Izbassarov et al. (2021), where they showed that in FENE-P viscoelastic and EVP
laminar flows, the viscosity decreases with increasing elasticity. Similarly, the viscosity
trend observed in viscoelastic flow for Giesekus fluids, and in EVP flows for Saramito–
Giesekus fluids, aligns with this behaviour. This trend can occur in both single-phase
and particulate scenarios. To clarify, the drag reduction observed in our simulations can
be attributed primarily to the coupling between elasticity and shear-thinning viscosity
in our implemented model (Saramito–Giesekus). To further investigate this trend, we
depict the normalised wall shear stress and its polymeric, viscous and particle components
for the suspension with φ = 10 % and for different elasticity numbers in figure 19(b),
where τ 0

w denotes the mean value of the wall shear stress in the reference suspension
(El = 0 and Bi = 0.2). Polymeric stress considerably decreases with El, while the viscous
(Newtonian) stress is slightly increasing. The net effect of these changes is a decrease in
the total wall shear stress when increasing the elasticity number. The observed decrease
in the polymeric contribution can be creditedprimarily to the shear-thinning behaviour
of the material, as discussed previously. Remarkably, the particle contribution exhibits a
different trend. At low elasticity values (El = 0.005 and 0.01), the particle contribution is
negligible, as particles tend to accumulate at the duct centre, with no particles in direct
contact with the duct walls. However, at higher elasticity values (El = 0.025 and 0.05),
a substantial fraction of particles migrates towards the duct walls (see figure 8), resulting
in particle–wall collisions and higher particle contribution to the total drag force.
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Appendix D. Definition of average particle distribution and PDF of plug region
The particles are initially randomly distributed throughout the computational domain. The
particle distribution after the initial transient is computed as (Kazerooni et al. 2017)

Φ(y, z) = 1
Nt Nx

Nt∑
m=1

Nx∑
i=1

f (xi jk, tm), (D1)

where Nx is the number of grid points in the streamwise direction x , Nt is the number
of snapshots considered for the time average, and tm is the time at which the simulation
results are saved. The function f (xi jk, tm) is phase indicator at position xi jk and time
tm . This function equals 1 in grid cells containing solid particles, and 0 in cells within
the fluid phase. As a result, the function Φ(y, z) represents the time and spatial averaged
concentration of the solid phase (particles) in the cross-section of the duct. To increase the
accuracy of the results, the average is also performed on the eight symmetric triangles that
make up the duct cross-section.

Moreover, the results of plug regions in EVP flows are obtained by taking the average of
the binary function P = max(0, (|τ p

d | − Bi/Re)/(| |τ p
d | − Bi/Re|)) over cross-sections

located in the streamwise direction and over time. At each spatial position, if Bi is
less than the norm of the deviatoric stress tensor, then the function returns the value 1
corresponding to the yielded (fluid-like) state; however, if Bi is greater than τ

p
d , then the

function returns the value 0 corresponding to the unyielded (solid-like) zone. We favour
this formulation as in the particle-laden flows, unlike single-phase laminar duct flows, the
central unyielded plug is broken at different streamwise positions, thus this representation
depicts the probability of the material being yielded at each point of the duct cross-section.
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