
J. Fluid Mech. (2015), vol. 769, pp. 621–634. c© Cambridge University Press 2015
doi:10.1017/jfm.2015.143

621

On three-dimensional internal gravity wave
beams and induced large-scale mean flows

T. Kataoka1 and T. R. Akylas2,†
1Department of Mechanical Engineering, Graduate School of Engineering, Kobe University,

Rokkodai, Nada, Kobe 657-8501, Japan
2Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,

MA 02139, USA

(Received 12 September 2014; revised 28 January 2015; accepted 2 March 2015;
first published online 25 March 2015)

The three-dimensional propagation of internal gravity wave beams in a uniformly
stratified Boussinesq fluid is discussed, assuming that variations in the along-beam
and transverse directions are of long length scale relative to the beam width. This
situation applies, for instance, to the far-field behaviour of a wave beam generated
by a horizontal line source with weak transverse dependence. In contrast to the
two-dimensional case of purely along-beam variations, where nonlinear effects are
minor even for beams of finite amplitude, three-dimensional nonlinear interactions
trigger the transfer of energy to a circulating horizontal time-mean flow. This resonant
beam–mean-flow coupling is analysed, and a system of two evolution equations is
derived for the propagation of a small-amplitude beam along with the induced mean
flow. This model explains the salient features of the experimental observations of
Bordes et al. (Phys. Fluids, vol. 24, 2012, 086602).
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1. Introduction
In a recent laboratory experiment, Bordes et al. (2012) report observations of a

strong mean flow accompanying a time-harmonic internal gravity wave beam of
limited lateral extent propagating along a relatively wide stratified fluid tank. This
mean flow had a jet-like structure in the beam interior and featured horizontal
recirculations which extended outside the wave beam. Based on multiple-scale
analysis of a modulated sinusoidal plane wave, Bordes et al. (2012) argued that
the observed mean flow is a form of steady streaming (Lighthill 1978, § 4.7) driven
by Reynolds stresses due entirely to three-dimensional effects. In the experimental
set-up, three-dimensional wave variations were brought about by viscous attenuation
along the beam propagation direction and by the finite extent of the wave generator
in the vertical and transverse directions.

The findings of Bordes et al. (2012) add to growing evidence that the generation of
mean flows is central to three-dimensional internal wave beam dynamics. Laboratory
experiments and numerical simulations (Grisouard et al. 2013) of the reflection
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from a slope of a wave beam of finite extent in the transverse direction revealed a
wave-induced mean flow with amplitude comparable to that of the incident wave;
such a strong mean flow, though, was not observed in two-dimensional simulations,
where transverse variations were absent. Moreover, according to linear stability
analysis, a uniform wave beam can be unstable to long-wavelength disturbances only
if such modulations vary in the along-beam and the transverse directions (Kataoka &
Akylas 2013). This purely three-dimensional instability involves a resonant interaction
between the underlying wave beam and a perturbation that comprises a time-harmonic
component, with the beam frequency, and a mean flow.

Motivated by the works cited above, here we put forward a theoretical model for the
three-dimensional propagation of small-amplitude internal wave beams in a uniformly
stratified Boussinesq fluid, assuming that variations in the along-beam and transverse
directions are of long length scale relative to the beam width. In the corresponding
two-dimensional problem, where transverse variations are absent, nonlinear effects turn
out to be minor, even for beams of finite amplitude (Tabaei & Akylas 2003). Three-
dimensional variations, by contrast, enable resonant transfer of energy to the flow
mean vertical vorticity, resulting in strong nonlinear coupling between a wave beam
and its induced mean flow.

The key role of the vertical vorticity in three-dimensional internal waves is
discussed by Lighthill (1996). Specifically, vertical vorticity, which involves the
horizontal fluid motion, is conserved for linear inviscid disturbances. Thus, in three
dimensions, apart from the internal wave motion which obeys the familiar dispersion
relation, there is also a zero-frequency non-propagating mode associated with the
mean horizontal motion. These two modes are completely uncoupled in the linear
theory. However, in the case of a small-amplitude internal wave beam of interest
here, the Reynolds stresses brought about by the presence of both along-beam and
transverse variations resonantly force the mean vertical-vorticity mode, thus triggering
the transfer of energy to a circulating horizontal mean flow.

Our analysis of this nonlinear coupling mechanism leads to a system of two
nonlinear equations for the beam–mean-flow evolution in three dimensions. This
relatively simple model explains the salient features of the observations of Bordes
et al. (2012), even though the assumed separation of scales (length scale of transverse
variations � beam width) is not strictly satisfied in the experiment.

The proposed model applies to modulated internal wave beams with general locally
confined profile of O(1) width in the cross-beam direction. Such disturbances are
distinct from nearly monochromatic wavetrains, considered in the analysis by Bordes
et al. (2012) and several earlier mean-flow computations; see Tabaei & Akylas (2007)
and references given therein. As a result, the equations governing the beam–mean-flow
coupling in three dimensions are very different from the nonlinear-Schrödinger-type
models obtained in prior work. Moreover, in the problem at hand, as the induced mean
flow extends far from the beam vicinity, we find it necessary to follow a matched-
asymptotics procedure for deriving the appropriate evolution equations.

In oceans, internal wave beams form the backbone of the internal tide, which
is generated by the interaction of the barotropic tide with bottom topography.
The internal tide breakdown and its potential contribution to deep-ocean mixing
have attracted considerable attention. To shed light on these processes, numerous
studies have focused on instabilities of internal wavetrains to subharmonic short-scale
disturbances; see, for example, Staquet & Sommeria (2002), Koudella & Staquet
(2006), Karimi & Akylas (2014) and references given therein. The interaction
mechanism discussed here suggests that energy transfer from the internal tide to
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Three-dimensional gravity wave beams and induced mean flows 623

large-scale horizontal mean flows is also possible, particularly in regions of strong
three-dimensional variations, and such an ‘inverse cascade’ could play a part in
horizontal mass and momentum transport.

This scenario is further supported by Grisouard & Bühler (2012), who computed the
leading-order mean-flow response due to small-amplitude three-dimensional dissipating
internal tides, also taking into account the effect of background rotation. In this more
realistic oceanic setting, they also find that energy is transferred to a horizontal mean
flow by a resonance mechanism, similar to the one discussed here. On the other hand,
by focusing on an isolated internal wave beam with three-dimensional modulations,
the ensuing analysis leads to a fully coupled model, which describes the resonant
mean-flow response and also accounts for the effect of the growing mean flow on
the long-time beam propagation.

2. Formulation and scalings
An inviscid uniformly stratified Boussinesq fluid supports time-harmonic plane

internal gravity waves with general spatial profile. Such wave beams obey the familiar
internal-wave dispersion relation of sinusoidal plane waves,

ω2 =N2 sin2 θ, (2.1)

where ω is the wave frequency, θ is the beam angle to the horizontal and N is the
(constant) background buoyancy frequency.

A simple way of generating wave beams in the laboratory, as demonstrated in the
early experiments of Mowbray & Rarity (1967), is by oscillating a long horizontal
cylinder at a frequency ω < N in a stratified fluid tank. This type of mechanical
forcing gives rise to a wave pattern known as ‘St. Andrew’s Cross’, which comprises
four beams that stretch radially outward from the cylinder along directions fixed by
the dispersion relation (2.1); see, for example, Lighthill (1978, p. 314). Bordes et al.
(2012), instead, employed a recently developed mechanical wave generator (Gostiaux
et al. 2007; Mercier et al. 2010) placed at one side of a stratified fluid tank. This
set-up made it possible to excite a single wave beam and also prescribe the beam
profile.

The present study focuses on the far-field propagation of a three-dimensional
internal wave beam, ignoring the detailed behaviour near the forcing region. For this
purpose, we shall use as wave source an externally applied time-harmonic line force
centred at x= y= 0, with x being the horizontal, y the vertical and z the transverse
horizontal direction. To describe the far-field evolution of one of the four beams due
to this source, it is convenient to use a rotated coordinate system, with ξ being the
along-beam and η the cross-beam direction (figure 1). Moreover, we shall work with
dimensionless variables, employing 1/N as the time scale and a characteristic length
L∗ associated with the applied forcing (to be specified below) as the length scale.
Then, the flow-velocity components u = (u, v, w) along (ξ , η, z) and the reduced
density ρ and pressure p are governed by

∇ · u= 0, (2.2)
ρt + u · ∇ρ =−u sin θ + v cos θ, (2.3)

ut + u · ∇u=−pξ + ρ sin θ + ν∇2u+ F, (2.4a)
vt + u · ∇v =−pη − ρ cos θ + ν∇2v +H, (2.4b)

wt + u · ∇w=−pz + ν∇2w. (2.4c)
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FIGURE 1. Schematic of a St. Andrew’s Cross generated by an external time-harmonic
line force with frequency ω = sin θ (0 < θ < π/2). The force is locally confined near
x = y = 0 and slowly varying along z. The analysis focuses on the propagation of one
of the four generated beams far from the forcing region. It is assumed that variations in
the along-beam (ξ ) and transverse horizontal (z) directions are weak in comparison with
variations in the cross-beam (η) direction.

Here, (F, H) are the components of the applied force along (ξ , η) and ν = ν∗/NL2
∗

stands for the inverse Reynolds number, where ν∗ is the kinematic viscosity.
A key assumption in the ensuing asymptotic analysis is that the external force,

which is locally confined in ξ and η, varies slowly in the transverse (z) direction. Thus,
identifying the characteristic length L∗ with the typical extent of the wave source in
the x–y plane, the force components F and H are expressed as

F= α
{

F̂(ξ , η; Z)e−iωt + c.c.
}
, H = α

{
Ĥ(ξ , η; Z)e−iωt + c.c.

}
, (2.5a,b)

where F̂ and Ĥ are O(1). Here,

Z = εz (0< ε� 1) (2.6)

is a ‘stretched’ transverse coordinate and ω = sin θ (0< θ < π/2) according to (2.1)
in dimensionless form. In addition, it is assumed that the forcing amplitude parameter
α in (2.5) is small (0< α� 1), so the amplitude of the generated beam is small as
well.

Under these assumptions and light viscous dissipation (ν� 1), the response in the
far field (ξ, t � 1) is expected to be a nearly uniform wave beam, whose profile
has O(1) width in η but is slowly varying in the along-beam (ξ ) and transverse (z)
directions. Our goal is to set up a far-field asymptotic theory for beam propagation, in
the ‘distinguished limit’ where the weak dispersion due to along-beam and transverse
variations, small nonlinearity and light viscous dissipation formally carry equal weight.

Specifically, from prior experience with modulated wave beams (Tabaei & Akylas
2003; Kataoka & Akylas 2013), to make the transverse dispersion due to the
dependence on Z = εz as important as along-beam dispersion, we take the scale
of along-beam variations to be O(ε−2); according to the dispersion relation (2.1),
transient effects due to such modulations then evolve on a time scale of O(ε−2).
Hence, the appropriate ‘stretched’ along-beam coordinate and ‘slow’ time are

(X, T)= ε2(ξ , t). (2.7)
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Three-dimensional gravity wave beams and induced mean flows 625

Turning next to viscous dissipation, from Lighthill (1978, § 4.7), the attenuation length
scale for a beam of O(1) width is O(1/ν). Thus, for dissipation to act on the same
O(ε−2) length scale as along-beam dispersion, it is necessary that ν=O(ε2); thus, we
write

ν = βε2, (2.8)

where β =O(1).
Finally, it remains to link the forcing amplitude parameter α, which controls the

beam nonlinearity, to the modulation parameter ε. Our earlier stability analysis of
a uniform wave beam to three-dimensional modulations (Kataoka & Akylas 2013)
suggests that the appropriate balance for small-amplitude beams is

α = ε1/2. (2.9)

Under this scaling, the beam coupling with the induced mean flow, which turns out
to be the dominant nonlinear interaction, comes into play on the same time scale as
dispersive and viscous effects.

3. Beam–mean-flow coupling

The scalings (2.6)–(2.9) pertain to the far-field propagation of an O(ε1/2) beam
whose profile has O(1) width and varies slowly along ξ and z. Accordingly, one might
expect that the scaling of the beam flow variables is similar to an O(ε1/2) modulated
sinusoidal plane wave with O(1) carrier wavevector along η and envelope variables
Z = εz, (X, T)= ε2(ξ , t); namely, (u, ρ, p)=O(ε1/2), with the relative magnitudes of
the cross-beam and transverse velocity components,

v =O(ε5/2), w=O(ε3/2), (3.1a,b)

following directly from the incompressibility condition (2.2).
It turns out, however, that these scalings hold only for strictly two-dimensional

wave beams, which feature no transverse variations (∂/∂Z = 0, w = 0). The reason
is that three-dimensional nonlinear interactions give rise to a relatively strong mean
flow which in fact extends far away from the beam (|η| � 1) and is essential to
the propagation of a beam in three dimensions. Thus, it becomes necessary to
follow a matched-asymptotics procedure whereby we solve for the induced mean
flow separately near and far from the beam, and then match the two solutions. As
expected, different scalings are appropriate in these two flow regions. Here, we focus
on the ‘inner’ flow, in the vicinity of the beam, η=O(1); the ‘outer’ flow, far from
the beam, along with matching is discussed in § 4.

With the benefit of hindsight from our stability analysis of a uniform beam where
a similar complication was encountered (Kataoka & Akylas 2013), in order for inner–
outer-flow matching to be possible, it is necessary to allow for an O(ε2) mean-flow
component, ε2V∞(X,Z,T), in the cross-beam velocity in (3.1). Thus, the proper inner
scalings of u, ρ and p are

(u, ρ, p)→ ε1/2(u, ρ, p), v→ ε2V∞ + ε5/2v, w→ ε3/2w. (3.2a−c)

It should be noted that V∞, which is independent of η, derives from nonlinear
interactions due entirely to three-dimensional variations and will be determined
by inner–outer-flow matching in § 4, along with the rest of the inner mean-flow
components. As a whole, this induced mean flow turns out to be purely horizontal
to leading order (see (4.4) below), in line with the beam–vertical-vorticity nonlinear
interaction suggested in § 1.
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Upon implementing (2.5)–(2.9) and (3.2), it follows from the governing equations
(2.2)–(2.4), after eliminating ρ and p, that u= (u, v,w) satisfy

uX + vη +wZ = 0, (3.3a)

utt + u sin2 θ = ε3/2V∞ sin θ cos θ + ε2

{
v sin θ cos θ +

(
− 2uT − 2V∞uη

+ cot θ
∫ η

utXdη′ + βuηη

)
t

}
− 2ε2 sin θδ(X)

{
if e−iωt + c.c.

}+ O(ε5/2), (3.3b)(
wη sin θ − uZ cos θ

)
t = ε2

{(
uT + V∞uη − cot θ

∫ η

utXdη′ − βuηη

)
Z

cos θ

+ vZt sin θ − (wT + V∞wη − βwηη

)
η

sin θ
}

− 2ε2δ(X)
{
(fZ cos θ + hZ sin θ)e−iωt + c.c.

}
+ ε5/2

{
(u · ∇̂u)Z cos θ − (u · ∇̂w)η sin θ

}
+O(ε7/2). (3.3c)

Here, ∇̂ = (∂/∂X, ∂/∂η, ∂/∂Z) and, in view of (2.7) and (2.9), the external force
components (2.5) have been approximated in the far field (X, T =O(1)) by

F→ 2ε5/2δ(X)
{

f (η, Z)e−iωt + c.c.
}
, H→ 2ε5/2δ(X)

{
h(η, Z)e−iωt + c.c.

}
, (3.4a,b)

where f (η, Z) and h(η, Z) are O(1) locally confined functions in η, and δ(X) denotes
the delta function.

In the two-dimensional case where transverse variations are absent (∂/∂Z = 0, w=
0), the inner flow equations (3.3) reduce to (3.3a,b); thus, the three-dimensional nature
of the flow is reflected mainly in (3.3c), which governs the evolution of the vertical
vorticity

Ω =wη sin θ − uZ cos θ +O(ε2). (3.5)

Moreover, as emphasized by Lighthill (1996), if nonlinear, viscous and forcing effects
are ignored, Ω is conserved according to (3.3c); as a result, in three dimensions, there
is a zero-frequency linear mode associated with the mean vertical vorticity.

The leading-order response according to (3.3) is a wave beam with time-harmonic
dependence (u ∝ e±iωt) at the forcing frequency ω = sin θ . At higher order, one
would expect nonlinear interactions due to along-beam and transverse variations to
give rise to a mean flow (independent of t) and higher-harmonic oscillations in
t (∝ e±inωt, n> 1). However, by virtue of (3.3c), the Reynolds stresses brought about
by three-dimensional variations resonantly force the flow mean vertical vorticity,
which is a non-propagating natural mode as remarked above; thus, the induced mean
flow dominates over the rest of the harmonics.

To describe this resonant primary-harmonic–mean-flow interaction, u is expanded as
follows:

u= {U(X, η, Z, T)e−iωt + c.c.
}+ ε3/2U(X, η, Z, T)+ · · · , (3.6a)

v = {V(X, η, Z, T)e−iωt + c.c.
}+ ε1/2V(X, η, Z, T)+ · · · , (3.6b)

w= {W(X, η, Z, T)e−iωt + c.c.
}+ ε1/2W(X, η, Z, T)+ · · · . (3.6c)
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Three-dimensional gravity wave beams and induced mean flows 627

The equations governing the amplitudes of the primary and mean harmonics in
(3.6) are obtained by inserting these expansions into (3.3) and collecting the various
contributions to each harmonic. Specifically, from the primary-harmonic terms in
(3.3c) and (3.3a), we find

W = cot θ
∫ η

UZdη′ +O(ε2), (3.7)

V =−
∫ η

UXdη′ − cot θ
∫ η ∫ η′

UZZdη′′dη′ +O(ε2). (3.8)

Then, collecting primary-harmonic terms in (3.3b) and making use of (3.7) and (3.8)
yields an evolution equation for U:

UT + V∞Uη + icos θ

(∫ η

UXdη′ + cot θ
2

∫ η ∫ η′

UZZdη′′dη′
)
− β

2
Uηη = δ(X)f . (3.9)

Turning next to mean terms, from (3.3c), after further use of (3.7) and (3.8), it
follows that

sin θ
(
WT + V∞Wη − βWηη

)
η
= 2 cos θ

{(
U∗Z

∂

∂η
−U∗η

∂

∂Z

)(∫ η

UXdη′

+ cot θ
2

∫ η ∫ η′

UZZdη′′dη′
)
+ c.c.

}
, (3.10)

where ∗ denotes complex conjugate. It should be noted that, in view of (3.6), the flow
vertical vorticity (3.5) is given by

Ω = {(Wη sin θ −UZ cos θ
)

e−iωt + c.c.
}+ ε1/2Wη sin θ +O(ε3/2). (3.11)

Thus, (3.10) governs the evolution of the generated mean vertical vorticity Ω =
sin θWη. It should be noted that, according to the right-hand side of (3.10), Ω
is produced solely by three-dimensional nonlinear interactions – the action of the
so-called Reynolds stresses brought about by longitudinal (X) and transverse (Z)
variations of the wave beam.

According to the evolution equations (3.9) and (3.10), in the inner-flow region (η=
O(1)), the feedback of the induced mean flow to the beam propagation is relayed via
the cross-beam velocity component V∞, which remains undetermined. To find V∞ and
thus obtain a closed system of evolution equations, we next discuss the outer flow, far
from the vicinity of the beam (|η| � 1).

4. Outer flow and matching
Given that the forcing (3.4) is locally confined in η, the generated disturbance is

expected to decay as η→±∞:

(u, ρ, p)→ 0 (η→±∞). (4.1)

Attention is now focused on meeting these boundary conditions. To this end, we shall
require that ∫ η ∫ η′

Udη′′dη′→ 0 (η→±∞); (4.2)
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in view of (3.7) and (3.8), this ensures that the wave beam, described by the primary-
harmonic terms in (3.6), is locally confined in the cross-beam direction, in accordance
with (4.1).

In regard to the induced mean flow, however, the boundary conditions (4.1) cannot
be met by the inner-flow response. Apart from V∞ which is constant along η, (3.10)
suggests that W also remains non-zero far from the beam:

W→W±∞(X, Z, T) (|η| � 1). (4.3)

In addition, according to (3.6) and (3.3b),

U = cot θ V∞ +O(ε1/2), (4.4)

confirming that the induced inner mean flow is purely horizontal, to leading order.
Finally, upon combining (3.6) and (4.3) with (3.3a), it follows that

V ∼−η∂W±∞
∂Z

(|η| � 1). (4.5)

Thus, from (4.3)–(4.5), accounting for the scalings (3.2) and the form of the inner
expansions (3.6) introduced earlier, the asymptotic behaviour of the induced mean flow
far from the beam is

u∼ ε2
{(

cot θV∞, V∞,W±∞
)+O(εη)

}
(|η| � 1). (4.6)

The above outer limit of the inner solution for u then suggests an outer solution in
the form

u= ε2Ũ(X, Y, Z, T)= ε2(Ũ, Ṽ, W̃), (4.7)

with ρ = O(ε4) and p = O(ε3). Here, Y = εη is a ‘stretched’ cross-beam coordinate
appropriate in the outer-flow region εη=O(1), where the inner solution breaks down
according to (4.6).

Upon substituting (4.7) into the governing equations (2.2)–(2.4), to leading order,
the outer solutions for the induced mean flow, consistent with the boundary conditions
(4.1), are

Ũ=
∫ ∞

0

(
cot θ, 1, ∓ i

sin θ

)
V̂∞ exp

{
m
(

iZ ∓ Y
sin θ

)}
dm+ c.c. (Y ≷ 0). (4.8)

Here, V̂∞(X, T;m) denotes the Fourier transform of V∞ with respect to Z,

V̂∞ = 1
2π

∫ ∞
−∞

V∞e−imZdZ. (4.9)

Hence, matching of the outer solution (4.7) and (4.8) as Y→ 0± with the outer limit
of the inner solution (4.6) requires that

W±∞ =∓ 1
sin θ

H
[
V∞
]
, (4.10)

where

H
[
V∞
]= ∫ ∞

−∞
i sgn(m)V̂∞eimZdm (4.11)
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denotes the Hilbert transform with respect to Z. It should be noted that, since Ũ/Ṽ =
cot θ in (4.8), the outer mean flow also is purely horizontal, as expected.

Returning now to (3.10) for the inner mean vertical vorticity Wη sin θ , (4.10) serve
as matching conditions with the outer flow. However, upon integrating (3.10) over the
whole range −∞<η<∞ and using these conditions, we can eliminate W and obtain
an evolution equation for the cross-beam mean flow V∞(X, Z, T):

∂V∞
∂T
= cos θ

∂

∂Z
H

[∫ ∞
−∞

U∗
(

UX + cot θ
2

∫ η

UZZdη′
)

dη
]
+ c.c. (4.12)

Combined with (3.9), (4.12) thus constitutes a closed system of evolution equations
for the three-dimensional propagation of a beam and the associated large-scale mean
flow. Once V∞ is known, the induced mean flow far from the beam can be readily
obtained from the outer solution (4.7) and (4.8).

From the right-hand side of (4.12), it is clear that transverse (Z) variations of the
beam profile U are essential to mean-flow generation. The first term, in particular,
which involves both Z and X derivatives, is analogous to the mean-flow production
term found by Bordes et al. (2012); however, our analysis reveals an additional term
which derives from purely transverse variations.

Finally, making use of (3.9), the evolution equation (4.12) may be written in the
alternate form

∂V∞
∂T
= i

∂

∂Z
H

[∫ ∞
−∞

{(
U∗Uη

)
T + βU∗ηUηη

}
dη
]
. (4.13)

This brings out the role of viscous attenuation of a wave beam in the mean-flow
generation process (Lighthill 1978, § 4.7). Assuming a quasi-steady three-dimensional
beam, in particular, the term proportional to the viscous parameter β on the right-
hand side of (4.13) gives rise to a mean flow that grows linearly with time. The
same type of secular behaviour was also found by Grisouard & Bühler (2012) for the
resonant mean-flow response to dissipating three-dimensional internal tides. However,
as the mean flow keeps growing, its coupling to the underlying beam reflected in (3.9)
eventually comes into play, and the beam–mean-flow evolution is governed by the full
system of equations (3.9) and (4.12) or (4.13).

5. Comparison with Bordes et al. (2012)
We now apply the asymptotic model developed above to the laboratory experiment

of Bordes et al. (2012). Their experimental set-up used as forcing a mechanical wave-
beam generator (Gostiaux et al. 2007; Mercier et al. 2010) placed at one end of a
120 cm long, 80 cm wide and 42.5 cm deep stratified fluid tank. The wave generator
featured a sinusoidal profile along the vertical, with wavelength λ= 3.8 cm, and had
fixed height 3λ and transverse width 3.7λ. As the ratio of vertical to lateral extent of
the forcing is about 0.8, the thin-beam approximation (transverse length scale � beam
width) made in the analysis is not strictly justified in the experiment of Bordes et al.
(2012). Nevertheless, the evolution equations (3.9) and (4.13) describe qualitatively the
salient features of their observations, as discussed below.

Here, we shall report results for one of the two forcing frequencies, ω = sin θ =
0.26, considered in the experiment. With λ as our characteristic length scale L∗, the
dimensionless height of the wave generator is 3, and we select ε so that the transverse
width of the wave generator is normalized to unity (in terms of Z); this choice, in
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view of (2.6), specifies ε = 0.27. Moreover, the experimental value of the buoyancy
frequency N = 0.85 rad s−1 fixes the characteristic time scale 1/N, and with ν∗ =
1 mm2 s−1 for the kinematic viscosity, the viscous parameter in (2.8) turns out to be
β= 0.011. Unlike the formal assumptions made in the asymptotic theory, ε is actually
not all that small and β is very different from 1 in the experiment.

In line with the scalings above and the sinusoidal profile of the wave generator, the
forcing function f (η, Z) on the right-hand side of (3.9) is taken in the form

f (η, Z)=
{

A0 e2πiη (−1.5<η < 1.5, −0.5< Z < 0.5),
0 (otherwise),

(5.1)

with A0 = 0.005. This value was chosen such that the (dimensional) maximum
amplitude of the along-tank (x) velocity component of the computed beam matches
the experimentally observed value of approximately 1 mm s−1 (see figure 2a of
Bordes et al. 2012).

The evolution equations (3.9) and (4.13) subject to the boundary conditions (4.2)
were solved numerically starting from rest, U = V∞ = 0 (T = 0). The numerical
method employed pseudo-spectral discretization in space combined with fourth-order
Runge–Kutta time stepping. In applying numerically the forcing term in (3.9), it was
convenient to replace f (η, Z) in (5.1) with

A0

2
e2πiη {tanh[5(Z + 0.5)] − tanh[5(Z − 0.5)]} (−1.5<η < 1.5, −∞< Z <∞),

(5.2)
and to approximate δ(X)' (30/

√
π) exp{−(30X)2}. Computations were carried out in

the domain (−1.5< X< 1.5, −6<η< 6, −3< Z < 3) using 256× 128× 128 Fourier
modes, which ensured sufficient spatial resolution, and time step 1T = 8× 10−5.

Figure 2 shows side and top views of the computed x velocity component of the
wave beam and induced mean flow at T = 6, corresponding to the dimensional time
t = 96 s; by this time the beam amplitude U has reached a quasi-steady state for
0 < x < 40 cm along the tank. The plots in figure 2 are in terms of dimensional
variables and the colour code has been chosen so as to facilitate direct comparison
with the corresponding experimental results displayed in figure 2 of Bordes et al.
(2012). (It should be noted that Bordes et al. (2012) do not report how long after
the wave generator was turned on their results were obtained; also, they use z
for the vertical and y for the transverse horizontal coordinate.) In computing the
x component of the mean flow plotted in figure 2(c,d), we have combined the
leading-order inner-flow solution (4.4) in the vicinity of the beam (−1.5 . η . 1.5)
with the outer-flow solutions (4.7) and (4.8) away from the beam. It should be noted
that, as the separation of scales assumed in the analysis (beam width � transverse
length scale) is not actually satisfied in the experiment, the extent of the inner region
is comparable to that of the outer regions.

The theoretical predictions for both the beam and the induced mean flow are in
qualitative agreement with the observations. Specifically, in regard to the induced
mean flow, the vertical flow slice at the centre (z= 0) of the wavemaker (figure 2c)
shows a strong jet-like mean flow inside the beam near the wavemaker, consistent
with figure 2(c) of Bordes et al. (2012). It should be noted that this jet-like structure
is clearly brought out by the asymptotic analysis: according to (4.4), the inner mean
flow is horizontal and the x component remains constant across the beam since V∞ is
independent of η. Moreover, the horizontal flow slice at the mid-depth (y= 21.6 cm)
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FIGURE 2. (Colour online) Computed (dimensional) x velocity component of the wave
beam (a,b) and induced mean flow (c,d) at T = 6 (dimensional t = 96 s). The plots are
prepared so as to facilitate direct comparison with the experimental results in figure 2 of
Bordes et al. (2012). (It should be noted that they use z for the vertical and y for the
transverse horizontal coordinate.) The location of the wavemaker is shown in black. (a,c)
Vertical flow slice at the centre (z= 0) of the wavemaker; (b,d) horizontal flow slice at
the mid-depth (y= 21.6 cm) of the wavemaker.

of the wave generator (figure 2d) confirms that the mean-flow recirculations extend
outside the wave beam, as also indicated by figures 1(b) and 2(d) of Bordes et al.
(2012).

Turning next to the computed wave beam, the wave crests are attenuated along the
propagation direction due to viscous dissipation (figure 2a) and are also spread in the
transverse direction due to dispersion (figure 2b), in agreement with the experimental
observations (see figure 2b of Bordes et al. 2012). Further, the beam crests are
noticeably bent in the transverse direction (figure 2b), consistent with figure 2(b)
of Bordes et al. (2012) as well. Apart from the effect of transverse dispersion, this
transverse bending is also caused by the coupling of the beam to the induced mean
flow. It should be noted that, according to (3.9), the beam amplitude U is convected
in the cross-beam direction η by the cross-beam mean-flow component V∞(X, Z, T);
however, as V∞ varies in Z, this convection is non-uniform, resulting in bending of
the crests in the transverse direction.

To further clarify the effect of the induced mean flow on the beam propagation,
figure 3 shows vertical and horizontal slices of the wave beam as in figure 2(a,b),
but for the linear response, computed by setting V∞ = 0 in (3.9). Upon comparing
figure 3(b) with 2(b), it is clear that the beam crests suffer less transverse bending
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FIGURE 3. (Colour online) Computed (dimensional) x velocity component of the wave
beam at T = 6 (dimensional t = 96 s), based on the linear version of (3.9) ignoring the
induced mean flow (V∞ = 0). The location of the wavemaker is shown in black. (a)
Vertical flow slice at the centre (z = 0) of the wavemaker; (b) horizontal flow slice at
the mid-depth (y= 21.6 cm) of the wavemaker.

when the mean flow is ignored; moreover, the nonlinear response (figure 2b) is in
closer agreement with the experimental observations shown in figure 2(b) of Bordes
et al. (2012). In addition, since V∞ also varies in X, a slight bending of the beam
crests can be detected in the along-beam direction as well, as indicated by the
vertical flow slice in our figure 2(a) and that of Bordes et al. (2012); the crests of
the corresponding linear response, by contrast, are straight (figure 3a).

Bordes et al. (2012) also discuss the temporal evolution of the vertical vorticity
associated with the observed mean flow. Specifically, they report results for I(t),
the integrated mean vertical vorticity over the horizontal quarter plane 0 < x < ∞,
0 < z < ∞ at the mid-depth of the wave generator (y = 21.6 cm). Theoretically,
since the outer flow is irrotational, I(t) (in dimensional form) can be computed
asymptotically from the inner-flow solution as

I ∼ εL2
∗N
∫ ∞

0

∫ ∞
0

sin θWη|X=0
dη

sin θ
dZ

= εL2
∗N
∫ ∞

0
W∞|X=0dZ, (5.3)

where W∞ is given in terms of V∞ by (4.10). For computation purposes, W∞|X=0 in
(5.3) was replaced by the average value of W∞ over the region 0< X < 1.5ε2 cot θ ,
where the inner flow intersects with y = 21.6 cm. Figure 4 shows a comparison of
computed values of I(t) based on (5.3) against experimental results from figure 4(a)
of Bordes et al. (2012) for the induced mean flow obtained under the flow conditions
discussed earlier in connection with figure 2. The agreement seems quite satisfactory
given that the scaling assumptions made in the asymptotic theory are not strictly met
in the experiment.

6. Concluding remarks
Our analysis has confirmed that the three-dimensional propagation of internal gravity

wave beams differs fundamentally from its two-dimensional counterpart. As also
suggested by Bordes et al. (2012), three-dimensional variations trigger the transfer
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FIGURE 4. Temporal evolution of the integrated mean vertical vorticity I(t) for the mean
flow corresponding to the same flow conditions as in figure 2: solid line, theoretical
prediction based on (5.3); dotted line, experimental results from Bordes et al. (2012).

of energy, through the action of Reynolds stresses, to a circulating horizontal mean
flow. For a small-amplitude thin beam, this resonant beam–mean-flow interaction
is described by a system of two evolution equations, namely (3.9) and (4.12) or
(4.13), which also account for the feedback of the induced mean flow to the beam
propagation. This relatively simple asymptotic model explains the salient features
of the experimental observations of Bordes et al. (2012), most notably the jet-like
behaviour of the induced mean flow in the beam interior, the transverse bending of the
beam crests, as well as the temporal evolution of integrated mean vertical vorticity.

While the initial motivation for the present study came from the laboratory
experiment of Bordes et al. (2012), the evolution equations derived here can be
used to explore three-dimensional aspects of internal wave beams in other settings
as well. For example, the far-field response to a concentrated line source with weak
transverse dependence can be studied by putting

f (η, Z)= f̂ (Z)δ(η), (6.1)

rather than (5.1), on the right-hand side of (3.9). This choice of forcing would be
appropriate for modelling the generation of wave beams by a long thin horizontal
cylinder of slowly varying cross-section in the transverse direction, instead of
the sinusoidal wave generator used in Bordes et al. (2012). In the case of a
two-dimensional source ( f̂ =1), (3.9) admits a steady-state similarity solution (Thomas
& Stevenson 1972), which corresponds to a propagating beam with locally confined
profile that remains uniform in the transverse direction and is attenuated due to
viscosity in the along-beam direction. When transverse (Z) variations are present,
however, a steady state is no longer viable due to the generation of a growing
mean flow, as indicated by (4.13). The long-time behaviour of the three-dimensional
response, governed by the fully coupled system of (3.9) and (4.13), is currently an
open question.

Finally, since uniform two-dimensional beams happen to be exact nonlinear states
of the inviscid equations of motion (McEwan 1973; Tabaei & Akylas 2003), it
appears that the weakly nonlinear theory developed here could be extended to thin
beams of finite amplitude. Such a fully nonlinear model would be particularly useful
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for examining the role of modulational instability, which arises above a certain
threshold beam amplitude (Kataoka & Akylas 2013), in the long-time evolution of
three-dimensional beams.
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