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In space and astrophysical plasmas, violent events or instabilities inject energy
into turbulent motions at large scales. Nonlinear interactions among the turbulent
fluctuations drive a cascade of energy to small perpendicular scales at which
the energy is ultimately converted into plasma heat. Previous work with the
incompressible magnetohydrodynamic (MHD) equations has shown that this turbulent
energy cascade is driven by the nonlinear interaction between counterpropagating
Alfvén waves – also known as Alfvén wave collisions. Direct numerical simulations
of weakly collisional plasma turbulence enables deeper insight into the nature of the
nonlinear interactions underlying the turbulent cascade of energy. In this paper, we
directly compare four cases: both periodic and localized Alfvén wave collisions in the
weakly and strongly nonlinear limits. Our results reveal that in the more realistic case
of localized Alfvén wave collisions (rather than the periodic case), all nonlinearly
generated fluctuations are Alfvén waves, which mediates nonlinear energy transfer to
smaller perpendicular scales.
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1. Introduction
Turbulence plays a vital role in the dynamics of space plasmas such as the solar

wind, astrophysical plasma systems such as galaxy clusters and laboratory plasma
environments such as magnetically confined fusion plasmas. Driven by violent events
or instabilities at a large scale (such as impulsive magnetic reconnection in active
regions on the Sun), turbulent energy is transferred to smaller perpendicular scales
and eventually turned into plasma heat via dissipative mechanisms. Understanding
the entire cascade of turbulent energy and how it converts turbulent energy into
plasma heat is crucial for understanding how poorly understood astrophysical, space
and laboratory plasma systems evolve. For this reason, the dynamics of the turbulent
energy transfer remains a fervent research topic of plasma physics.

In contrast to the eddies that describe hydrodynamic turbulence, Alfvén waves –
waves supported by magnetic tension that propagate up or down along the magnetic

† Email address for correspondence: jennifer-verniero@uiowa.edu

https://doi.org/10.1017/S0022377818000090 Published online by Cambridge University Press

http://orcid.org/0000-0003-1749-2665
mailto:jennifer-verniero@uiowa.edu
https://doi.org/10.1017/S0022377818000090


2 J. L. Verniero and G. G. Howes

field – dominate the physics of turbulent motions in a magnetized plasma, a concept
first proposed by early research on incompressible magnetohydrodynamic (MHD)
turbulence in the 1960s (Iroshnikov 1963; Kraichnan 1965). Formulating the picture of
plasma turbulence in this way, Alfvén wave collisions are known as the ‘fundamental
building block of plasma turbulence’ (Kraichnan 1965; Howes & Nielson 2013).
Hence, studying the details of the nonlinear energy transfer of Alfvén wave collisions
lays important groundwork for understanding the turbulent energy cascade within a
fully turbulent medium where these Alfvén wave collisions are omnipresent. Following
significant work on incompressible MHD turbulence (Sridhar & Goldreich 1994;
Montgomery & Matthaeus 1995; Ng & Bhattacharjee 1996; Galtier et al. 2000), a
recent study has computed an analytical solution for the evolution of Alfvén wave
collisions in the weakly nonlinear limit (Howes & Nielson 2013) which has been
validated by nonlinear gyrokinetic numerical simulations (Nielson, Howes & Dorland
2013) and verified in the laboratory (Howes et al. 2012, 2013; Drake et al. 2013).

As described in detail in Howes & Nielson (2013), the general picture of nonlinear
energy transfer in the weakly nonlinear case is as follows. Alfvén wave modes are
of the form k̂= (kx/k⊥0, ky/k⊥0, kz/k‖0), where k⊥0 and k‖0 are the perpendicular and
parallel wavenumbers relative to the equilibrium magnetic field direction of the initial
two Alfvén waves in the MHD limit, k⊥ρi � 1. First, the perpendicularly polarized
primary Alfvén wave modes k̂

−
1 = (1, 0, 1) and k̂

+
1 = (0, 1,−1) interact nonlinearly to

give k̂
−
1 + k̂

+
1 = k̂

(0)

2 = (1, 1, 0). Under the periodic conditions adopted to facilitate an
analytical solution, the secondary mode is a purely magnetic fluctuation, physically
representing a shear in the magnetic field which oscillates at a rate of 2ωA, where
ωA ≡ k‖0vA is the frequency of the two primary Alfvén waves. This inherently
nonlinear mode has no parallel variation (k‖ = 0), therefore it is not an Alfvén mode
since it does not satisfy the Alfvén wave dispersion relation, ω= k‖vA. In other words,

this k̂
(0)

2 mode does not propagate as an Alfvén wave, which would have a parallel
phase velocity ω/k‖ = vA and a parallel group velocity ∂ω/∂k‖ = vA. Furthermore,
the amplitude of this secondary mode rises and falls in an oscillatory fashion at a
frequency of 2ωA, never gaining energy secularly. This secondary mode is essentially
a nonlinearly generated beat mode (Drake et al. 2016). Next, each primary mode k̂

±
1

interacts with this secondary mode k̂
(0)

2 to transfer energy secularly to two tertiary

modes, k̂
±
1 + k̂

(0)

1 = k̂
±
3 , where k̂

−
3 = (2, 1, 1) and k̂

+
3 = (1, 2,−1). These tertiary modes

k̂
±
3 have the same value of k‖ as the corresponding primary modes k̂

±
1 . The amplitude

of these tertiary modes k̂
±
3 grows secularly in time, with energy transfer from the

primary modes k̂
±
1 mediated by the strictly oscillatory secondary mode k̂

(0)

0 . The
analytical calculation (Howes & Nielson 2013) therefore identifies the key role of the
nonlinearly generated secondary mode with k‖= 0 in the nonlinear transfer of energy
from larger to smaller perpendicular scales relative to the background magnetic field.
The purpose of the present study is to illuminate the nature of this secondary mode in
the more realistic case of collisions between initially separated Alfvén wavepackets.

Strongly nonlinear MHD plasma turbulence simulations have led to another
important discovery about plasma turbulence, that intermittent current sheets develop
(Matthaeus & Montgomery 1980; Meneguzzi, Frisch & Pouquet 1981) and turbulent
energy dissipation is mostly concentrated within these sheets (Uritsky et al. 2010;
Osman et al. 2011; Zhdankin et al. 2013). Therefore, evidence for the connection
between the development of current sheets and the dissipation of turbulent energy into
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(a)

(b)

FIGURE 1. Set-up for perpendicularly polarized Alfvén waves in the localized and periodic
cases. Note that the blue curve corresponds to the (kx, ky) = (1, 0) mode and the red
curve corresponds to the (kx, ky) = (0, 1) mode. Note that the blue and red fluctuations
are polarized perpendicularly to each other, with δBx (red) and δBy (blue).

plasma heat has been sought after observationally (Borovsky & Denton 2011; Osman
et al. 2011, 2012; Perri et al. 2012; Wang et al. 2013; Wu et al. 2013; Osman et al.
2014) and numerically (Wan et al. 2012; Karimabadi et al. 2013; TenBarge & Howes
2013; Wu et al. 2013; Zhdankin et al. 2013). Recent work has shown that in the
strong turbulence limit, Alfvén wave collisions generate current sheets (Howes 2016),
an important breakthrough connecting the self-consistent development of intermittent
current sheets and the nonlinear mechanism responsible for transferring turbulent
energy to smaller scales. Subsequent work using the new field–particle correlation
technique (Klein & Howes 2016; Howes 2017; Howes, Klein & Li 2017; Klein
& TenBarge 2017) has shown that the particle energization in these current sheets
involves collisionless energy transfer via the Landau resonance (Howes, McCubbin &
Klein 2018).

The previous work on Alfvén wave collisions (Howes & Nielson 2013; Nielson
et al. 2013) explored the nonlinear interactions between two perpendicularly polarized,
counterpropagating plane Alfvén waves under periodic boundary conditions. These
two plane Alfvén waves were initially overlapping before they began to interact
nonlinearly, an unrealistic, idealized set-up that enabled an asymptotic analytical
solution to be obtained in the weakly nonlinear limit. A depiction of the initial
conditions in this case is shown in figure 1(a), where the variation of the magnetic
field, B, along the direction z (parallel to the equilibrium magnetic field) for each
of the two initial, perpendicularly polarized Alfvén waves is plotted. The upward
propagating Alfvén wave has a δBy polarization with a perpendicular Fourier mode
(1, 0) (blue) and the downward propagating Alfvén wave has a δBx polarization
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with a perpendicular Fourier mode (0, 1) (red). Note these initial plane Alfvén wave
modes fill the simulation domain and are periodic in both the perpendicular plane
as well as the parallel direction. We refer to this Alfvén wave initialization as the
periodic case. Note that the periodic boundary conditions are not what makes this
scenario unrealistic, but rather the fact that the two waves started on top of each other
and consequently did not arrive in those positions while undergoing a self-consistent
nonlinear interaction.

An important question is whether the key properties of the nonlinear evolution of
Alfvén wave collisions found in this idealized periodic case persists for the more
realistic case of the interaction between two initially separated Alfvén wavepackets.
To answer this question, we perform nonlinear kinetic simulations of the interaction
between two localized Alfvén wavepackets that do not initially overlap, as shown in
figure 1(b). Here, the upward propagating Alfvén wave has a δBy polarization but the
wavepacket is localized along the field parallel direction around z = −Lz/4, where
Lz denotes the length of the simulation domain. Note that this Alfvén wavepacket
remains periodic in the perpendicular plane, with its variation given by the Fourier
mode (1, 0) (blue). The downward propagating Alfvén wave has a δBx polarization, is
localized in z around z=Lz/4, and corresponds to a perpendicular Fourier mode (0, 1)
(red). Although the simulation domain itself is periodic in the z direction, such that a
wave propagating in the +z direction will exit the domain at z=Lz/2 and re-enter the
domain at z=−Lz/2, the localization of the wavepackets along z means that these two
wavepackets will not interact nonlinearly until they come together and overlap along
z, a more realistic situation. We refer to this initially separated Alfvén wavepacket
initialization as the localized case.

Our previous study of strongly nonlinear, localized Alfvén wave collisions (Verniero,
Howes & Klein 2018) found that indeed nonlinear interactions between initially
separated wavepackets facilitate the cascade of energy to smaller perpendicular scales
relative to the background magnetic field and self-consistently give rise to current
sheets, just as found in the periodic case. But that study employed asymmetric
initial Alfvén wavepackets (see figure 1 of Verniero et al. 2018), where one of the
wavepackets had a significant k‖ = 0 component initially relative to the background
magnetic field. Since it is the secondary mode with k‖ = 0 that plays the key role
in mediating the secular transfer of energy to smaller perpendicular scales in the
periodic case, it is important to ensure that the non-zero k‖ = 0 component of the
wavepacket in Verniero et al. (2018) does not affect the results in a fundamental
way. To address this issue, we pursue here a detailed comparison of periodic Alfvén
wave and localized Alfvén wavepacket collisions, where the initial wavepackets are
symmetric and neither wavepacket has a significant k‖= 0 component. This study will
enable us to determine the nature of the nonlinearly generated modes that mediate
the cascade of energy to smaller perpendicular scales relative to the background
magnetic field in the localized case and to ensure that the non-zero k‖= 0 component
in the Verniero et al. (2018) study did not qualitatively alter the resulting cascade by
artificially initializing a mode that dominates the nonlinear energy transfer.

We aim to answer two primary questions: (i) what is the nature of the nonlinearly
generated secondary mode that mediates the cascade of energy in localized Alfvén
wave collisions?; and (ii) how does the localization of the interacting Alfvén waves
into separated wavepackets affect the qualitative and quantitative evolution of the
perpendicular cascade of energy and the development of current sheets?

In § 2, we describe the set-up of the simulation for each of the four cases being
compared. The nonlinear energy evolution of each case is presented in § 3.1. Our
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results in § 3.2 show that the secondary (1, 1) mode is an Alfvén wave mode. The
strongly and weakly nonlinear limits are compared in § 3.3. Current sheet development
is confirmed in § 3.4. Conclusions are discussed in § 4.

2. Simulation
The nonlinear interaction between two counterpropagating localized Alfvén

wavepackets or periodic Alfvén waves is simulated using the astrophysical gryokinetics
code AstroGK (Numata et al. 2010). AstroGK evolves the perturbed gyroaveraged
distribution function hs(x, y, z, λ, ε) for each species s, the scalar potential ϕ, the
parallel vector potential A‖ and the parallel magnetic field perturbation δB‖ according
to the gyrokinetic equation and the gyroaveraged Maxwell equations (Frieman &
Chen 1982; Howes et al. 2006). Velocity space coordinates are λ = v2

⊥/v
2 and

ε= v2/2. The domain is a periodic box of size L2
⊥ × Lz, elongated along the straight,

uniform mean magnetic field B0 = B0 ẑ, where all quantities may be rescaled to any
parallel dimension satisfying Lz/L⊥ � 1. Uniform Maxwellian equilibria for ions
(protons) and electrons are chosen, with a realistic mass ratio mi/me = 1836. Spatial
dimensions (x, y) perpendicular to the mean field are treated pseudospectrally; an
upwind finite-difference scheme is used in the parallel direction, z. Collisions employ
a fully conservative, linearized collision operator with energy diffusion and pitch-angle
scattering (Abel et al. 2008; Barnes et al. 2009).

To reveal details of the turbulent transfer of energy through the interaction of Alfvén
waves, we directly compare four simulations runs:

(i) Localized Alfvén wavepacket collisions in the strongly nonlinear limit, LS.
(ii) Periodic Alfvén wave collisions in the strongly nonlinear limit, PS.

(iii) Localized Alfvén wavepacket collisions in the weakly nonlinear limit, LW.
(iv) Periodic Alfvén wave collisions in the weakly nonlinear limit, PW.

For all cases, the plasma parameters are ion plasma beta βi= 1 and ion-to-electron
temperature ratio Ti/Te = 1. We choose a perpendicular simulation domain size L⊥ =
40πρi with simulation resolution (nx, ny, nz, nλ, nε, ns)= (32, 32, 128, 32, 16, 2) such
that our initial Alfvén waves fall into the MHD limit, k⊥ρi� 1. The fully resolved
perpendicular range in this dealiased pseudospectral method covers 0.05 6 k⊥ρi 6 0.5.
Here the ion thermal Larmor radius is ρi = vti/Ωi, the ion thermal velocity is v2

ti =
2Ti/mi, the ion cyclotron frequency is Ωi = qiB0/(mic) and the temperature is given
in energy units. The parallel length of the simulation domain is Lz, extending over
the range [−Lz/2, Lz/2]. Note that the simulation domain is triply periodic, so when a
wavepacket exits the domain at z=±Lz/2, it re-enters at the opposite end at z=∓Lz/2,
enabling the two wavepackets to undergo successive collisions with each other. The
linearized Landau collision operator (Abel et al. 2008; Barnes et al. 2009) is employed
with collisional coefficients νi = νe = 10−3k‖vA, yielding weakly collisional dynamics
with νs/ω� 1.

The initial Alfvén wavepackets have perpendicular wave vectors k−⊥ρi= (kxρi, kyρi)=
(0.05, 0) for the upward (z−) wavepacket and k+⊥ρi = (kxρi, kyρi) = (0, 0.05) for the
downward (z+) wavepacket, so both waves have the same initial perpendicular
wavenumber k±⊥ρi = 0.05, but are polarized perpendicular to each other. For brevity,
we will refer to modes normalized to the domain scale perpendicular wave vector
k⊥0 ≡ 2π/L⊥, giving k−⊥/k⊥0 = (kx/k⊥0, ky/k⊥0)= (1, 0).

Figure 1 illustrates the initial conditions for both the (a) periodic and (b) localized
cases. In (a), we plot the waveforms for the periodic cases, which are exactly the
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same as the localized case but without the application of the windowing function in
z, so that the localized and periodic cases are directly comparable. Here we plot the
waveforms along the parallel direction z at t = 0 of the perpendicular Fourier mode
(kx/k⊥0, ky/k⊥0)= (1, 0) of δBy (blue) and of the perpendicular Fourier mode (0, 1) of
δBx (red) for the localized Alfvén wavepacket case in (b). The localization along the
+z direction is specified using the procedure outlined in appendix A of Verniero et al.
(2018) with the parameters kza0 = 3, δ = 0, z0 =−π/2a0 =−L‖/4, 1z = 1.2a0 and an
exponent p = 2. For the wave which propagates in the −z direction, the parameters
are kza0 =−3, δ = 0, z0 = π/2a0 = L‖/4, 1z = 1.2a0 and an exponent p= 2. Figure 1
shows the amplitudes for the strongly nonlinear (a) periodic and (b) localized cases;
the weakly nonlinear cases have the same initial waveforms but smaller amplitudes.

The amplitude of the initial wavepackets is parameterized by the nonlinearity
parameter (Goldreich & Sridhar 1995), defined by taking the ratio of the magnitudes
of the linear to the nonlinear terms in the incompressible MHD equations (Howes
& Nielson 2013; Nielson et al. 2013). In terms of Elsasser variables, defined
by z± = u ± δB/

√
4π(n0imi + n0eme), the nonlinearity parameter is defined by

χ± ≡ |z∓ · ∇z±|/|vA · ∇z±|, where χ± characterizes the strength of the nonlinear
distortion of the z± Alfvén wave by the counterpropagating z∓ Alfvén wave.
For the particular initial Alfvén wavepackets shown in figure 1, the nonlinearity
parameter simplifies to χ±= 2k⊥δB∓⊥/(k‖B0). With the z± wavepackets having parallel
wavenumbers of approximately k‖a0 = ∓3, where a0 = Lz/2π, the amplitude of the
wavepackets in the strongly nonlinear case (δB±⊥/B0)(a0/ρi) ' 60 gives χ± = 2 and
the amplitude of the wavepackets in the weakly nonlinear case (δB±⊥/B0)(a0/ρi) ' 4
gives χ± = 0.13. Critically balanced, strong turbulence corresponds to a nonlinearity
parameter of χ ∼ 1 (Goldreich & Sridhar 1995), and weak turbulence corresponds to
χ�1, so these simulations fall into the desired limits of strong and weak nonlinearity,
respectively.

3. Results
The nonlinear evolution of the localized and periodic strong and weak Alfvén

wave collisions during the first few collisions is concisely illustrated by a plot of
the evolution of the energy in particular perpendicular Fourier modes in figure 2.
A meaningful quantitative comparison between the localized cases and the periodic
cases is made possible by selecting comparable energies for each Fourier mode and
a suitable definition of the Alfvén wave collision time scale in each case.

First, because the waveform in the z direction differs between the localized and
periodic cases, we choose to integrate the energy of each perpendicular Fourier mode
(kx/k⊥0, ky/k⊥0) along the z direction to facilitate comparison.

Second, we choose to normalize our time scales to the appropriate time scale of a
single complete Alfvén wave collision in both the localized and periodic cases. In the
localized case, the wavepackets collide twice during the time it takes for an Alfvén
wave to propagate the parallel length of the domain, defined by TLz ≡ Lz/vA. By
comparison, each wavelength in the periodic case passes through three wavelengths
of the counterpropagating waves during one wave-crossing period TLz . Therefore,
we define the collision time as T (l)c = TLz/2 for the localized Alfvén wavepacket
collision case and T (p)

c = TLz/3 for the periodic Alfvén wave collision case. To further
illustrate the evolution in the localized case, note that the first collision begins when
the counterpropagating wavepackets begin to overlap in z at t/T (l)c = 1/6 and ends
at t/T (l)c = 5/6. Subsequently, the second collision begins at t/T (l)c = 7/6 and ends at
t/T (l)c = 11/6.
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(a) (b)

(c)

(e)

(d )

FIGURE 2. Energy evolution of each case for key (kx, ky) modes after 3 collisions, for
the (a) localized, strongly nonlinear case LS, (b) periodic, strongly nonlinear case PS, (c)
localized, weakly nonlinear case LW and (d) periodic, weakly nonlinear case PW.

3.1. Evolution of energy of secondary (1, 1) mode
The temporal evolution of energy of select (kx, ky) modes for the first three collisions
is shown in figure 2 while figure 3 shows the full time evolution of the simulations.
To illustrate differences between the periodic and localized cases, we first focus on
the weakly nonlinear limit. From (d), in the periodic case, the evolution agrees with
the analytical solution from Howes & Nielson (2013), as described qualitatively above
in § 1. Notice that the secondary (1, 1) mode, which mediates the secular transfer
of energy to the tertiary (1, 2) and (2, 1) modes, does not experience a net gain in
energy. This (1, 1) mode corresponds to the inherently nonlinear fluctuation that does
not propagate, as described in the introduction. In contrast, the secondary (1, 1) mode
of the localized case in (c) clearly does gain energy, which is the most consequential
difference among all the curves. This means that in the localized case, this secondary
mode gains energy like all other nonlinearly generated modes. One other major
distinction between LW and PW is that in LW, energy is only transferred during periods
when the wavepackets overlap in z, giving the energy evolution curve a stair-step
appearance. In contrast, PW has persistent energy transfer since the wavepackets never
separate.

Note that convergence studies have been done to verify that the results with this
(nx, ny) = (32, 32) resolution are accurately resolved by the grid in AstroGK. We
initially started this experiment using a resolution of (nx, ny)= (10, 10) and replicated
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(a) (b)

(c)

(e)

(d )

FIGURE 3. Full energy evolution of each case for key (kx, ky) modes, for the (a) localized,
strongly nonlinear case LS, (b) periodic, strongly nonlinear case PS, (c) localized, weakly
nonlinear case LW and (d) periodic, weakly nonlinear case PW.

the same results using (nx, ny)= (16, 16). For the (nx, ny)= (32, 32) case, we followed
the evolution of energy until it deviated from the (16, 16) resolution case and ceased
the simulation at that point. The results presented in figure 3 follow the evolution of
energy up until the time step of this deviation point for each of the localized and
periodic cases in the weakly and strongly nonlinear limit. At the end of the time
evolution shown in figure 3, approximately 13 % of the initial magnetic energy has
been transferred nonlinearly to higher k⊥ modes (not shown in the figure) for case LS
and about 17 % of the initial magnetic energy for case PS.

3.2. Identification of nonlinearly generated modes as Alfvén waves
In the periodic case, as reviewed in the introduction, the secondary (1, 1) mode
mediates the secular transfer of energy from the primary Alfvén waves to the tertiary
Alfvén waves, and this mode is an inherently nonlinear fluctuation that satisfies neither
the linear eigenfunction relation nor the linear dispersion relation for an Alfvén wave.
For the more realistic case of localized Alfvén wavepacket collisions, we aim to
determine here the nature of the secondary (1, 1) mode. Specifically, we ask whether
this secondary (1, 1) mode is an Alfvén wave. A linear Alfvén wave must satisfy two
conditions (Howes & Nielson 2013): (i) it satisfies the linear eigenfunction relation
for an Alfvén wave, u⊥/vA = ±δB⊥/B0; and (ii) it has a frequency given by the
linear Alfvén wave dispersion relation, ω = ±k‖vA. The strongly nonlinear localized
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case LS is the most relevant to the case of heliospheric plasma turbulence, so we
focus strictly on this case below.

3.2.1. Alfvén wave eigenfunction relation
To confirm that the fluctuations that are nonlinearly generated by the LS Alfvén

wave collisions have the character of linear Alfvén waves, we first verify that the
electric field, E, and magnetic field fluctuations are related by the following linear
eigenfunction relation (Howes & Nielson 2013)

B⊥
B0
=± cE⊥

vAB0
× ẑ, (3.1)

where the positive sign corresponds to an Alfvén wave travelling down the magnetic
field in the −z direction, and the negative sign corresponds to an Alfvén wave
travelling up the magnetic field in the +z direction.

Separating the two components perpendicular to the equilibrium magnetic field B0=
B0 ẑ given by (3.1), we note that Alfvén waves travelling up the magnetic field in the
+z direction will satisfy the relations

Bx

B0
=− cEy

vAB0
,

By

B0
=+ cEx

vAB0
(3.2a,b)

and that Alfvén waves travelling down the magnetic field in the −z direction will
satisfy the relations

Bx

B0
=+ cEy

vAB0
,

By

B0
=− cEx

vAB0
. (3.3a,b)

For notational simplicity, we use a hat to denote these dimensionless magnetic and
electric field components, B̂j ≡ Bj/B0 and Êj ≡ cEj/(vAB0). Note that the propagation
direction of the Alfvén wave is easily determined by computing the Poynting flux,
S= (c/4π)E× B.

In figure 4, we present normalized Ê and B̂ field components of the primary,
secondary and tertiary modes in the (a–c, d–f and g–i, respectively) at times
t/T (l)c = 0, 1, 2 (in the first, second and third columns, respectively). In the first
column of figure 4 at t/T (l)c = 0, we have only (a) the primary Alfvén wavepackets.
The upward propagating Alfvén wave has a perpendicular variation given by the (1, 0)
Fourier mode and has a magnetic field polarization in the y direction. This wavepacket
satisfies the normalized eigenfunction for an upward propagating Alfvén wave, B̂y= Êx
(red/black). The downward propagating Alfvén wave has a perpendicular variation
given by the (0, 1) Fourier mode and has a magnetic field polarization in the x
direction. This wavepacket satisfies the normalized eigenfunction for a downward
propagating Alfvén wave, B̂x = Êy (blue/green). In addition, at t/T (l)c = 0, (d) the
secondary (1, 1) Fourier mode and (g) the tertiary (1, 2) Fourier mode are zero.

In figure 4(b,e,h), we show the primary, secondary, and tertiary modes after the first
collision at t/T (l)c = 1. In figure 4(b), the primary Alfvén waves have passed through
each other completely and still satisfy the same linear Alfvén wave eigenfunction
relations as before the first collision in (a). Shown in (e), energy has been transferred
to the secondary (1, 1) Fourier mode, in two separate localized wavepackets, each
with magnetic field components in both the x and y direction. At z< 0, the downward

https://doi.org/10.1017/S0022377818000090 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000090


10 J. L. Verniero and G. G. Howes

(a)

(d)

(g) (h)

(j)

(i)

(e) ( f )

(b) (c)

FIGURE 4. Snapshots in time of B̂x (blue, dotted), Êy (green, dashed), B̂y (red, dotted) and
Êx (black, dashed) of select (kx, ky) Fourier modes in the LS case. The first, second and
third rows correspond to the primary, secondary and tertiary modes respectively. All times
are normalized to the localized Alfvén collision time, T (l)c . The black arrows indicate the
direction of motion of the two colliding wavepackets.

propagating wavepacket satisfies the eigenfunction relations B̂y =−Êx (red/black) and
B̂x= Êy (blue/green), as expected for a downward travelling Alfvén wave. At z> 0, the
upward propagating wavepacket satisfies the eigenfunction relations B̂y= Êx (red/black)
and B̂x = −Êy (blue/green), as expected for an upward travelling Alfvén wave. This
confirms that this secondary (1,1) mode satisfies the linear Alfvén wave eigenfunction.
Shown in (h), the tertiary (1, 2) Fourier mode also involves two separate localized
wavepackets with magnetic field components in both the x and y direction. A close
inspection of the curves confirms that this tertiary (1, 2) mode also satisfies the linear
Alfvén wave eigenfunction.

In figure 4(c, f,i), we show the primary, secondary and tertiary modes after the
second collision at t/T (l)c = 2. In (c), the upward and downward moving Fourier
wavepackets have developed a component of polarization perpendicular to their
original polarizations. For instance, the upward wavepacket, which initially (at
t/T (l)c = 0) consisted of only a (1, 0) Fourier mode with magnetic field polarized in the
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y direction (red), now has a smaller (0, 1) Fourier mode contribution moving in the
+z direction that has a magnetic field polarized in the x direction (blue). Similarly,
the downward moving wavepacket, originally solely involving a (0, 1) Fourier mode
polarized in the x direction (blue), now also includes a smaller contribution from a
(0, 1) mode polarized in the y direction (red). These newly generated contributions
to the upward and downward moving wavepackets gained energy through nonlinear
energy transfer from other modes during the second collision. The secondary and
tertiary modes at t/T (l)c = 2 in panels ( f ) and (i) also show an increase in amplitude
relative to t/T (l)c = 1, showing that nonlinear interactions in the second collision have
further transferred energy to those modes from the primary Alfvén wavepackets.

Another way to visualize the upward and downward propagating Alfvén waves
is to compute the Elssaser fields, z±. Specifically, we write the components of the
normalized Elssaser variables for the upward (z−) and downward (z+) Alfvén waves
as

ẑ±x ≡
z±x
vA
= cEy

vAB0
± δBx

B0
(3.4)

and

ẑ±y ≡
z±y
vA
=− cEx

vAB0
± δBy

B0
. (3.5)

In figure 5, we plot the downward travelling Elsasser components z+x (black) and z+y
(red) and the upward travelling Elsasser components z−x (green) and z−y (blue) for
the same primary (a–c), secondary (b–f ) and tertiary (g–i) modes shown in figure 4.
Note that in each of the two separate, counterpropagating wavepackets, the downward
moving components (red/black) are always together in the same wavepacket localized
in z, and likewise the upward moving components (blue/green) are always together,
confirming the fact that these wavepackets remain localized in their extent along the
equilibrium magnetic field.

The main message from figures 4 and 5 is that, in the localized, strongly nonlinear
Alfvén wavepacket collision (LS) case, all of the nonlinearly generated components of
the Alfvén wavepackets satisfy the linear Alfvén wave eigenfunction condition given
by (3.1). This includes the secondary (1, 1) Fourier mode, which does not satisfy this
eigenfunction condition in the periodic case (Howes & Nielson 2013; Nielson et al.
2013). Note that this characteristic of the difference between the periodic Alfvén wave
and localized Alfvén wavepacket collisions is true in both the weakly and strongly
nonlinear limits (not shown).

3.2.2. Alfvén wave dispersion relation
In the MHD limit k⊥ρi� 1, the Alfvén wave satisfies the linear dispersion relation

ω = |k‖|vA, where we adopt the convention that ω > 0, so the sign of k‖ indicates
the direction of propagation of a plane Alfvén wave along the equilibrium magnetic
field, B0 = B0 ẑ. This simple dispersion relation indicates that Alfvén waves are non-
dispersive. The parallel phase velocity is given by vp‖ =ω/k‖=±vA and indicates that
wave crests of constant phase propagate up or down the equilibrium magnetic field at
the Alfvén speed, vA. The parallel group velocity is given by vg‖ = ∂ω/∂k‖ = ±vA,
meaning that the envelope of an Alfvén wavepacket will propagate up or down the
equilibrium magnetic field at the Alfvén speed, vA.
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(a)

(d)

(g) (h)

( j)

(i)

(e) ( f )

(b) (c)

FIGURE 5. Snapshots in time of perpendicular Elssaser field components z+y (red, dotted),
z−x (green, dashed), z−y (blue, dotted) and z+x (black, dashed) of key (kx, ky) modes in the
LS case. The first, second and third rows correspond to the primary, secondary and tertiary
modes respectively. All times are normalized to the localized Alfvén collision time, T (l)c .
The black arrows indicate the direction of motion of the two colliding wavepackets.

A brute-force determination of whether any nonlinearly generated mode satisfies
the linear Alfvén wave dispersion relation requires a decomposition of the fluctuation
into plane-wave modes to enable a comparison between the parallel wavenumber
k‖ of each constituent plane-wave mode and its linear frequency ω. Such a task
is complicated for the case of collisions between localized Alfvén wavepackets,
which necessarily contain a broad spectrum of parallel wavenumbers to accomplish
localization in z. But the non-dispersive nature of Alfvén waves makes an alternative
approach possible: if the nonlinearly generated modes propagate along the equilibrium
field direction together with the original Alfvén wavepackets at the Alfvén speed,
then collectively they describe a localized wavepacket propagating non-dispersively.
In figure 6, we overplot the perpendicular magnetic field perturbation δB⊥ of the
secondary (1, 1) Fourier mode with that of the primary (0, 1) and (1, 0) Fourier
modes at times t/T (l)c =1,2,3, showing that the nonlinearly generated (1,1) mode does
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(a)

(b)

(c)

FIGURE 6. Snapshots in time of δB⊥ versus z of primary modes (1, 0) and (0, 1)
overlapping the secondary mode (1, 1) in the LS case. All times are normalized to the
localized Alfvén collision time, T (l)c .

indeed propagate up or down along z with the primary modes at the Alfvén speed.
Furthermore, as predicted from the analytical solution for Alfvén wave collisions
(Howes & Nielson 2013; Howes et al. 2013), the (1, 1) mode is phase shifted by
π/2 relative to the primary mode from which it gained energy. For example, in
figure 6(a), the downward (0, 1) mode (red) passes through zero at the same position
in z at which the downward propagating secondary (1, 1) mode (black) reaches a peak.
The crucial point of figure 6 is that, in the localized Alfvén wavepacket collision, the
nonlinearly generated, secondary (1, 1) Fourier mode satisfies the linear Alfvén wave
dispersion relation, propagating along the equilibrium magnetic field non-dispersively.
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It is worthwhile noting that the gyrokinetic simulations performed here indeed
captures the physics of the finite-ion-Larmor-radius corrections that cause the Alfvén
wave solution to become dispersive at k⊥ρi → 1, transitioning to the dispersive
kinetic Alfvén wave. Therefore, there is a very slight spreading of the wavepackets
after nonlinear interactions have transferred energy into modes with k⊥ρi & 1. This
behaviour is noticeable in figure 7 of our companion paper (Verniero et al. 2018)
and is discussed in more detail in section 3.4 of that paper.

In summary, the results presented in figures 4 and 5 show that, in the more realistic
strong, localized Alfvén wavepacket collision case, the secondary (1, 1) mode satisfies
the linear Alfvén wave eigenfunction condition. The results presented in figure 6 show
that this mode also satisfies the linear Alfvén wave dispersion relation. Therefore,
we conclude that this secondary (1, 1) Fourier mode, which plays a key role in the
nonlinear transfer of energy to smaller perpendicular scales, is simply an Alfvén wave.
Note that one may interpret this (1, 1) mode of the Alfvén wave as a shear that
propagates along the magnetic field at the Alfvén speed (Howes & Bourouaine 2017).
This finding leads to a simplification of the picture of the nonlinear cascade of energy
in plasma turbulence relative to the idealized (but analytically soluble) periodic case.
In the periodic case, the nonlinear energy transfer to smaller scales is mediated by
an inherently nonlinear (1, 1) Fourier mode. In the more realistic localized case, the
energy mode that mediates the energy transfer is simply an Alfvén wave itself, both
gaining energy from the nonlinear interaction and mediating further energy transfer to
smaller scales.

3.3. Strong versus weak turbulence
Although the primary aim of this study is to understand how the physics of Alfvén
wave collisions changes in the more realistic case of localized Alfvén wavepacket
collisions, it is also worthwhile to explore the differences between the weak and strong
cases in both the periodic and localized cases.

In figures 2 and 3, comparing the (d) weakly and (b) strongly nonlinear periodic
cases, the most obvious difference is that the energy of the primary Alfvén waves
is significantly diminished in the strongly nonlinear case, whereas in the weakly
nonlinear case, the loss of energy by the primary Alfvén waves is negligible, even
over the long time scale shown in figure 3(d), as expected. What is not necessarily
expected is that the evolution between the strongly and weakly nonlinear periodic
cases is qualitatively similar, with the secondary (1, 1) mode and the tertiary (1, 2)
and (2, 1) Alfvén waves as the dominant recipients of the energy nonlinearly
transferred from the primary Alfvén waves. The physics governing the nonlinear
cascade of energy to smaller scales appears to be similar in the weakly and strongly
nonlinear limits, suggesting that physical intuition from the weakly nonlinear limit
provides a useful framework for the interpretation of the strongly nonlinear dynamics.
Such an approach, in fact, underlies the recent discovery that strong Alfvén wave
collisions naturally develop current sheets (Howes 2016). A final qualitative feature
of the long-term evolution in the PS case, shown in figure 3(b), is that the primary
Alfvén waves lose energy up to t/T (p)

c ∼ 5, and then their amplitudes begin to rise
again. This curious behaviour arises from the dispersive nature of kinetic Alfvén
waves in the limit k⊥ρi → 1. The nonlinearly generated tertiary Alfvén waves in
the gyrokinetic system have a slight dispersive increase in their frequency due to
finite-Larmor-radius averaging, and over time begin to shift out of phase with the
primary modes, eventually transferring some of their energy back to the primary
waves (Nielson 2012).
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Comparing the (c) weakly and (a) strongly nonlinear localized cases in figures 2
and 3, we observe the same qualitative similarity between the weakly and strongly
nonlinear dynamics, with a more significant fraction of energy lost by the primary
Alfvén wavepackets in the strongly nonlinear case, again as expected. In contrast
to the periodic cases, in both weakly and strongly nonlinear localized cases, all
nonlinearly generated modes gain energy secularly over time. Because all of these
smaller perpendicular scale modes are gaining energy, there is a substantially greater
loss of energy from the primary Alfvén wavepackets in the LW case relative to the
loss from the primary Alfvén waves in the PW case, clearly shown by comparing
figure 3(c,d). The strongly nonlinear LS and PS cases in figure 3(a,b) show a similar
relation, where the energy loss from the localized case is much more significant than
in the periodic case. Therefore, it appears that localized Alfvén wavepacket collisions
are much more effective in mediating the nonlinear cascade to smaller perpendicular
scales. This is a key result because the localized, strongly nonlinear LS case, the
primary focus of this paper, is the most physically relevant case for application to
particular space and astrophysical environments, such as the solar wind and solar
corona.

3.4. Current sheet development
The final aim of this paper is to determine whether current sheets naturally develop
in the localized case of a strongly nonlinear collision between two symmetric Alfvén
wavepackets, where neither initially has a substantial k‖ = 0 component. Figure 7
shows plots of the normalized parallel current density jz/j0 = ( jz/n0iqivti)(a0/ρ0) in
the (x, y) plane perpendicular to the equilibrium magnetic field.

Figure 7(a,c,e) follows the evolution of the upward propagating z− Alfvén
wavepacket, while (b,d, f ) shows the downward propagating z+ Alfvén wavepacket.
Note that the waves collide at the midpoint of the simulation box z = 0 and
periodically at the end points z = ±Lz/2. We plot the perpendicular cross-section of
the parallel current density jz of each wavepacket at z=±Lz/4 when the wavepackets
are not overlapping at t/T (l)c = 0 in (a,b), after the first collision at t/T (l)c = 1 in (c,d),
and after the second collision at t/T (l)c = 2 in (e, f ). In (c,d), we see that the nonlinear
distortion of the original current pattern persists after the first collision, leading to a
narrowing and intensification of the current sheet. After the second collision in (e, f ),
the current density has further thinned and intensified into a sheet-like morphology.
Note that the amplitude of the colour scale increases with later snapshots, making
it clear that the current sheets are becoming increasingly intense and narrow over
time. Therefore, the result first shown in Verniero et al. (2018), that strong localized
Alfvén wavepacket collisions naturally lead to the development of current sheets,
is not dependent on the non-zero k‖ = 0 component of one of the colliding Alfvén
wavepackets in that study. We may therefore conclude that the development of current
sheets in strong, localized Alfvén wavepacket collisions is a robust result that is not
dependent on any particular forms of the initial wavepackets, further extending the
impact of the initial discovery that strong Alfvén wave collisions self-consistently
generate current sheets (Howes 2016), providing a first-principles explanation for the
ubiquitous observations of current sheets in turbulent space and astrophysical plasmas.

4. Conclusion
The results presented in this paper settles the issue of the nature of the nonlinearly

generated secondary mode – the mode that mediates the nonlinear transfer of energy
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 7. Current sheet formation before and after each collision of case LS.

in Alfvén wave collisions – in a more realistic setting than the idealized periodic
case that was used in previous work to enable an analytical solution to be computed.
Addressing the first question in the introduction, we conclude that these secondary
modes are indeed Alfvén modes in the case of localized Alfvén wavepacket collisions.
This fact was confirmed by showing (i) the eigenfunction condition, that there is the
correct relationship between the E and B fields described by (3.1) and shown in
figures 4 and 5 and (ii) the correct frequency condition, that the (1, 1) mode travels
at the Alfvén speed in accordance with the rest of the energy modes as shown in
figure 6.
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Observing figures 2 and 3, we found that in the periodic cases, only the tertiary
(1, 2) and (2, 1) modes experience a secular gain of energy after successive collisions,
while in the localized cases, the secondary (1, 1) mode gains energy in addition to the
tertiary modes. This means that in the case of localized wave collisions in both the
strongly and weakly nonlinear limit, energy transfer to smaller perpendicular scales
is more efficient than in the periodic case. We also saw, by comparison between the
weakly and strongly nonlinear cases, that the primary modes in the strongly nonlinear
limit lose significantly more energy than the weakly nonlinear cases. This saturation is
the most discernible quantitative difference between strong and weak turbulence, while
most other key features remain qualitatively similar such as overall evolution of the
energy of different perpendicular Fourier modes in time. We conclude that the strong,
localized LS case is the most effective way to transfer energy to smaller perpendicular
scales. This particular case of localized, strong turbulence, the focal point of this paper,
is the most applicable case to space and astrophysical plasmas. Hence, this case is
crucial for understanding the various turbulent energy cascades within our universe
such as black hole accretion disks, the solar wind and planetary magnetospheres.

From figure 7, we have also demonstrated that for the strong, localized LS case,
self-consistent current sheets are generated after successive collisions and persist in
between collisions, consistent with previous findings on strong turbulence simulations
for both the periodic (Howes 2016) and initially asymmetric localized cases (Verniero
et al. 2018). This particular finding shows that Alfvén wavepacket collisions in
the strongly nonlinear limit are a robust mechanism for current sheet development,
regardless of initial waveform. In turbulent space and astrophysical plasmas, current
sheets are observed ubiquitously and have been proposed to play a key role in the
conversion of turbulent energy into plasma heat. The quest to understand how a
plasma becomes heated is currently an active topic of research in the plasma physics
community. For example, the Parker Solar Probe, due to be launched in July 2018,
will investigate how the solar corona becomes heated to unprecedented temperatures,
a topic that has been debated for decades. The result presented in this paper – that
localized, strongly nonlinear Alfvén wave collisions naturally produce current sheets –
means that the observations of current sheets in many space and astrophysical plasma
systems can be explained from first principles.

We conclude that in the most physically applicable case of localized, strongly
nonlinear interactions, the fundamental properties of plasma turbulence still persist:
energy cascades nonlinearly to smaller perpendicular scales and intermittent current
sheets are self-consistently generated, answering the second question posed in the
introduction. In Verniero et al. (2018), we analysed the case of localized, strongly
nonlinear Alfvén wavepacket collisions with asymmetric initial waveforms. The
symmetric conditions presented in this paper demonstrate clearly that the effect of
a non-zero k‖ component does not alter the main characteristics of the Alfvén wave
collisions that govern plasma turbulence.

Our findings of the Alfvénic nature of the key (1, 1) mode in the localized,
strongly nonlinear case is a satisfying simplification of the picture of the nonlinear
energy transfer to small scales in plasma turbulence. It is important to emphasize the
fact that an Alfvén wave collision is the fundamental unit of interaction in plasma
turbulence (Kraichnan 1965; Howes & Nielson 2013), and a turbulent plasma would
contain many such nonlinear interactions among upward and downward propagating
Alfvén wavepackets. Such an ab initio approach to this subject allows for a clearer
picture to be painted and consequently enables deeper insight about the dynamics.
The results presented in this paper highlight the central role played by Alfvén waves
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in the nonlinear cascade of energy. The generation of the secondary mode mediates
the transfer of energy from the primary to tertiary modes. The secondary mode is
essentially a shear in the magnetic field that propagates along the magnetic field as
an Alfvén wave, shearing the perpendicular waveform of counterpropagating Alfvén
wavepackets and thereby nonlinearly transferring their energy to smaller perpendicular
scales (Howes & Bourouaine 2017). In contrast to the idealized periodic case, this
secondary (1, 1) mode gains energy secularly along with all of the other nonlinearly
generated modes. The striking difference between the periodic case with two initially
overlapping plane Alfvén waves and the localized Alfvén wavepacket case raises the
question of whether the non-Alfvénic ‘beat’ modes that arise in the periodic case will
alter the statistics of the turbulence. For decaying turbulence simulations, in which
the initialized Alfvénic fluctuations are already overlapping as in our periodic case,
this is an issue that merits further investigation. A follow-up study could investigate
the role of the Alfvénic propagating shear, discussed in this paper, on magnetic field
line wander, enabling a more atomistic description of the tangling of magnetic field
lines within the framework of Alfvén wave collisions. Our analysis of the more
realistic case of localized Alfvén wave collisions brings us closer to understanding
the fundamental characteristics of plasma turbulence from first principles.
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