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Flow induced by an oscillating circular cylinder
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Flow induced by an oscillating circular cylinder close to a plane boundary in quiescent
fluid is simulated numerically by solving the two-dimensional Navier–Stokes equations.
The aim of this study is to investigate the effects of the gap ratio between the
cylinder and plane boundary (G), the oscillation direction of the cylinder (β) and
the Keulegan–Carpenter (KC) number on the flow at a low Reynolds number of
150. Simulations are conducted for G = 0.1, 0.5, 1, 1.5, 2 and 4, and KC numbers
between 2 and 12. Streaklines generated by releasing massless particles near the
cylinder surface and contours of vorticity are used to observe the behaviour of
the flow around the cylinder. The vortex shedding process from the cylinder is
found to be very similar to that of a cylinder without a plane boundary except for
G = 0.1 and β = 0◦, where vortices cannot be generated below the cylinder. Two
streakline streets exist for all the flow regimes if there was not a plane boundary.
A streakline street from the cylinder can be affected by the plane boundary in three
ways: (1) it is suppressed by the plane boundary and stops propagating; (2) it rolls
up after it meets the boundary and forms a recirculation zone; and (3) it splits into
two streakline streets and forms two recirculation zones after it attacks the plane
boundary. A refined classification method for flow induced by an oscillating cylinder
close to a plane boundary is proposed by including a variant number, which represents
the behaviour of the streaklines, into the regime names, and all the identified flow
regimes are mapped on the KC–G plane. The drag and inertia coefficients of the
Morison equation are obtained using the least-squares method. A very small gap of
G= 0.1 significantly increases both the drag and inertia coefficients especially when
β = 0◦. If G= 1 and above, the plane boundary changes the drag coefficient by less
than 10 % compared with that of a cylinder without a plane boundary, and the effect
of the plane boundary on the inertia coefficient is weak only when the KC number
is sufficiently small and vortex shedding does not exist.

Key words: vortex dynamics, vortex shedding

1. Introduction
Oscillatory flow past a circular cylinder has been investigated extensively due to its

wide applications in engineering. A typical example of oscillatory flow is the flow
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induced by ocean waves in offshore engineering. A vibrating cylinder in quiescent
fluid can also be equivalently modelled as a stationary cylinder in oscillatory flow. The
flow pattern and the fluid force of a cylinder in a sinusoidally oscillatory flow are
governed by two independent parameters, i.e. the Keulegan–Carpenter (KC) number
and the Reynolds number (Re), which are defined as KC=UmT/D and Re=UmD/ν,
respectively, where Um and T are the amplitude and period of the oscillatory fluid
velocity, respectively, D is the diameter of the cylinder and ν is the kinematic viscosity
of the fluid. The ratio of Re to KC is referred to as the Stokes number S.

Many studies have been conducted to investigate the effects of KC and S on the
flow patterns around a cylinder in oscillatory flow. Williamson (1985) conducted
experiments to visualize flow around a circular cylinder inside a sinusoidal flow. It
was found that, for S = 730, vortex shedding from the cylinder occurs when the
KC number exceeds 7, and the number of vortices that are shed from the cylinder
increases with the increase of KC number. According to the number of vortices
that are shed from the cylinder in one period of oscillation, the vortex shedding
flows are classified into one-pair (7< KC < 15), two-pair (15< KC < 24), three-pair
(24 < KC < 32) and four-pair (32 < KC < 40) regimes, etc. Tatsuno & Bearman
(1990) conducted similar experiments but with small Stokes numbers in the range
from 5 to 160 and KC numbers up to 15. They classified the flow patterns into
eight regimes A∗ to G and mapped these regimes on the KC–S space. The transition
of flow from two- to three-dimensional is investigated through instability analysis
(Elston, Blackburn & Sheridan 2006) and direct numerical simulations (An, Cheng &
Zhao 2011). At low KC and Stokes numbers, the flow is two-dimensional and has a
reflection symmetry about the axis of oscillation, and this two-dimensional symmetry
must be broken before the three-dimensional instability occurs (Elston et al. 2006).

A limited number of studies have been conducted to investigate the effects of a
plane boundary on oscillatory flow around a stationary cylinder, where the direction
of the oscillatory flow is parallel to the plane boundary. Scandura, Armenio & Foti
(2009) found that, for KC = 10 and Re = 200 and 500, the ejection of vortex pairs
along a diagonal direction, observed for a wall-free cylinder, is still present when
e/D= 0.25, where e is the gap between the cylinder and the plane boundary. Xiong
et al. (2018) found that the flow is influenced by both the gap between the cylinder
and the plane boundary (e) and the Stokes boundary layer thickness (δ). If both e and
δ are smaller than the cylinder diameter, the flow is in the gap vortex shedding (GVS)
regime, where vortices are shed only from the gap side of the cylinder and travel
away from the cylinder along the plane boundary. Through numerical simulations and
experiments, Wybrow, Yan & Riley (1996) proved that the time-averaged flow directs
towards the cylinder along the boundary and causes an upwelling immediately below
the cylinder. The time-averaged flow was generally referred to as steady streaming.
If the cylinder is at rest on the boundary or partially embedded in the boundary,
the steady streaming directs away from the cylinder (Wybrow & Riley 1996). An,
Cheng & Zhao (2010) conducted numerical simulations to investigate steady streaming
around a cylinder near a plane boundary in oscillatory flow and found a significant
effect of the plane boundary on steady streaming when e/D is less than 1. For KC= 5
and 10, the effect of the plane boundary on the two-degree-of-freedom vibration of an
elastically mounted cylinder in oscillatory flow was also observed to be weak as e/D
is greater than 1 (Munir et al. 2018).

In all existing studies of oscillatory flow past a cylinder close to a plane boundary,
the flow direction is parallel to the boundary. If a cylinder oscillates near a plane
boundary in quiescent fluid, the direction of its oscillation can be parallel or
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FIGURE 1. Definition sketch of an oscillating cylinder near a plane boundary in quiescent
fluid. The maximum and minimum positions in the X-direction are marked as two circles.

perpendicular to the boundary, or diagonal relative to the boundary. One example of
the oscillation of cylinders near a plane boundary is the oscillation of the mooring
lines or riser pipes near the sea floor due to the motion of the floating structure to
which they are connected. Another example is the vibration of heat exchanger tubes
near the wall of the heat exchanger shell.

Figure 1 shows a sketch that defines an oscillating circular cylinder near a
plane boundary, where the size of the cylinder is exaggerated relative to the fluid
domain size in order to see the detail of the configuration. The cylinder oscillates
translationally about a mean position O with an amplitude of A and a direction
angle β measured from the plane boundary. The diameter of the cylinder is D and
minimum gap between the cylinder and plane boundary when the cylinder is at
its lowest position is G. A local coordinate system OXY is defined with its origin
located at the mean position of the cylinder and the X-direction aligned in the
oscillation direction of the cylinder and pointing away from the plane boundary. The
displacement of the cylinder is expressed as

X = A sin(ωt), (1.1)

where A is the amplitude of the oscillation, ω = 2π/T , T is the oscillation period
and t is time; the position of the cylinder centre on the oxy coordinate system is x=
X cos(β) and y = y0 + X sin β, where y0 = G + D/2 + A sin β is the mean vertical
position of the cylinder centre. Angles β = 0◦ and 90◦ correspond to the cases where
the cylinder oscillates horizontally and vertically, respectively. The oscillatory velocity
of the cylinder in the X-direction is Uc=Um cos(ωt), where Um=ωA is the amplitude
of the oscillatory velocity, and its components in the x- and y-directions are expressed
as Uc cos(β) and Uc sin(β), respectively.

The fluid flow relative to the cylinder for the configuration shown in figure 1 is
different from oscillatory flow past a stationary cylinder in the following two aspects.
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Firstly, the cylinder can oscillate in different directions in figure 1, instead of only in
the horizontal direction. Secondly, if a cylinder oscillates near a plane boundary, the
flow relative to the cylinder is a uniform flow with a velocity of uF = −Uc, which
does not vary spatially in the fluid domain. The boundary layer flow on the plane
boundary does exist because, relative to the cylinder, the fluid and the plane boundary
move simultaneously with a same speed. If a cylinder is placed in an oscillatory flow
on a plane boundary, the external flow is boundary layer flow and the flow pattern is
affected by the boundary layer thickness (Carstensen, Sumer & Fredsøe 2010; Xiong
et al. 2018).

This study is relevant to hydrodynamics around subsea pipelines and mooring lines
in offshore oil and gas engineering and heat and mass transfer in thermal and fluid
engineering. Offshore riser pipes and mooring lines are important facilities and they
are connected to floating oil and gas platforms. The motion of a floating platform due
to ocean waves forces riser pipes and mooring lines to oscillate. At the sea bottom, the
flow induced by the oscillation can cause erosion of the sediment near the pipelines
and mooring lines. In this study, two-dimensional numerical simulations are conducted
to investigate the flow induced by an oscillating cylinder near a plane boundary for
a constant low Reynolds number of 150. The effects of the KC number and the gap
between the cylinder and the plane boundary on the flow patterns are discussed in
detail.

Two-dimensional simulations are conducted at a relatively low Reynolds number
and low KC numbers, considering the affordability of a detailed study over a wide
parametric space and acceptable accuracy of two-dimensional numerical simulations.
Through direct numerical simulations, Nehari, Armenio & Ballio (2004) reported that
the three-dimensionality of the flow does not have effects on the two-dimensional
features. Specifically, the V-shaped vortex shedding pattern of regime D and the
diagonal vortex shedding pattern of regime F are inherent features of two-dimensional
flow caused by two-dimensional instability. In the experimental studies, the length
of the cylinder should be sufficiently long, and end plates were used to minimize
the effects from the two ends of the cylinder (Sarpkaya 2002). As a result, these
vortex flow patterns can be simulated using two-dimensional numerical models. It
was also reported that three-dimensionality has little influence on the hysteresis effect
at low to intermediate KC and Stokes numbers. Because three-dimensionality is weak
at relatively low Re and low KC, the flow structures and fluid force can be well
predicted by two-dimensional numerical models (Justesen 1991; Dütsch et al. 1998;
Zhao & Cheng 2014; Tong et al. 2015).

2. Numerical method

The governing equations for solving the flow in the computational domain shown
in figure 1 are the incompressible two-dimensional Navier–Stokes (NS) equations.
The computational domain deforms continuously if the cylinder oscillates. To account
for the deformation of the computational domain, the NS equations are solved
using the arbitrary Lagrangian–Eulerian (ALE) scheme. In the ALE scheme, the
computational mesh nodes move based on the updated position of the cylinder in
every computational time step. The mesh nodes can be moved in an arbitrary way
that minimizes the distortion of the computational mesh. The coordinates (x, y),
the velocity (u, v), the time (t) and the pressure (p) are non-dimensionalized as
(x, y) = (x′, y′)/D, (u, v) = (u′, v′)/Um, t = Umt′/D and p = p′/(ρU2

m), respectively,
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where the prime stands for dimensional values. The non-dimensional NS equations
can then be written as

∂ui

∂t
+ (uj − ûj)

∂ui

∂xj
=−

∂p
∂xi
+

1
Re
∇

2ui, (2.1)

∂ui

∂xi
= 0, (2.2)

where x1= x and x2= y, ui is the velocity in the xi-direction, ûi is the non-dimensional
moving velocity of the computational mesh in the xi-direction and Re is the
Reynolds number defined as Re = UmD/ν, where ν is the kinematic viscosity of
the fluid. The non-dimensional oscillation period of the cylinder is defined as the
Keulegan–Carpenter (KC) number:

KC=UmT/D. (2.3)

The relationship between KC number and the oscillation amplitude is KC= 2πA/D.
In the rest of the paper, all the variables are non-dimensional unless specifically

stated otherwise. The length and height of the non-dimensional computational domain
are 100 and 70, respectively, and the mean position of the cylinder is at the centre
of the domain in the horizontal direction. The blockage when the cylinder oscillates
in the horizontal direction is 1.4 %. Anagnostopoulos & Minear (2004) reported that,
for the calculation of the fluid force of a cylinder in an oscillatory flow, the blockage
effect is almost negligible if it is less than 20 %. The blockage used in this study is
much smaller than 20 % to ensure the propagation of vortex streets will not be affected
by the boundaries of the computational domain.

The NS equations are solved by the finite element method (FEM) model and the
computing code developed by Zhao et al. (2007). In the FEM model, the stable
Petrov–Galerkin method proposed by Brooks & Hughes (1982) is used to solve the
NS equations. The numerical model has been validated against various scenarios
with low Reynolds numbers in the laminar flow regime, including oscillatory flow
past circular cylinders (Zhao & Cheng 2014) and vortex-induced vibration (VIV) of
circular cylinders (Zhao, Cheng & Zhou 2013; Zhao & Yan 2013). The validation of
the numerical model has not been repeated in this paper.

When VIV of cylinders in a uniform flow is studied using the ALE scheme, the
deformation of the mesh was calculated by solving the modified Laplace equation
(Zhao & Yan 2013)

∇ · (γ∇Si)= 0, (2.4)

where Si is the displacement of the mesh nodes in the xi-direction and γ is a constant
that controls the mesh deformation, which is inversely proportional to the area of a
finite element. However, it is difficult to maintain mesh quality using (2.4) when the
gap between the cylinder and the plane boundary is extremely small. To avoid over-
distortion of finite elements, the mesh movement scheme used in this study is similar
to that used by Rahmanian et al. (2014). For each combination of KC number and
G, two predefined structured meshes are generated, one with the minimum possible
gap and one with the maximum possible gap between the cylinder and the plane
boundary, as shown in figure 2(a) and (b), respectively. The two meshes have exactly
the same structures, node numbers and node number indices. When the cylinder is
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(a) (b)

FIGURE 2. Computational mesh for KC = 5 when the cylinder is at its (a) highest and
(b) lowest positions.

between the minimum and maximum positions, the coordinates of all the nodes are
calculated using an interpolation method. By using the above method, the mesh quality
will always be as good as the ones shown in figure 2.

Both the cylinder surface and the plane boundary are smooth walls and the
boundary conditions are specified as follows. A non-slip boundary condition is given
on the smooth-wall boundaries. Specifically, the fluid velocity is the same as the
velocity of the cylinder’s motion on the cylinder surface and zero on the plane
boundary. On the two side and top boundaries, the flow velocity is zero and the
pressure is zero. The gradient of the pressure in the normal direction of the boundary
on the plane boundary and the cylinder surface is zero.

The computational domain is divided into 102 152 and 184 136 four-node quadri-
lateral elements for G= 0.1 and 4, respectively. The mesh number increases with the
increase of G because the number of elements between the cylinder and the plane
boundary increases. The cylinder surface is divided into 128 elements and the mesh
size in the radial direction on the cylinder surface is 0.002. The density of the mesh
used in this study is denser than that used in Zhao & Cheng (2014), where a detailed
mesh dependence study was conducted for oscillatory flow past two cylinders at Re=
100 and 150.

To demonstrate that the computational domain size of 100 × 70 is sufficiently
large to obtain converged results, an extra calculation with G = 0.1 and KC = 12
(the maximum KC number used in this study) is simulated using a computational
domain with a size of 200 × 140. Figure 3(a) shows the comparison between the
non-dimensional forces from the two meshes and figure 3(b) shows the comparison
of horizontal fluid velocities along three horizontal lines of y= 0.1, 0.6 and 1.1. The
non-dimensional lift forces are defined as CX=FX/(ρDU2

m/2) and CY =FY/(ρDU2
m/2),

where FX and FY are the forces in the X- and Y-directions, respectively. Both forces
and the fluid velocities from the larger domain size are nearly identical to their
counterparts from the smaller domain size. The velocity oscillates in the horizontal
direction mainly because of the wake vortices, which will be discussed in detail in
the next section.
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FIGURE 3. Comparison between the results from two meshes with different domain sizes
for G= 0.1 and KC= 12.

3. Vortex flow patterns
3.1. Oscillation of a cylinder without a plane boundary

Flow induced by an oscillating cylinder in the horizontal direction in quiescent fluid
without a plane boundary is first simulated and the results are used as a benchmark
to evaluate how the plane boundary affects the flow. According to the regime map
proposed by Tatsuno & Bearman (1990), regimes A∗, A, D and F can be found for
Re= 150 and KC in the range of 1–12. Streaklines at the time when Y = 0 and Uc=

−Um are shown in figure 4 to identify flow patterns. Throughout the paper, all the
streaklines are generated by releasing massless particles at 80 points evenly distributed
along the circle outside the cylinder with a non-dimensional radius of 0.51. In each
case, a series of velocity fields with a time interval of T/32 are used to generate the
streaklines.

Regimes A∗ and A are characterized by progression of particles in two opposite
directions in a straight line. Although no vortex shedding occurs and there is no vortex
street in either regime A∗ or regime A, the massless particles move away from the
cylinder, leaving a street of streaklines on each side of the cylinder. The flow streets
presented by the streaklines are referred to as streakline streets in this study. The
difference between regime A∗ and A is that vortices are formed in regime A but not
in regime A∗. However, there is not a distinct boundary between regimes A∗ and A
(Tatsuno & Bearman 1990). The flow is in regime A/A∗ for KC= 2 to 5, where two
streakline streets are symmetrically located on two sides of the cylinder, and regime D
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FIGURE 4. (c–h) Flow streaklines for an oscillating cylinder in the horizontal direction
without a plane boundary for Re= 150. The time histories and the frequency spectra of
the lift coefficient are shown in (a) and (b), respectively.

for KC = 6 and 7, where one pair of vortices are shed from only one side of the
cylinder in one oscillation period. The streaklines for KC = 6 in figure 4(e) show a
vortex being shed from the top side of the cylinder as the cylinder moves left.

The flows for KC= 9 to 12 are in regime F, where two pairs of vortices are shed
from the cylinder in one vibration period. The vortex pairs can be clearly identified
in the streaklines of regime F in figure 4( f –h), and they propagate away from the
cylinder. The alignment angles of the streakline streets in regime F for different KC
numbers are different. The two streakline streets are aligned nearly in the horizontal
direction at KC = 9, aligned diagonally with a small inclination angle at KC = 10
and approximately 45◦ inclination angle at KC = 12. The regimes B, E and G are
not discussed in this study, because they occur at high Reynolds numbers (Re> 200),
where the flow is strongly three-dimensional. Based on the vortex numbers that are
shed from the cylinder in one oscillation period, regimes D and F were also classified
as single- and double-pair regimes, respectively (Williamson 1985).
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Figure 4(a,b) shows the time histories and frequency spectra calculated by the
fast Fourier transform of the non-dimensional lift force, respectively. In regime D,
one pair of vortices is shed from the cylinder in one period and vortices are only
shed from one side of the cylinder. If the side where vortices are shed changes
intermittently, the regime was also named as regime E (Tatsuno & Bearman 1990).
For KC= 7 in figure 4(a) the change of negative mean lift coefficient during t/T = 45
to 80 to positive mean lift force during t/T = 80 to 120 is due to the switch of the
vortex shedding from one side of the cylinder to the other side. The switch of
the vortex shedding side of the cylinder was also found through both two- and
three-dimensional numerical simulations (Lin, Bearman & Graham 1996; Uzunoglu,
Tan & Price 2001; Nehari et al. 2004). The frequency spectra in figure 4(b) shows
that the non-dimensional frequency fYT of the highest peak of the lift force equals the
vortex shedding pair number plus 1 (Williamson 1985). The very irregular oscillation
of lift force for KC = 8 in figure 4(a) indicates that the flow is transitioning from
regime D to F. The component of fYT = 3 is higher than that of fYT = 2 in the
frequency spectrum for KC = 8 in figure 4(b), indicating that the flow is dominated
by regime F. Flows for KC= 9 to 12 are periodic regime F flows judged by the very
periodic oscillation of the lift force in figure 4(a).

3.2. G= 0.1 and 0.5
The results for G= 0.1 and 0.5 are discussed separately in this section because such
gaps have significant effects on the vortex shedding flow. Flow patterns for G = 0.1
and β = 0◦, 45◦ and 90◦ are discussed in detail. Flow patterns for G= 0.5 and β = 0◦
are discussed at the end of this section, while flows of G = 0.5, β = 45◦ and 90◦
are not discussed in detail because they share the same patterns as those for G= 0.1.
Figure 5 shows the time histories of the non-dimensional force CY for G = 0.1 and
β = 0◦, 45◦ and 90◦. Figure 6 shows streaklines when the cylinder is moving in the
positive X-direction through its mean position (X = 0 and Uc =Um) for G= 0.1. The
periodic oscillation of the force in figure 5 indicates that the repeatability of the flow
is very good. If G= 0.1 and the oscillation direction is horizontal (β = 0◦), vortices
are found to generate only from the top side of the cylinder. All the streaklines for
different KC numbers shown in figure 6(a) are in the shape of a rotated C pattern. The
density of the streaklines near the cylinder decreases with the increase of KC number,
because the speed of particles moving away from the cylinder increases. The dominant
frequency of the lift coefficient is 2 for β = 0◦ for all the KC numbers because two
maximum lift coefficients was created during one oscillation period.

All the streakline patterns in figure 6(a) are in a rotated C shape. To observe the
motion of vortices, figure 7(a) shows the contours of vortices corresponding to the
cases in figure 6(a). The vortex flow patterns for G= 0.1 and KC = 4 and 5 are in
regime A where vortex shedding does not occur and vortex streets do not exist. As
regards KC= 4, the vortex generated from the cylinder in one half-cycle is convected
back to the other side of the cylinder after the cylinder’s motion changes its direction
and dissipates quickly. In figure 7(b), the positive vortex A is nearly fully grown
before the cylinder’s velocity becomes zero and changes its direction. The reversal of
the cylinder makes vortex A go back to the right side, instead of being shed from
the cylinder. Because every vortex generated from one side of the cylinder moves
to another side before it has enough size to be shed form the cylinder, no vortex
shedding is observed in regime A.

At KC= 9 two vortices are shed from the cylinder (vortices A and B in figure 7c)
in one period and the vortex shedding is in mode D. Vortex B∗ is shed from the
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FIGURE 5. Time histories and frequency spectra of the non-dimensional force in the Y-
direction for G= 0.1: (a) β = 0◦, (b) β = 45◦ and (c) β = 90◦. The dashed horizontal grid
lines are CY = 0 lines and the spacing between these lines is 4.

cylinder in the previous cycle. After each vortex is shed from one side of the cylinder,
it is convected back to the opposite side, escapes from the cylinder and then moves
away from the cylinder horizontally, resulting in one well-defined vortex street on
either side of the cylinder. Vortex A, as an example, which is shed from the left
side of the cylinder at t/T = 0.25, is convected back to the right side at t/T = 0.5
and continues to move towards the right direction and joins the right vortex street.
The vortex shedding remains in mode D until KC = 12. Regime F vortex shedding,
where two pairs of vortices are shed from the cylinder in one period, is not observed
because the extremely small gap does not allow vortices to be generated from the
bottom side of the cylinder. When vortices move horizontally away from the cylinder,
shear layers were generated between them and the plane boundary, which are in the
opposite directions of vortices. The strong vortices near the cylinder attract the fluid
towards them, resulting in C-shaped streakline streets.
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FIGURE 6. Streaklines when the cylinder is moving in the positive X-direction through
its mean position for G= 0.1.

With the increase of KC, the vortices travel for a longer time in one oscillation
period while the number of vortices generated in one period remains the same, and
as a result the distance between two neighbouring vortices (defined as λ in figure 7)
in each regime D vortex street increases. The λ value can only be identified from the
vorticity contours if KC > 7 because vortices do not move away from the cylinder at
smaller KC numbers. The variation of λ with the non-dimensional amplitude of the
cylinder A/D (=KC/2π) is shown in the middle of figure 7, and it can be seen that λ
increases nearly linearly with the increase of A/D. For KC= 12, vortices move along
the plane boundary for a distance before their direction biases upwards. Regime D
vortex shedding for G= 0.1 is similar but not exactly the same as that for oscillatory
flow around a stationary cylinder for G= 0.25 and KC= 11 observed in figure 12 in
Xiong et al. (2018), where an extra pair of small vortices is shed from the cylinder in
one period. In the study of oscillation flow past a stationary cylinder by Xiong et al.
(2018), the two vortex streets remain moving horizontally along the plane boundary
instead of rolling up. When a cylinder oscillates horizontally along a plane boundary
in a still fluid, no boundary layer flow exists and the two vortex streets separate from
the boundary, forming a rotated C-shaped vortex flow pattern as shown in figure 7(d).

In figure 5, the zero-lift lines are marked as dashed grid lines. It can be seen that
the mean lift forces for β = 0◦ and G= 0.1 are all positive. In figure 5(a), the mean
lift force is slightly greater than zero as KC= 2 and increases significantly as KC= 3.
As KC exceeds 4, the lift coefficient remains positive in nearly a whole oscillation
period.

The fluid flow caused by the cylinder motion is expected to be strong near the
cylinder and negligibly weak far away from the cylinder. Figure 8 shows the profiles
of the horizontal velocity u along different vertical lines at t/T = 0 and 0.5 (where the
cylinder’s velocity is 1 and −1, respectively) for G=0.1, β=0◦ and two KC numbers.
Under the nonslip boundary condition, the velocity is zero at y= 0 and the same as
the velocity of the cylinder on the cylinder surface (x− X, y)= (0.5, 0.6). When the
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FIGURE 7. Contours of vorticity at four instants of t/T= 0, 0.25, 0.5 and 0.75 within one
period for G = 0.1 and β = 0◦. The variation of the vortex-to-vortex distance λ/D with
the oscillation amplitude A/D of the cylinder is presented at the centre of the figure.

cylinder’s velocity reaches its maximum in the positive x-direction, the fluid velocities
along the lines of x− X = 0.5 to 8 are smaller than the cylinder’s velocity (u = 1).
When the cylinder is moving in the negative x-direction and reaches its maximum
velocity (u=−1), the fluid velocities near the cylinder centre in figure 8(d) for KC=9
are greater than the cylinder velocity. The high velocity is between the negative vortex
B and the positive vortex below it shown in figure 7(c). Owing to the inertia effect,
the phases of the fluid velocities below the cylinder’s top surface level is ahead of
those above the cylinder.

For a sinusoidal oscillatory flow on a plane boundary, the non-dimensional boundary
layer thickness is δ= (3π/4)

√
KC/πRe (Carstensen et al. 2010), which are marked in

figure 8. The boundary layer flow driven by the oscillatory cylinder is only confined
within a thin layer of fluid close to the plane boundary. If the boundary layer thickness
is defined as the height where the velocity reaches its maximum value, its values at
difference horizontal locations are different from each other in figure 8. The δ value
is less than 0.5 close to the cylinder (x= 0.5 to 2) and much greater than D far away
from the cylinder where the velocity is small, for example at x= 8.

When the cylinder vibrates diagonally with β= 45◦, the streaklines on the right side
of the cylinder are similar to those of an isolated cylinder without a plane boundary,
while those on the left side are significantly altered (see figure 6b). When KC = 4,
5 and 6, no streakline street is observed at the left side of the cylinder as shown
in figure 6(b). When KC = 9 and 12, the plane boundary forces the vortex street
on the left side of the cylinder to roll up and form a recirculation region. Figure 9
shows contours of vorticity at four instants of t/T = 0, 0.25, 0.5 and 0.75 within one
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FIGURE 8. Profiles of velocity u along vertical lines at different locations for G = 0.1,
β = 0◦ and KC= 5 and 9.

period for G= 0.1 and β = 45◦. Since the characteristics of the vortex street on the
top of the cylinder are the same as those on one side of an isolated cylinder, the
vortex shedding modes can be classified according to the top branch streakline street.
When the cylinder moves diagonally upwards, the increasing gap between the plane
boundary and the cylinder allows vortices to be generated, and the vortex generation
mechanism from the bottom side of the cylinder is the same as that from the top
side. For KC = 4 and 5, the generation of the two vortices from the bottom side of
the cylinder at t/T = 0.25 and the motion of these two vortices towards the top side
before they are shed due to the reversal of the cylinder are typical phenomena of the
regime A flow pattern. The asymmetry of the configuration of the flow causes net
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FIGURE 9. Contours of vorticity at four instants of t/T = 0, 0.25, 0.5 and 0.75 within
one period for G= 0.1 and β = 45◦.

lift force in regime A in figure 5(b) but with a much smaller amplitude than that for
β = 0◦ for the same KC.

In regime D in figure 9(d), one vortex A is shed from the bottom side of the
cylinder as the cylinder reaches its highest position at t/T = 0.25. The diagonally
upward motion of the cylinder makes enough gap between the cylinder and the
plane boundary to allow vortices to grow and shed from the cylinder in regime
D. However, the vortices below the cylinder dissipate quickly due to the effect of
the plane boundary. In regime D, the vortex street on the top side of the cylinder
includes positive and negative vortices generated from the top and bottom of the
cylinders, respectively. It is similar to that of an isolated cylinder because the
negative vortices that are shed from the bottom side of the cylinder (for example,
vortex A in figure 9c,d) are convected to the top side before they are affected by the
plane boundary. Compared with that in regime A, the lift coefficient in regime D is
significantly increased because vortices are only generated at one side of the cylinder.
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Flow induced by an oscillating cylinder close to a boundary 897 A19-15

In regime F in figure 9(e, f ), two vortices are shed from the cylinder in each half-
period. Two vortices (A or C) remain on the side of the cylinder where they are
shed, and the two vortices (B or D) are convected back to the opposite side of the
cylinder after they are shed. The alignment angle of the vortex street in regime F for
an isolated cylinder varies with KC as shown in figure 4; so does that in the case with
a plane boundary with β = 45◦. The vortex street from the top side of the cylinder is
not affected by the plane boundary if it is aligned diagonally upwards (figure 9e, f ),
and is attracted towards the boundary if it is aligned nearly horizontally (figure 9g).
As a result, in figure 9(g), negative vortices dissipate quickly, leaving a row of positive
vortices in the right vortex street at KC= 12. The vortex shedding patterns for β= 45◦
were not observed in either the case of flow past two cylinders (Zhao & Cheng 2014)
or the case of oscillation flow past a cylinder near a plane boundary (Xiong et al.
2018).

In regime A and β = 90◦, the lower branch streakline street splits into two equal
halves after it attacks the plane boundary, resulting in a perfectly symmetric flow as
shown in figure 6(c) and a zero-lift coefficient as shown in figure 5(c). The splitting
of the lower branch streakline street results in one recirculation region at each side of
the cylinder. Comparing figure 6(b) with figure 6(c) it can be seen that regimes D and
F vortex flow patterns for β = 90◦ are similar to those in the same regimes for β =
45◦. This is mainly because the vortex street below the cylinder is aligned diagonally
for both oscillation directions, although the motion of the cylinder is not inclined for
β = 90◦. In regimes D and F, the diagonally aligned lower branch streakline street
rolls up and forms a recirculating region after it meets the plane boundary. At KC= 9
in figure 6(c), the lower branch streakline street meets the boundary nearly vertically
and forms a small recirculation zone at the right side of the cylinder. At KC= 12, the
lower branch streakline street approaches the plane boundary at an inclined angle, and
it forms a larger recirculation region. The vorticity contours for β = 90◦ in figure 10
for each flow regime are similar to those for the same regime for β = 45◦ in figure 9,
except for regime A.

Based on the streaklines in figure 6, it is expected that the fluid motion around the
cylinder can cause strong period-averaged mean velocity, which is generally referred
to as steady streaming (Sumer & Fredsøe 2001; An, Cheng & Zhao 2009). Steady
streaming is one of the mechanisms for mass and heat transfer in a fluid. The steady
streaming streamlines for some representative cases for G=0.1 are shown in figure 11.
To understand the formation mechanisms of the steady streaming, the contours of the
mean pressure coefficient are plotted in figure 11. The mean pressure coefficient is
defined as Cp = p/(ρU2

m/2), where the overbar stands for averaged value over one
oscillation period of the cylinder. The low pressure near the cylinder is caused by the
vortices generated by the separated shear layers. The recirculating regions formed by
the streamlines in figure 11 correlate well with the streaklines shown in figure 6. The
streamline concentration areas in figure 11 are where the streakline streets are.

At β = 0◦, the motion of the cylinder creates high pressure below the cylinder
and at the left and right sides of the cylinder, which generates strong horizontal flow
velocities directing away from the cylinder along the plane boundary. The low pressure
above the cylinder attracts the streamlines and makes them bend towards the cylinder.
The rolling up of the vortex streets is also the result of the suction effect of the
low-pressure zone above the cylinder. At β = 0◦, the two recirculating zones on the
two sides of the cylinder are formed by the rolling up of the two streakline streets.
As the KC number increases from 5 to 12, the centres of the recirculating zones move
away from the cylinder. The steady streaming streamlines for β = 0◦ are perfectly
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FIGURE 10. Contours of vorticity for β = 90◦ and G = 0.1 when the cylinder is at its
highest position (upper row) and its lowest position (lower row).

symmetric and the centre of each recirculation zone is measured by coordinates X and
Y defined in figure 12. It can be seen that the centre of each recirculation zone does
not move further away from the cylinder as KC is increased from 9 to 12, indicating
that the distance of a horizontal vortex street travelling along the plane boundary does
not increases.

In regime A of β = 45◦ and 90◦, low pressure is only confined in a small area near
the two sides of the cylinder because vortex shedding does not happen and vortices
do not travel away from the cylinder. As a result, the steady streaming flow converges
towards the cylinder from its two sides and leaves the cylinder from the top side. In
regime A, the high pressure in the small area below the cylinder generates horizontal
steady streaming flow on each side of the cylinder and a recirculating zone is formed
after this type of steady streaming meeting the converging flow towards the cylinder
(see figure 11e, f ). In figure 11(e), only one small recirculation zone is formed on
the left side of the cylinder because the high pressure only occurs at the left side.
In figure 11( f ), the high pressure immediately below the cylinder centre forms two
recirculation zones on two sides of the cylinder.

If the gap between the cylinder and the plane boundary is small, the oscillation
of the cylinder creates strong shear stress on the plane boundary and causes erosion
if the plane boundary is erodible. A typical example of boundary erosion is the
erosion of the seabed sediment around vibrating pipelines in subsea engineering. The
capacity of erosion can be evaluated by the non-dimensional shear stress defined as
τ = (1/Re) ∂u/∂y, where ∂u/∂y is the non-dimensional gradient of the horizontal
velocity on the plane boundary. Figure 13 shows the distribution of the maximum
shear stress τmax along the plane boundary for G = 0.1, where τmax at a location is
defined as the maximum |τ | within one oscillation period of the cylinder. Generally,
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FIGURE 11. Streamlines and contours of pressure coefficient based on the period averaged
flow for G= 0.1.

β = 0◦ causes much higher τmax than β = 45◦ and 90◦ because the cylinder remains
close to the plane boundary throughout the whole period. For β = 0◦, the smallest
KC number of 2 produces the largest τmax but the smallest high τmax region. Large
acceleration of the cylinder and the fluid velocity at a small KC number creates
strong flow velocity locally in a small region. As a result, the shear stress on the
plane boundary is increased locally. The area of high τmax region increases with the
increase of KC number because the distance that the cylinder can reach increases.
The distribution of τmax along the plane boundary is perfectly symmetric as G= 0.1
and β = 0◦.

As β is increased from 0◦ to 45◦, the increased averaged gap between the cylinder
and plane boundary results in a significant reduction in τmax. The maximum τmax

is located at the left side of the cylinder. When the cylinder moves diagonally
downwards, it drives the fluid to flow diagonally and attack the plane boundary,
resulting in much higher τmax on the left side of the cylinder than on the right side.
The diagonally downward motion of the streamlines at the left side of the cylinder
is correlated to the diagonal motion of the vortices in figure 9.

As β is further increased to 90◦, τmax is further reduced and its distribution along the
plane boundary is symmetric only when the flow is in regime A∗/A in the range of
KC= 2 to 5. At KC= 6 and above, the τmax distribution is asymmetric because of the
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FIGURE 12. Positions of the centres of the recirculation zones of the streaming for G=0.1
and β = 0◦.

intrinsic asymmetric flow in regimes D and F. From figure 13(c) it can be seen that,
in regimes D and F, the side of the cylinder towards which the lower branch vortex
street biases has wider high τmax zone than its opposite side. However, the largest τmax

values on both sides of the cylinder appear not to be significantly different from each
other. Based on the above discussion, it can be concluded that horizontal oscillation
of the cylinder causes most capacity of erosion of the plane boundary by the flow and
the vertical motion causes least for a very small gap of G= 0.1. For all three angles
of β = 0◦, 45◦ and 90◦, the maximum shear stress occurs at the smallest KC number,
but the widest high-shear-stress region occurs at the largest KC number.

Figure 14 shows the distribution of period-averaged mean shear stress (τ ) along the
plane boundary for G= 0.1. The maximum mean shear stress on the plane boundary
for β = 0◦ decreases and its location moves away from the cylinder with the increase
of the KC number. For β= 45◦ and 90◦, the distribution of τ on the plane boundary is
highly asymmetric except for the case of regime A for β = 90◦. The common feature
of the mean stress of most of the cases is that it is zero at a point either below or
somewhere near the cylinder centre, and directs away from this zero point at the two
sides. If the plane boundary was an erodible sandy seabed and the cylinder was a
subsea pipeline, this feature would make sediment move away from the zero-mean-
shear-stress point and leave a scour pit there.

The vortex shedding flow regimes observed for G = 0.5 and β = 45◦ and 90◦ are
similar to those for G = 1 and the same oscillation directions. The vortex shedding
flows for G = 0.5 and β = 0◦ shown in figure 15 show some distinct differences
from those for G = 0.1 and β = 0◦. As the gap increases from 0.1 to 0.5, vortices
are generated from the bottom side of the cylinder and they are stronger than those
from the top side. As a result, regime A streakline streets are originated from the
bottom side of the cylinder in figure 15(a). The flow pattern for KC= 6 and G= 0.5
is in regime D with two vortices being shed from the cylinder in one vibration period,
which are labelled as vortices A and B, respectively, in figure 15( f ). It is interesting to
see in figure 15(b) that the massless particles for generating streaklines move around
the cylinder only within a small area. An extremely small number of particles escape
from the top side of this small area and, as a result, no streakline streets are formed.
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FIGURE 13. Distribution of maximum shear stress along the plane boundary for G= 0.1.

Why particles are trapped in figure 15(b) can be explained by observing the motion of
vortices around the cylinder in figure 15( f ). After vortex A is shed from the cylinder,
it circles around the cylinder to the right side and merges into a negative vortex.
In the second half-period, vortex B is shed from the cylinder and repeats exactly
what vortex A does. The vortices generated from the top side of the cylinder also
merge into other vortices; for example, vortex C merges into B. The circulating of
the vortices around the cylinder results in a featureless streaklines pattern without any
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FIGURE 14. Distribution of mean stress along the plane boundary for G= 0.1.

streets shown in figure 15(b). Regime F occurs when KC=9 and 12 (see figure 15g, f ),
where two vortices A and B are shed from the cylinder before the cylinder reaches
it maximum displacement at t/T = 0.25 and another two vortices C and D are shed
from the cylinder at t/T=0.75. In figure 15(g), vortices A and D∗ (the star means this
vortex was generated in the previous period) combine and vortices B and C combine.
Because of the combination of vortices, the pattern of the streakline streets in regime
F of G= 0.5 are similar to that in regime D of G= 0.1.

3.3. G= 1, 2 and 4
In this section the flow structures for G= 1, 2 and 4 are discussed together because
they share similar characteristics. Regimes A, D and F are discussed separately.
Figure 16 shows time histories of the non-dimensional lift force for all the simulated
cases with G = 1 and 4. Compared with those for G = 0.1, the oscillation of many
lift forces is aperiodic, indicating that flow does not repeat from period to period. It
can be seen that aperiodicity of the lift force mainly occurs at KC= 6 and 7, where
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FIGURE 15. Streaklines and vortex contours for G= 0.5 and β = 0◦.

the flows are in regime D and KC = 8, which is the boundary between regimes
D and F. In regime D, vortex shedding only occurs at one side of the cylinder.
However, the vortex shedding may change from one side of the cylinder to the other
side intermittently. This has been observed both in experimental studies (Tatsuno &
Bearman 1990) and in numerical simulations (Nehari et al. 2004). The change of
the vortex shedding side of the cylinder in regime D makes the mean lift coefficient
change its direction intermittently in figure 16. It appears that the lift force in regime
F (KC = 9 to 12) does not vary between one period and another except for β = 0◦
and G = 1, indicating that the flow pattern is fixed. For G = 1 and KC = 9 to 12,
the lift force is aperiodic because vortices that are shed from the bottom side of
the cylinder are deformed significantly when they go through the very narrow gap
with the flow. The detailed wake flow structure will be discussed later on. The lift
coefficient in regime A for β = 0◦ and β = 45◦ decreases dramatically as G increases
from 0.1 to 1 and beyond. In figure 16, CY is nearly zero for KC= 2 and 3 and all
the oscillation directions, and is only weakly visible as KC= 4 and 5 and β = 0◦ and
β = 45◦.

Figure 17 shows the streaklines of regime A∗/A for different G= 1, 2 and 4 and
some representative KC numbers. At β = 0◦, streakline streets for the two regimes
A∗/A are generated from the two sides of the cylinder. They bend towards the plane
boundary due to the attraction by the shear layers on top of the plane boundary, which
are indicated in the vorticity contours in figure 18. After each streakline street meets
the plane boundary, it is divided into two streets: one moves towards the cylinder
and another moves away. A recirculated streakline street is formed on each side of
the cylinder. As the gap is increased to 4, each streakline street propagates at a very
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FIGURE 16. Time histories of the non-dimensional lift force for G = 1 and 4. The
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small speed before it meets the plane boundary and very small percentage of streakline
particles move towards the cylinder thereafter. The symmetric flow pattern for β = 0◦
is similar to half of regime A–A or A∗–A∗ flow pattern for oscillatory flow past two
side-by-side cylinders (Zhao & Cheng 2014) but not exactly the same. Geometrically,
the plane boundary is equivalent to the symmetry line in the streamwise direction
for oscillatory flow past two side-by-side cylinders. However, for flow past two side-
by-side cylinders, the symmetry line dividing the two cylinders is equivalent to a
symmetric boundary with free-slip boundary condition, while in this study, the plane
boundary is a non-slip boundary.

If the cylinder oscillates vertically in regime A/A∗, the flow becomes perfectly
symmetric about the vertical symmetry line. Each regime A/A∗ flow for β = 90◦ has
two branches of streaklines: the branch above the cylinder is not affected and the
branch below is divided into two by the plane boundary. After the division, each
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FIGURE 17. Streaklines for regime A when the cylinder is moving upwards through its
mean position for G= 1, 2 and 4. The arrows indicate the direction of travel of the vortex
street.

half-lower-branch streakline street rolls up and forms a recirculation zone. Before it
attacks the plane boundary, the vortex A/A∗ streakline street can be clearly identified
when G is equal to and greater than 1. For β = 90◦, the regime A flow for all the
gaps is perfectly symmetric because the perfect symmetric streakline street below
the cylinder enables it to be evenly divided into two halves after it meets the plane
boundary.

By observing figure 17, one can see that, if a streakline street meets the plane
boundary, it tends to roll up and form (a) recirculation streakline street(s), instead
of moving along the boundary, especially in the case of β = 0◦ and 90◦. If a vortex
attacks the plane boundary at nearly a right angle of attack, it splits into two halves
and each half only has vortices in one direction. The low pressure caused by vortices
with the same vorticity sign in a vortex street attracts the flow towards the vortices and
forms a recirculation zone. The flow structure for G=2 is similar to that in figure 6(b)
in Xiong et al. (2018), where oscillatory flow past a circular cylinder is studied. In the
configuration of β= 0◦, if flow relative to the cylinder is examined, both the fluid and
the plane boundary oscillate simultaneously in the horizontal direction and the relative
free-stream velocity (the undisturbed velocity without the cylinder) is a uniform flow
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FIGURE 18. Contours of vorticity for regime A when the cylinder is moving in the
positive X-direction through its mean position for G= 1, 2 and 4.

without a boundary layer. As a result, as indicated in figure 18, the motion of the
cylinder only creates shear layers with strong vorticity locally near the cylinder. In
figure 7(b) by Xiong et al. (2018), who studied oscillatory flow past a cylinder on a
plane boundary, the surface of the whole plane boundary is covered by a strong shear
layer because the undisturbed flow is a boundary layer flow.

The mechanisms of streakline street bending towards the plane boundary for
β = 0◦ is the same as that of two parallel vortex streets of two side-by-side cylinders
attracting each other reported by Zhao & Cheng (2014). The blockage effect increases
the velocity of the fluid relative to the cylinder in the gap, making the vortices below
the cylinder centre stronger than those above. The unevenness of the vortices can
be clearly seen in figure 18 and it makes the streakline streets bend downwards.
In addition, the shear layers generated above the plane boundary also attract the
streakline street downwards. At β = 90◦ the lower branch regime A and A∗ vortex
street in the streakline (figure 17) is evenly divided into two halves by the plane
boundary for all the studied gaps including G = 0.1. The size of each recirculation
zone below the cylinder increases with the increase of the gap ratio.

The regime A vortex flow on the left side of the cylinder for β = 45◦ has similar
characteristics to that for β = 0◦, i.e. the streakline street attacks the plane boundary
at an inclined angle and divides into two halves. After division, the part that moves
towards the right direction is negligibly smaller than that moving left and it is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

35
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.355


Flow induced by an oscillating cylinder close to a boundary 897 A19-25

negligibly weaker when G= 1. The right branch of the streakline street for β = 45◦
bends towards the plane boundary after it travels for some distance.

From figure 18 it can be seen that, for β = 0◦ and 90◦, shear layers on the surface
of the plane boundary are generated below the cylinder and they are in opposite
directions relative to the two vortices above them. The attraction between the two
shear layers on the plane boundary and the two vortices above them contributes to
the bending of the streaklines towards the wall for β = 0◦.

3.4. Regime D
Figure 19 shows the streaklines and contours of vorticity for regime D with G = 1,
2 and 4. In figure 19(a), the streakline street pattern at the left side of the cylinder
is similar to regime A flow, while the vortex flow at the right side of the cylinder
is typical of regime D. The combined regimes A and D flow pattern was defined as
regime AD (Zhao & Cheng 2014). Regime D for G = 2 and 4 and β = 0◦ is the
same as that for an isolated cylinder without a plane boundary. In regime D, vortex
shedding only occurs from the gap side of the cylinder as G= 1 because the stronger
flow velocity through the gap than that above the cylinder generates stronger vortices.
For the same reason, vortices are only shed from the bottom side of the cylinder in
regime D for β = 45◦ and G = 1. At G = 4, the effect of the plane boundary has
been very weak and the vortex shedding is found to switch between the top and
bottom sides of the cylinder intermittently. Regime D vortex shedding is affected by
the plane boundary the most when β = 90◦, where the lower branch streakline street
always forms a recirculation region after it meets the plane boundary. The reason why
a regime D streakline street tends to form one recirculation zone instead of two after it
meets the plane boundary is that each vortex street is dominated by vorticities in one
direction. The direction of the recirculation zone formed by a vortex street is always
the same as the direction of the dominant vortices in the vortex street.

Figure 20 shows vorticity contours and streaklines for G= 1 and KC= 9. The two
vortices A and B labelled in figure 20 are shed from the cylinder at t/T = 0.25 and
0.75, respectively. After the cylinder motion changes its direction, they move through
the gap to the opposite side of the cylinder (see figure 20b,d), which is typical
behaviour of vortices in regime D. After a vortex moves from one side to another
side of the cylinder through the gap, its strength is reduced significantly because
the gap is very small. In addition, the remnant of vortices B and A moves around
instead of away from the cylinder. As a result, no regime D streakline street is found.
The vorticity contours and streaklines in figure 20 has strong similarity with those of
regime D in figure 15(b, f ). The flow in figure 20 is treated as regime D flow because
the number of the vortices that are shed from the cylinder in one oscillation period
and the motion of the vortices after they are shed are the same as those regime D.

3.5. Regime F
Figure 21 shows vorticity contours and streaklines when the cylinder moves through
its mean position in the positive X-direction for KC= 9 and 12 and G= 1, 2 and 4.
Regime F vortex shedding patterns can be clearly identified except in figure 21(a,d),
where the gap between the cylinder and the plane boundary is 1. The flow in
figure 21(a) is in regime D, which has been shown in detail in figure 20. The flow in
figure 21(d) is in regime F, where two pairs of vortices shed from the cylinder in one
cycle are marked in the vorticity contour diagram. Apart from those in figure 21(b,d),
the vortex shedding process of the regime F flow is the same as that for an isolated
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FIGURE 19. Streaklines and contours of vorticity for regime D with G= 1, 2 and 4.

cylinder without a plane boundary shown in figure 4. However, after vortices are
shed from the cylinder, their motion is affected by the boundary in different ways in
different cases.

At KC = 9 and β = 0◦, three recirculation zones (marked by arrows in figure 21)
are observed in streaklines. The right streakline street bends downwards and splits
into two after it attacks the plane boundary, and then forms two recirculation zones
with very different sizes. The curved left branch streakline street forms the third
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FIGURE 20. Vorticity contours and streaklines of regime D for G= 1 and KC= 9.

recirculation zone. For KC = 12 and β = 0◦, the upper branch streakline also bends
downwards. However, it forms only one recirculation zone instead of two because
it does not split into two branches after it reaches the plane boundary. In regime F
flow for G = 1 and KC = 12, the pair of vortices at the lift side of the cylinder do
not propagate far from the cylinder due to the effect of the plane boundary. When
the flow is in the positive x-direction, this pair of vortices is squeezed through the
small gap. The timing of this vortex pair going through the small gap is different
from period to period, leading to aperiodic flow. As a result, the lift coefficient on
the cylinder is aperiodic as shown in figure 16. The regime F streaklines for β = 45◦
are also in the three-recirculation-zone pattern for both KC = 9 and 12, because the
lower branch streakline always attacks the plane boundary nearly vertically.

For β = 90◦ in figure 21, while the upper branch regime F streakline is not affected
by the plane boundary, the behaviour of the lower branch streakline depends on the
KC number. When KC=9, both branches of streaklines are nearly perpendicular to the
plane boundaries. As a result, the lower branch attacks the plane boundary and splits
into two. For KC = 12, the lower branch streakline approaches the plane boundary
with an inclined angle and forms a single recirculation zone.

4. Classification of the flow regimes

After the flow patterns of all the simulated cases are examined, a refined flow
classification method specifically for an oscillatory cylinder close to a plane boundary
is proposed. In the above discussion, the regimes are named following the definition
by Tatsuno & Bearman (1990). In the absence of the plane boundary, each of the
flow regimes A, D and F has two streakline streets. The plane boundary changes
these streakline streets mainly in the following five possible ways:

(i) One street disappears totally when the gap between the cylinder and the plane
boundary is very small.

(ii) There are still two streakline streets, one or both form recirculated street(s).
(iii) One streakline street is divided into two after it attacks the plane boundary at

nearly a right angle.
(iv) Both streakline streets are divided into two after they meet the plane boundary,

resulting in four branches of streakline streets.
(v) Streaklines circle around the cylinder, leaving no streakline streets.
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FIGURE 21. Streaklines and contours of vorticity for KC= 9 and 12 with G= 1, 2 and 4.

To further differentiate the behaviour of streakline streets, variant numbers 0 to 4
are added to the flow regime names A, D and F to represent the number of streakline
streets. For example, the flows for KC= 4, 5 and 6 in figure 6(b) are in regimes A1
and D1, respectively, because there is only one streakline street; the flows for KC= 9
and 12 in figures 6(b) and 21(e, f ) are in regime F2, because two streakline streets are
seen; the flows in figure 21(i,n) are in regime F3 since one of the vortex streets is
divided into two, resulting in three vortex streets in total; the flows in figure 17(a–c)
are in regime A4 because both streakline streets are divided into two branches; and
the flows in figures 15(b) and 20 are in regime D0, because no streakline streets are
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FIGURE 22. Flow regime mapping on the KC–G plane.

found. In regime F, the variants of the flow regimes can be identified by both vortex
streets and streaklines because there is strong vortex shedding. In regimes A∗/A and
D, the variants of the flow regimes can only be identified through streaklines because
vortex streets presented by vorticity contours either do not exist or are too weak.

Based on the above flow classification method, all the calculated cases are mapped
on the G–KC plane in figure 22. Because there is not a well-defined boundary between
A and A∗ (Tatsuno & Bearman 1990), the regimes A and A∗ are together on the
maps. On the maps, some examples from the figures are given for each regime. In
the absence of the plane boundary, the ranges of KC numbers for regimes A/A∗, D
and F are 2 6 KC 6 5, 6 6 KC 6 7 and 8 6 KC 6 12, respectively. It can be seen that
the plane boundary does not change the KC range of regime A/A∗ significantly but
does affect the variant of the regime. Regime F is not observed at β = 0◦ and G= 0.1
because vortices are only generated from the top side of the cylinder. Regime A∗4/A4
only occurs as β = 0◦, where both streakline streets on the two sides of the cylinder
are already on the plane boundary after they form. All the oscillation angles have large
areas of F3 on the map, because the vertically and diagonally downward propagation
of the streakline street below the cylinder provides a great chance of streakline street
splitting after attacking the plane boundary. Regimes D0 and A∗4/A4 only occur when
β = 0◦.
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5. Force coefficients

When a cylinder is placed in an oscillatory flow, the fluid force in the streamwise
direction approximately follows the Morison equation (Bearman et al. 1985), which
is expressed as

FX(t)=
1
2
ρDCD|uF(t)|uF(t)+ ρ

πD2

4
CM

duF(t)
dt

, (5.1)

where FX is the fluid force acting on the cylinder in the positive X-direction,
uF(t)=−Uc is the velocity of the quiescent fluid relative to the oscillating cylinder,
and CM and CD are inertia and drag coefficients, respectively. The inertia and drag
coefficients for all the simulated cases are obtained using the least-squares method
based on 20 periods of data and presented in figure 23. To examine the applicability
of the Morison equation in the case of a cylinder close to a plane boundary, the
coefficients of determination R2 for the fitted coefficients CM and CD are shown in
figure 23(g–i). The coefficient of determination is defined as

R2
= 1−

n0+mN∑
n=n0+1

(FX,n,Morison − FX,n)
2

/
n0+mN∑
n=n0+1

F2
X,n, (5.2)

where Fx,n and FX,n,Morison are the forces at the nth computational time step calculated
by numerical simulations and Morison equation, respectively, n0 is the starting time
step when the vibration has been stabilized, N is the time step within one oscillation
period of the cylinder and m= 20.

If there were no plane boundary, the inertia coefficient would increase with increase
of KC in regime A/A∗, and decrease in regimes D and F. The irregular variation
of the drag coefficient in regime D in the KC range between 6 and 8 is because
of the intermittent change of the flow patterns. It can be seen that the smallest gap
of G = 0.1 significantly increases both inertia and drag coefficients for all three
oscillation directions, and the maximum and minimum increments occur at β = 0◦
and 90◦, respectively. By observing the regime mapping in figure 22 and the force
coefficient in figure 23, it can be seen that all the inertia and drag coefficients within
one flow regime generally vary with KC with similar trends except for G= 0.1. For
example, with the increase of KC, all coefficients except for G= 0.1 in figure 23(c)
increase in regime A/A∗, change irregularly in regime D and decrease in regime
F. At β = 0◦ and G = 0.1, the inertia coefficient increases and the drag coefficient
decreases with increasing KC as KC> 6 because the flow is consistently in regime D.

As G exceeds 1, the effect of G on CM is weaker in regime A∗/A than in other
regimes because vortices in this regime are mainly confined near the cylinder and
do not have much interaction with the plane boundary. The inertia coefficient CM for
G= 4 is very close to that of a cylinder without a plane boundary, except in regime
D, indicating that the influence of the gap on the force has been very weak. The
maximum difference between the drag coefficients with and without a plane boundary
is found to be in regime A. Once G = 1 and above, the drag coefficient is only
weakly affected by the plane boundary. The difference between CD with G=1 and that
without a plane boundary is within 10 % for all the KC numbers. From figure 23(g–
i) it can be seen that R2 of the Morison equation is very close to 1 in regime A,
especially at G > 1. It reduces with the increase of KC but is still above 0.92 at the
largest KC= 12 and the smallest G= 0.1.
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FIGURE 23. Inertia and drag coefficients for the Morison equation.

Figure 24 shows the variation of the standard derivation (SD) of the lift coefficient
C′Y with the KC number. The SD of the lift coefficient of one oscillation period is

calculated numerically as C′Y =
√
(1/N)

∑n0+N
n=n0+1(CY,n −CY)2, where CY,n is the CY at

the nth computational time step, n0 is the starting time step where the flow has been
stabilized and CY is the time-averaged value of CY . In cases where the flow pattern
changes intermittently, the statistical values of the lift coefficient vary significantly
with time as shown in figure 16. For these cases, the SD of the lift coefficient of
each oscillation period is calculated and the mean value of the top 10 % periods with
the highest C′Y is shown in figure 24. For β = 90◦, C′Y = 0 in regime A because the
flow is perfectly symmetric. For β= 0◦ and 45◦, C′Y is nearly zero if G is greater than
2. In all the gap ratios, the maximum C′Y is found to occur in regime D (KC between
6 and 8) and the effect of the gap on C′Y is strongest in regime D. The effect of the
plane boundary on C′Y for β = 90◦ is the weakest and that for β = 0◦ is the strongest.

6. Conclusions

Flow induced by an oscillating cylinder close to a plane boundary at a low Reynolds
number of 150, oscillating direction angles of β = 0◦, 45◦ and 90◦, and KC = 2 to
12 is investigated by numerical simulations. The main conclusions are summarized as
follows.

For an extremely small gap of G = 0.1 and β = 0◦, regime F disappears because
no vortices are generated or shed from the bottom side of the cylinder. For G= 0.1
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FIGURE 24. Variation of the standard derivation (SD) of the lift coefficient with the KC
number.

and β = 45◦ and 90◦, the vortex shedding is the same as that of a cylinder without a
plane boundary; however, one streakline street in regimes A∗/A and D is suppressed
because of the strong effect from the plane boundary. In addition, the lower branch
streakline street of regime F forms a recirculation zone. The very small gap ratio of
G= 0.1 creates a large shear stress on the plane boundary, especially at β = 0◦.

The vortex shedding processes for G= 1, 2 and 4 are the same for a specific KC.
However, the behaviour of the streakline street (or vortex street in regimes D and F)
varies with G. If β= 90◦, regime A∗/A flow is always symmetric for all the simulated
gaps. In regime D and β = 0◦ and 45◦, vortices are only shed from the bottom of
the cylinder if G 6 2, and can change between the top and bottom of the cylinder
intermittently if G = 4. In regime F, if the lower branch of the vortex street attacks
the plane boundary at nearly a right angle of attack, it splits into two and forms two
recirculation zones. If it diagonally approaches the plane boundary, it rolls up and
forms one recirculation zone.

For a cylinder without a plane boundary, each flow regime has two streakline
streets. Owing to the effect of the plane boundary, a streakline may disappear,
bend and form a recirculation zone, or split into two streets after it attacks the plane
boundary at nearly a right angle of attack. Because of the above process, the streakline
street number could be either increased or decreased. To represent the behaviour of
streakline streets after they are formed, the streakline street number is used as the
variant number and added to each regime name proposed by Tatsuno & Bearman
(1990). The identified refined regime names, which are the combination of regime
name and variant number, are mapped on the KC–G plane. The KC range for regime
A∗/A is not changed but the variant of regime A∗/A is dependent on KC and β. All
variants 1 to 4 are found in regime A. Regimes D3 or D4 are never found because
a regime D vortex street is dominated by vortices in a single direction, making it
impossible to split into two streets with vortices with opposite signs. Regime F1 is
not found because strong regime F vortex streets never disappear. Only one vortex
street in regime F can split into two, and, as a result, regime F4 is not found.

The drag and inertia coefficients of the Morison equation are obtained using the
least-squares method. A very small gap of G = 0.1 significantly increases both the
drag and lift coefficients, especially when β = 0◦. The effect of the plane boundary
on the drag coefficient is less than 10 % compared with that of a cylinder without
a plane boundary if G = 1 and above. If G = 1 and above, the effect of the plane
boundary on the inertia coefficient is weak only in regime A∗/A. In regimes D and
F, the effect of the plane boundary becomes weak as G= 4.
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