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Scattering kernel models for gas–solid interaction are crucial for rarefied gas flows and
microscale flows. However, most existing models depend on certain accommodation
coefficients (ACs). We propose here to construct a data-based model using molecular
dynamics (MD) simulation and machine learning. The gas–solid interaction is first
modelled by 100 000 MD simulations of a single gas molecule reflecting on the wall
surface, which is fulfilled by GPU parallel technology. The results showed a correlation of
the reflection velocity with the incidence velocity in the same direction, and also revealed
correlations that may exist in different directions, which are neglected by the traditional
gas–solid interaction model. Inspired by the sophisticated Cercignani–Lampis–Lord
(CLL) model, two improved scattering kernels were constructed to better reproduce the
probability density of velocity determined from MD simulation. The first one adopts
variable ACs which depend on the incidence velocity and the second one combines three
CLL-like kernels. All the parameters in the improved kernels are automatically chosen by
the machine learning method. Compared with the numerical experiments of a molecular
beam, the reconstructed scattering kernels are basically consistent with the MD results.
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1. Introduction

The interaction of a gas with a solid surface is the foundation of many physical problems,
such as boundary conditions of fluid flow on a wall, heterogeneous condensation and
crystal growth. In the field of fluid mechanics, Prandtl (1904) proposed the famous
boundary layer theory in 1904, which described the interaction between a traditional
continuum fluid and a solid wall. But for rarefied gas flow or microscale flow, the
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non-equilibrium effect of the wall, known as the Knudsen layer which is located between
the boundary layer and the wall, becomes very important (Gu & Emerson 2009; Zhang,
Meng & Wei 2012). It is urgent to study gas–solid interactions more elaborately.

It is convenient and essential to study gas–solid interactions at the molecular level.
The relationship between incidence state and reflection state of gas molecules on a solid
surface can be described by a scattering kernel, which is the probability that an incident
molecule with velocity ui is reflected with velocity ur. About 140 years ago, Maxwell
(1878) provided the earliest scattering kernels. Two basic modes of molecular scattering
which are well known today, specular reflection and diffuse reflection, were proposed.
For a large number of molecules scattering from a solid surface, it is assumed that part
of them comes from complete diffuse reflection and the remaining portion comes from
specular reflection. The proportion of diffuse reflection is assumed to be the tangential
momentum accommodation coefficient (TMAC) σt, which is constant and depends on the
species of gas and the solid wall (Maxwell 1879).

However, experimental studies (Maurer et al. 2003; Shen 2006; Ewart et al. 2007) have
shown that specular reflection and diffuse reflection models are not accurate enough to
describe the scattering of gas (N2 or He) molecules with the surface (Si). Epstein (1967)
proposed that the diffuse reflection probability P(c̄′) is related to the incidence velocity
c̄′ and suggested a general expression for a scattering kernel with three free constants
which can only be determined for specific problems. In 1971, Cercignani & Lampis
(1971) constructed another scattering kernel model that meets the normalization condition
and reciprocity principle. They established scattering kernels for each component of
gas molecular reflection velocity, and each scattering kernel contains a to-be-determined
constant. If the surface is considered to be isotropic, then one tangential scattering kernel
can be reduced. The remaining two constants are the accommodation coefficient (AC)
of the normal energy αn and that of the tangential momentum σt. Nearly two decades
later, Lord (1995) developed the kernel and applied it to the direct simulation Monte Carlo
algorithm. Then, the well-known gas–solid interaction Cercignani–Lampis–Lord (CLL)
model is formed and used widely today (Bird 1994). For example, Kalempa & Sharipov
(2020) adopted the model to investigate the rarefied gas flow around a spherical particle
and revealed the strong dependence of the thermophoretic and drag forces on the ACs.

An important issue in both Maxwell and CLL models is the difficulty of determining
ACs. Generally, ACs were obtained by comparing experiment measurements with
the theoretical analysis of a rarefied gas flow or microchannel flow. For example,
Arkilic, Breuer & Schmidt (2001) developed a precise experimental platform using
a microfabrication technique to measure the mass flow rate of gas through a long
microchannel. At the same time, the flow was analysed by a perturbation method based
on Navier–Stokes equations with slip boundary conditions, referred to as the gas–solid
interaction model. It was found that the TMAC for several gases on single-crystal silicon
surface was less than unity. Veltzke & Thöming (2012) reviewed the measurements
concerning TMAC over the first decade of this century and clearly demonstrated the
inconsistencies of both the measured values and the surface roughness influence on
TMAC.

Moreover, the assumption that ACs are constant and independent of molecular incidence
and reflection velocities may not be valid for more complex scattering situations.
Benefiting from the continuous development of computer technology, direct simulation
of gas–solid interactions using the molecular dynamics (MD) method (Wachman, Greber
& Kass 1994; Yamanishi, Matsumoto & Shobatake 1999; Barisik, Kim & Beskok 2010)
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was used to replace the scattering kernel. Spijker et al. (2010) used the MD method
to calculate the ACs and improved the velocity correlation behaviour for the existing
wall models. The hybrid method (Gu, Watkins & Koplik 2010; Liang, Li & Ye 2013)
with direct simulation Monte Carlo, which can be used to calculate the bulk flow and
MD simulating the scattering when a molecule collides with the wall surface, is popular
currently. Yamamoto, Takeuchi & Hyakutake (2006) used the hybrid method to calculate
the flows of diatomic molecules of nitrogen in channels with a pure platinum wall and with
a platinum wall with pre-adsorbed helium.

However, due to the huge computation cost of MD, direct simulation of gas–solid
interactions is very expensive to apply in general physical problems. An improved or
new scattering kernel which is more complex is definitely required to be constructed.
Yamamoto et al. (2006) considered that ACs for different variables should be determined
separately. Then they proposed the Maxwell–Yamamoto model with ACs defined by
normal and tangential momenta, and translation and rotation energies. Later, Yamamoto,
Takeuchi & Hyakutake (2007) continued to study the scattering of nitrogen with a platinum
surface that adsorbs helium. They thought that part of the reflected molecules comes from
the diffuse reflection model, while the other part comes from the CLL model. The ratio
of the two parts and the ACs in the CLL model are all fitted parameters. However, the
greatest problem with the proposed new model is that it cannot theoretically satisfy the
traditional reciprocity principle. Yakunchikov, Kovalev & Utyuzhnikov (2012) calculated
the scattering of hydrogen with a graphite surface by MD and proposed a new model,
combining the Epstein model (Epstein 1967) with the CLL model. The parameters in
the Epstein model are related to the incidence velocity of molecules, while in the CLL
model the ACs are still constants. Struchtrup (2013) promoted the Maxwell model to
rough surfaces, arguing that the velocity of reflected molecules is contributed not only by
specular and diffuse reflections, but also by the reflection resulting from surface roughness.
The new Maxwell scattering kernel should consist of these three parts, where there are two
ACs related to the velocity of incoming flow. So this model may be easier to adapt to more
complex gas–solid interactions, while no systematic experimental data are available for its
verification and fitting.

At the same time, compared with the establishment of new mathematical models based
on traditional phenomenological models, some scholars strove to construct new gas–solid
interaction models directly from the perspective of the physical collision, similar to MD
simulation. The basic idea of these physical models, such as the hard cube model (Logan &
Stickney 1966; Logan & Keck 1968) and washboard model (Tully 1990; Yan, Hase & Tully
2004; Mateljevic et al. 2009), is to consider the gas–solid interaction as an elastic binary
collision between gas molecules and surface cubes. However, most physical models do
not meet basic boundary conditions, especially the reciprocity principle. Recently, Liang,
Li & Ye (2018) established a new gas–solid interaction model that satisfies the reciprocity
principle based on the washboard model. Compared with the traditional phenomenological
models, this model is more accurate and more efficient than MD simulation. However, its
collision is still processed using the CLL model, and currently it cannot be applied to
deterministic solvers.

Previous studies of the gas–solid interaction were always embedded in the investigation
of gas flow (Peddakotla, Kammara & Kumar 2019), which was a natural choice since
the interaction was tightly coupled to the flow. However, to reduce the computation
cost of the MD method, the simulation of the gas–solid interaction is always restricted
to a very small computation domain, or performed for special conditions of gas flow.
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Figure 1. A gas molecule (blue) moves to a wall (red) from far away and interacts with the surface.

Therefore, the accuracy and generalization of the scattering kernel based on the MD
method need to be improved. This motivates the current study. In this paper, we decouple
the gas–solid interaction from the gas flow and obtain complete data about the scattering
of gas molecules on the wall surface by MD simulation. Given that MD simulations
require huge computing resources, it is essential to accelerate the simulation with the
parallel technology of a graphics processing unit (GPU). Then, we attempt to construct
a new or improved theoretical scattering kernel by combining the simulation data with
traditional phenomenological models. Based on the investigation of energy exchange
during the collision, modified expressions for the kernels are provided. Compared with the
probability distribution of incidence–reflection velocity determined from MD simulation,
the parameters in the constructed model are determined by a machine learning program
which is based on the Nesterov accelerated gradient (NAG) (Nesterov 1983) algorithm
and fitting evaluation criteria of minimum sum of square error and mean square error.
The model for direct simulation of the gas–solid interaction and methods are described in
§ 2. The scattering characteristics of gas molecules on the surface and modified scattering
kernels based on the CLL model are presented in § 3. In § 4, a comparison and verification
of the scattering kernel models are presented. Finally, we conclude with a discussion in
§ 5.

2. Model and method

2.1. Model
Because the average distance between gas molecules under general conditions is much
larger than the cut-off distance of intermolecular interaction, the collision of a gas
molecule with a solid surface is hardly affected by other gas molecules. Assuming that
the solid wall is in equilibrium, the interaction of gas flow with solid surface can be
considered as many independent collisions of a gas molecule with the surface. So, the
present simulation of gas–solid interaction is divided into a series of independent cases and
each case includes only one gas molecule and solid surface as well, as shown in figure 1.

The wall consists of platinum (Pt) molecules which are arranged in a face-centred cubic
crystal structure with a lattice constant of lPt and the gas–solid interface is the (1,0,0)
plane. In total, 108 unit cells are established in the x, y and z directions (also denoted by
subscripts d = 1, 2, 3 in the following) with a size of 6 × 6 × 3. The length and width of
the wall are several times the cut-off distance. A molecule of argon (Ar) as the gas is placed
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Figure 2. (a) Tangential velocity distribution of incident molecules. (b) Normal velocity distribution of
incident molecules.

above the wall surface and the incidence height which is the same in all cases is slightly
larger than the cut-off distance. Periodic conditions are applied at the wall boundaries in
x and y directions and the incidence tangential position of the gas molecule is randomly
determined. What is more important for the present model is the initial velocity of the gas
molecule. Since the present work focuses on the scattering kernel which is the expression
of statistical characteristic, the initial states of gas molecules in the series of simulations
should keep the same statistical characteristic of the gas. In other words, each gas molecule
in the simulations can be considered as a sample of all molecules in the gas flow. Assuming
that the gas before the collision with the surface is in equilibrium, the initial velocity of
a gas molecule is given by the random sampling method (Stickler & Schachinger 2016)
based on the equilibrium Maxwellian velocity distribution (Bird 1994):

fe(ui,d) =
⎧⎨
⎩

1√
π

e−u2
i,d , when d = 1, 2

2ui,d e−u2
i,d , when d = 3,

(2.1)

where the distribution function f is normalized by 1/
√

2RgTg with gas constant Rg and
temperature of gas Tg. The subscript e denotes the equilibrium state. Parameter ui,d is the
velocity of a gas molecule normalized by

√
2RgTg while the subscript i means incidence.

Only the gas molecules approaching the surface are considered in these simulations and
the normal component of incidence velocity ui,3 varies from zero to negative infinity.
As shown in figure 2, when the number of samples, which is the number of cases to be
simulated, is up to 100 000, all the distributions of velocity components converge well to
the Maxwellian distribution.

2.2. Method

2.2.1. The MD method
The process of scattering in every case is simulated by the MD method which can be
considered essentially as an application of Newton’s second law. All the interactions
between molecules are described by the classical Lennard-Jones potential function:

Uij = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]

, (2.2)
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Type σ (nm) ε (J) Mass (amu)

Ar–Ar 0.340 1.654 × 10−21 39.95
Pt–Pt 0.247 5.207 × 10−20 195.08
Ar–Pt 0.294 1.093 × 10−21 − − −

Table 1. Parameters of potential function.

where ε and σ are the energy and distance parameters, respectively, their specific values
being listed in table 1 (Prabha & Sathian 2013). Choosing mPt, σPt and εPt as characteristic
scales of mass, length and energy, respectively, all the variables in the following discussion
have been non-dimensionalized. In addition, in order to maintain the stability of the model,
the solid-wall molecules are also subjected to a spring force Fspr = −k�x when they
deviate from their equilibrium position, which method has also been widely used (Hansen,
Todd & Daivis 2011). The spring coefficient k = 5000 in the present work.

The Velocity Verlet algorithm (Swope et al. 1982) that LAMMPS (Large-scale
Atomic/Molecular Massively Parallel Simulator) sets as default time advancement format
is used to update the molecular positions and velocities. The time step is set as dt = 0.001,
which is equivalent to 0.61635 fs. After a sufficiently long relaxation process for wall
molecules, an Ar molecule enters from the upper boundary z = h = 5 to the wall surface
which is at z = 0. After interacting with the wall surface, the Ar molecule will be either
reflected or adsorbed. If the normal distance of the Ar molecule to the wall surface exceeds
h, the molecule is considered to be reflected and then the simulation is terminated. If the Ar
molecule does not reflect in the whole simulation time tTotal = 3500, which is equivalent
to 2.16 ns, the molecule is considered to be adsorbed by the wall.

2.2.2. The GPU acceleration algorithm
The number of cases to be simulated by MD is up to 100 000 and the total required cost
of calculation is huge. Taking an Intel Core i7-8700 CPU @ 3.20 GHz as an example, the
time required for a single case to run 500 time steps in a single thread is about 25.05 s.
Roughly, it will take an average of 8 min to complete a single case, and 556 days for
accomplishing all cases. This estimation indicates that a reduction of time consumption is
greatly desirable.

Each case is completely independent and there is no influence on each other while the
requirement of information exchange between the molecules only exists within a single
case. Computational efficiency will be greatly improved by means of such parallelization
of inner and outer layers. Unlike central processing units (CPUs) that focus on optimizing
single-threaded execution capabilities, GPUs with a huge amount of threads provide
a solution to our problem. The present work used the ‘numba’ library to implement
CPU–GPU heterogeneous programming, which has become a mainstream technology for
high-performance computing.

First, the outer-layer parallelism is implemented among the cases. Since the only
difference between cases is the incident state of gas molecules, the outer layer can be
perfectly parallelized. Then the inner-layer parallelism is effected among molecules in
each single case. Due to the intermolecular interaction that needs to pass and synchronize
information, this layer is less parallelized than the outer layer. Considering the CUDA
execution model, each case is arranged on a thread block for calculation, and each thread
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Block.N

GPU
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End Yes

CPU program GPU program

Init
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Figure 3. Schematic diagram of our CPU–GPU heterogeneous program. Here FCL and UCL represent the
libraries of the finished and unfinished cases, respectively.

in the block corresponds to a molecule. However, limited to the hardware resources of
GPU, it is impossible to run all 100 000 cases at the same time. Therefore, we need to
realize the function of case extraction through an algorithm. As shown in figure 3, the
initial states of all cases are stored in Unfinished Cases Library (UCL). Then, N cases are
extracted to N blocks in the GPU and run at the same time. Once a case is completed,
its final result is transferred to Finished Cases Library (FCL) in the CPU. A new case
is immediately extracted from UCL to the thread block and the idleness of this block is
greatly avoided. Of course, when the number of cases in UCL is less than N, the full load
operation of thread blocks cannot be guaranteed. Finally, when all the cases are completed,
the simulation terminates.

In order to achieve optimal operating efficiency, an independent test on a personal
computer (PC) is performed to determine the appropriate number N of parallel thread
blocks. The CPU used for testing is still the Inter Core i7-8700 CPU @ 3.20 GHz, while
the GPU is an NVIDIA GeForce GTX 1070, which are general components for PCs. An
acceleration ratio χ is defined to measure the operating efficiency:

χ = NtCPU
1

tGPU
N

, (2.3)

where tCPU
1 represents the time required to run the first 500 time steps of one single case in

the CPU and tGPU
N is the time required for the first 500 steps of parallel N cases in the GPU.

As shown in figure 4, as the number N of parallel thread blocks increases, the acceleration
ratio χ increases rapidly. When N ≥ 1000, the improvement of operating efficiency slows
down. Considering the memory requirements, we set the number of parallel thread blocks
to N = 1000, and the acceleration ratio is up to 320.67. This means that the amount of
computation that would have taken one and a half years to complete with the CPU, can
now be completed on the same PC in just a few days with GPU acceleration. Parallel
technology greatly improves the computational efficiency and lays a solid foundation for
future research work.

2.2.3. Machine-learning-based fitting algorithm
The present work aims to construct a scattering kernel from the direct simulation data. In
traditional kernels, such as the Maxwell model and CLL model, it is always assumed that
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Figure 4. Relationship between acceleration ratio χ and number of parallel thread blocks N.

the probabilities of reflection velocity components in different directions are independent
of each other. In the present work, the scattering kernel is also established for each
component of reflection velocity and the kernels are denoted by Rd = R(ur,d | ui) with
d = 1, 2 or 3, where the subscript r means reflection. Therefore, with the specified
distribution of incidence velocity f (ui), the probability density of molecules with reflection
velocity component ur,d and incidence velocity ui can be written as

pd = R(ur,d | ui)f (ui). (2.4)

Inspired by previously reported kernels, the basic form for the present scattering kernel
can be presupposed and only a few parameters need to be fitted from MD simulation data.
This work is suitable to be done by the fitting algorithms of machine learning (Andric,
Meyer & Jenny 2019).

The probability density of velocity can also be obtained from MD simulations. In fact,
the probability density of any reflection variable ϕ which always depends on the incidence
velocity can be determined as

P(ϕ, ui) = Nϕ,ui

Ns�ϕ�ui
, (2.5)

where Ns is the total number of molecules scattering from the surface and Nϕ,ui is the
number of molecules with incidence velocity in the range of (ui − �ui/2, ui + �ui/2)

and with ϕ in (ϕ − �ϕ/2, ϕ + �ϕ/2). There is no doubt that the probability density is
affected directly by the intervals �ϕ and �ui. If the intervals are too small, due to the
limited number of molecules, it may lead to excessive statistical fluctuation; if the intervals
are too large, the variation of probability density cannot be shown precisely. Since the
probability density of velocity is extremely small when the velocity magnitude is large
(see figure 2), the range of velocity in the present work where the probability density is
determined is set to be (−2, 2) in the tangential direction, (−2, 0) for incidence and (0, 2)

for reflection in the normal direction. Each range is divided into grids with number of
NG = 50 and the interval velocity remains constant for all the probability calculations.
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Based on the probability density of velocity by (2.4) and (2.5), the error function for the
fitting algorithm is defined as

Errord = 1
NG

∑
r

{∫
[P(ur,d, ui) − pd]2f (ui) dui

}
. (2.6)

It is obvious that the smaller the error, the closer is the scattering kernel to the direct
simulation. Therefore, the appropriate parameters in scattering kernels can be found by
minimizing the fitting error.

In addition, it can be seen that in the three-dimensional space of incidence velocity, since
the velocity distribution function is known, the numerical expectation of square error can
be directly calculated; and the probability distribution of reflection velocity needs to be
predicted later, so we only have to do a simple average over the grid number. In this way,
the error function similar to the mean square error can reduce the influence of the number
of grids. Moreover, the region with greater probability is preferentially fitted and the risk
of falling into a local minimum in the fitting process is also reduced.

The probability density in (2.4) and (2.5) is defined in a four-dimensional space, which
includes one reflection and three incident components of velocity. Minimizing the error
function directly in high-dimensional space can capture more scattering characteristics,
but it also amplifies the fluctuation in the finite molecular statistics, which may lead
to certain errors in the target value of machine learning. The scattering kernel can be
established for a pair of reflection and incidence velocities, Rd,d′ = R(ur,d | ui,d′), or is
projected onto a two-dimensional space:

Rd,d′ =
∫

R(ur,d | ui)f (ui,m)f (ui,n) dui,m dui,n, (2.7)

where m, n denote the components of incidence velocity in the other two directions,
respectively. Then, another error function is defined in the two-dimensional space,
considering the cumulative square error:

Errord,d′ =
∑
i,r

[
Nd,d′

Ns�ur,d�ui,d′
− Rd,d′ f (ui,d′)

]2

, (2.8)

where Nd,d′ is the number of molecules with reflection velocity ur,d and incidence velocity
ui,d′ .

Fitting the algorithm can make the specified function, Error, gradually approach its
extreme point by iterating. The most commonly used gradient descent method, whose
advance step is completely dependent on the local gradient, has two major limitations.
First, as the gradient becomes smaller, the advance slows down and the fitting efficiency is
seriously reduced in the later period. More importantly, the fitting cannot break through the
position where the gradient is zero. When there are multiple minimum points, the gradient
descent method can only fit the specified function to its first minimum. Therefore, the NAG
algorithm which assumes that the gradient of the error function should be directly related
to the advance acceleration rather than the speed, is used for fitting in the present work. By
accumulating historical gradients, the fitting efficiency is greatly improved. At the same
time, due to the existence of inertia, the fitting can easily break through the barrier after
the minimum point to reach a new minimum point, so that there is a greater probability of
finding the smallest minimum point.
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Figure 5. Probability distributions of interaction time with incidence velocities in different directions. (a)
Tangential. (b) Normal.

3. Results and discussion

3.1. Scattering of equilibrium gas by direct simulation
With the GPU parallel acceleration technology, the scattering of Ar gas with temperature
Tg = 300 K from the Pt metal surface under the equilibrium state of Tw = 300 K has been
simulated. Before establishing the scattering kernels, the scattering characteristic which
is mainly depicted by the probability density defined by (2.5) is investigated based on the
direct simulation data.

3.1.1. Interaction time
During the collision of gas molecule with wall surface, the molecule velocity will change
continuously due to the interaction force exerted by the wall atoms. The duration of
velocity variation is defined as the interaction time and its distribution of probability
density is shown in figure 5. It can be seen that the interaction time of most incident
molecules is less than 50, which is equal to a dimensional time of 30.8 ps. In general,
when the incidence velocity of gas molecules is large, the interaction time converges to
a smaller value; and when the incidence velocity is smaller, the interaction time of gas
molecules correspondingly increases, for which the distribution range is also wider. If
the incidence kinetic energy is lower, the transition between kinetic and potential energy
occurs more easily and frequently, so the interaction time is longer and more uncertain,
resulting in a more sufficient exchange of momentum and energy between gas molecule
and wall surface. The reflection state is greatly affected by the wall surface, similar to fully
diffuse reflection. On the contrary, the reflection of a molecule with higher kinetic energy
is closer to the specular one.

Especially, there are molecules with a very long interaction time, although the
probability is very small. For all the 100 000 incident Ar molecules, only two of them
oscillate near the surface within the whole simulation period tTotal = 3500 and they are
considered to be adsorbed by the wall surface. As listed in table 2, both of the incidence
velocities are very small, which may raise the possibility of being adsorbed. For the present
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ID ui,1 ui,2 ui,3

37 480 0.043448 −0.013101 −0.058638
85 930 0.005837 0.040989 −0.087908

Table 2. Incidence state of adsorbed Ar molecules.
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Figure 6. Probability density distributions of velocity components in pairs determined from MD simulation.
(a) Tangential direction. (b) Normal direction.

cases, the adsorption probability of all Ar molecules, which is only 0.002 %, is so small
that the adsorption is ignored.

3.1.2. Distribution of reflection velocity
As the key issue of the investigation of gas–solid interactions, the probability density
distribution of reflection velocity is discussed in this subsection. The classic scattering
kernels are always established for a pair of velocity components in the same direction
(normal or tangential to the wall) of reflection and incidence. Following the same idea, we
firstly analyse the probabilities of pairs of velocity components in tangential and normal
directions. As shown in figure 6, the probability distribution of tangential components
presents a fusiform shape, of which two tips are sharp and the middle body is broad. It is
consistent with the scattering results of Spijker et al. (2010) obtained by the MD method,
although their simulation systems are completely different from those of the present work.
In the normal direction, the probability shows a leaf-like distribution, which is consistent
with the results of molecular beam experiments (Shen 2006).

In the sharp part of the tips, where the magnitude of the incidence velocity is large, the
correlation between reflection and incidence is strong, i.e. the reflection velocities of most
molecules are almost the same as the incidence ones in tangential direction and opposite
in normal direction. When the magnitude of incidence velocity is small, the reflection
velocities vary in a broad range and the molecular motions are affected greatly by the
wall surface, which represents a loose correlation of reflection and incidence. This is
consistent with the previous analysis of the interaction time. It is worth noting that both
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probability distributions of tangential and normal velocity are basically symmetric about
leading diagonal, which can essentially be considered as the verification of the reciprocity
principle (Cercignani 1969; Kuščher 1971; Wenaas 1971).

3.1.3. Energy exchange
The interaction of gas molecules with the wall is always accompanied by conversions
among the molecular kinetic energy, wall atomic kinetic energy and potential
energy. It is obvious that the energy conversions will affect the molecule scattering
characteristics.

Instead of discussing the complicated process of energy conversion, the kinetic energy
change of gas molecules between after and before the collision with the wall is used
to analyse the energy conversion feature. Firstly, the average total kinetic energy of the
molecules with normal velocities of incidence ui,3 and reflection ur,3,

�E =
3∑

d=1

(u2
r,d − u2

i,d), (3.1)

is determined from the MD simulation data and the distribution is shown in figure 7(a).
Here, the frame of ui,3–ur,3 is randomly chosen to illustrate the distribution and the results
are similar in other frames of different velocity components. It can be seen that in most
regions where there are more incidence molecules, the change of the total kinetic energy
is extremely small, not exceeding 0.02. For the molecules with larger velocities whose
incidence probabilities are low, the average kinetic energy change with obvious statistical
fluctuation is still less than 0.1. Basically, under the current simulation condition, the
total kinetic energy of gas molecules only changes slightly during the interaction with
the wall. Because of the relatively weak interaction between Ar and Pt, the collision of gas
molecules with the wall is similar to an elastic process and the molecular kinetic energy is
almost conserved. If the gas–solid interaction becomes stronger, as shown in Appendix A,
a large amount of energy exchange occurs between the eventually scattered molecules and
the wall.

As mentioned in the previous subsection, the reflection velocity of molecules with a
specified incidence velocity can vary in a wide range. Therefore, the reflection velocity
can be totally different from the incidence velocity. Since the total kinetic energy almost
keeps constant, the kinetic energy has to exchange in different directions. The change of
average kinetic energy in the tangential direction,

�Et =
2∑

d=1

(u2
r,d − u2

i,d), (3.2)

is also determined from the MD simulation data and the distribution is shown in figure 7(b)
via the colours. The change of normal kinetic energy which is calculated by �En =
u2

r,3 − u2
i,3 is also shown in the figure via the lines for comparison. Of course, �En can

be determined from the simulation data and the distribution is the same as that calculated
directly but with slight statistical fluctuation. It is easy to see that, as expected, the decrease
of tangential kinetic energy increases the normal kinetic energy, and vice versa. The
exchange of kinetic energy between tangential and normal directions should be considered
in the restructuring of scattering kernels.
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Figure 7. Kinetic energy changes of gas molecule after and before collision with the wall. (a) Total kinetic
energy. (b) Kinetic energy in tangential (colours and legend) and normal (lines and labels) directions.

3.2. Scattering kernel based on CLL model
As a classic scattering kernel which is also used widely, the CLL model is the first choice
for reconstructing the scattering characteristics of gas molecules simulated by the MD
method. As mentioned before, the CLL model assumes that there is no coupling between
tangential and normal components of the velocity and the dimensionless form of the
scattering kernel is written as

RC,d =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
πσt(2 − σt)

exp
{
− [ur,d − (1 − σt)ui,d]2

σt(2 − σt)

}
, when d = 1, 2

2ur,d

αn
exp

[
−u2

r,d + (1 − αn)u2
i,d

αn

]
I0

(
2
√

1 − αnur,dui,d

αn

)
, when d = 3,

(3.3)

where I0(z) = (1/π)
∫ π

0 ez cos θ dθ is the first type of zero-order modified Bessel function.
Here σt and αn are the ACs for tangential momentum and normal energy, respectively.
Both ACs are assumed to be constant and their values should be determined by means
of molecular beam experiments, or fitting the data from MD simulation with the above
formulae. Unfortunately, the error calculated by (2.8) in the fitting process cannot be
reduced to an acceptable level with any values in the range (0, 2) for the ACs. This
indicates that the assumption of constant ACs should be given up and ACs should vary
with the state, especially velocity, of the incident molecules (Yamamoto et al. 2007;
Yakunchikov et al. 2012).

Let the probability predicted by the CLL model equal that calculated from the direct
simulation, and ACs can be solved for pairs of velocity components in different directions.
Assuming that ACs only depend on the incidence velocity, the average reflection velocity
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Figure 8. Distributions of ACs: (a) σt; (b) αn.

〈ur,d〉 = ∫
ur,dRC,d dur,d will be the same as that predicted by the classical CLL model:

〈ur,d〉 =
⎧⎨
⎩

(1 − σt)ui,d, when d = 1, 2
√

παn

2
exp(−μ){I0(μ) + 2μ[I0(μ) + I1(μ)]}, when d = 3,

(3.4)

where μ = ((1 − αn)/2αn)u2
i,d. I1(z) = (1/π)

∫ π

0 ez cos θ cos θ dθ is the first type of
first-order modified Bessel function. So combining equations (3.4) and (4.4), ACs still
can be considered as the proportion of diffuse reflection. As shown in figure 8, σt varies in
the range (0, 2) and αn in the range (0, 1]. Except for the domain around the diagonals of
ui,1 = ur,1 or ui,3 = −ur,3, ACs are about 0.5, which represents the combination of half
of the specular reflection and half of the diffuse reflection. In the diagonal domain, ACs
have values much less than 0.5, corresponding to the specular reflection. Next to the two
sides of the diagonal, there are two diffuse reflection regions where ACs are close to 1.0.
Moreover, the tangential momentum AC in the diffuse region with relatively small velocity
exceeds 1.0, which indicates the tangential velocity is also reversed.

To conveniently utilize the scattering kernel, it is necessary to seek proper expressions
for ACs. When ACs vary with incidence velocity, the scattering kernels of the CLL
model depend on all components of incidence velocity in fact. However, pre-specifying
expressions of ACs and projecting the kernels onto two-dimensional space as in (2.7),
we still obtain the kernels for the velocity components in pairs with the same direction
to reproduce the probability distributions as shown in figure 6. According to the analysis
results of figure 7, there is a large amount of exchange between the kinetic energy of gas
molecules in different directions. It can be considered that the state of molecules after
reflection must be related to the incidence kinetic energy in the other two directions.
By introducing the ‘kinetic energy term’ ξu2

i , we give the following AC correction
expressions:

σt = σ0 exp[−(ξ1u2
i,d′ + ξ3u2

i,3)], (3.5)

αn = α0 exp[−(ξ2u2
i,1 + ξ2u2

i,2)], (3.6)
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Figure 9. Evolution of fitting Error in two-dimensional space (a) and in four-dimensional space (b).

where σ0, α0 and ξk(k = 1, 2, 3) are constant parameters to be determined by the fitting
process. Since the wall is isotropic in the present work, the parameters in (3.5) are the
same in the two tangential directions but σt is affected indeed by the velocity component
in the other tangential direction ui,d′ . Parameter α0 is set to be in the range (0, 1] such
that αn is also in the same range, which is consistent with the classical definition of ACs.
But the upper bound of σ0 is set to be in the range (0, 2) such that the special cases
where the direction of tangential velocity is reversed can be included, too. It can be seen
from the expression that a smaller kinetic energy will make ACs larger, resulting in a
reflection mode closer to the diffuse one. When the kinetic energy of the incident molecule
increases, ACs gradually decrease and eventually approach zero. The reflection is similar
to the specular one.

Based on the present MD data, that is, the distribution of reflection velocity in the
scattering of Ar gas in 300 K equilibrium state with a 300 K Pt wall, all the parameters are
determined by the fitting algorithm:

σ0 = 1.194, ξ1 = 1.114, ξ3 = 0.431; (3.7)

α0 = 0.964, ξ2 = 0.970. (3.8)

As shown in figure 9(a), the error in the fitting process is quickly reduced to a very small
level with respect to the initial value.

Then, the probability distributions of tangential and normal velocity predicted by the
CLL model with varying ACs (MCLL for short in the following) are shown in figure 10,
where the probabilities determined from MD simulations are also shown for comparison. It
can be seen that they agree very well with each other, which indicates that the modification
for ACs is acceptable. The value of σ0 is slightly greater than 1, which is consistent with
the varying range of σt shown in figure 8. In other words, this MCLL model can better
describe the cases where the tangential velocity is reversed, although the proportion is
small. In addition, the values of kinetic energy parameters ξk are not small, so the effects
of kinetic energy in the other two directions on the ACs cannot be ignored.

As mentioned previously, the reconstructed MCLL kernels depend on all components
of incidence velocity. It is easy to obtain the probability distribution of reflection velocity
over any component of incidence velocity. For example, the probability densities of ur,2
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Figure 10. Comparison of probability distributions of velocity components in pairs obtained with the modified
CLL model (lines) with those obtained with the MD simulation (colours). (a) Tangential velocity. (b) Normal
velocity.

and ur,3 over ui,1 are calculated by the kernels as

p(ur,d, ui,1) =
∫

RC,df (ui,1)f (ui,2)f (ui,3) dui,2 dui,3, d = 2, 3. (3.9)

As shown in figure 11, the contour lines of p(ur,2, ui,1) appear as a series of concentric
circles, which agrees well with the distribution of P(ur,2, ui,1) determined from MD
simulations. This indicates that the probability of tangential reflection velocity is hardly
affected by the incidence velocity component in the other tangential direction. Perhaps
this is the reason why the classic scattering kernel, which is only about a pair of velocity
components in the same direction, is able to capture the primary characteristics of
gas–solid interaction. It should be noted that the MCLL model is an extension of the classic
kernel and therefore it keeps all the advantages of the classic kernel and has specified
ACs. However, there are significant deviations between the distribution of p(ur,3, ui,1)
by MCLL and P(ur,3, ui,1) by MD simulations, which is a defect in the new model that
cannot describe the correlation between the normal reflection velocity and the tangential
incidence velocity.

To observe more clearly the correlation between normal reflection velocity and
tangential incidence velocity, the conditional probability P(ur,3 | ui,1) = P(ur,3, ui,1)/
f (ui,1) is calculated by eliminating the distribution f (ui,1). It is also the probability of
ur,3 when the distribution of ui,1 is uniform. It can be seen in figure 12 that there are
two symmetric specular-like reflection regions, revealing a possible strong correlation
between normal reflection velocity and tangential incidence velocity. This non-negligible
correlation is analysed and considered in detail in the next section.

3.3. Joint scattering kernel model
Because ACs in the MCLL model depend on incidence velocity and the scattering
kernels are functions with four variables, the fitting for ACs should be carried out in a
four-dimensional space. However, the fitting for ACs in the MCLL model is still based
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Figure 11. Comparison of probability distributions of reflection velocity component over incidence one in
different directions obtained with MCLL model (lines) with those obtained with MD simulation (colours).
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Figure 12. The correlation between normal reflection velocity and tangential incidence velocity.

on the error in a two-dimensional space (2.8), the same as traditional kernels which are
functions of only two variables, i.e. pairs of reflection and incidence velocity components.
In this way, well-matched distributions in the same direction have been obtained indeed
but some other key information is lost, resulting in the correlation of velocities in different
directions of the kernel deviating obviously from the MD simulations. Therefore, a more
accurate and reasonable scattering kernel needs to be reconstructed by a new model with
better interpretability.

There is no universal expression for the scattering kernel so far. Based on probability
theory (Rosen 2019), the joint probability in (2.4) can also be calculated as

R(ur,d | ui)f (ui) =
3∑

d′=1

R(ur,d | ui,d′)f (ui,d′)
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−
3∑

d′=1

R(ur,d | ui,d′ ∪ ui,d′+1)f (ui,d′ ∪ ui,d′+1)

+ R(ur,d | ui,1 ∪ ui,2 ∪ ui,3)f (ui,1 ∪ ui,2 ∪ ui,3), (3.10)

where the subscript d′ + 1 returns to 1 when d′ = 3. Then, dividing both sides of the
above equation by f (ui), it is easy to obtain an alternative method to calculate the
scattering kernel. The first three terms on the right-hand side are similar to the CLL
model. Unfortunately, the other terms, conditional probabilities of those duplicates, are
completely unknown models and difficult to be expressed. But what we need is a potential
expression for the scattering kernel, and therefore we can assume an expression as follows
based on the first three terms, which may be an acceptable choice because of the small
fitting error:

R(ur,d | ui) =
3∑

d′=1

ζd,d′R(ur,d | ui,d′), (3.11)

where ζd,d′ are constants, which represent the impact ratio of each term on the scattering
kernel. The terms R(ur,d | ui,d′) with d = d′ which are almost the same as CLL kernels
can be determined directly. But the terms with d′ /= d which do not appear in CLL kernels
need to be customized. Inspired by the CLL model, we get a series of variants of the
scattering kernel. For the tangential kernels (d = 1 or 2), all three terms (d′ = 1, 2 and 3)
have the same form:

R(ur,d | ui,d′) = 1√
πσd,d′(2 − σd,d′)

exp
{
− [ur,d − (1 − σd,d′)ui,d′]2

σd,d′(2 − σd,d′)

}
. (3.12)

And for the normal reflection velocity (d = 3):

R(ur,3 | ui,d′)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2ur,d

αd′
exp

{
−

[
ur,d − √

1 − αd′ | ui,d′ |]2

αd′

}
, when d′ = 1, 2

2ur,d

αd′
exp

{
−u2

r,d − (1 − αd′)u2
i,d′

αd′

}
I0

(
2
√

1 − αd′ur,dui,d′

αd′

)
, when d′ = 3.

(3.13)

Among them, σd,d′ and αd′ are the corresponding ACs of tangential momentum and
normal energy, respectively. Since the influences of all the incidence velocity components
are included in the three terms, ACs are assumed to be constant here. Considering the
difference between the incidence velocity distributions in tangential and normal directions,
the expression for the normal–tangential term (d = 3, d′ = 1 or 2) comes from the hybrid
of the tangential and normal CLL kernels. Moreover, since the wall surface is isotropic,
it is reasonable to adopt the magnitude of tangential incidence velocity in the terms. The
scattering kernel defined in (3.11) can be considered as a combination of three CLL-like
kernels.

Considering the isotropy of the wall, the parameters about two tangential directions of
incidence velocity are interrelated, i.e. ζ1,1 = ζ2,2, ζ1,2 = ζ2,1, and σ is similar; ζ3,1 =
ζ3,2, α1 = α2. So, there are six parameters for the tangential kernel and four parameters
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d = 1 or 2 d = 3

d′ = d d′ /= d d′ = 3 d′ = 1 or 2 d′ = 3

ζ 0.500 0.074 0.473 0.091 0.517
σ 0.201 0.075 1.002
α 0.203 0.075

Table 3. Values of parameters in the joint scattering kernel.

for the normal one to be determined through the machine learning algorithm. As shown in
figure 9(b), the error in the fitting process decreases with oscillation to an acceptable level.
Under the same initial conditions as in the previous section, the final fitted parameters are
listed in table 3.

The error function defined as (2.6) is evolved in a four-dimensional space and the kernels
are also reconstructed in this space. However, it is not convenient to observe the kernels
directly in the four-dimensional space. The probability densities of reflection velocity
based on the present joint kernels are then projected onto a two-dimensional space:

p′
ur,d,ui,d′ =

∫
k /= d′

R(ur,d | ui)f (ui) dui,k

= f (ui,d′)

⎡
⎣ζd,d′R(ur,d | ui,d′) +

∑
k /= d′

ζd,kHk(ur,d)

⎤
⎦ , (3.14)

where

Hk(ur,d) =
∫

R(ur,d | ui,k)f (ui,k) dui,k. (3.15)

The probability distributions for pairs of reflection and incidence velocity components
are shown in figure 13, where the probabilities determined from MD simulations are
demonstrated again for comparison.

It can be seen that the present joint kernels capture correctly the probability densities
of all pairs of velocity determined by MD. It should be also noted that, comparing with
MD results, the error of probability density in the same direction by the joint kernel is
slightly larger than that by the MCLL model. As mentioned before, the joint kernel is
reconstructed in four-dimensional space, while MCLL is in two-dimensional space, with
the same data from MD simulation. The total number of cases simulated in the present
work is still insufficient for the fitting in four-dimensional space. Moreover, the expressions
for joint kernels that we have chosen with guesses may not conform to physical reality to a
certain extent. However, we have also tested other forms of scattering kernel, which are all
worse than the chosen one. Although the kernel accuracy in the same direction is slightly
sacrificed, the accuracy in different directions has been greatly improved, as shown in
figure 13(c,d). Overall, the joint kernels are able to catch all the scattering characteristics
predicted by MD simulation.

It can be seen from (3.11) and table 3 that the joint kernel for tangential reflection
velocity includes three terms: CLL model in the same tangential direction with σt =
σd,d = 0.201; specular reflection in the other tangential direction where σd,d′ = 0.075 is
very close to zero; and diffuse reflection in normal direction (σd,3 = 1.002). In addition,
the proportional ratio of the second term ζd,d′ = 0.074 is much less than the other two
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Figure 13. Comparison of probability distributions of reflection and incidence velocity components in pairs
between the joint kernels (lines) and MD simulation (colours).

terms, which indicates the influence of the reflection in different tangential directions
can be basically ignored. At the same time, since σd,3 ≈ 1, the normal incidence velocity
hardly affects the third term and the term reduces to equilibrium Maxwellian distribution
of ur,d. To sum up, the four-dimensional joint scattering kernel in the tangential direction
(d = 1 or 2) can be written approximately as

R(ur,d | ui) ≈ 0.5RC,d(ur,d | ui,d) + 0.5fe(ur,d), d = 1 or 2. (3.16)

Therefore, the probability of tangential reflection velocity mainly depends on the incidence
velocity in the same direction. The second term on the right-hand side of the above
equation cannot be ignored and it further implies that the pure traditional CLL model
is not accurate enough.

In addition, although the form of this two-term sum is the same as the Maxwell model,
there is an essential difference between them. For a given monochromatic beam, there
would be a sharp maximum in the number of molecules per unit angle at the angle
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Data-based scatter kernel for gas–solid interaction

corresponding to specular reflection, that is, there is a highly concentrated (infinitely
narrow distribution) probability density. As Cercignani & Lampis (1971) mentioned, this
situation caused by the Dirac delta function is contradicted by experiments, so the Maxwell
model is unrealistic. The AC σt in the first term cannot be approximated to zero, so the
sharp maximum can be avoided. This shows that the physical real scattering is far beyond
the description of specular reflection.

As for the joint kernel of normal reflection velocity, it is affected not only by the normal
incidence velocity which is described by the normal CLL model with αn = α3 = 0.075 but
also by the tangential velocity described by the hybrid CLL model with α1 = α2 = 0.203.
Considering the same influence of two tangential incidence velocities and proportional
ratio in table 3, the normal joint kernel can be written as an approximate formula:

R(ur,3 | ui) ≈ 0.5RC,3(ur,3 | ui,3) + 0.2R(ur,3 | ui,1). (3.17)

The second term shows clearly the correlation of tangential incidence velocity to the
normal kernel, which has been revealed by MD simulations and cannot be described by
the previous two-dimensional scattering kernels. The AC of tangential kinetic energy can
be calculated using the formula αt = σ1,1(2 − σ1,1) = 0.362. From the definition of α,
when the wall temperature does not change, the magnitude of α is proportional to the
amount of energy exchanged before and after the molecule collides with the wall. Since
αt > αn = α3 = 0.075, it shows that the rate of change of normal energy before and after
the collision is smaller than that of tangential energy. The collision is dominated by the
normal motion, and the kinetic energy tends to be conserved; while the unevenness of
the wall composed of molecules means that the tangential motion of the molecules easily
produces large changes, so the rate of change of kinetic energy is greater.

In general, the configuration of the joint kernel agrees better, on the whole, with that of
the MD result.

4. Discussion

The aim of establishing the scattering kernel is to predict the velocity distribution of very
large numbers of molecules reflected from a wall:

f (ur,d) =
∫

R(ur,d | ui)f (ui) dui. (4.1)

If the molecules are in equilibrium before the reflection, i.e. the incidence velocity satisfies
the Maxwellian velocity distribution (2.1), it is well known that the reflection velocity
distribution predicted by the traditional CLL model, as well as the present joint kernels
which essentially belong to the CLL model, satisfies the Maxwellian distribution, too. Due
to the varying of ACs with the incidence velocity in MCLL kernels, the reflection velocity
distribution predicted by MCLL kernels can be obtained by numerical integration. As
shown in figure 14, the reflection velocities in both tangential and normal directions also
converge to the Maxwellian velocity distribution, and agree very well with the distributions
obtained by MD simulations which are also shown for comparison. This verifies the
reliability of the present reconstructed kernels.

If the incidence velocity distribution is not in equilibrium, but is specified, such as that
in molecular beam experiments, the average variables of reflection can be calculated via
the scattering kernels. Then, the average ACs of energy E and momentum τ which are
applied very widely to depict the energy and momentum exchange between gas flow and
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Figure 14. Distributions of reflection velocity obtained with the modified CLL model and MD simulations.

solid wall are defined as

EAC = 〈Ei〉 − 〈Er〉
〈Ei〉 − 〈Ew〉 , (4.2)

TMAC = 〈τi〉 − 〈τr〉
〈τi〉 − 〈τw〉 , (4.3)

where the subscript w denotes the equilibrium state of the reflected gas molecules with
the solid wall. We carried out the numerical experiments of a molecular beam discussed
by Liang et al. (2018) based on MD simulation and the washboard model, to examine the
present reconstructed scattering kernels. The experiments include two groups where the
effects of incidence velocity magnitude and direction on the average ACs are investigated.
In the first group, the incident direction remains unchanged and the kinetic energy
normalized by kTg, E = ∑3

d=1 u2
i,d, varies in the range (0.54, 5.0). In the second group,

the incident direction inclines from the perpendicular to the wall surface, i.e. the incident
angle θ increases from 0 to about 70◦, with constant kinetic energy. In order to inspect the
normal and tangential kernels respectively, EAC is calculated here by the normal kinetic
energy u2

3 and TMAC by tangential velocity u1.
Based on the equilibrium distribution, it is found that 〈u2

w,3〉 = 1. From the definition
of EAC, there may exist a singularity when 〈u2

i,3〉 = 1. For a CLL-like kernel, if ACs do
not depend on the reflection velocity, the average normal reflection kinetic energy can be
described as

〈u2
r,3〉 = (1 − αn)u2

i,3 + αn. (4.4)

So, for the MCLL kernel with variable ACs, EAC ≈ αn and the singularity vanishes.
But for the joint kernel (3.17), the second term which describes the correlation between
the normal reflection velocity and tangential incidence velocity will bring additional
contribution to 〈u2

r,3〉. Then, the singularity still exists in the joint kernel. The EAC
calculated by MCLL and joint kernel in the two experiments are shown in figure 15,
where EAC determined from MD simulations and provided by Liang et al. (2018) are also
shown for comparison. It can be seen that although there are differences between Liang’s
result and the present MD simulation, the variation trends of EAC agree with each other.
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Figure 15. Variation of the average ACs with incidence kinetic energy (a) and incidence angle (b) in
molecular beam experiments.

The EAC predicted by the joint kernel agrees exactly with that by MD simulation in both
experiments, including the existence of the singularity. At the same time, EAC given by
MCLL follows αn = α0 exp (−ξ2E sin2 θ), as analysed above, which deviates from the MD
results obviously. Therefore, for the reflection normal velocity, the joint kernel describes
the scattering characteristics better.

Considering that the average tangential velocity in equilibrium state with the solid wall
is zero and the incidence velocity is specified in the experiments, TMAC can be derived
via the average reflection tangential velocity which can be calculated by the kernels. For
the joint kernel, by the approximate form in (3.16), 〈ur,1〉 ≈ 0.5(1 − σ1,1)ui,1, where the
second term in the kernel does not contribute to the average reflection velocity. Then,
TMAC ≈ 0.5(1 + σ1,1) is almost constant, as shown in figure 15. As for the MCLL model,
〈ur,1〉 is described in (3.4), so TMAC = σt, which depends on the incidence kinetic energy.
As shown in figure 15, when the incidence kinetic energy increases, σt as well as TMAC
decreases; with unchanged incidence kinetic energy, the incidence angle hardly affects
σt and TMAC. Due to the limited number of MD cases whose initial state satisfies the
conditions of the two experiments, the statistical fluctuation of TMAC by MD is obvious
but it still can be seen that TMAC decreases slightly with increasing incidence kinetic
energy, especially when the energy is not very large. This variation trend is captured
correctly by the MCLL model, which is better than that of the joint kernel for the tangential
reflection velocity.

5. Conclusion

In the present work, scattering of gas molecules from a solid wall surface was simulated
by the MD method and more accurate data-based scattering kernels were reconstructed
from the direct simulation data.

With GPU parallel technology, the MD simulation of molecule scattering was
excellently accelerated. The scatterings of gas molecules were divided into many
independent cases and the simulation of each case was assigned to a thread block where
the movement of each molecule was calculated by a thread. The complete independence
between the cases and interaction between molecules in single case resulted in a typical
external–internal double-layer parallel structure. This structure ultimately enabled the
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present CPU–GPU heterogeneous program to achieve an acceleration ratio of up to 320,
greatly improving the efficiency of studying scattering kernels.

The present MD simulations perfectly reproduced the fusiform and leaf-shaped velocity
distribution contour structures in molecular beam experiments (Shen 2006), which could
not be predicted well by the existing theoretical models. Then, the NAG algorithm and
error criteria were used to reconstruct scattering kernels from MD simulation data. Based
on the CLL model which is used widely, two modified scattering kernels were proposed.
The first one is named as MCLL and adopts variable ACs and the second one is a joint
model of three CLL-like kernels. The ACs in the MCLL model are expressed by the
functions of incidence velocity with parameters fitted in a two-dimensional space such
that the MCLL model can accurately predict the probability distributions of velocity pairs
of reflection and incidence in the same direction. However, the MCLL model cannot
correctly describe the correlation between the normal reflection velocity and the tangential
incidence velocity. Then the joint model is used for constructing kernels which have four
variables (one component of reflection velocity and all components of incidence velocity)
and ACs fitted in four-dimensional space. The prediction of probability distribution of
velocity pairs in different directions was greatly improved using the joint model. At the
same time, the fitting process in high-dimensional feature space demands more simulation
data and the prediction accuracy of the joint model can be improved further with much
larger number of simulated cases.

The exchange of the gas molecular kinetic energy between tangential and normal
directions reveals the dependency of reflection velocity on the all components of the
incidence velocity. The MCLL model describes the dependency of the variable ACs
and the joint model by the three CLL-like kernels related to the three components.
Although both models are able to predict the probability density distribution of reflection
velocity determined from MD simulation, the models should be further verified from
reliable experiment data. And as data-based models, the kernel expressions and parameters
are optimized mathematically for now and need to be explained physically in future
application.

There are still some areas worthy of improvement and in-depth investigation in future
work. Although only one training process is required and then models can be directly
applied to engineering, the present models are established under specified conditions
such as potential function and its parameters, and the same temperature of gas and solid
wall. We will devote ourselves to determining the effect of condensation adsorption by
changing the temperature difference and interaction strength of the gas–solid wall, and
then establish a general scattering kernel with phase transition, which can finally be used
to improve heterogeneous condensation theory. High-performance computing with GPUs
and machine learning may provide a most feasible way to establish general gas–solid
interaction models.
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Figure 16. Kinetic energy changes of gas molecules under greater interaction strength. (a) Total kinetic
energy. (b) Kinetic energy in tangential (colours and legend) and normal (lines and labels) directions.

Appendix A. Energy exchange under strong gas–solid interaction

To determine the energy conversion during the collision of gas molecules with the solid
surface under greater interaction strength, the parameter εAr−Pt is replaced by the value
based on the Lorentz–Berthelot criterion:

ε′
Ar−Pt = √

εAr−ArεPt−Pt ≈ 8.5εAr−Pt. (A1)

The other parameters remain the same and the gas–solid interaction is simulated. The
distribution of kinetic energy change of gas molecules is shown in figure 16. It can be seen
that the magnitude of the total kinetic energy change is up to 1.0 which is equivalent to
the kinetic energy of the most probable velocity and a large amount of energy exchange
occurs between the gas molecules and the wall. The conservation relationship no longer
holds. But the kinetic energy of molecules still transfers in different directions. Of course,
as shown in figure 16(b), the decrease of tangential kinetic energy is not equal exactly to
the increase of normal kinetic energy.

Appendix B. Reciprocity principle in MCLL model

In the MCLL model, relations between the ACs and incidence velocity components are
included. Since ACs are independent of the reflection velocity, it can be easily proved
theoretically that the MCLL model meets the normalization condition as the classical CLL
model. But for the reciprocity principle, detailed verification is presented as follows.

The reciprocity principle is based on two important preconditions:

εci + εpi = εcr + εpf , (B1)

P(ci, pi → cr, pf ) = P(−cr, −pf → −ci, −pi), (B2)

which represent energy conservation before and after the collision and invariant principle
with time reversal, respectively. Under equilibrium condition, which is the situation
discussed in the present paper, both of these premises can be considered valid.
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Therefore, the standard reciprocity principle is still expressed as (Shen 2006)

cr · nR(−ci | −cr) exp(−εcr/kBTw) = −ci · nR(cr | ci) exp(−εci/kBTw). (B3)

In the classical CLL model, the above relation can be written in component form as

RC(−ui,d | −ur,d) exp(−u2
r,d) = RC(ur,d | ui,d) exp(−u2

i,d), d = 1, 2,

ur,3RC(−ui,3 | −ur,3) exp(−u2
r,3) = −ui,3RC(ur,3 | ui,3) exp(−u2

i,3).

}
(B4)

Since the MCLL model is learned in a two-dimensional feature space, the kernels still
describe the relationship between a pair of velocity components in the same direction.
Then, the reciprocity principle for the MCLL model has the same component form as the
CLL model, but with variable ACs:

RC,d(−ui,d | −ur,d) exp(−u2
r,d) = RC,d(ur,d | ui,d) exp(−u2

i,d), d = 1, 2, (B5)

ur,3RC,3(−ui,3 | −ur,3) exp(−u2
r,3) = −ui,3RC,3(ur,3 | ui,3) exp(−u2

i,3). (B6)

These equations are exactly what we need to prove. For the tangential component (d = 1
for example), the scattering kernel is projected from four-dimensional space as (2.7) which
is rewritten here:

R(ur,1 | ui,1) =
∫ 0

−∞

∫ ∞

−∞
R(ur,1 | ui)f (ui,2)f (ui,3) dui,2 dui,3. (B7)

Considering that incidence velocity satisfies the equilibrium distribution and the MCLL
model is applied, the above formula can be written as

RC,1(ur,1 | ui,1) =
∫ 0

−∞

∫ ∞

−∞
RC(ur,1 | ui,1, σ (ui,2, ui,3))fe(ui,2)fe(ui,3) dui,2 dui,3, (B8)

where fe is equilibrium distribution and RC(ur,1 | ui,1, σ (ui,2, ui,3)) is essentially the CLL
kernel, but with the variable TMAC. Then, the right-hand side of (B5) reads as

RHS5 =
∫ 0

−∞

∫ ∞

−∞
RC(ur,1 | ui,1, σ (X ,Y)) exp(−u2

i,1)fe(X )fe(Y) dX dY . (B9)

Here, as integration variables, ui,2 and ui,3 are replaced by X and Y , respectively. Note
that the reflection velocity also satisfies the equilibrium distribution, as shown in figure 14.
Similarly, the left-hand side of (B5) can be written as

LHS5 =
∫ 0

−∞

∫ ∞

−∞
RC(−ui,1 | −ur,1, σ (X ,Y)) exp(−u2

r,1)fe(X )fe(Y) dX dY . (B10)

For any value of X and Y , σ in (B9) and (B10) are the same. From the reciprocity
principle of the CLL model which is described in (B4), we have

RC(−ui,1 | −ur,1, σ (X ,Y)) exp(−u2
r,1) = RC(ur,1 | ui,1, σ (X ,Y)) exp(−u2

i,1). (B11)

Then, it can be seen that the integral function in (B9) is equal to that in (B10). So, the
reciprocity principle of the MCLL model in the tangential direction (equation (B5)) is
proved to be valid. By replacing σ with α and using a similar proof process, it can be
found that the normal MCLL model still meets the reciprocity principle.
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Figure 17. Distribution of the relative error of the reciprocity principle expressed by (B3).

It is worth noting that the MCLL kernels depend on four variables, one component of
reflection velocity and all three components of incidence velocity. But in four-dimensional
space, the kernels do not obey the reciprocity principle directly because the ACs in the
gas–solid collision are perhaps different from those in the reverse collision. It is precisely
that the final scattering kernels, which are used to learn from the MD simulation data, are
projected using (2.7) from the MCLL model in four-dimensional space to two-dimensional
space. After double integration, the final scattering kernels still meet the reciprocity
principle regardless of the expression of ACs, as shown in the above proof process.

On the other hand, the reciprocity principle is also intuitively verified by the symmetry
of the probability density distribution as shown in figures 10 and 13. In fact, energy
conservation and invariant principle with time reversal are also kept in MD simulation and
the simulation data will imply the reciprocity principle (see figure 6). So, the reconstructed
scattering kernels from the data by a ‘good’ machine learning should have the same
feature, i.e. the reciprocity principle will be satisfied implicitly.

Of course, to directly verify the reciprocity principle which is expressed by (B3), the
complete kernel R(cr | ci) is required. In the MCLL model, the probability distributions
of the three components of the reflection velocity under a specified incidence velocity are
assumed to be independent of each other. Then the complete kernel in six-dimensional
space of reflection and incidence velocities can be written as

R(cr | ci) = RC,1(ur,1 | ci)RC,2(ur,2 | ci)RC,3(ur,3 | ci). (B12)

Unfortunately, the assumption of independence is not accurate enough. As mentioned in
§ 3.1.3, the molecular kinetic energy is almost conserved during the collision with the
wall. With a specified incidence velocity, there are obvious mutual influences among the
reflection velocity components. In other words, the expression in (B12) is not an accurate
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choice but is acceptable for the complete scattering kernel. Based on the approximate
complete kernel for the MCLL model, the reciprocity principle is verified numerically by
introducing the relative error:

RE = |LHS3 − RHS3|
(LHS3 + RHS3)/2

, (B13)

where LHS3 and RHS3 are the left- and right-hand sides of (B3), respectively. The relative
errors are calculated at (21 × 21 × 11 = 4851)2 pairs of incidence and reflection velocities
chosen uniformly for each velocity component. It is found that the maximum relative error
is about 1.87 %. As shown in figure 17, where the number of velocity points is used as the
coordinate, the relative error is less than 1 % in most of the region. So, it can be considered
that the global reciprocity principle is approximately satisfied.
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