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Abstract It is shown that systems with hyperbolic structure have the Bernoulli property.
Some new results on smooth cross-sections of hyperbolic Bernoulli flows are also derived.
The proofs involve an abstract version of our original methods for showing that the
geodesic flow on surfaces of negative curvature are Bernoulli.

1. Introduction

It is often stated that one of the most striking and surprising discoveries underlying the
new science of chaos is that purely deterministic equations can lead to flows that exhibit
random behavior. There is a variety of mixing properties for flows and transformations
that culminate in thek-property and then there is the class of Bernoulli flofvsvhich
display the most random type of behavior possible. It should be pointed out that the
Bernoulli class is completely characterized, up to measure theoretic isomorphism, by a
single invariant entropy@74]. This means that two Bernoulli flowg andg, differ only

by a constant rescaling of time, i.¢. = g, for some constant c. On the other hand, the
K-property is enjoyed by a wide variety of quite distinct isomorphism classes.

It has been shown recently that the class of Bernoulli flows is very nicely behaved
from several points of view. If one is interested in constructing good approximations
to a stochastic process based upon the sequential observations of a single output then
a universal scheme exists which is valid for the class of Bernoulli processes. On the
other hand, for non-Bernoulli processes one cannot even find universal schemes which
will distinguish between two outputs of the same or different process@/90]). In a
more geometric vein, various properties were established for Bernoulli flows that provide
a statistical kind of stability even in cases where the topological structural stability is not
valid [OW91]. These results highlight the need to verify the Bernoullian nature of as
many systems as possible.

Our purpose in this paper is to provide some general theorems which show how to
deduce the Bernoulli property from the hyperbolic structure that has been established in
many cases. The basic proof paradigm that we use is the same as the one that we first
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introduced in PW73] to prove that geodesic flows on surfaces of negative curvature were
Bernoulli. Our results are essentially applicable whenever all of the Lyapunov exponents
differ from zero. Non-hyperbolic systems like the general toral automorphisms seem to
require more delicate methods and are not covered by the results here. Here is a brief
overview of what we plan to do.

Let X denote am-dimensional manifold ((+ 1)-dimensional for the flow case) arfd
(f7) a piecewise smooth transformation (flow) &n We also have in mind systems with
a mechanical origin like billiards, or balls bouncing in a wedge, that are not given by
smooth vector fields. The hyperbolic structure takes the form of foliations into unstable
leavesU (x) of dimensionk and stable leave$(x) of dimension § — k). These are
not necessarily the complete foliations that one encounters in the uniformly hyperbolic
case. They may be only partial foliations like those found in billiards or in the theory
developed by PesirP[7/7. We make two basic assumptions: (i) the invariant measure
that we treat has some smoothness properties; (ii) the foliatioaad S are absolutely
continuous.

An assumption like (i) is clearly necessary. Markov partitions show that the range of
ergodic behavior that is possible if we vary over all invariant measures is restricted only
by the finiteness of the entropy. If one wants special properties for a smooth flow one
must make special assumptions about the invariant measure. The second assumption is of
a technical nature. It is used to obtain the equivalence between the invariant measure and
some product measure on hyperbolic blocks. It was established for uniformly hyperbolic
systems in the work of AnosoVAB7], for non-uniformly hyperbolic systems by Pesin
[P77] and for certain non-smooth systems by Kattkal [KSLP86].

The main point that we are trying to make in this paper is that this fairly standard
hyperbolic structure suffices, not only to establish kh@roperty on ergodic components,
but also to prove that the flows in question are Bernoulli. In their work on ergodic
attractors Pugh and ShuP$89 use hyperbolic blocks in a fashion similar to us but
they do not go beyond th&-property.

The generality of our methods here enable us to establish some new results concerning
smooth cross-sections of hyperbolic Bernoulli flows and also flows built under a function
with a Bernoulli base. This latter result is related to some earlier work of Bunimovich
[B74] and Ratner R74] where they dealt with the case when the base transformation
was a symbolic dynamical system. It is also worth pointing out that Ledrapip8f] [
used the equivalence of the invariant measure with product measure to show that special
partitions for certain smooth diffeomorphisms’ partitions wereak Bernoulli(WB) a
property stronger than very weak Bernoulli (VWB). However, the advantage of our
method is that it applies also to flows where the weak Bernoulli property is not expected
to hold.

In §2 we describe in detail the assumptions that we make concerning the hyperbolic
blocks. In§3 we take up some measurability questions which are necessary for the
product measure to be comparable to the given invariant measure and show that they are
in fact equivalent. The succeeding sections use almost entirely just this propef. In
we treat transformation§p flows and in§6 the cross-sections and the flows built under
a function.
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2. Hyperbolic blocks

In the following, X is anrn-manifold (or at least piecewise anmanifold) andf, f; either

a transformation ofX or a flow onX. It is not necessary to assume global smoothness
of f of f; but we shall suppose thdt, f; are piecewise differentiable. The hyperbolicity
that we assume takes the form of two partial foliation&othe unstabld/ of dimension

k and the stableS of dimensionn — k for transformations and — 1 — & for flows (to
compactify the notation we will suppose that dilm= »n + 1 in the flow case). There
will be a finite invariant measurg with smoothness properties that we will spell out
later. Foru-a.e.x there will be leaved/(x), submanifolds of dimensiok, and S(x),
submanifolds of dimension — k, that intersect transversally atand for some fixed
metricd on X satisfy:

— 1
Iim,,_,+oo; logd(f"x, f"y) £0 forye S(x) (2.2)

— 1
Iim,HH,o; logd(f™"x, f™"y) £0 foryeUx), (2.2)

in the case of transformations with an analogous condition for flows. The set of points
that have such leaves will be denoted Xy. For flows, there also are the weakly stable

wS and weakly unstable manifoldsU obtained by thickening the leaves 8fU in the

flow direction. We shall assume that the foliations both strong and weak are measurable
in the following sense. If the foliation is one-dimensional and is given by some vector
field that defines a flowg, then this measurability is equivalent to what is usually called
the measurability of the flow.

Measurable coordinatesDenote by Bf the unit ball in R¥. Then there are local
coordinates fol/ (x) given by a map(x, y): Xg x B’l‘ — X that satisfies:

(@) c(x,0) =ux, c(x,y) € Ux) for all y € B;

(b) for fixedx, c(x, -) is a diffeomorphism betweeR; andc(x, BY);

(c) c(x, y) is a jointly measurable function of the two variables.

A similar assumption is made about the other foliatibrvhose coordinate function is
¢(x, z). Note that the image(x, B’l‘) does not exhaust the leéf(x) and there is also
no assumption about its size & which may be rather small. We shall call the image
c(x, Bf) alocal leaf at x.

This structure is what Pesin establishes 7T for smooth maps all of whose
Lyapunov exponents differ from zero. It is also the type of structure that Sinai and
others established in billiards and other systems with a physical interpretation. The
measurability condition is automatically satisfied whenever the foliations are obtained
from a measurable splitting at the tangent bundle by the usual method of pulling back
parametrized paralldl-planes in the unstable directions.

It is standard to use the measurability to get uniformity on sets of positive measure.
We need three kinds of uniformity: (i) the tangent space does not vary much along a
local leaf of U and S: (ii) the local leaves extend a certain fixed distance away fxom
i.e.d(x, c(x, 83’{)) andd(x, ¢(x, 8B’1’"‘)) are both bounded from below; (iii) the angle
between the tangent spaceslttox) and S(x) is bounded away from zero.

It is easy to see that all three quantities are measurable functions and thus standard
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measure theory gives us some choice for the constants involved such that thexset of
with that uniformity has non-zerp-measure. We really need to do things in two steps.
First of all we cut down fromB% to a smaller balb B so that the tangent space along
c(x, u) does not vary much for € §Bf. Then we need to make sure that these small
local leaves have a minimal size. In what follows, local leaf will mean these small local
leaves. If we now letPy be a subset of such a set with positive measure and very small
diameter we can do the following.

For fixedy, c(y, -) is a differentiable function and thus can be viewed, in particular,
as an element of(X, § Bf). With the sup norm this is a complete separable metric space
and therefore by Lusin’s theorem there is a closed suBset Py of positive measure
on which ¢ becomes a continuous function. It follows that these local leaves,of
Urepc(x, 83’1‘), form a closed subset df that has positive.-measure. Restricting to a
further closed subsd®, C P; of positiveu-measure we can get thats also a continuous
function and thus as varies overP, both the stable and the unstable leaves form closed
subsets. We shall denote W the intersection of these sets. SinBecontains P, it
has positiveu-measure. Furthermore, the fact that fore Py the tangent spaces of
U (x) andS(x) intersect with positive angle and that the local leaves have some minimal
size—but are not too big—guarantee that this closedPskas the abstract structure of
a product space. To see this last point, fix ages P, and consider the local leaf in
U (xo). LetY be the intersection of the stable bundle of leaves above with this local leaf.
This is a closed set. Similarly, for#, a closed subset df(xg). Now eachx € P has
a unigue pair of coordinatey (z), wherey is the intersection of the local leaf we have
been considering i/ (xg) with ¢(x, (SBi'*") andz is the intersection oé(x, (SB’l‘) with
the local leaf inS(xp).

For flows, one performs the same kind of construction wittand wS or wU and
S since we need, of course, complementary dimensions to fill a set of positive measure.
At the end of this section when we give a summary description of the hyperbolic blocks
we will spell out the case for flows.

Now for the smoothness assumptionsianin many cases, especially those originating
in conservative mechanical systems where Liouville’s theorem holds, the invariant
measure is smooth in the sense that it is equivalent to Lebesgue measure. In the case of
attractors, the invariant measure is typically singular but nonetheless when disintegrated
along the leaves ol/ its conditional measures are equivalent to thdimensional
Lebesgue measure on the leaves. We call these measures SBR, after the work of Sinai
[S73, and Bowen and RuelleBR75]. Our standing hypothesis is that one of these two
hypotheses is valid. For the classical argument of Hopf and its ramifications to be valid
we have to relate the measure theory of the two foliatibhand S. For this we need
the notion of absolute continuity.

First we have to explain the holonomy map. LEtbe a local foliation and leDg
and D; be two disks transversal t& so that forxg € Dg the leaf F(xo) intersectsD,
at a unique poink;. The mapxg — x; is called theF-holomony map fromDg to D;
along 7. We can avoid discussing what happensFifxp) intersectsD; at more than
one point since in our situation this will not happen.

The foliation F is said to beabsolutely continuousf any such holomony map is
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absolutely continuous with respect to the Lebesgue measures on thelgisks. We

will assume that our foliation®/ and S are absolutely continuous in this sense. For the
case of SBR it suffices to assume ti§ais absolutely continuous. Here is a summary of
what a hyperbolic block for transformations is.

Hyperbolic block for transformations (HBT).

(1) Product structure-2 is identified with a product spadéx Z, (y,z) — U(y)NS(z)
and is thus fibered exactly by both foliations.

(2) The invariant measurg is either smooth or SBR; i.e.(P) > 0 for a measure
equivalent to Lebesgue measure Bnor the conditional measure @f on leaves
of U is equivalent to Lebesgue measure on the leaves.

(3) Absolute continuity of the foliations.

Note that in (1), sinceP is the intersection of two bundles of leaves, tfideaves inP
are notcompletek-manifolds—they aresubsetsof the local leaves.

The definitions for flows are analogous except that one of the foliations should be
thickened in the flow directions, eithérto wS, the weakly stable leaves &f to wU.
The fact that the flow is smooth shows thatsSifis absolutely continuous so ®S:
applying the flow toD sweeps out a diskD transversal taS, the foliation of D by
the flow lines is absolutely continuous and this enables us to pass from the absolute
continuity of S to that of wS. The measurability of coordinates is now taken for the
weakly stable (or weakly unstable) foliations in addition to the previous assumption.

Hyperbolic block for flows (HBF).

(1) Product structure- is identified with a product spacg x Z, (y,z) < U(y) N
wS(z) and is fibered exactly by both foliations.

(2) The invariant measurg is either smooth, or SBR; i.e.(P) > 0 for a measure
u-equivalent to Lebesgue measure Bn or such that its conditional measure on
the leaves ofU is equivalent to Lebesgue measure there.

(3) The foliationsU andwS are absolutely continuous.

Let us recap what we have done here. Starting from the usual properties that are
established for the stable and unstable foliations we have constructed a hyperbolic block
P in the case where the measure is nice (smooth or SBR). In the next section we shall
see how this leads to the equivalence @nof the invariant measurg with a product
measure and this is what will enable us to analyze the ergodic propertigsodl f;.

3. Measurability and equivalence of invariant measure to product measure

Recall that when the product structure for the hyperbolic block was obtained w& had
represented as the intersection of two closed sets of leaves from the stable and unstable
foliations. This representation shows that if we take a Borel suBsetY and look at

that part of P that is made up of leaves passing throughthen we get a Borel subset

of P. It follows that viewingP asY x Z,if BC Y, A C Z are Borel thenB x A is a

Borel subset ofP. By a well-known result in Borel theory (cf. the treatment AR76]),

i.e. that a countably generated swkrlgebra of Borel sets that separates points is the

full Borel o-algebra, we can conclude that the product measure structure coincides with
the usual Borel structure oA.
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We shall need a criterion which will enable us to say when is a measomeX x Y
equivalent to a product measure. Disintegrat@long the fibersX x {y} and in that
disintegration denote the conditionaltmeasure onX x {y} by u,, thought of as a
measure orX. Let v denote the projection gf onY, i.e. v(C) = u(X x C), and if §,
denotes the point mass @t} we have

n= / My X 8y dv(y).
Y

ProOPOSITION3.1. A necessary and sufficient condition thabe equivalent to a product
measure is that for-a.e. y1, y» the measureg,,, u,, are equivalent measures.

Proof. If u is equivalent to some product measure it is not hard to see:tisaequivalent
to p x v, where p(v) is the projection ofu on X (Y). This gives the necessity of the
condition. For the sufficiency observe that one can fing @o that forv-a.e.y, u, is
equivalent tou,, and thusu is equivalent tou,, x v by Fubini’s theorem. O

THEOREM 3.1. If 1 is an invariant measure which is smooth or SBR on a hyperbolic block
P, thenu is equivalent to a product measure.

Proof. If u is smooth let us fix one of the foliations, s&y and consider a nice smooth
foliation F into (n — k)-manifolds transversal t&/. By using local coordinates oRA (we
could divide into a finite number of local coordinate charts if necessary) we can think of
these as being parallel and then it is clear that the disintegration of Lebesgue measure
along thesed — k)-spaces yieldsn(— k)-dimensional Lebesgue measure. Now e
foliation is assumed to be absolutely continuous and thus we are exactly in the situation
of the Proposition 3.1 and we can conclude that Lebesgue meassrequivalent to
product measure when the product structure is now coming tfoamd 7. From this it
easily follows now using the absolute continuity of t/efoliation that the conditional
measure of. along leaves olU is equivalent to thé&-dimensional Lebesgue measure
there. Thus we have arrived at the situation of the SBR measure simcel © are
equivalent.

To conclude the proof we repeat the above argument Witplaying the role ofF
and S playing the role ofUU, and obtain thaj is equivalent to a product measure on the
product structure coming frory andS on P. O

The proof for the flow case is completely analogous using the absolute continuity of
the two strict foliations which implies the absolute continuity of the weak versions.

4. Ergodic properties of transformations

From this point on the reader can forget about the absolute continuity of the fibers and
keep in mind only the main conclusion of the preceding sectifom: our hyperbolic
block the invariant measure is equivalent to a product meastioebegin let us recall the
Hopf argument. Take some bounded continuous funafian X and considet as its
projection onto the space of functions that are invarjarst.e. By the ergodic theorem
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we have two distinct representations fr

d(x) = nﬂToo % Xl:(ﬁ(fjx) u-a.e. 4.2)
R ] 1 n )
$(0) = lim — 21:¢(f"x) p-ae. (4.2)

From the first representation we see thas constanfi-a.e. on leaves of and from the
second that it is constapt-a.e. along leaves @ and then the fact that is equivalent to
product measure allows us to conclude thas constantu-a.e. onP. Thusu>_ f"(P)
consists of a single ergodic component in the ergodic decompositiaraofl henceforth
we restricty to that component and assume that (, f) is an ergodic system. Note
that the ergodicity of the original measugerequires further arguments and is a major
source of difficulty in proving ergodicity of billiards and other mechanical systems.

For the K-property we replace continuous functions by smooth partitions. Actually,
all that we really need is a good estimate for the set of points that comes wittithe
boundary of the sets in the partition. Here is a simple lemma that enables us to construct
such partitions.

LEMMA 4.1.If (X, d) is a metric space and is a probability measure oX, and ifxg € X
and an interval |, b] is specified, then there is somec [«, b] such that for alle > 0

uix 1 ld(x,xo) —r| < e} <

|b _ a| - E.
Proof. If there is no suchr, then anyr € [a, b] is contained in an interval, satisfying
3
|6 —al

One can find a finite subcollection of thg’s that covers ¢, b] and such that every
point is in at most two such intervals. Summing over all these intervals we get the
contradiction that 2> 3 which proves the lemma. O

wulx 1d(x, xo) € Jr} >

|1

With the lemma it is easy to construct finite partitio@sof arbitrarily small diameter
such that there is a constafitand for anya,

n({x 1d(x,00) <a}) < Ca. (4.3)

For the next step, namely that of establishing feroperty, we must recall the basic
Pinsker—Rohlin—-Sinai (PRS) theorem.
For a finite partitionQ, define the remote past and remote future by

Qfoo = m::o:]_ V:go fﬁjQ
Q+oo = m;il \/IZO f_j Q

Note that sincdx : f/x € Q) = f~/ Q., the ‘future’ from the point of view of the
transformationf corresponds to negative powers pofacting on the partition. A process
(X, 1, O, f)is K if Q_, contains only sets of measure zero or one. The PRS theorem
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asserts, inter alia, that in all cas@s , and Q. ., coincide asr-algebras modul@c.-null
sets.

A system , u, f) is said to have th& -property if for any finite partition Q, the
process X, u, Q, f) is K. It is known that it suffices to verify this for one refining
sequence of partitiong,. For the sake of completeness we sketch a quick proof of
this last fact. We need the alternative characterizatioR gfrocesses which is the main
assertion of the PRS theorem, namely that a proceds$ i and only if only trivial
partitions give rise to zero entropy processes. Assume, thereforeQthit a refining
sequence of partitions and thad (, f) is K. If R is any partition giving a zero entropy
process, and > 0, choose a large so that one can fin&®, measurable with respect to
v® £~/ 0, and satisfying

H(R|R) — H(R|R) < ¢, (4.4)

where H (-|-) denotes conditional entropy. Now, singér, ) = 0 one also has for any
N, thath(R, f¥) =0 and then from (4.4) one deduces thaR, V) < e.

By letting N tend to infinity we see thak is e-constrained in the remote past ©f,
and thusr is 2c-contained there. Since that past is trivial, &, ( f) is a K-process we
conclude thatR is within 2¢ of the trivial partition and since is arbitrary R is trivial.

Thus (X, u, f) has completely positive entropy and is therefor& gorocess.

The proof we have just outlined establishes a more general resul®ifibker algebra
‘P of a process (or system) is the maximrahlgebra all of whose sets have the property
that the entropy of the process defined By K\ A) is zero. The general result is that if
the Q, are a refining sequence of partitions then the Pinsker algéhra$the processes
(Q., f) converge to the Pinsker algebra of the systém (). Now we have to check
that, indeed, ifQ is a smooth partition@, f) is a K-process.

Here, the simple observation is that if a stable |18&f) in P never gets too close to
the boundary ofQ under arbitrarily high positive iterates gf, then any set measurable
with respect toQ ,, contains the entire leaf, or no part of it. Because of the exponential
contraction along it follows from (4.3) that a set of leaves 6fn P of full x-measure
have this property. Thus any set measurable with respe@,tq is foliated by entire
S-leaves,u-a.e. SinceQ_,, and Q. coincide u-a.e. any such set is also foliated by
U-leaves and since is equivalent to product measure we conclude that if such a set
intersectsP in positive measure it fills upP u-a.e. This does not suffice to establish
the K-property for the processX( u, O, f) but it does show that the Pinsker algebra
(QO_x = Q1) is atomic and thus sincg is ergodic it is in fact finite.

Notice that we have a fixed lower bound for the size of a minimal atom in the Pinsker
algebra of £, i, O, f) which is given by the measure of the hyperbolic block. As we
repeat the argument for a refining sequence of partitions this fixed lower bound does not
change and thus by our earlier observation about the convergence of Pinsker algebras we
can conclude that the Pinsker algebra ®f (¢, f) is atomic. This proves the following
theorem.

THEOREM 4.2. Either f has theK-property or f permutesM sets periodically,fA; =
Aiy1, fMAg = Ao, UY A, = X, n-a.e., and on each;, fM has thek -property, i.e.f
is a K-automorphism times a finite rotation.
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We shall continue the discussion assuming tfiaitself is K. The general case is
readily obtained from this one by replacingby . To go from K to Bernoulli we
will use the method we first introduced i©W73].

In order to keep the exposition self-contained we shall give a rapid review of what
we need from the theory of Bernoulli systems. A finite measure-preserving system
(X, B, u, f) is Bernoulli if there is a partitionQ of X with the properties:

(1) the{T~'Q}icz are independent;
(2) v . T7'Q =B, n-ae.

In the language of isomorphism theory a system is Bernoulli if it is isomorphic to a
stationary process consisting of independent random variables. Afflasva Bernoulli
flow if for eachd, the transformatiory;, is Bernoulli. The zero-one law for independent
random variables shows that the Bernoulli property impkes

Without going into a detailed discussion of the various other characterizations and
properties of Bernoulli systems we shall explain what very weak Bernoulli (VWB) is
and cite a result that says that this property implies Bernoulli. It will be convenient to
use the following terminology: a property holds foalmost everypoint of a setf in a
measure space if the set of pointsoffor which the property fails to hold has relative
measure less than i.e. if © denotes the measure

w(exceptional points irE)/u(E) < e.

A mappingd between two measure spadds ), (F, v) is e-measure preserving if there
are subset®; C E, F; C F satisfying

n(E)/pn(E) <&, v(Ey)/v(E) <¢

and for allA C E\E1
[v(O(A)/u(A) — 1] <e.

If Q is a finite partition of X, then @, f) will have the very weak Bernoulli
property if givene > 0 there is anmg and for allm > mgq for e-almost every atom
E of vII' f=JQ there is ane-measure-preserving map from E x [0, 1] with the
measureu/u(E) x Lebesgue measure td((u) such that fors-almost every point
(x,u) € E x [0, 1] we have here

Tim > 10(f7x) = Q(f 8. w)| <. (4.5)
j=1

Here Q(x) denotes the index such thatx € Q,. This condition (4.5) means that on
average the future behavior efand6(x, u) are very similar. The reason for crossing

E with [0, 1] is to give us greater flexibility in constructing the mappihglt gives us

the possibility of dividing the points € E into many small pieces and mapping them

to different parts of the space. The usual definition of VWB involves a more general
notion—that of thed-distance between processes—which is not needed here. If the
process is independent then the future is independent of the conditioning on the past
atom E and then this condition is satisfied with= 0. The VWB is a weakening of this
independence. It is proven i©[74] that VWB implies the Bernoulli property.
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We shall construc# having property (4.5) by mapping points along stable manifolds,
so thatéx and x will behave in an almost identical fashion under positive iterates of
f. The mapping will be carried out separately on small pieces that we call mapping
boxes. In our situation we will construct them out of small rectangles in hyperbolic
blocks where the Radon—-Nikodym derivative ofwith respect to product measure is
approximately constant. First, for a general result we return to the set§f @iven a
product spac& x Z and a measurg onY x Z equivalent to product measupex v we
let r(y, z) denote the Radon—Nikodym derivative lofwith respect top x v. In all that
follows, somes > O will be fixed. We now use the fact thaty, z) can be approximated
by simple functions based on measurable rectangles to find’gefs and a constant,
such that forrg > ¢,

{(5y,2) 1 lro—r(y,2)| = €2} N Yy x Zg

hasrelative measure at most? in Yy x Zo both with respect tqu|Yy x Zo and with
respect tgo x v|Yy x Zo.

Let us call Py the hyperbolic block that we get when we restricttpx Zg as above.
Disintegrateu along the fibersty x {Z} to getu, and observe that since we have an
almost constant derivative with respect to product measure-&dmost every; we can
map Yo x {z} equipped withu, in an e-measure-preserving way alongS-leaves to all
of Py. We denote this mapping b§. This new almost uniform hyperbolic block will
serve as a prototype for our mapping boxes—but of course we need to cover the space
with them.

Instead of trying to do this in a precise way let us observe that if we mapy
f" then we get a new blocle, = f" Py, which is again foliated by and by S and
f" carriesé. to mapping®™ betweens-almost every leal/ of P, to all of P, along
leaves ofS, in an e-measure-preserving fashion. According to the ergodic theorem the
setsPy, P1, ..., Py_1 for large N give us an almost even covering of the space—in the
sense that most points of the space are covered approximately the same number of times.

By the K -property, ifmg is large enough thes-almost every atonE of v_° =/ Q
will be intersecting each of the mapping box&g ..., Py_1 in a set whose relative
measure is almost equal to temeasure of the mapping box. In addition, fealmost
everyx € E the sume)\"l 1p (x) is almost equal tqu(Py) - N. Now if for each P,
we take a separate intervd] c R of length Y Nu(Po) and considetupP; x J;, we
have a good approximation # x [0, 1]. Restricting toE we get a good approximation
to E x [0, 1] and we can map this to all of using6® on (E N P;) x J;. Taking
into account the approximation, both ohx [0, 1] and onE x [0, 1], we still get an
e-measure-preserving map éf x [0, 1] to X along leaves of as required.

5. Ergodic properties of flows

The pattern of the proof for flows is the same as it is for transformations, so we will
concentrate here on the new points that come up. We will work with a hyperbolic block
P built from the unstabld/ and weakly stablevS foliations. For Hopf's argument no
change is required since the limits
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o . 1 /"

¢= lim — / o(fix)dt p-a.e. (5.1)
n——+oon 0

é= lim [ d(fox)dt v-a.e. (5.2)
n—>+oo n 0

are clearly invariant under the flow and therefore the constancy of (5.1) along leaves of
S implies that is also constant along leaves ©fS. Thus, as before, the entire block
P lies in a single ergodic component to which we will restyict

For the K -property we first define what it means for a flow to ke We shall adopt
the definition that a flow is & -flow if for any d, the transformationf, has thek-
property. For fixedd, f; commutes withf, and therefore the Pinsker algebra ff is
invariant—as ar-algebra—under the action of the flow. To establish khgroperty fix
ad and considerf = f;. As before, it suffices to verify thatd, f) is K for a smooth
partition Q. Unlike what happened in ergodicity proof, now the argumeng§séfonly
gives us that sets in the Pinsker algebra ara.e. fibered by leaves df and S—not
wS. We focus on showing that if the Pinsker algeftas not trivial then it is at most a
circle rotation under the flovy,. To this end recall the Ambrose—Kakutani representation
of an arbitrary flow as a flow built under a function. In that representation pure rotations
correspond to the base being atomic. If the basgoisatomic then one easily sees that
for anyt and anys > 0O there are sets of positive measuten the Pinsker algebra that
cover the space such thay, <, f; E is also measurable and

0< M( U f,E) < 4. (5.3)
[t|<to

We shall show that this cannot happen. IndeedE ifs such a set, measurable with

respect toP, the Pinsker algebra, an#l intersects our hyperbolic block in a set

of positive measure, then i is large enoughUy <, f;(E)) N P would be completely

foliated n-a.e. by bothU and wS and therefore using the fact thatis equivalent to

product measure this latter set coincides withu-a.e. If§ is chosen sufficiently small

this would contradict (5.3).

This argument shows that either the Pinsker algebraffois trivial or f; is a pure
rotation on the Pinsker algebra.

In the latter case,X, f;) has a circle rotation as a factor, andrif X — §’ is the
factor map,7~(¢) gives rise to a measurable partition Xfand, clearly, the fibers of
this partition are foliated by/- and S-leaves. Thus the foliationd and S ‘commute’ in
a measurable sense. Since the meagui®trivially well behaved in the flow direction
this means that for the return map to these fibers.(¢), we have the hyperbolic block
structure for transformations.

Indeed, by what we have just said, these fibers(¢) are foliated by bott/ and S.
The invariant measurg decomposes along these fibersitp say. If 1o represents the
period, thenf,, fixes these fibers and the are invariant undey;,. Furthermore, the fact
that © was equivalent to a product measure with respect to the product structure given
by U andwS on P implies thatu, will be equivalent to a product measure given by
U andS onz~%(¢). Indeed, the conditionat-measures on th&-leaves are equivalent
under the holonomy map defined s since we have already seen thats equivalent
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to product measure. Now on the 1(¢), the holonomy map betwedii-leaves defined
by S is exactly the same as the one definedb§ in X. Therefore we can apply
Proposition 3.1 to conclude that, is equivalent to a product measure. The general
discussion of5 will be applied tof,, and one fixedr ~1(z). The original flow will be
represented as a flow built overkatransformation with constant height function.
Continuing with the analysis of5, which is not hampered by the fact that we do
not know thatz~1(¢) has the structure of an-manifold we obtain the result that
fi, is a Bernoulli transformation. Thug, is the constant suspension of a Bernoulli
transformation. Here we can give a nicer interpretation of this fact in terms of flows.
Since we know that a Bernoulli flow exists, we can imbgdin a flow, sayf, that takes
771(o) to itself. Using the imbedded flow it is easy to see tifattself is isomorphic
to a Bernoulli flow £, times (direct product) a rotation. We were unable to do this for
suspensions ok -transformations since not eve® has a square rootJ73] let alone
can it be imbedded in a flow. We shall continue the discussion with the new elements
that appear wherf; is a K -flow.
Fix some discretization of the floWf,,}.cz and some smooth partitio@. We want
to verify the VWB condition. Assume that the hyperbolic block is of the fdinx wS.
As before, by localizing to some sub-bloél, we can assume that the invariant measure
w is not merely equivalent to product measure Bnbut that most fibers have nearly
the same conditional measure. We would like to make mapping boxes as before, using
Py, and mapping along leaves afS. However, since the leaf is only weakly stable for
y € S(x) it is no longer the case thal(f,4x, f,ay) — 0 asn — +o0. What is true is
that the positive orbits af andy never diverge by much since by moving a little bit on
the orbit of y we can bringy to be on the same strong stable leafkasThis distance can
be made quite small, give@, and then the ergodic theorem will guarantee that for most
pointsx, anyy € Py in the same weakly stable leaf aswill have Q(f,.qx) # O(fuay)
for a set of low density. This amount is controlled by the size of the bRck the flow
direction. Thus condition (4.5) can still be satisfied even when mapping along weakly
stable leaves.
Having made this basic observation the rest of the argumeg4 ofin be carried out
in exactly the same way. We apply many iteratesfpfto Py to get an almost even
covering of X by good blocks which can serve as mapping boxes, and then verify the
VWB condition as ing4.

6. Cross-sections and flows built under functions

In the previous section we had occasion to recall the Ambrose—Kakutani theorem that
gives measurable cross-sections for any flow and shows how to view the flow as being
built up from the return time map to the cross-section. The general study of the
relationship between the ergodic properties of these return maps and the ergodic properties
of the flows involves the notion of Kakutani equivalence and was studied in detail in
[ORW82]. That theory teaches us that a Bernoulli flow has return maps@ssurable
cross-sectionsvith a variety of different properties and, in particular, they need not be
Bernoulli or Bernoulli times a periodic transformation. The purpose of this section is

to investigate what happens for smooth cross-sections when the Bernoulli property is
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established via the hyperbolic blocks.

Suppose then thab is a smooth disk of dimension transversal to the flowf;
defined onX with invariant measurg.. One defines the measure, invariant under
the return mapf, by imbeddingD in a family of disjoint disksf, D, |¢t| < §, and then
disintegratingu along these leaves. Since the measure intthection is simply the
Lebesgue measure along the flow lines we can say this is a more explicit way: for small
o andA C D, calculate(l/to)u(uf)"ﬁA) and take a limit agy tends to zero. A key
property of the smoothness is that thg measure of the points i that are withine
of the boundary may be bounded by some constant timdshis is clear if the original
measureu is smooth in the sense that it is equivalent to Lebesgue measure.

Now we have to see what happens to the stable and unstable manifolds from the
point of view of D. We can project a piece &f(x) to D by flowing back with f; until
the first time D is reached. This is easily done by formingS(x) N D and gives a
setS(xo)(xo = fx,x0 € D) in D. If yo € S(xo) then we know that the flow lines
fixo, fiyo approach each other exponentially fast as +oo. The same will be true of
the iterates offxo, f!"yo as long as the number of times thgtandy, return toD in the
time interval [Q ] is the same. Clearly, the only time that a problem can occur is when
flxo is very near the boundary. Our assumption on the smoothness of the boundary of
D shows that for a.e. poindy of D, a sufficiently small piece aof (xo) is indeed a stable
manifold. In a similar fashion, one can see tihaprojects down to a local foliatio®/
of D.

The last point that has to be checked now is the equivalengeyofvith a product
measure on a hyperbolic block that is built up frdmand S. Here the argument is
similar (but not identical) to the one we presented when dealing with the possibility that
the Pinsker algebra of the flow is a circle rotation. Consider a leab ®f The flow
lines of f, are absolutely continuous and, therefore, one can see that the conditipnal
measure or$ is identified with the conditionak measure on leaves &fin a fixedwS.

The mapping that induces between two different leaves $fis thus essentially the
same as the map that induces between two leaves ofS, say wS(x;) and wS(xy).
That mapping takes the conditionaimeasure onw S(x;) to a measure equivalent to the
conditional u-measure onwS(x,) and so the same will be true for the mapping that
induces betweewS(x1) N D andwS(x2) N D

Having accomplished this, the analysis §&& proceeds as before to give at first the
K-property and then the Bernoulli property. Notice that ergodicity is automatic since
that trivially carries over to the cross-section map. The place where this argument fails
for the general cross-section is in the construction of the foliatignss. In general,
leaves likeU do not survive because the orbits pass near the boundary repeatedly and the
points get out of synchronization with respect fp even though the flow lines remain
together.

We summarize this discussion as a theorem.

THEOREM 6.1. If f; is a flow with a hyperbolic block satisfying the assumptions of HBF
(§2) with smooth measupe, and D is a smooth disk transverse to the flow, then the return
map f; : D — D with the induced measuney is either Bernoulli or Bernoulli times a
periodic transformation.
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Remark.The result is valid regardless of whether or not the Pinsker algebra of the flow
is trivial since in any event the hyperbolic structure pushes down to thelalisk

It is also very important to go the other way, i.e. from the existence of a hyperbolic
structure on the dislD under f; to ergodic properties of the flow, itself. This kind
of result is important to be able to apply our result to the many examples (from the
Sinai billiards onwards) which were analyzed in detail in terms of the Pd@niezturn
map on some naturally occurring cross-section. Here, instead of avoiding the boundary
one must check to see that the differences between the successive return times do not
accumulate. For this, it is clear that one needs some control on the modulus of continuity
of the return time mapping. The situation is as follows. We have a mankolaith a
mappingf : X — X preserving a smootp with a hyperbolic block satisfying HBT. In
addition, we have a return function: X — R™ that we assume is integrabdg: and
satisfies a ldlder conditionX with respect to a fixed metrip. We consider

X" ={(x,u):0<u<r(x)

with the flow f; that maps £, u) to (x,u + ¢) until u + ¢ = r(x) when it continues at
(f(x),0). OnX", the product measure @f with Lebesgue measure dhis denoted by

u". The stable leaf throughe(u) is constructed by taking & € S(x) and then looking

for thatu’ so that the difference between the running shiff r(f7x) and > 0 r(f7y)

is accounted for by the difference betweemndu’. We need to know, of course, that
this difference converges and this is exactly what follows from the exponential decay of
o(fix, f/y) and the Hlder continuity of the functiom.

Having constructed a local foliatioti” and S” in X" from U and S we again have to
check that we get a hyperbolic block for the flow. For the measurability one observes that
the new local foliations through in the base are small pieces of the old foliations moved
up by a continuous function (the sum of the corrections referred to above). Thus they
can be described by the old measurable coordinates together with another measurable
function giving the required height. For the rest of the space these local foliations are
simply translated along the flow lines. It remains to check the absolute continuity.

Once again this will follow from the fact that in the flow direction the invariant
measure is simply Lebesgue measure. To be precise, recall that we coordinatized the
hyperbolic block ag x Z, with {y} x Z representing stable leavésy, z) andY x {z}
representing unstable leaves. The weakly stable leaves for the flgtwiill be relatively
open subsets of); f;S(y,z). The various unstable leaves ¢f will be organized in
wU as translates vig; of a single lifted leafU"(x). The measure in the direction
is simply Lebesgue measure and siriéemaps the conditionak-measures on leaves
of S to equivalent measures a simple application of Fubini's theorem showd/that
continues to do this for the conditional measuregoflong the leaves abS”. Applying
Proposition 3.1 once again shows that the invariant measure equivalent to product
measure on the hyperbolic block formed by a bundl&/tfleaves andv S”-leaves. This
establishes the following theorem.
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THEOREM 6.2. If (X, u, f) has a hyperbolic block satisfying HBT and X — R* is an
integrable return time that is blder continuous, thenX", ", f;) has a hyperbolic block
with the invariant measurg/” equivalent to product measure and thus on the ergodic
component that contains the block eithgris Bernoulli or Bernoulli x rotation.

7. Examples

The results of our discussions above apply to almost all of the examples in the literature
where absolute continuity has been established for stable and unstable foliations. All
of the assumptions that we made concerning the two foliations are usually given
explicitly with the exception of the key hypothesis that we made concerning measurable
coordinates. In what follows, we shall point out where these hypotheses can be found
in some of the basic papers.

In [P77], Theorem 2.2.1 asserts the existence and gives the properties of the stable
and unstable manifolds. At a good point whereT S, and TU, denote the subspaces
of TM, associated with the exponents that are less than zero and greater than zero,
respectively, one has a local mappiggr) : TS, — TU, and exponentiating the graph
of this mapping gives us the local stable mapping.aThis functiong (x) is ultimately
constructed by using an implicit function theorem and it depends in a measurable way on
x. It is straightforward to deduce from this the existence of the measurable coordinates
in the sense of our definition. Thus our results will apply in any situation wHere] [
is applicable.

In [KSLP86] some generalizations of the above are given to mappings with some
singularities. For the basic construction of the stable and unstable manifolds at good
points they refer back to the above theorem of Pesin. Thus the existence of measurable
coordinates in their situation follows, essentially, from the corresponding resi7if} [
that we have just discussed. They go on to give a careful proof of the absolute continuity
of these foliations and then verify that their results apply to a large class of billiards. It
follows that our theory applies to their case and in particular extendg theoperty that
they verify to the Bernoulli property.

In [PS89 yet another treatment of the invariant manifold theory is given and in their
Theorem 3.8 and the discussion following it, one sees that measurable coordinates can
be given for the stable and unstable manifolds. They also construct hyperbolic blocks
and use them in a fashion similar to ours; however, their discussion stops short of the
K-property. This can now be filled in via our techniques.

There have been several papers in the last few years in which a hyperbolic structure
has been obtained and theé-property established. Some examples ar&S3917],
[KSS92, [Si97, and [Sz93. Usually for the K-property they ultimately refer back
to the monograph ofHSLP86] and there our results apply to deduce the additional
Bernoulli property. A recent preprint of Chernov and Haskell entitled ‘Nonuniformly
hyperbolic K -systems are Bernoulli’ covers some of the same ground as our paper with
similar methods.
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