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Abstract. It is shown that systems with hyperbolic structure have the Bernoulli property.
Some new results on smooth cross-sections of hyperbolic Bernoulli flows are also derived.
The proofs involve an abstract version of our original methods for showing that the
geodesic flow on surfaces of negative curvature are Bernoulli.

1. Introduction
It is often stated that one of the most striking and surprising discoveries underlying the
new science of chaos is that purely deterministic equations can lead to flows that exhibit
random behavior. There is a variety of mixing properties for flows and transformations
that culminate in theK-property and then there is the class of Bernoulli flowsft which
display the most random type of behavior possible. It should be pointed out that the
Bernoulli class is completely characterized, up to measure theoretic isomorphism, by a
single invariant entropy [O74]. This means that two Bernoulli flowsft andgt differ only
by a constant rescaling of time, i.e.ft = gct for some constant c. On the other hand, the
K-property is enjoyed by a wide variety of quite distinct isomorphism classes.

It has been shown recently that the class of Bernoulli flows is very nicely behaved
from several points of view. If one is interested in constructing good approximations
to a stochastic process based upon the sequential observations of a single output then
a universal scheme exists which is valid for the class of Bernoulli processes. On the
other hand, for non-Bernoulli processes one cannot even find universal schemes which
will distinguish between two outputs of the same or different process (cf. [OW90]). In a
more geometric vein, various properties were established for Bernoulli flows that provide
a statistical kind of stability even in cases where the topological structural stability is not
valid [OW91]. These results highlight the need to verify the Bernoullian nature of as
many systems as possible.

Our purpose in this paper is to provide some general theorems which show how to
deduce the Bernoulli property from the hyperbolic structure that has been established in
many cases. The basic proof paradigm that we use is the same as the one that we first
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introduced in [OW73] to prove that geodesic flows on surfaces of negative curvature were
Bernoulli. Our results are essentially applicable whenever all of the Lyapunov exponents
differ from zero. Non-hyperbolic systems like the general toral automorphisms seem to
require more delicate methods and are not covered by the results here. Here is a brief
overview of what we plan to do.

Let X denote ann-dimensional manifold ((n+1)-dimensional for the flow case) andf
(ft ) a piecewise smooth transformation (flow) onX. We also have in mind systems with
a mechanical origin like billiards, or balls bouncing in a wedge, that are not given by
smooth vector fields. The hyperbolic structure takes the form of foliations into unstable
leavesU(x) of dimensionk and stable leavesS(x) of dimension (n − k). These are
not necessarily the complete foliations that one encounters in the uniformly hyperbolic
case. They may be only partial foliations like those found in billiards or in the theory
developed by Pesin [P77]. We make two basic assumptions: (i) the invariant measure
that we treat has some smoothness properties; (ii) the foliationsU andS are absolutely
continuous.

An assumption like (i) is clearly necessary. Markov partitions show that the range of
ergodic behavior that is possible if we vary over all invariant measures is restricted only
by the finiteness of the entropy. If one wants special properties for a smooth flow one
must make special assumptions about the invariant measure. The second assumption is of
a technical nature. It is used to obtain the equivalence between the invariant measure and
some product measure on hyperbolic blocks. It was established for uniformly hyperbolic
systems in the work of Anosov [A67], for non-uniformly hyperbolic systems by Pesin
[P77] and for certain non-smooth systems by Katoket al [KSLP86].

The main point that we are trying to make in this paper is that this fairly standard
hyperbolic structure suffices, not only to establish theK-property on ergodic components,
but also to prove that the flows in question are Bernoulli. In their work on ergodic
attractors Pugh and Shub [PS89] use hyperbolic blocks in a fashion similar to us but
they do not go beyond theK-property.

The generality of our methods here enable us to establish some new results concerning
smooth cross-sections of hyperbolic Bernoulli flows and also flows built under a function
with a Bernoulli base. This latter result is related to some earlier work of Bunimovich
[B74] and Ratner [R74] where they dealt with the case when the base transformation
was a symbolic dynamical system. It is also worth pointing out that Ledrappier [L84]
used the equivalence of the invariant measure with product measure to show that special
partitions for certain smooth diffeomorphisms’ partitions wereweak Bernoulli (WB) a
property stronger than very weak Bernoulli (VWB). However, the advantage of our
method is that it applies also to flows where the weak Bernoulli property is not expected
to hold.

In §2 we describe in detail the assumptions that we make concerning the hyperbolic
blocks. In §3 we take up some measurability questions which are necessary for the
product measure to be comparable to the given invariant measure and show that they are
in fact equivalent. The succeeding sections use almost entirely just this property. In§4
we treat transformations,§5 flows and in§6 the cross-sections and the flows built under
a function.
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2. Hyperbolic blocks
In the following,X is ann-manifold (or at least piecewise ann-manifold) andf , ft either
a transformation ofX or a flow onX. It is not necessary to assume global smoothness
of f of ft but we shall suppose thatf , ft are piecewise differentiable. The hyperbolicity
that we assume takes the form of two partial foliations ofX; the unstableU of dimension
k and the stableS of dimensionn − k for transformations andn − 1 − k for flows (to
compactify the notation we will suppose that dimX = n + 1 in the flow case). There
will be a finite invariant measureµ with smoothness properties that we will spell out
later. Forµ-a.e.x there will be leavesU(x), submanifolds of dimensionk, andS(x),
submanifolds of dimensionn − k, that intersect transversally atx and for some fixed
metric d on X satisfy:

limn→+∞
1

n
logd(f nx, f ny) � 0 for y ∈ S(x) (2.1)

limn→+∞
1

n
logd(f −nx, f −ny) � 0 for y ∈ U(x), (2.2)

in the case of transformations with an analogous condition for flows. The set of pointsx

that have such leaves will be denoted byX0. For flows, there also are the weakly stable
wS and weakly unstable manifoldswU obtained by thickening the leaves ofS, U in the
flow direction. We shall assume that the foliations both strong and weak are measurable
in the following sense. If the foliation is one-dimensional and is given by some vector
field that defines a flowgs then this measurability is equivalent to what is usually called
the measurability of the flow.

Measurable coordinates.Denote by Bk
1 the unit ball in Rk. Then there are local

coordinates forU(x) given by a mapc(x, y): X0 × Bk
1 → X that satisfies:

(a) c(x, 0) = x, c(x, y) ∈ U(x) for all y ∈ Bk
1;

(b) for fixed x, c(x, ·) is a diffeomorphism betweenBk
1 andc(x, Bk

1);
(c) c(x, y) is a jointly measurable function of the two variables.

A similar assumption is made about the other foliationS whose coordinate function is
ĉ(x, z). Note that the imagec(x, Bk

1) does not exhaust the leafU(x) and there is also
no assumption about its size inX which may be rather small. We shall call the image
c(x, Bk

1) a local leaf at x.
This structure is what Pesin establishes in [P77] for smooth maps all of whose

Lyapunov exponents differ from zero. It is also the type of structure that Sinai and
others established in billiards and other systems with a physical interpretation. The
measurability condition is automatically satisfied whenever the foliations are obtained
from a measurable splitting at the tangent bundle by the usual method of pulling back
parametrized parallelk-planes in the unstable directions.

It is standard to use the measurability to get uniformity on sets of positive measure.
We need three kinds of uniformity: (i) the tangent space does not vary much along a
local leaf ofU andS: (ii) the local leaves extend a certain fixed distance away fromx,
i.e. d(x, c(x, ∂Bk

1)) andd(x, ĉ(x, ∂Bn−k
1 )) are both bounded from below; (iii) the angle

between the tangent spaces toU(x) andS(x) is bounded away from zero.
It is easy to see that all three quantities are measurable functions and thus standard
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measure theory gives us some choice for the constants involved such that the set ofx

with that uniformity has non-zeroµ-measure. We really need to do things in two steps.
First of all we cut down fromBk

1 to a smaller ballδBk
1 so that the tangent space along

c(x, u) does not vary much foru ∈ δBk
1. Then we need to make sure that these small

local leaves have a minimal size. In what follows, local leaf will mean these small local
leaves. If we now letP0 be a subset of such a set with positive measure and very small
diameter we can do the following.

For fixedy, c(y, ·) is a differentiable function and thus can be viewed, in particular,
as an element ofc(X, δBk

1). With the sup norm this is a complete separable metric space
and therefore by Lusin’s theorem there is a closed subsetP1 ⊂ P0 of positive measure
on which c becomes a continuous function. It follows that these local leaves ofU ,
∪x∈P1c(x, δBk

1), form a closed subset ofX that has positiveµ-measure. Restricting to a
further closed subsetP2 ⊂ P1 of positiveµ-measure we can get thatĉ is also a continuous
function and thus asx varies overP2 both the stable and the unstable leaves form closed
subsets. We shall denote byP the intersection of these sets. SinceP containsP2 it
has positiveµ-measure. Furthermore, the fact that forx ∈ P0 the tangent spaces of
U(x) andS(x) intersect with positive angle and that the local leaves have some minimal
size—but are not too big—guarantee that this closed setP has the abstract structure of
a product space. To see this last point, fix onex0 ∈ P2 and consider the local leaf in
U(x0). Let Y be the intersection of the stable bundle of leaves above with this local leaf.
This is a closed set. Similarly, formZ, a closed subset ofS(x0). Now eachx ∈ P has
a unique pair of coordinates (y, z), wherey is the intersection of the local leaf we have
been considering inU(x0) with ĉ(x, δBn−k

1 ) andz is the intersection ofc(x, δBk
1) with

the local leaf inS(x0).
For flows, one performs the same kind of construction withU and wS or wU and

S since we need, of course, complementary dimensions to fill a set of positive measure.
At the end of this section when we give a summary description of the hyperbolic blocks
we will spell out the case for flows.

Now for the smoothness assumptions onµ. In many cases, especially those originating
in conservative mechanical systems where Liouville’s theorem holds, the invariant
measure is smooth in the sense that it is equivalent to Lebesgue measure. In the case of
attractors, the invariant measure is typically singular but nonetheless when disintegrated
along the leaves ofU its conditional measures are equivalent to thek-dimensional
Lebesgue measure on the leaves. We call these measures SBR, after the work of Sinai
[S72], and Bowen and Ruelle [BR75]. Our standing hypothesis is that one of these two
hypotheses is valid. For the classical argument of Hopf and its ramifications to be valid
we have to relate the measure theory of the two foliationsU and S. For this we need
the notion of absolute continuity.

First we have to explain the holonomy map. LetF be a local foliation and letD0

andD1 be two disks transversal toF so that forx0 ∈ D0 the leafF(x0) intersectsD1

at a unique pointx1. The mapx0 → x1 is called theF-holomony map fromD0 to D1

alongF . We can avoid discussing what happens ifF(x0) intersectsD1 at more than
one point since in our situation this will not happen.

The foliation F is said to beabsolutely continuousif any such holomony map is
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absolutely continuous with respect to the Lebesgue measures on the disksD0, D1. We
will assume that our foliationsU andS are absolutely continuous in this sense. For the
case of SBR it suffices to assume thatS is absolutely continuous. Here is a summary of
what a hyperbolic block for transformations is.

Hyperbolic block for transformations (HBT).
(1) Product structure—P is identified with a product spaceY ×Z, (y, z) → U(y)∩S(z)

and is thus fibered exactly by both foliations.
(2) The invariant measureµ is either smooth or SBR; i.e.µ(P ) > 0 for a measure

equivalent to Lebesgue measure onP , or the conditional measure ofµ on leaves
of U is equivalent to Lebesgue measure on the leaves.

(3) Absolute continuity of the foliations.

Note that in (1), sinceP is the intersection of two bundles of leaves, theU -leaves inP

are notcompletek-manifolds—they aresubsetsof the local leaves.
The definitions for flows are analogous except that one of the foliations should be

thickened in the flow directions, eitherS to wS, the weakly stable leaves orU to wU .
The fact that the flow is smooth shows that ifS is absolutely continuous so iswS:
applying the flow toD sweeps out a diskD̂ transversal toS, the foliation of D̂ by
the flow lines is absolutely continuous and this enables us to pass from the absolute
continuity of S to that of wS. The measurability of coordinates is now taken for the
weakly stable (or weakly unstable) foliations in addition to the previous assumption.

Hyperbolic block for flows (HBF).
(1) Product structure—P is identified with a product spaceY × Z, (y, z) ↔ U(y) ∩

wS(z) and is fibered exactly by both foliations.
(2) The invariant measureµ is either smooth, or SBR; i.e.µ(P ) > 0 for a measure

µ-equivalent to Lebesgue measure onP , or such that its conditional measure on
the leaves ofU is equivalent to Lebesgue measure there.

(3) The foliationsU andwS are absolutely continuous.

Let us recap what we have done here. Starting from the usual properties that are
established for the stable and unstable foliations we have constructed a hyperbolic block
P in the case where the measure is nice (smooth or SBR). In the next section we shall
see how this leads to the equivalence (onP ) of the invariant measureµ with a product
measure and this is what will enable us to analyze the ergodic properties off andft .

3. Measurability and equivalence of invariant measure to product measure
Recall that when the product structure for the hyperbolic block was obtained we hadP

represented as the intersection of two closed sets of leaves from the stable and unstable
foliations. This representation shows that if we take a Borel subsetB ⊂ Y and look at
that part ofP that is made up of leaves passing throughB, then we get a Borel subset
of P . It follows that viewingP asY × Z, if B ⊂ Y , A ⊂ Z are Borel thenB × A is a
Borel subset ofP . By a well-known result in Borel theory (cf. the treatment in [AR76]),
i.e. that a countably generated sub-σ -algebra of Borel sets that separates points is the
full Borel σ -algebra, we can conclude that the product measure structure coincides with
the usual Borel structure onP .

https://doi.org/10.1017/S0143385798100354 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385798100354


446 D. Ornstein and B. Weiss

We shall need a criterion which will enable us to say when is a measureµ on X × Y

equivalent to a product measure. Disintegrateµ along the fibersX × {y} and in that
disintegration denote the conditionalµ-measure onX × {y} by µy , thought of as a
measure onX. Let ν denote the projection ofµ on Y , i.e. ν(C) = µ(X × C), and if δy

denotes the point mass at{y} we have

µ =
∫

Y

µy × δy dν(y).

PROPOSITION3.1. A necessary and sufficient condition thatµ be equivalent to a product
measure is that forν-a.e.y1, y2 the measuresµy1, µy2 are equivalent measures.

Proof. If µ is equivalent to some product measure it is not hard to see thatµ is equivalent
to p × ν, wherep(ν) is the projection ofµ on X(Y). This gives the necessity of the
condition. For the sufficiency observe that one can find ay0 so that forν-a.e.y, µy is
equivalent toµy0 and thusµ is equivalent toµy0 × ν by Fubini’s theorem. �

THEOREM 3.1. If µ is an invariant measure which is smooth or SBR on a hyperbolic block
P , thenµ is equivalent to a product measure.

Proof. If µ is smooth let us fix one of the foliations, sayU , and consider a nice smooth
foliation F into (n−k)-manifolds transversal toU . By using local coordinates onP (we
could divide into a finite number of local coordinate charts if necessary) we can think of
these as being parallel and then it is clear that the disintegration of Lebesgue measure
along these (n − k)-spaces yields (n − k)-dimensional Lebesgue measure. Now theU

foliation is assumed to be absolutely continuous and thus we are exactly in the situation
of the Proposition 3.1 and we can conclude that Lebesgue measureλ is equivalent to
product measure when the product structure is now coming fromU andF . From this it
easily follows now using the absolute continuity of theF-foliation that the conditional
measure ofλ along leaves ofU is equivalent to thek-dimensional Lebesgue measure
there. Thus we have arrived at the situation of the SBR measure sinceλ and µ are
equivalent.

To conclude the proof we repeat the above argument withU playing the role ofF
andS playing the role ofU , and obtain thatµ is equivalent to a product measure on the
product structure coming fromU andS on P . �

The proof for the flow case is completely analogous using the absolute continuity of
the two strict foliations which implies the absolute continuity of the weak versions.

4. Ergodic properties of transformations
From this point on the reader can forget about the absolute continuity of the fibers and
keep in mind only the main conclusion of the preceding section:for our hyperbolic
block the invariant measure is equivalent to a product measure. To begin let us recall the
Hopf argument. Take some bounded continuous functionφ on X and consider̂φ as its
projection onto the space of functions that are invariantµ-a.e. By the ergodic theorem
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we have two distinct representations forφ̂:

φ̂(x) = lim
n→+∞

1

n

n∑
1

φ(f jx) µ-a.e. (4.1)

φ̂(x) = lim
n→+∞

1

n

n∑
1

φ(f −j x) µ-a.e. (4.2)

From the first representation we see thatφ̂ is constantµ-a.e. on leaves ofS and from the
second that it is constantµ-a.e. along leaves ofU and then the fact thatµ is equivalent to
product measure allows us to conclude thatφ̂ is constantµ-a.e. onP . Thus∪∞

−∞f n(P )

consists of a single ergodic component in the ergodic decomposition ofµ and henceforth
we restrictµ to that component and assume that (X, µ, f ) is an ergodic system. Note
that the ergodicity of the original measureµ requires further arguments and is a major
source of difficulty in proving ergodicity of billiards and other mechanical systems.

For theK-property we replace continuous functions by smooth partitions. Actually,
all that we really need is a good estimate for the set of points that comes withinε of the
boundary of the sets in the partition. Here is a simple lemma that enables us to construct
such partitions.

LEMMA 4.1. If (X, d) is a metric space andµ is a probability measure onX, and ifx0 ∈ X

and an interval [a, b] is specified, then there is somer ∈ [a, b] such that for allε > 0

µ{x : |d(x, x0) − r| ≤ ε} ≤ 6

|b − a| · ε.

Proof. If there is no suchr, then anyr ∈ [a, b] is contained in an intervalJr satisfying

µ{x : d(x, x0) ∈ Jr} ≥ 3

|b − a| |Jr |.

One can find a finite subcollection of theJr ’s that covers [a, b] and such that every
point is in at most two such intervals. Summing over all these intervals we get the
contradiction that 2≥ 3 which proves the lemma. �

With the lemma it is easy to construct finite partitionsQ of arbitrarily small diameter
such that there is a constantC and for anya,

µ({x : d(x, ∂Q) ≤ a}) ≤ Ca. (4.3)

For the next step, namely that of establishing theK-property, we must recall the basic
Pinsker–Rohlin–Sinai (PRS) theorem.

For a finite partitionQ, define the remote past and remote future by

Q−∞ = ∩∞
n=1 ∨−n

−∞ f −jQ

Q+∞ = ∩∞
n=1 ∨+∞

+n f −jQ.

Note that since{x : f jx ∈ Qα} = f −jQα, the ‘future’ from the point of view of the
transformationf corresponds to negative powers off acting on the partition. A process
(X, µ, Q, f ) is K if Q−∞ contains only sets of measure zero or one. The PRS theorem
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asserts, inter alia, that in all casesQ−∞ andQ+∞ coincide asσ -algebras moduloµ-null
sets.

A system (X, µ, f ) is said to have theK-property if for any finite partitionQ, the
process (X, µ, Q, f ) is K. It is known that it suffices to verify this for one refining
sequence of partitionsQn. For the sake of completeness we sketch a quick proof of
this last fact. We need the alternative characterization ofK-processes which is the main
assertion of the PRS theorem, namely that a process isK if and only if only trivial
partitions give rise to zero entropy processes. Assume, therefore, thatQn is a refining
sequence of partitions and that (Qn, f ) is K. If R is any partition giving a zero entropy
process, andε > 0, choose a largen so that one can find̂R, measurable with respect to
∨∞

−∞f −jQr and satisfying

H(R|R̂) − H(R̂|R) < ε, (4.4)

whereH(·|·) denotes conditional entropy. Now, sinceh(R, f ) = 0 one also has for any
N , thath(R, f N) = 0 and then from (4.4) one deduces thath(R̂, f N) < ε.

By letting N tend to infinity we see that̂R is ε-constrained in the remote past ofQn

and thusR is 2ε-contained there. Since that past is trivial, as (Qn, f ) is aK-process we
conclude thatR is within 2ε of the trivial partition and sinceε is arbitraryR is trivial.
Thus (X, µ, f ) has completely positive entropy and is therefore aK-process.

The proof we have just outlined establishes a more general result. ThePinsker algebra
P of a process (or system) is the maximalσ -algebra all of whose setsA have the property
that the entropy of the process defined by (A, X\A) is zero. The general result is that if
theQn are a refining sequence of partitions then the Pinsker algebrasPn of the processes
(Qn, f ) converge to the Pinsker algebra of the system (X, f ). Now we have to check
that, indeed, ifQ is a smooth partition (Q, f ) is a K-process.

Here, the simple observation is that if a stable leafS(x) in P never gets too close to
the boundary ofQ under arbitrarily high positive iterates off , then any set measurable
with respect toQ+∞ contains the entire leaf, or no part of it. Because of the exponential
contraction alongS it follows from (4.3) that a set of leaves ofS ∩ P of full µ-measure
have this property. Thus any set measurable with respect toQ+∞ is foliated by entire
S-leaves,µ-a.e. SinceQ−∞ and Q+∞ coincideµ-a.e. any such set is also foliated by
U -leaves and sinceµ is equivalent to product measure we conclude that if such a set
intersectsP in positive measure it fills upP µ-a.e. This does not suffice to establish
the K-property for the process (X, µ, Q, f ) but it does show that the Pinsker algebra
(Q−∞ = Q+∞) is atomic and thus sincef is ergodic it is in fact finite.

Notice that we have a fixed lower bound for the size of a minimal atom in the Pinsker
algebra of (x, µ, Q, f ) which is given by the measure of the hyperbolic block. As we
repeat the argument for a refining sequence of partitions this fixed lower bound does not
change and thus by our earlier observation about the convergence of Pinsker algebras we
can conclude that the Pinsker algebra of (X, µ, f ) is atomic. This proves the following
theorem.

THEOREM 4.2. Either f has theK-property orf permutesM sets periodically,f Ai =
Ai+1, f

MA0 = A0, ∪M−1
0 Ai = X, µ-a.e., and on eachAi , f M has theK-property, i.e.f

is a K-automorphism times a finite rotation.
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We shall continue the discussion assuming thatf itself is K. The general case is
readily obtained from this one by replacingf by f M . To go fromK to Bernoulli we
will use the method we first introduced in [OW73].

In order to keep the exposition self-contained we shall give a rapid review of what
we need from the theory of Bernoulli systems. A finite measure-preserving system
(X,B, µ, f ) is Bernoulli if there is a partitionQ of X with the properties:
(1) the{T −iQ}i∈Z are independent;
(2) ∨∞

−∞T −iQ = B, µ-a.e.
In the language of isomorphism theory a system is Bernoulli if it is isomorphic to a

stationary process consisting of independent random variables. A flowft is a Bernoulli
flow if for eachd, the transformationfd is Bernoulli. The zero-one law for independent
random variables shows that the Bernoulli property impliesK.

Without going into a detailed discussion of the various other characterizations and
properties of Bernoulli systems we shall explain what very weak Bernoulli (VWB) is
and cite a result that says that this property implies Bernoulli. It will be convenient to
use the following terminology: a property holds forε-almost everypoint of a setE in a
measure space if the set of points ofE for which the property fails to hold has relative
measure less thanε, i.e. if µ denotes the measure

µ(exceptional points inE)/µ(E) ≤ ε.

A mappingθ between two measure spaces(E, µ), (F, ν) is ε-measure preserving if there
are subsetsE1 ⊂ E, F1 ⊂ F satisfying

µ(E1)/µ(E) ≤ ε, ν(E1)/ν(E) ≤ ε

and for allA ⊂ E\E1

|ν(θ(A))/µ(A) − 1| < ε.

If Q is a finite partition of X, then (Q, f ) will have the very weak Bernoulli
property if givenε > 0 there is anm0 and for all m ≥ m0 for ε-almost every atom
E of ∨−mθ−m f −jQ there is anε-measure-preserving mapθ from E × [0, 1] with the
measureµ/µ(E) × Lebesgue measure to (X, µ) such that forε-almost every point
(x, u) ∈ E × [0, 1] we have here

lim
n→∞

n∑
j=1

|Q(f jx) − Q(f jθ(x, u))| ≤ ε. (4.5)

Here Q(x) denotes the indexα such thatx ∈ Qα. This condition (4.5) means that on
average the future behavior ofx and θ(x, u) are very similar. The reason for crossing
E with [0, 1] is to give us greater flexibility in constructing the mappingθ . It gives us
the possibility of dividing the pointsx ∈ E into many small pieces and mapping them
to different parts of the space. The usual definition of VWB involves a more general
notion—that of thed̄-distance between processes—which is not needed here. If the
process is independent then the future is independent of the conditioning on the past
atomE and then this condition is satisfied withε = 0. The VWB is a weakening of this
independence. It is proven in [O74] that VWB implies the Bernoulli property.

https://doi.org/10.1017/S0143385798100354 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385798100354


450 D. Ornstein and B. Weiss

We shall constructθ having property (4.5) by mapping points along stable manifolds,
so thatθx and x will behave in an almost identical fashion under positive iterates of
f . The mapping will be carried out separately on small pieces that we call mapping
boxes. In our situation we will construct them out of small rectangles in hyperbolic
blocks where the Radon–Nikodym derivative ofµ with respect to product measure is
approximately constant. First, for a general result we return to the setup of§3. Given a
product spaceY ×Z and a measureµ on Y ×Z equivalent to product measureρ × ν we
let r(y, z) denote the Radon–Nikodym derivative ofλ with respect toρ × ν. In all that
follows, someε > 0 will be fixed. We now use the fact thatr(y, z) can be approximated
by simple functions based on measurable rectangles to find setsY0, Z0 and a constantr0

such that forr0 � ε,

{(y, z) : |r0 − r(y, z)| ≥ ε2} ∩ Y0 × Z0

has relative measure at mostε2 in Y0 × Z0 both with respect toµ|Y0 × Z0 and with
respect toρ × ν|Y0 × Z0.

Let us callP0 the hyperbolic block that we get when we restrict toY0 × Z0 as above.
Disintegrateµ along the fibersY0 × {Z} to get µz and observe that since we have an
almost constant derivative with respect to product measure forε-almost everyz we can
mapY0 × {z} equipped withµz in an ε-measure-preserving way alongwS-leaves to all
of P0. We denote this mapping byθz. This new almost uniform hyperbolic block will
serve as a prototype for our mapping boxes—but of course we need to cover the space
with them.

Instead of trying to do this in a precise way let us observe that if we mapP0 by
f n then we get a new blockPn = f nP0 which is again foliated byU and byS and
f n carriesθz to mappingsθ(n) betweenε-almost every leafU of Pn to all of Pn along
leaves ofS, in an ε-measure-preserving fashion. According to the ergodic theorem the
setsP0, P1, . . . , PN−1 for largeN give us an almost even covering of the space—in the
sense that most points of the space are covered approximately the same number of times.

By the K-property, ifm0 is large enough thenε-almost every atomE of ∨−m0−m f −jQ

will be intersecting each of the mapping boxesP0, . . . , PN−1 in a set whose relative
measure is almost equal to theµ-measure of the mapping box. In addition, forε-almost
every x ∈ E the sum

∑N−1
0 1Pi

(x) is almost equal toµ(P0) · N . Now if for eachPi

we take a separate intervalJi ⊂ R of length 1/Nµ(P0) and consider∪Pi × Ji , we
have a good approximation toX × [0, 1]. Restricting toE we get a good approximation
to E × [0, 1] and we can map this to all ofX using θ(i) on (E ∩ Pi) × Ji . Taking
into account the approximation, both onX × [0, 1] and onE × [0, 1], we still get an
ε-measure-preserving map ofE × [0, 1] to X along leaves ofS as required.

5. Ergodic properties of flows
The pattern of the proof for flows is the same as it is for transformations, so we will
concentrate here on the new points that come up. We will work with a hyperbolic block
P built from the unstableU and weakly stablewS foliations. For Hopf’s argument no
change is required since the limits
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φ̂ = lim
n→+∞

1

n

∫ n

0
φ(ftx) dt µ-a.e. (5.1)

φ̂ = lim
n→+∞

1

n

∫ n

0
φ(f−t x) dt ν-a.e. (5.2)

are clearly invariant under the flow and therefore the constancy of (5.1) along leaves of
S implies thatφ̂ is also constant along leaves ofwS. Thus, as before, the entire block
P lies in a single ergodic component to which we will restrictµ.

For theK-property we first define what it means for a flow to beK. We shall adopt
the definition that a flow is aK-flow if for any d, the transformationfd has theK-
property. For fixedd, ft commutes withfd and therefore the Pinsker algebra offd is
invariant—as aσ -algebra—under the action of the flow. To establish theK-property fix
a d and considerf = fd . As before, it suffices to verify that (Q, f ) is K for a smooth
partition Q. Unlike what happened in ergodicity proof, now the argument of§4 only
gives us that sets in the Pinsker algebra areµ-a.e. fibered by leaves ofU and S—not
wS. We focus on showing that if the Pinsker algebraP is not trivial then it is at most a
circle rotation under the flowft . To this end recall the Ambrose–Kakutani representation
of an arbitrary flow as a flow built under a function. In that representation pure rotations
correspond to the base being atomic. If the base isnot atomic then one easily sees that
for any t0 and anyδ > 0 there are sets of positive measureE in the Pinsker algebra that
cover the space such that∪|t |≤t0ftE is also measurable and

0 < µ

( ⋃
|t |≤t0

ftE

)
< δ. (5.3)

We shall show that this cannot happen. Indeed, ifE is such a set, measurable with
respect toP, the Pinsker algebra, andE intersects our hyperbolic blockP in a set
of positive measure, then ift0 is large enough(∪|t |≤t0ft (E)) ∩ P would be completely
foliated µ-a.e. by bothU and wS and therefore using the fact thatµ is equivalent to
product measure this latter set coincides withP , µ-a.e. If δ is chosen sufficiently small
this would contradict (5.3).

This argument shows that either the Pinsker algebra forfd is trivial or ft is a pure
rotation on the Pinsker algebra.

In the latter case, (X, ft ) has a circle rotation as a factor, and ifπ : X → S ′ is the
factor map,π−1(ζ ) gives rise to a measurable partition ofX and, clearly, the fibers of
this partition are foliated byU - andS-leaves. Thus the foliationsU andS ‘commute’ in
a measurable sense. Since the measureµ is trivially well behaved in the flow direction
this means that for the return map to these fibers,π−1(ζ ), we have the hyperbolic block
structure for transformations.

Indeed, by what we have just said, these fibersπ−1(ζ ) are foliated by bothU andS.
The invariant measureµ decomposes along these fibers toµζ say. If t0 represents the
period, thenft0 fixes these fibers and theµζ are invariant underft0. Furthermore, the fact
that µ was equivalent to a product measure with respect to the product structure given
by U and wS on P implies thatµζ will be equivalent to a product measure given by
U andS on π−1(ζ ). Indeed, the conditionalµ-measures on theU -leaves are equivalent
under the holonomy map defined bywS since we have already seen thatµ is equivalent
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to product measure. Now on theπ−1(ζ ), the holonomy map betweenU -leaves defined
by S is exactly the same as the one defined bywS in X. Therefore we can apply
Proposition 3.1 to conclude thatµζ is equivalent to a product measure. The general
discussion of§5 will be applied toft0 and one fixedπ−1(ζ0). The original flow will be
represented as a flow built over aK-transformation with constant height function.

Continuing with the analysis of§5, which is not hampered by the fact that we do
not know thatπ−1(ζ ) has the structure of ann-manifold we obtain the result that
ft0 is a Bernoulli transformation. Thusft is the constant suspension of a Bernoulli
transformation. Here we can give a nicer interpretation of this fact in terms of flows.
Since we know that a Bernoulli flow exists, we can imbedft0 in a flow, sayf̂t that takes
π−1(ζ0) to itself. Using the imbedded flow it is easy to see thatft itself is isomorphic
to a Bernoulli flow f̂t times (direct product) a rotation. We were unable to do this for
suspensions ofK-transformations since not everyK has a square root [O73] let alone
can it be imbedded in a flow. We shall continue the discussion with the new elements
that appear whenft is a K-flow.

Fix some discretization of the flow{fnd}n∈Z and some smooth partitionQ. We want
to verify the VWB condition. Assume that the hyperbolic block is of the formU × wS.
As before, by localizing to some sub-blockP0, we can assume that the invariant measure
µ is not merely equivalent to product measure onP0 but that most fibers have nearly
the same conditional measure. We would like to make mapping boxes as before, using
P0, and mapping along leaves ofwS. However, since the leaf is only weakly stable for
y ∈ S(x) it is no longer the case thatd(fndx, fndy) → 0 asn → +∞. What is true is
that the positive orbits ofx andy never diverge by much since by moving a little bit on
the orbit ofy we can bringy to be on the same strong stable leaf asx. This distance can
be made quite small, givenQ, and then the ergodic theorem will guarantee that for most
pointsx, anyy ∈ P0 in the same weakly stable leaf asw will have Q(fndx) 6= Q(fndy)

for a set of low density. This amount is controlled by the size of the blockP0 in the flow
direction. Thus condition (4.5) can still be satisfied even when mapping along weakly
stable leaves.

Having made this basic observation the rest of the argument of§4 can be carried out
in exactly the same way. We apply many iterates offd to P0 to get an almost even
covering ofX by good blocks which can serve as mapping boxes, and then verify the
VWB condition as in§4.

6. Cross-sections and flows built under functions
In the previous section we had occasion to recall the Ambrose–Kakutani theorem that
gives measurable cross-sections for any flow and shows how to view the flow as being
built up from the return time map to the cross-section. The general study of the
relationship between the ergodic properties of these return maps and the ergodic properties
of the flows involves the notion of Kakutani equivalence and was studied in detail in
[ORW82]. That theory teaches us that a Bernoulli flow has return maps onmeasurable
cross-sectionswith a variety of different properties and, in particular, they need not be
Bernoulli or Bernoulli times a periodic transformation. The purpose of this section is
to investigate what happens for smooth cross-sections when the Bernoulli property is
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established via the hyperbolic blocks.
Suppose then thatD is a smooth disk of dimensionn transversal to the flowft

defined onX with invariant measureµ. One defines the measureµD invariant under
the return mapfτ by imbeddingD in a family of disjoint disksftD, |t | ≤ δ, and then
disintegratingµ along these leaves. Since the measure in thet direction is simply the
Lebesgue measure along the flow lines we can say this is a more explicit way: for small
t0 and A ⊂ D, calculate(1/t0)µ(∪t0

0 ftA) and take a limit ast0 tends to zero. A key
property of the smoothness is that theµD measure of the points inD that are withinε

of the boundary may be bounded by some constant timesε. This is clear if the original
measureµ is smooth in the sense that it is equivalent to Lebesgue measure.

Now we have to see what happens to the stable and unstable manifolds from the
point of view of D. We can project a piece ofS(x) to D by flowing back withft until
the first timeD is reached. This is easily done by formingwS(x) ∩ D and gives a
set Ŝ(x0)(x0 = f−t x, x0 ∈ D) in D. If y0 ∈ Ŝ(x0) then we know that the flow lines
ftx0, fty0 approach each other exponentially fast ast → +∞. The same will be true of
the iterates off n

τ x0, f
n
τ y0 as long as the number of times thatx0 andy0 return toD in the

time interval [0, t ] is the same. Clearly, the only time that a problem can occur is when
f n

τ x0 is very near the boundary. Our assumption on the smoothness of the boundary of
D shows that for a.e. pointx0 of D, a sufficiently small piece of̂S(x0) is indeed a stable
manifold. In a similar fashion, one can see thatU projects down to a local foliation̂U
of D.

The last point that has to be checked now is the equivalence ofµD with a product
measure on a hyperbolic block that is built up from̂U and Ŝ. Here the argument is
similar (but not identical) to the one we presented when dealing with the possibility that
the Pinsker algebra of the flow is a circle rotation. Consider a leaf ofwS. The flow
lines of ft are absolutely continuous and, therefore, one can see that the conditionalµD

measure on̂S is identified with the conditionalµ measure on leaves ofS in a fixedwS.
The mapping thatÛ induces between two different leaves ofŜ is thus essentially the
same as the map thatU induces between two leaves ofwS, say wS(x1) and wS(x2).
That mapping takes the conditionalµ-measure onwS(x1) to a measure equivalent to the
conditionalµ-measure onwS(x2) and so the same will be true for the mapping thatÛ

induces betweenwS(x1) ∩ D andwS(x2) ∩ D

Having accomplished this, the analysis of§5 proceeds as before to give at first the
K-property and then the Bernoulli property. Notice that ergodicity is automatic since
that trivially carries over to the cross-section map. The place where this argument fails
for the general cross-section is in the construction of the foliationsÛ , Ŝ. In general,
leaves likeÛ do not survive because the orbits pass near the boundary repeatedly and the
points get out of synchronization with respect tofτ even though the flow lines remain
together.

We summarize this discussion as a theorem.

THEOREM 6.1. If ft is a flow with a hyperbolic block satisfying the assumptions of HBF
(§2) with smooth measureµ, andD is a smooth disk transverse to the flow, then the return
mapfτ : D → D with the induced measureµD is either Bernoulli or Bernoulli times a
periodic transformation.
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Remark.The result is valid regardless of whether or not the Pinsker algebra of the flow
is trivial since in any event the hyperbolic structure pushes down to the diskD.

It is also very important to go the other way, i.e. from the existence of a hyperbolic
structure on the diskD underfτ to ergodic properties of the flowfτ itself. This kind
of result is important to be able to apply our result to the many examples (from the
Sinai billiards onwards) which were analyzed in detail in terms of the Poincaré return
map on some naturally occurring cross-section. Here, instead of avoiding the boundary
one must check to see that the differences between the successive return times do not
accumulate. For this, it is clear that one needs some control on the modulus of continuity
of the return time mapping. The situation is as follows. We have a manifoldX, with a
mappingf : X → X preserving a smoothµ with a hyperbolic block satisfying HBT. In
addition, we have a return functionr : X → R+ that we assume is integrabledµ and
satisfies a Ḧolder conditionX with respect to a fixed metricρ. We consider

Xr = {(x, u) : 0 ≤ u ≤ r(x)}

with the flow ft that maps (x, u) to (x, u + t) until u + t = r(x) when it continues at
(f (x), 0). OnXr , the product measure ofµ with Lebesgue measure onR is denoted by
µr . The stable leaf through (x, u) is constructed by taking ay ∈ S(x) and then looking
for that u′ so that the difference between the running sum

∑m
0 r(f jx) and

∑m
0 r(f jy)

is accounted for by the difference betweenu andu′. We need to know, of course, that
this difference converges and this is exactly what follows from the exponential decay of
ρ(f jx, f jy) and the Ḧolder continuity of the functionr.

Having constructed a local foliationUr andSr in Xr from U andS we again have to
check that we get a hyperbolic block for the flow. For the measurability one observes that
the new local foliations throughx in the base are small pieces of the old foliations moved
up by a continuous function (the sum of the corrections referred to above). Thus they
can be described by the old measurable coordinates together with another measurable
function giving the required height. For the rest of the space these local foliations are
simply translated along the flow lines. It remains to check the absolute continuity.

Once again this will follow from the fact that in the flow direction the invariant
measure is simply Lebesgue measure. To be precise, recall that we coordinatized the
hyperbolic block asY × Z, with {y} × Z representing stable leavesS(y, z) andY × {z}
representing unstable leaves. The weakly stable leaves for the flow inXr will be relatively
open subsets of∪t ftS(y, z). The various unstable leaves offt will be organized in
wU as translates viaft of a single lifted leafUr(x). The measure in thet direction
is simply Lebesgue measure and sinceU maps the conditionalµ-measures on leaves
of S to equivalent measures a simple application of Fubini’s theorem shows thatUr

continues to do this for the conditional measures ofµr along the leaves ofwSr . Applying
Proposition 3.1 once again shows that the invariant measureµr is equivalent to product
measure on the hyperbolic block formed by a bundle ofUr -leaves andwSr -leaves. This
establishes the following theorem.
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THEOREM 6.2. If (X, µ, f ) has a hyperbolic block satisfying HBT andr : X → R+ is an
integrable return time that is H¨older continuous, then (Xr, µr, ft ) has a hyperbolic block
with the invariant measureµr equivalent to product measure and thus on the ergodic
component that contains the block eitherft is Bernoulli or Bernoulli × rotation.

7. Examples
The results of our discussions above apply to almost all of the examples in the literature
where absolute continuity has been established for stable and unstable foliations. All
of the assumptions that we made concerning the two foliations are usually given
explicitly with the exception of the key hypothesis that we made concerning measurable
coordinates. In what follows, we shall point out where these hypotheses can be found
in some of the basic papers.

In [P77], Theorem 2.2.1 asserts the existence and gives the properties of the stable
and unstable manifolds. At a good pointx, whereT Sx andT Ux denote the subspaces
of T Mx associated with the exponents that are less than zero and greater than zero,
respectively, one has a local mappingφ(x) : T Sx → T Ux and exponentiating the graph
of this mapping gives us the local stable mapping atx. This functionφ(x) is ultimately
constructed by using an implicit function theorem and it depends in a measurable way on
x. It is straightforward to deduce from this the existence of the measurable coordinates
in the sense of our definition. Thus our results will apply in any situation where [P77]
is applicable.

In [KSLP86] some generalizations of the above are given to mappings with some
singularities. For the basic construction of the stable and unstable manifolds at good
points they refer back to the above theorem of Pesin. Thus the existence of measurable
coordinates in their situation follows, essentially, from the corresponding result in [P77]
that we have just discussed. They go on to give a careful proof of the absolute continuity
of these foliations and then verify that their results apply to a large class of billiards. It
follows that our theory applies to their case and in particular extends theK-property that
they verify to the Bernoulli property.

In [PS89] yet another treatment of the invariant manifold theory is given and in their
Theorem 3.8 and the discussion following it, one sees that measurable coordinates can
be given for the stable and unstable manifolds. They also construct hyperbolic blocks
and use them in a fashion similar to ours; however, their discussion stops short of the
K-property. This can now be filled in via our techniques.

There have been several papers in the last few years in which a hyperbolic structure
has been obtained and theK-property established. Some examples are: [KSS91],
[KSS92], [Si92], and [Sz92]. Usually for the K-property they ultimately refer back
to the monograph of [KSLP86] and there our results apply to deduce the additional
Bernoulli property. A recent preprint of Chernov and Haskell entitled ‘Nonuniformly
hyperbolicK-systems are Bernoulli’ covers some of the same ground as our paper with
similar methods.
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