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Jean-François Brethé∗, Eric Vasselin, Dimitri Lefebvre
and Brayima Dakyo
Groupe de Recherche en Electrotechnique et Automatique du Havre (GREAH) UFR Sciences et Techniques,
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SUMMARY
A stochastic ellipsoid modelling of repeatability is proposed
for industrial manipulator robots. The covariance matrix of
angular position is determined introducing the jump process,
which reveals to be a first and second order stationary
Gaussian process.

From this accurate covariance matrix, the stochastic el-
lipsoid theory gives the density of position in the workspace
around the mean position. Hence the pose repeatability
index can be computed in different locations. Computed
and experimental repeatability are compared. Experimental
repeatability variability is studied. A new “intrinsic repeata-
bility index” is proposed. In conclusion, the modelling re-
flects well the location and load influence on the repeatability.

KEYWORDS: Stochastic ellipsoid; Repeatability model-
ling; Industrial robots.

I. INTRODUCTION
This paper focuses on industrial manipulator robot repeata-
bility. Because robot control is not perfect, there is an angular
position uncertainty for each actuator. This uncertainty in
the joint space becomes an uncertainty for position and
orientation in the workspace. The resulting fluctuations
around the mean position are responsible for the repeatability
phenomena.

As robot manufacturers and customers need performance
indexes, the international standard N◦92831 defines robot
capabilities. In this standard, precision and repeatability are
clearly different functionalities. The pose repeatability cara-
cterises the dispersion of the points around the experimental
mean as the accuracy measures the distance between the
experimental mean of the set of points and the desired
position (Fig. 1).

Research work done on repeatability was attached first to
determine the influence factors of repeatability variations.
The main factors are robot geometry,2–4 actuator control
resolution, load, speed, and target location in the workspace.
Other factors as heat, humidity, gear backlash seem to
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intervene but their influence is not well measured. What’s
more, they influence both repeatability and precision.

The main contribution of this paper is to provide a spatial
description of repeatability using the original method of
stochastic ellipsoids described in section II. Section III
displays the experimental device used to check the modelling.

The aim is to determine the position distribution around
the mean from a covariance matrix. For this purpose, angular
position statistical properties are studied in section IV.
Completing Ramsli work,5 an accurate study of the
distributions is done confirming the Gaussian density.

In section V, the stochastic ellipsoid theory is used to
calculate the pose repeatability index through the workspace
from the estimated covariance matrix.

In section VI, computed and experimental repeatability
are compared. The discussion takes into account the natural
variability of the pose repeatability index. The stochastic
process point of view is justified and leads to a new
conceptual approach of the repeatability phenomena. A
new “intrinsic repeatability index” is proposed. Influence of
location and load on repeatability are analysed.

II. THE STOCHASTIC ELLIPSOID MODELLING

II.1. Manipulability ellipsoids
In the field of industrial manipulator robots, a lot of work
has been done in recent years to characterize their abilities
to perform various tasks. For assembly task, precision and
repeatability are important. Concerning optimal choices for
robot design, the concept of manipulability is widely used.
Manipulability ellipsoids were historically the core of our
research and in the following lines, their main properties are
described.

In the formula X = f (�), the forward kinematics function
of a robot transforms joint coordinates � = (�1, . . . , �m)
into workspace coordinates X = (x, y, z). The Jacobian
function maps the joint small variations to the Cartesian small
variations in the linear transformation

dX = J (�)d� (1)

Dividing by dt , this relation can also be understood as the link
between joint and Cartesian velocity vectors:

•
X = J (�)

•
�.
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Fig. 1. Accuracy and repeatability.

From the Euclidean unit sphere in the joint velocity space:

•
�

T •
� = 1 (2)

Yoshikawa6 proposed to build an ellipsoid in the Cartesian
space:

•
X

T

(JJ T )−1
•
X = 1 (3)

This ellipsoid known as velocity ellipsoid is mainly used
in the following different applications:

a. In robot kinematics control: the velocity manipulability
index is defined as the volume of the velocity ellipsoid,
Mv =

√
det[JJ T ]. When the robot kinematics control is

based on the inversion of the Jacobian matrix, the aim
is to avoid singularities which are configurations where
the Jacobian matrix can not be inversed. The velocity
manipulability index is nil in these configurations. So
following a control rule as Mv ≥ Cste > 0, such singular
positions are avoided.

b. In robot velocity resolution optimization: the velocity
ellipsoids give the Cartesian velocity transmission
rates in a direction. The eigenvectors of the Jacobian
matrix give the principal directions of the velocity
ellipsoid corresponding to maximum or minimum velocity
transmission rates. It is then in these directions that the
velocity resolution is high or low. It’s easier to control
velocity in the minus axis direction as explained by
Khalil.8,9

c. In robot geometrical design: after defining a manipulab-
ility index, the robot geometry is optimized choosing
among different geometrical configurations the one which
maximizes the manipulability index. A lot of work has
been done in this field for serial or parallel robots,10–12 etc.
The choice of the index is crucial. In most of the cases,
the choice is based on maximizing the Jacobian matrix
smaller singular value, or trying to equal Jacobian matrix
condition number to unity, or maximizing the velocity
ellipsoid volume.

One of the modelling difficulties is that the physical
dimensions in the expression of

•
� could be unhomogeneous

and consequently a physical interpretation of the velocity
ellipsoid is delicate. This difficulty could be avoided by
introducing a diagonal normalization matrix D� where the
diagonal terms are the maxima of the angular or linear

joint speed. Eq (2) is then replaced by the unity sphere
of adimensional joint velocities

•
θ :

•
θ

T •
θ = 1 (4)

The relation
•
� =D�

•
θ used in (4) leads to the upper joint

velocity ellipsoid:

•
�

T

D−1T

� D−1
�

•
� = 1 (5)

which is a good approximation of the upper joint velocity
polyhedron.

Let J ∗ = JD�, then the joint unity sphere of adimen-
sional joint velocities

•
θ is transformed into a velocity

ellipsoid in Cartesian space:

•
X

T

[J ∗J ∗T ]−1
•
X = 1 (6)

This result is interesting in kinematics to determine the
directions with higher Cartesian velocity. But the power of
each axis actuators also intervenes. With unknown dynamic
loads, will the robot control be able to give velocity its highest
value on every actuator?

Similar work can be done for the force ellipsoid from the
relation � = J T F where torques � are function of forces F .
Then again a normalization matrix D� can be introduced to
avoid heterogeneity in the definition of the unity sphere in
the actuator space. But unfortunately the duality between the
force and velocity spaces as related by Asada13 disappears
after the introduction of these normalization matrices D�

and D� .
This does not affect the pertinence of the force or velocity

ellipsoids but this questions the fact they might be used as
generic tools to optimize robot geometry with no relation
with a task.

After these remarks, how to define manipulability? Force
or velocity manipulability are the ability of the robot to
perform task in a direction with the specified force or velocity.

In this paper, position manipulability is studied, defined
as the robot ability to come as near as possible of a target.
To determine the smallest position error of the robot in a
direction, position distribution around the mean is needed
leading to repeatability modelling. Research on this topic
gives an interesting physical interpretation of ellipsoid in
terms of stochastic approach.

II.2. Modelling hypothesis
Let the joint coordinates of the robot be fixed at �0, the
joint error d� is transformed into a Cartesian error dX by
eq. (1). The variations of the angular position random variable
around the mean are responsible for the pose repeatability
phenomenon as defined in the ISO9283.1

The probability density of the random variable of joint
position is studied in order to compute the repeatability
index from this distribution. The probability distribution
of the angular position is a Gaussian law as proved in
section IV. Joint variations result from independent control
and are independent. Then the m angular variations d� =
(d�1, d�2, . . . , d�m)T are an independent Gaussian vector
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fully characterized by its covariance matrix D. This cov-
ariance matrix is diagonal:

D =




σ 2
1 0 · · · 0

0 σ 2
2

. . .
...

...
. . .

. . . 0
0 · · · 0 σ 2

m


 (7)

and the difficulty is to estimate precisely the variances
σ 2

1, σ
2
2, . . . , σ

2
m.

The angular position probability density is the following:

g(d�) = k exp

[
−1

2
d�T D−1d�

]
(8)

The constant k is determined normalizing the integral to
unity:

∫ ∫
�m

∫
k exp

[
−1

2
UT D−1U

]
dU = 1 (9)

where U = d�.

II.3. Stochastic ellipsoids
From eq. (1), the theory of Gaussian vectors indicates that
dX is still a Gaussian vector whose covariance matrix is:

C = JDJT (10)

The density function g of the position vector dX =
(dx, dy, dz)T is:

g(dX) = k exp

[
−1

2
dXT C−1dX

]
(11)

where the constant k is computed by normalizing the density
function to unity:

∫ ∫
�3

∫
k exp

[
−1

2
UT C−1U

]
dU = 1 (12)

where U = dX.
The isodensity surfaces are ellipsoids generated by the

equation dXT C−1dX =Cst , and are named stochastic
ellipsoids.14 The main characteristics of the stochastic
ellipsoids are the lengths and the directions of their semiaxes.
All these features can be computed directly from the
covariance matrix C.

The reference stochastic ellipsoid is defined from the
equation:

dXT C−1dX = 1 (13)

The lengths of the semiaxes of the reference ellipsoid are
equal to the square root of the eigenvalues of the covariance
matrix C and its main axes have the same directions as the
eigenvectors of the covariance matrix.

Fig. 2. Representation of stochastic ellipsoids associated with
different risks.

Fig. 3. SCARA robot geometry.

Each stochastic ellipsoid can be obtained from the
reference ellipsoid using a central homothety whose centre is
the mean position and the homothety ratio can be computed
from the workspace dimension and the risk. The risk is
the probability that the point will fall out of the ellipsoid.
Figure 2 displays ellipsoids associated with different levels of
risk.

II.4. Stochastic ellipsoid for a SCARA
In this part, the stochastic ellipsoid modelling is applied to a
SCARA robot model widely used in industrial applications.
The robot itself has three degrees of freedom, but to simplify
and allow easy visualization of the results, we do not take into
account the vertical translation movement and only consider
the two angular degrees of freedom (DOF) as illustrated in
Fig. 3. The Cartesian position [x, y]T is function of the angu-
lar position [θ1, θ2]T and the lengths of the robot arms (l1, l2).

The forward kinematics function of the SCARA robot is:

[
x

y

]
=

[
l1 cos θ1 + l2 cos(θ1 + θ2)

l1 sin θ1 + l2 sin(θ1 + θ2)

]

The Jacobian function J (�) is obtained through differen-
tiation

J (�) =
[−l1 sin θ1 − l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)

l1 cos θ1 + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

]
(14)

[dX] = J (�)d�
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Fig. 4. Gaussian distribution in cartesian workspace.

Assuming that angular errors follow Gaussian law, let σ 2
1

and σ 2
2 be the variances on the first and second angular

position, then the angular covariance matrix is:

D =
[
σ 2

1 0

0 σ 2
2

]

Thus, the workspace error is a Gaussian vector whose
covariance matrix is:

C = JDJT

The density of the Gaussian vector is illustrated in Fig. 4
and given by:

g

([
dx

dy

])
= k exp

(
−1

2
[dx dy]C−1

[
dx

dy

])

The density contour lines are ellipses defined from the
quadratic function expression:

[
dx dy

]
C−1

[
dx

dy

]
= Cst

The reference stochastic ellipse (ER) is built from the
eigenvalues and eigenvectors of the covariance matrix C and
is associated with Cst = 1:
� The lengths of the semiaxes of the ellipses are the square

root of the eigenvalues (η1, η2) of the covariance matrix C.
� The directions of the principal axes are the eigenvectors of

the covariance matrix C.

Let the risk α be the probability of falling out of the sto-
chastic ellipse. Each stochastic ellipse (Eα) can be obtained
from the reference stochastic ellipse using a central homo-
thety of ratio r(α).

Proposition 1. For the planar SCARA, the ratio r(α) of the
homothety transforming the reference stochastic ellipse to
the stochastic ellipse of risk α is:

r(α) =
√

ln

(
1

α2

)

Proof. The relation between the risk and the homothety ratio
results from the following integral:

∫ ∫
Eα

k exp

[
−1

2
V T C−1V

]
dV = 1 − α

Let � be a matrix of normalized and orthogonal eigenvectors
of the covariance matrix C. As C is a symmetric real positive
matrix, it can be considered as a bilinear form matrix.
Introducing the coordinates W in the new axes �, the relation
C = �T �T links C with the diagonal matrix T =

[
η1 0

0 η2

]
of

the eigenvalues of C:14

V T C−1V = [�W ]T [�T �T ]−1[�W ] = WT T −1W (15)

Using the new coordinates, the integral is transformed in:∫ ∫
Eα ′

k exp

[
−1

2
WT T −1W

]
dW = 1 − α (16)

Because the Jacobian value in the coordinates change is equal
to unity as � is an orthogonal matrix:∣∣∣∣ D(V )

D(W )

∣∣∣∣ = |det(�)| = 1 (17)

The bounds of the integral are the new ellipse in joint space
described by the equation:

E′
α : WT T −1W ≤ r(α)2 (18)

Introducing elliptic coordinates (r, θ):

{
w1 = rη1 cos θ

w2 = rη2 sin θ
(19)

Eq. (16) is rewritten as:

∫ 2π

θ=0

∫ r(α)

r=0
k exp

[
−1

2
r2

]
rη1η2 dr dθ = 1 − α (20)

With the final expression:

2πη1η2k

[
1 − exp

[
−1

2
r(α)2

]]
= 1 − α (21)

To find the value of k, let r(α) tend to +∞ and use the
normalization condition α = 0

k = (2πη1η2)−1 (22)

Finally the expression of the ratio r(α) is then: r(α) =√
ln( 1

α2 ).

The function of the ratio vs. the risk is displayed on Fig. 5.
Figure 6 is an illustration of ellipses associated with different
risks.

III. EXPERIMENTAL DEVICE

III.1. Measurement device
We measured repeatability using the stationary cube method
proposed by the Ford company. To support the cube, a cheap,
stable, convenient device is needed. A good compromise is to
use Microcontrol beams supporting the fixed trihedron where
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Fig. 5. Homothety ratio vs. risk.

Fig. 6. Stochastic ellipses associated with 10%, 5% and 1% risk.

Fig. 7. View of the measuring device.

three Mitutoyo numerical micrometers were placed as shown
in Fig. 7. The moving trihedron is fixed in the robot gripper.
The precision error of the 543–390 Mitutoyo micrometers is
less than 3 µm and their resolution is 1 µ m. The robot is
programmed to reach a point and when it achieves its goal,
it sends a signal to the PC which retrieves informations from
the numerical micrometers via a multiplexer using a RS232C
protocol. A Visual Basic program enables us to store the data
directly in an Excel spreadsheet.

This experimental device can be used in two different
ways:

(i) To estimate the angular covariance matrix. With only
one micrometer and the fixed part of the cube held by the
beams, the different positions are measured and we obtain
statistical series for each actuator. One difficulty is to be
sure that only one actuator moves at a time. This is pos-

Fig. 8. Determination of variance for the 1st axis.

sible because of the strong brakes acting on each actuator
and because the speed is chosen low enough to avoid
the generation of dynamic efforts. Another difficulty
is to find a planar surface whose normal is parallel with
the movement of the axis. Moreover the surface state must
be perfect to take accurate measures. This is realized by
the mean of a gauge block maintained on top of a magnet
and fixed in specific locations of the robot arm (Fig. 8).
When this is impossible, a metal beam acting as a lever
arm is fixed in the gripper. Most of the time the lever
arm length was between 300 and 1100 mm which gave
us good precision on our angular variance estimation
(section IV).

(ii) Repeatability measures. The experimental device can also
be used to measure pose repeatability. In this case, the
robot end is assigned a target and the different positions
are measured with their three Cartesian coordinates
(section VI). The results are stored and then processed
to compute repeatability using the formula:

Rp
[30]
L = L

[30] + 3S
[30]
L

where L
[30]

is the mean of the distance Lj between the
point Xj and the barycentre X

[30] = (x, y, z)T and S
[30]
L is

the standard deviation of the distances. The sample size
is N = 30 to follow the standard specifications.1

Let us define the general notations:

L
[N] = 1

N

N∑
j=1

Lj

L
[N] = 1

N

N∑
j=1

√
(xj − x)2 + (yj − y)2 + (zj − z)2

S
[N]
L =

√√√√ 1

N − 1

N∑
j=1

(
Lj − L

[N])2

III.2. The Kuka robot
Our experiments are performed on a IR364 Kuka industrial
robot. It is a standard anthropomorphic robot as shown in
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Fig. 9. View of the Kuka Robot.

Fig. 10. Dimensional characteristics of the Kuka robot.

Fig. 11. Kinematic diagram of the Kuka robot.

Fig. 9. The Kuka’s main geometrical characteristics are
described in Fig. 10 with the specific workspace locations
P1 to P3 used to evaluate repeatability. The length of the
deployed arm is 1200 mm. The maximum load is 15 kg. The
repeatability announced by the robot manufacturer is less
than 0.1 mm. The kinematics diagram is shown in Fig. 11.

Fig. 12. Drift on the first axis.

IV. EXPERIMENTAL DETERMINATION OF THE
ANGULAR COVARIANCE MATRIX
The experimental procedure explained in the previous section
is simple and consists of estimating the covariance matrix of
angular position from the different positions obtained at the
end of a lever arm. Unfortunately it is difficult to obtain an
accurate estimate of the variance for the different axes. The
main problem is the drift of the data which can be observed
in Fig. 12 with the following consequence: if the size N of
the sample is too large, then the estimate of the variance will
have a bias. On the other hand, if the size is too small, then
the extracted information is not sufficient. This is one of the
most important point of our analysis. The standard approach 1

considers a sample of a reasonable size (N = 30). Hence
implicitly the different measures are following events of the
same angular position random variable 	. But a priori, the
different trials are events resulting from different angular
position random variable (	n)n∈N. In the next section, the
main properties of this stochastic process are analyzed and
two main results about the stationarity are given.

IV.1. Position process non-stationarity
In this section, the angular position random variable (	n)n∈N

is now replaced by a Cartesian position random variable
(Xn)n∈N due to the use of a lever arm. The angular position
	n is obtained by dividing Xn by the length of the lever arm.
This is the reason why in the following lines the angular
position is studied via Xn.

Proposition 2. The angular position stochastic process is not
a first order stationary process. The mathematical expecta-
tion of each consecutive angular position random variable
are different E(Xi) 	=E(Xj ) for i 	= j .

Proof. The proof is based on the following considerations. If
the consecutive positions are events from the same random
variable X, then the differences between the experimental
means X

[30]
(.) of the two 30-samples should be compatible with

the experimental variance S
[30]
(.) . If the differences between the

two experimental means are too large in comparison to the
estimated variances, then the consecutive positions can not
be considered anylonger as events from the same random
variable. The decision is based on the following hypothesis
test:

H0 : E (Xi) = Cst

H1 : E (Xi) 	= E(Xj ) for i 	= j
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Table I. Position process first order non-stationarity.

Sample (N0) 1–30 54–83
Mean (mm) 3.156 3.140
variance (mm2) 47.2E−6 62.9E−6
Z 8.28
5% confidence interval [−1.96;1.96]

Fig. 13. Density distribution functions (ddf) illustrating the drift of
the position process.

In this situation, the decision indicator is the random
variable:

Z = X
[30]
(1) − X

[30]
(2)√(

S
[30]
(1)

)2

N
+

(
S

[30]
(2)

)2

N

(23)

where X
[30]
(1) and S

[30]
(1) are the experimental mean and

standard deviation of the first 30-sample (here positions

n◦1−30) and X
[30]
(2) and S

[30]
(2) are the experimental mean and

standard deviation of the second 30-sample (here positions
n◦54−83). Above a sample size of 30, the distribution of

the experimental mean X
[30]
(.) can be considered as Gaussian

whatever the initial distribution of the random variables is.
Then the indicator Z has a standard Gaussian distribution.
Results for a 1st axis curve (Fig. 12) obtained for two 30-
samples are displayed in table I. The indicator Z is clearly
outside the 5% confidence interval.

Concerning this 1st axis essay conditions, the delay
between the first and 83rd trial was one hour after a period
of two hours was respected waiting for stabilisation. Similar
results were obtained for the five other axes leading to the
conclusion that the angular position process is not a first order
stationary process.

On Fig. 13, the consecutive density distribution functions
of the position Xn are drawn illustrating the process drift.

IV.2. The jump process
In this section, we introduce the jump process, study its main
properties and use it to get rid of the drift and estimate more
precisely the covariance matrix.

Fig. 14. Jump process for the first axis.

Fig. 15. Moving 30-sample standard deviation estimate.

Fig. 16. 30-sample moving average for the first axis.

Definition 3. The jump process (Jn)n∈N is the difference
between two consecutive positions:

Jn = Xn+1 − Xn (24)

IV.2.1. Jump process first order stationarity.

Proposition 4. The jump process (Jn)n∈N is a first order
stationary process.

Proof. The proof is detailed for the first axis trajectory of
Fig. 14. Figure 15 displays a moving estimate on the standard
deviation calculated on a 30-sample. The curve analysis leads
to the assumption that the 30-sample standard deviation can
be considered as constant in a first approximation. Then
the method consists of drawing the 30 sample moving
average and locating its minimum and maximum (Fig. 16).
The jump process is first order stationary if the differences
between all 30-sample experimental means are not too large
in comparison with the standard deviation estimate. The
variance being considered as constant, the worst conditions
for the test are with the two 30-sample corresponding to
the maximum and minimum experimental moving averages.
The test principle is the same as in the previous section.
As the indicator is within the 5% confidence interval
(table II), the variations of the experimental mean are
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Table II. Jump process first order stationarity.

Sample 14–43 44–73
Mean (mm) −0.00103 0.0007
variance (mm2) 67.5E−6 66.5E−6
Z −0.82
5% confidence interval [−1.96;1.96]

compatible with the first order stationarity of the jump
process.

The same work is done for the six axes leading to the same
conclusion.

IV.2.2. Jump process second order stationarity.

Proposition 5. The jump process (Jn)n∈N is a second order
stationary process.

Proof. The method consists of estimating the variance on
a very large sample and compare it with variance estimates
using smaller size samples. For instance, for the first axis,
the variance is estimated using all the data N = ∑

Ni = 1123
from 12 samples of different sizes Ni . The estimated variance
is assumed to be the true value of σ 2. Then the variance of
smaller size populations Ni ∼ 100 is computed. Confidence
intervals are built using the following inequality:

(
√

2Ni − 1 − 
α)σ√
2(Ni − 1)

≤ σ e ≤ (
√

2Ni − 1 + 
α)σ√
2(Ni − 1)

(25)

where [−
α; 
α] is the α confidence interval for the standard
Gaussian distribution. With α set to 1%, 8 out of 12 of
the estimated variance for smaller size samples are within
this interval. For the 4 variances out of range, the distance
to the edge of the confidence interval is not too large. In
conclusion, the jump process can be considered as a second
order stationary stochastic process.

IV.2.3. Jump process is a Gaussian distribution. More
than 2600 different events were used to perform significant
statistical tests. For the six axes at least two series of 100
samples were available. To verify our Gaussian assumption,
standard tests were performed and are now detailed.

Histograms. The first step was to build histograms as in
Fig. 17. Following Sturges’ rules, the data are split into
7 classes choosing carefully the range of the intervals accord-
ing to the micrometers resolution. Most of the histograms

Fig. 17. 1st axis position histogram.

Table III. Pearson test indicator ind5.

Sample 1st axis 2nd Axis

1 2.0 1.9
2 2.0 1.1
3 8.6 2.6
4 3.2 4.2
5 1.9 0.4
6 0.6 1.9
7 3.1 0.6
8 0.5 2.1
9 3.2 2.9

10 0.7 2.1
11 1.0 1.2

Table IV. Critical values for Pearson test.

Risk 0.05 0.01
Ind5 7.81 11.34

Table V. Samples passing the Pearson test for a given risk.

% of success 1st Axis 2nd Axis

for 0.05 risk 90.90% 100%
for 0.01 risk 100% 100%

reflected the Gaussian bell shape well and the assumption
seemed right.

Pearson test of adequacy. After studying the overall shape
of the distribution, the distance between the experimental and
theoretical distributions is measured using the Pearson test of
adequacy for this purpose, and splitting the data into groups
of 30. Table III displays the test results for the 1st and 2nd
axes. A 5 interval test is built and the critical values of the
indicator Ind5 are displayed in table IV.

Taking into account 11 series of 30 samples for the 1st and
2nd axes, the percentage of samples that passed the Pearson
test are displayed in table V.

The conclusions are clear: in all the cases, the indexes are
below the critical values for a 0.01 risk. So the distribution
of the jump process can be considered as Gaussian. The
same work was done with the other axes giving the same
conclusion.

This Pearson test of adequacy was also performed for
angular position process but the distance between the
experimental and theoretical distributions for the angular
position process is not so close as for the jump process.15

So the jump process has interesting stochastic properties
like stationarity and Gaussian distribution and it is more
accurate to work with it to estimate the variance.

The sample size is a key factor when analyzing the
Gaussian distribution of the random variable. All the 30-
samples from the jump or position process passed the Pearson
test but it was not always the case with larger samples,
especially with the position process.

Kurtosis and skewness. Because of the large amount of data
(19 samples of over 100 data), it was possible to perform
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Fig. 18. Shapes of curves according to the skewness index.

Fig. 19. Shapes of curves according to the kurtosis index.

Table VI. Skewness and kurtosis estimates.

Skewness (g1) Kurtosis (g2)

−0.025 0.100 2.269 2.390
−0.029 −0.344 5.739 3.716

0.142 −0.147 2.520 2.315
0.021 −0.244 3.484 5.872
0.404 −0.536 2.871 3.857

−0.132 −0.650 3.501 3.374
0.077 0.197 2.967 3.154

−0.020 −0.190 3.249 2.834
0.357 0.097 2.688 2.608
0.241 g1 =−0.04 2.669 g2 = 3.27

significant statistical work studying the skewness γ 1 and
kurtosis γ 2 of the distribution, using the index g1 and g2 to
estimate γ 1and γ 2 as proposed by M.Neuilly.16

The skewness estimate is the index:

g1 = k3

(S[N])3
(26)

where k3 = N
(N − 1)(N − 2)

∑
(xi − x[N])3, S[N] is the standard

deviation.
If the distribution is Gaussian, then the index g1 should be

nil. The different shapes of curves according to the skewness
index sign are displayed in Fig. 18.

The kurtosis estimate is the index:

g2 = k4

(S[N])4
(27)

where k4 = N(N + 1)
∑

(xi − x[N])4 − 3(N − 1)[
∑

(xi − x[N])2]2

(N − 1)(N − 2)(N − 3)
If the distribution is Gaussian, then the index should be

equal to 3. Different curves are displayed in Fig. 19. Their
shapes differ if the kurtosis index is above or below 3.

Indexes g1 and g2 are computed and results are displayed
in table VI.

The mean of the skewness index is −0.04, very close to
the nil expected value for normal distribution. It is the same
for the kurtosis mean of 3.27, close to the expected 3.

The width of these indexes distribution depends on the
size of the population and some precise results can be found
in the literature. For sample sizes close to one hundred,
the 2% confidence interval for the skewness estimate is
[−0.567; +0.567]. So, only one sample out of 19 is out of
range (5.3%). The 2% confidence interval for the kurtosis
estimator is [2.18; 4.39] therefore 2 samples out of 19 are out

of range (10.5%). In most of the cases, the distribution has
the Gaussian expected properties. The kurtosis is often used
to characterize the short or long tail of the distribution
compared to a Gaussian one. Here, in average, the distribution
has shorter tails than the normal one.

Finally, our results prove that the Gaussian distribution is
an accurate modelling. This completes the previous work of
Ramsli, who compared normal and beta distributions.5 So
the jump process is a stationary Gaussian process and this
important property will be used to estimate precisely the
covariance matrix.

IV.3. Estimating covariance matrix from the jump process
Let E(Xn) and σn (resp. E(Xn+1) and σn+1) be the mathe-
matical expectation and standard deviation of the Xn

Gaussian position distribution (resp. Xn+1).
The mathematical expectations E(Xn) of the position

process are not stationary but are affected by a drift.
Experimentally the variations of E(Xn) are small compared
to the standard deviation σ of the process but are significant
on a long time schedule:

E(Xn+1) � E(Xn) (28)∑
|E(Xn+1) − E(Xn)| >≈ σ (29)

The standard deviation σn of the position process Xn is con-
sidered constant: σn = σ .

With these assumptions, the jump process Jn =Xn+1 − Xn

is a centered Gaussian distribution with a standard deviation
of σ

√
2:

Jn = Xn+1 − Xn ↪→ GL(0, σ
√

2) (30)

This stochastic property is interesting as it is then possible
to estimate the covariance matrix from the jump process
taking into account wider parts of the trajectory. Estimate
results are no longer affected by the drift of the position
process. Numerous trials increase the variance estimation
precision as the uncertainty decreases with 1√

N
. Moreover

experiments can begin early without waiting for stabilization
and the temperature variations in the room do not affect the
results.

For the Kuka robot, the angular covariance matrix was
estimated using this experimental procedure.17 In fact, two
different angular covariance matrices were computed with a
small load of 3.5 kg and a higher load of 12 kg corresponding
respectively to matrices D0 and D1.

D0 = diag[28.9; 20.6; 67.1; 219; 130; 291] (10−12 rad2)

D1 = diag[34.4; 24.5; 64.7; 166; 1710; 685] (10−12 rad2)

The two matrices D0 and D1 are compared to analyze the
influence of load on the angular covariance matrix. The first
conclusion is that the load has no statistical significant effect
on the angular variance for the axes 1 to 4. The second
conclusion is that the variance of axis 5 and 6 increases
in a large proportion when the load is higher. But the 6th
axis has no influence on the pose repeatability. On the
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contrary, variance of the 5th axis is mostly responsible for
the deterioration of the robot performance.

Our procedure is here used as a diagnosis tool to
find the weaker axes of a robot. This opens doors to
improving robot performances by discriminating the worst
axes and allowing the manufacturer to balance his financial
investments concerning the sensors, the control and the
mechanical transmissions.

Our results complete those of Offodile and Ugwu who
studied load and speed influence on repeatability.3

V. REPEATABILITY

V.1. Repeatability computation
V.1.1. Principle. Once the angular position covariance
matrix is estimated via the jump process, it is possible to

compute the repeatability Rp
[30]
L =L

[30] + 3S
[30]
L because the

density function of the workspace position is known. The

principle is to replace L
[30]

and S
[30]
L which are estimators

based on 30-samples by the mathematical expectation E(L)
and the standard deviation of the distance distribution σL.

The calculation is easier when the density is isotropic as
the density follows the Maxwell function. In other cases, the
computation is just numerical with the following steps:

(i) The mathematical expectation computation E(L).
Let σ 2

x, σ 2
y, σ 2

z be the eigenvalues of the covariance
matrix. The mathematical expectation of the distance is
computed from the following integral:

E(L) = (2π )−
3
2

σxσyσz

∫∫∫
R3

‖X‖ exp

[
−1

2

(
x2

σ 2
x

+ y2

σ 2
y

+ z2

σ 2
z

)]
dX

Let (θ, ϕ) be ellipsoidal coordinates and the notations
Cθ = cos θ ; Sθ = sin θ. Using x = rσ xCϕCθ ; y =
rσ yCϕSθ ; z = rσ zSϕ, we obtained:

E(L) = α

∫∫ √
(CϕCθσ x)2 + (CϕSθσ y)2 + (Sϕσ z)2Cϕ dθ dϕ

where α = 2 × (2π )−
3
2 . Unfortunately, this integral has

to be computed numerically.

(ii) The variance computation σL From the formula: σ 2
L =

Var(L) = E(L2) − E(L)2. The mathematical expecta-
tion of L2 is easier to compute and leads to the simple
result:

E(L2) = σ 2
x + σ 2

y + σ 2
z = tr(C) = tr(D) (31)

So the final expression of the repeatability index is:

RpL = E(L) + 3
√

tr(D) − E(L)2 (32)

V.1.2. Results. Repeatability was computed in different
locations in the workspace using the eq. (32). The different
targets were chosen at extreme and central locations to ob-
serve differences between the repeatability values. Table VII

Table VII. Computed repeatability.

Location Low load High load

P1 0.0339 mm 0.0391 mm
P2 0.0156 mm 0.0358 mm
P3 0.0203 mm 0.0366 mm

Table VIII. Measured repeatability in target P3.

Location F3 Repeatability

Sample 1 0.0273 mm
Sample 2 0.0274 mm
Sample 3 0.0298 mm
Sample 4 0.0235 mm
Sample 5 0.0256 mm
Sample 6 0.0309 mm

Mean 0.0274 mm

displays the repeatability values for the points P1 to P3

(Fig.10) and with a low or high load.

V.1.3. Analysis. The analysis of these results shows:

• a high variability of repeatability in the workspace for a
low load and a steady index for a high load

• a higher load deteriorates the repeatability index
• with a low load, repeatability increases when the target

moves from the centre to the periphery of the workspace.

The pose repeatability computed in the standard ISO9283
is an estimate based on a 30-sample. Its value is not unique but
varies within a confidence interval as explain in next section.
The computed repeatability is the mathematical expectation
of the pose repeatability index and is unique. For this reason
we propose to name the computed repeatability by “intrinsic
repeatability”.17

V.2. Experimental repeatability
Repeatability is measured using our experimental device.
Results shows a high variability for different 30-samples.
This phenomenon is explained drawing the pose repeatability
index distribution.

V.2.1. Repeatability measures. The repeatability index was
measured following the ISO 9283 procedures and using our
experimental device described in section III. For the target
location P3, results are displayed in table VIII.

Repeatability shows a high variability of nearly ±13%. For
the other locations it is even worse. So we wondered whether
this phenomenon was to be imputed to bad experimental
practice or whether it was part of natural variability of the
estimator. That is why the density function of the repeat-
ability index estimates Rp

[30]
L is drawn in the next section.

V.2.2. Repeatability index density. In this section, the
natural variability of the repeatability index in the case of
an isotropic distribution is studied. As the repeatability index
Rp

[N]
L is an estimate computed on a N-sample, it is fluctuating

around its mathematical expectation. So the value of the
repeatability can differ from one N-sample to another N-
sample. Moreover, the sample size is an important factor
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Fig. 20. Approximation using a Gaussian density.

because more numerous trials will bring extra information
and reduce the uncertainty interval.

Proposition 6. Let the covariance matrix be equal to unity.
Then the repeatability index follows a Gaussian law:

Rp
[N]
L ↪→ GL

(
E(L) + 3σL;

√
11

2N
σL

)
(33)

The 0.95 confidence intervals are 3.04 ≤ Rp
[30]
L ≤ 4.20 and

3.30 ≤ Rp
[100]
L ≤ 3.94.

Proof. The repeatability index based on an N sample is

Rp
[N]
L = L

[N] + 3S
[N]
L . Let us calculate the density of L

[N]

and S
[N]
L .

With a unity covariance matrix, the distribution of the
distance L of a point from the center is known as the Maxwell
distribution whose mathematical expectation is E(L) = 2

√
2√

π
and whose variance is σ 2

L = 3 − 8
π

. To simplify calculations,
the density function of the distance L is approximated by a
Gaussian law with a mean of 2

√
2√

π
and a variance of 3 − 8

π

as displayed in Fig. 20. Hence the experimental mean
L

[N]
for a N-sample follows also a Gaussian density with

the same mathematical expectation and a standard deviation
divided par

√
N :

L
[N]

↪→ GL

(
2
√

2√
π

,
σL√
N

)
(34)

From the relation [S[N]
L ]2 = 1

N−1

∑
(Li − L

[N]
)2, the density

of the random variable (N−1)[S[N]
L ]2

σ 2
L

is a chi-square distribution
with N − 1 degrees of freedom. Using the classic approxi-
mation

√
2χ2,p − √

2p − 1 ↪→ GL(0, 1) of the χ2,p law
when p > 30, we finally deduce:18

S
[N]
L ↪→ GL

(
σL;

σL√
2(N − 1)

)
(35)

The repeatability index Rp
[N]
L = L

[N] + 3S
[N]
L is the sum

of two independent normal variables19 and we have the

Fig. 21. Density function of the repeatability computed on 30 and
100 samples.

Table IX. Measured repeatability.

Location Low load High load

P1 0.0357 mm 0.0361 mm
P2 0.0196 mm 0.0230 mm
P3 0.0286 mm 0.0274 mm

approximated result:

Rp
[N]
L ↪→ GL

(
E(L) + 3σL;

√
11

2N
σL

)
(36)

So the width of the repeatability index density is different if
the repeatability index is calculated on a 30-samples or a 100-
samples as Fig. 21 illustrates. The 0.95 confidence intervals
are 3.04 ≤ Rp

[30]
L ≤ 4.20 and 3.30 ≤ Rp

[100]
L ≤ 3.94.

In conclusion, the variability observed when measuring
repeatability for 30-samples is ±16% within the confidence
interval in the isotropic case. So it explains our previous
experimental results. Of course if the repeatability was
computed from 100 samples, the variation would be twice
narrower. But in that case, another experimental problem
appears: the drift of the data can biased the results.

V.2.3. Results. For the three previous locations P1 to P3,
repeatability measures results are displayed in table IX.
They are obtained in each case by considering at least six
30-samples and computing the mean of the six different
repeatability figures. It is clear that for both low and high
loads, repeatability increases significantly from the center
of the robot workspace (P2) to the periphery (P3). On the
contrary, the effect of the load is not important compared
to the location. The differences between high and low
load repeatability for the same location are not significant
according to natural statistical uncertainties. This result
completes the studies on the influence of location and load
done par Riemer.4

VI. DISCUSSION
In this section, the relevance of the stochastic ellipsoid mod-
elling for repeatability evaluation, repeatability influence
factors and robot diagnosis is discussed.
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Table X. Computed and Measured repeatability.

Low load High loadRepeatability
location Computed Measured Computed Measured

P1 0.0339 0.0357 0.0391 0.0361
P2 0.0156 0.0196 0.0358 0.0230
P3 0.0203 0.0286 0.0366 0.0274

VI.1. Repeatability evaluation
The computed and measured repeatability displayed in

table X are compared leading to the following conclusions:

VI.1.1. Low load. For a low load, the differences between
computed and measured repeatability range from −5% to
−29%. Bearing in mind the variability of the measured
repeatability, our results are significant. It is possible to
appreciate the evolution of the repeatability index in the
whole workspace. However, as the measured repeatability is
always greater than the computed, a bias is to be suspected. In
fact, it is quite obvious that the drift observed in the position
process affects the experimental repeatability figure Rp

[30]
L .

We here compare two different indexes Rp
[30]
L and RpL.

When the position process is not well centered, then the
Rp

[30]
L index is affected by the drift and is greater than the

computed or intrinsic repeatability RpL.

It is possible to get rid of the bias and we propose a new
proceeding for repeatability computing from the different
positions. The idea is to estimate directly an experimental
intrinsic repeatability RpL instead of an experimental 30-
sample repeatability index Rp

[30]
L . For this purpose, the jump

process can be again used to get rid of the bias and the intrinsic
repeatability is calculated in a similar way we used the jump
process to estimate the covariance matrix. Let E(Xn) and Cn

(resp. E(Xn+1) and Cn+1) be the mathematical expectation
and covariance matrix of the Xn Gaussian distribution (resp.
Xn+1). The covariance matrix can be considered as constant
Cn+1 = Cn = C. The mathematical expectation E(Xn) of
the position process are not stationary but are affected by
a drift. The variation of the mathematical expectation of
consecutive random variables are small compared to the
covariance matrix:

1

N

∑
|E(Xn+1) − E(Xn)| � ‖C‖ (37)

so that we can assume that E(Xn+1) − E(Xn) = 0. With
these assumptions, the jump process Jn = Xn+1 − Xn is a
Gaussian vector with a nil mean and a covariance matrix
of 2C : Jn = Xn+1 − Xn ↪→ GL(0, 2C). The covariance of
the jump process can be estimated on a wide trajectory
with a number of sample far more important than 30. The
advantage is that the estimate tends to the precise value of
the covariance if the size of the sample tends to infinity.
The jump process corresponds then to the position process
without the drift and multiplied by

√
2. So the value of the

jump repeatability divided by
√

2 gives the corresponding
value of the position repeatability if the drift disappears. This
new method of calculation leads to “experimental intrinsic
repeatability” Rp

exp
L .

Table XI. Computed and Measured jump and position
repeatability.

Low load Repeatability (mm)

Experimental Computed

Location Rp
exp
L Rp

[30]
L RpL

P1 0.0281 0.0357 0.0339
P2 0.0181 0.0196 0.0156
P3 0.0257 0.0286 0.0203

This method gives interesting results displayed in table XI.
As predicted, the experimental intrinsic repeatability Rp

exp
L

is smaller than the usual experimental repeatability Rp
[30]
L

computed from the position. Comparing experimental and
computed intrinsic repeatability, figures are closer and the
differences range from −21% to +20%. As the differences
are not always of the same sign, it proves the systematic
previous error has disappeared. Quantitatively speaking,
with differences less than 20%, the results of the computed
intrinsic repeatability are close to the experimental intrinsic
repeatability and it proves that the stochastic ellipsoid
modelling is good. At this stage, more precise results will
not result of more numerous samples but of more precise
covariance matrix estimates.

VI.1.2. High load. For a high load, the differences range
from +8% to +56% (table X). These figures are not good.
Here the main factor explaining the systematic differences is
not the drift. The differences are too big. The main problem
comes from the covariance matrix estimates. The next section
will explain in detail how the problem was diagnosed.

VI.2. Diagnosis
When estimating the angular covariance matrix for a high

load, big differences were observed for the 5th axis variance
depending of its orientation. In fact, the 5th axis of the robot
seems to have a weak mechanical transmission. Its angular
position variance is strongly dependent on its vertical or non
vertical orientation. If the orientation is vertical, the weight
of the load has no influence on the 5th axe variance. On the
contrary, if the orientation is not vertical, then the weight
of the load produces a high torque on the 5th axis and the
control can not assure a very precise positioning.

So the posture of the robot is a key factor for the same
workspace location. For these two different 5th axis postures
(vertical and non vertical), the covariance matrices are
different: D1 is the covariance matrix for non vertical posture
and D2 for vertical posture.

D1 = diag[34.4; 24.5; 64.7; 166; 1710; 685] (10−12 rad2)

D2 = diag [34.4; 24.5; 64.7; 166; 121; 685] (10−12 rad2)

The repeatability figures computed from these two
matrices are displayed in table XII with the experimental
repeatability.

The difference in the 5th axis variance value causes
a significant deterioration in repeatability. This was not
obvious at the beginning of the research and this is why
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Table XII. Computed and Measured repeatability for high load.

High load Repeatability (mm)

Computed Experimental

Location fromD1 from D2

P1 0.0391 0.0277 0.0361
P2 0.0358 0.0152 0.0230
P3 0.0366 0.0198 0.0274

Fig. 22. Stochastic ellipsoids from covariance matrix D1.

the stochastic ellipsoid method reveals to be an interesting
diagnosis tool. Quantitatively speaking, the experimental
repeatability is bounded by the repeatability computed with
the matrices D1 and D2 and it is a good result. It does not seem
possible to obtain more precise results unless improvements
are realised on the 5th axis.

The major influence of the 5th axis variance tends to level
the repeatability at a high and common figure for the different
locations. It is in opposition with the measured repeatability
which has a wide variation. The 5th axis has a too important
contribution in the repeatability figure. Its contribution is
high compared to the other axis so that in the end the final
target location in the workspace does not intervene as much
as for the low load case. The 5th axis produces the major
position uncertainty and its influence does not depend on the
final target location, which is the case for the axes 1, 2, 3 and
4, because of the length of lever arm.

Let us illustrate this phenomenon drawing stochastic
ellipsoids with covariance matrix D1 and D2 corresponding
to Figs. 22 and 23. The location is P2. It is clear that the size
of the ellipsoid is much larger when the covariance of the 5th
axis changes.

Once the major influence of the 5th axis in the repeatability
degradation is identified, it is possible to improve the robot
performances changing mechanical or control design of the
5th axis.

VII. CONCLUSION
In this paper concerned with industrial manipulator robots,
repeatability phenomena are described from a stochastic
process point of view. The concept of stochastic ellipsoid

Fig. 23. Stochastic ellipsoids from covariane matrix D2.

is introduced and gives informations about the points
distribution around the barycentre. This modelling is used
to compute repeatability in the whole workspace from an
estimated covariance matrix.

The jump process is defined as the difference between
two consecutive positions and its main stochastic properties
are studied. Considered as Gaussian centered second order
stationary process, it is used to estimate accurately the
covariance matrix.

The stochastic ellipsoid modelling is used to compute in-
trinsic repeatability in the workspace. Figures are compared
to experimental usual and intrinsic repeatability showing
good adequacy. The influence of load and workspace location
is studied.

The stochastic ellipsoid modelling is then used as a dia-
gnosis tool to discriminate the 5th axis as being responsible
for repeatability deterioration. It opens doors to robot
repeatability improvements.

Some other interesting applications can also be developed.
For instance, the stochastic ellipsoid modelling can be used
to optimise robot geometrical design or the robot cell layout
according to the task.
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