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Under Stokesian conditions, a neutrally buoyant non-Brownian spheroid in simple
shear flow rotates indefinitely in any of a one-parameter family of closed (Jeffery)
orbits characterized by an orbit constant C. The limiting values, C = 0 and C =∞,
correspond to spinning and tumbling modes respectively. Hydrodynamics alone
does not determine the distribution of spheroid orientations across Jeffery orbits
in the absence of interactions, and the rheology of a dilute suspension of spheroids
remains indeterminate. A combination of inertia and stochastic orientation fluctuations
eliminates the indeterminacy. The steady-state Jeffery-orbit distribution arising from
a balance of inertia and thermal fluctuations is shown to be of the Boltzmann
equilibrium form, with a potential that depends on C, the particle aspect ratio (κ),
and a dimensionless shear rate (Re Per, Re and Per being the Reynolds and rotary
Péclet numbers), and therefore lends itself to a novel thermodynamic interpretation
in C–κ–Re Per space. In particular, the transition of the potential from a single to
a double-well structure, below a critical κ , has similarities to a thermodynamic
phase transition, and the small-C and large-C minima are therefore identified
with spinning and tumbling phases. The hysteretic dynamics within the two-phase
tumbling–spinning envelope renders the rheology sensitively dependent on the precise
shear rate history, the signature in simple shear flow being a multivalued viscosity
at a given shear rate. The tumbling–spinning transition identified here is analogous
to the coil–stretch transition in the polymer physics literature. It should persist under
more general circumstances, and has implications for the suspension stress response
in inhomogeneous shearing flows.

Key words: polymers, rheology, suspensions

1. Introduction

The rheology of, and orientation dynamics in, suspensions of anisotropic particles
is relevant to an immense array of scenarios, both fundamental and applied, with
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length scales ranging from the microscopic to the geological (Mueller, Llewellin &
Mader 2011; Caro et al. 2012; Hogan et al. 2012; Masaeli et al. 2012; Amini, Lee
& Carlo 2014), and the particle geometry varying between extremes of disk- and
fibre-shaped morphologies (van Olphen 1963; Derakhshandeh et al. 2011; Mueller
et al. 2011; Caro et al. 2012). In contrast to suspensions of spheres, anisotropic
particle suspensions exhibit a rich array of equilibrium and non-equilibrium phases
owing to the additional orientational degree of freedom at the microstructural
level (Vroege & Lekkerkerker 1992; Brown & Rennie 2001; Michot et al. 2006;
Lekkerkerker & Vroege 2012). Transitions in orientational order, usually at high
volume fractions, are often accompanied by abrupt changes in transport characteristics
(Larson 1988; Claeys & Brady 1993). A spheroid serves as a canonical anisotropic
particle, its aspect ratio being the microstructural parameter. The rheology of a
suspension of spheroids is sensitively dependent on the underlying orientation
distribution. A fundamental result of Stokesian hydrodynamics is that an isolated
non-Brownian spheroid in simple shear flow rotates indefinitely along any of a
one-parameter family of spherical ellipses (Jeffery orbits) (Jeffery 1922; Kim &
Karrila 1991). The parameter, the orbit constant C, takes values between 0 and
∞. The existence of Jeffery orbits implies that the long-time orientation distribution
remains crucially dependent on the initial conditions. The non-convergence to a unique
steady state leads to an indeterminate rheology. The indeterminacy is a consequence
of Stokes flow reversibility, which leads to closed streamlines or pathlines in other
situations, with profound implications for the relevant microscale transport processes
(Batchelor & Green 1972a,b; Kao, Cox & Mason 1977; Subramanian & Brady 2006;
Subramanian & Koch 2006a,b, 2007; Krishnamurthy 2014).

For spheroids larger than approximately 10 microns in low-viscosity media, inertia
is expected to play a dominant role in eliminating the aforementioned indeterminacy.
In recent work (Einarsson et al. 2015; Dabade, Marath & Subramanian 2016), a
weak inertial drift across Jeffery orbits was found to stabilize a unique orbit for
neutrally buoyant spheroids with aspect ratios (κ) greater than approximately 0.14.
The orientation dynamics underwent a bifurcation for (oblate) spheroids with κ < 0.14,
owing to a sign reversal of the drift, leading to a pair of stable Jeffery orbits,
corresponding to tumbling (C =∞) and spinning (C = 0) motions, separated by an
unstable repeller (see figure 1). The steady-state partitioning of orientations between
these two orbits is uniquely determined only by stochastic fluctuations, and the
case of rotary Brownian motion (thermal orientation fluctuations) was analysed in
some detail (Dabade et al. 2016). In § 2, we show that the steady-state orientation
distribution, resulting from a balance of an inertial drift and rotary Brownian motion,
has a thermodynamic interpretation. The bifurcation in the orientation dynamics in the
presence of rotary Brownian motion, identified in Dabade et al. (2016), has analogies
to a thermodynamic phase transition, the orbit constant playing the role of an
orientational order parameter. The original pair of Jeffery orbits (C= 0 and C=∞),
smeared out by thermal fluctuations, may be regarded as spinning and tumbling
phases, and comprise the small- and large-C branches of a two-phase envelope
ending in a critical point. The three-dimensional parameter space characterizing this
‘tumbling–spinning transition’ has a one-to-one correspondence with the familiar
thermodynamic description of the one-component phase transition. Specifically, κ and
C are analogous to the pressure and specific volume respectively, while an appropriate
non-dimensional shear rate plays the role of an inverse non-equilibrium temperature.
However, the time required to attain a steady state becomes exceedingly large deep
within the two-phase envelope. Hence, later in § 2, we analyse the time-dependent
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FIGURE 1. Jeffery orbits (green), the constant-C trajectories of the spheroid orientation
vector on the unit sphere, are plotted for oblate spheroids of aspect ratios (a) 0.12 and
(c) 0.05. In each case, the repeller (red), a Jeffery orbit at leading order, divides the unit
sphere into basins of attractions corresponding to the tumbling (C=∞) and spinning (C=
0) orbits. The inertial trajectories (black), shown in (b) and (d) for the same aspect ratios,
start on either side of the repeller and spiral away towards the limiting orbits.

orientation distribution for different initial conditions, and show that the finite-time
evolution in the two-phase envelope is characterized by a pronounced hysteresis,
leading to the suspension viscosity being sensitively dependent on the precise shear
history. We also propose a precise experimental protocol to observe this hysteresis.
We summarize our findings in § 3, where we also argue that the tumbling–spinning
hysteresis should be observable in more general circumstances.

2. The spheroid orientation distribution: results and interpretation

The non-dimensional equation governing the orientation distribution Ω(p), where
the unit vector p denotes the spheroid orientation, is given by

∂Ω

∂t
+∇ p · [( ṗjeff + Re ṗi)Ω] =

1
Per
∇2

pΩ. (2.1)

The second term on the left-hand side is the combined drift due to convection
along a Jeffery orbit at leading order (Kim & Karrila 1991) and the O(Re) inertial
convection derived in Dabade et al. (2016). Here, Re = ρf γ̇L2/µ is the microscale
Reynolds number based on the spheroid semi-major axis L, ρf and µ are the fluid
density and viscosity, and γ̇ −1, the inverse shear rate, is the time scale of the simple
shear flow (∇u∞ = γ̇ 1y1x). The Laplacian in (2.1) denotes orientational diffusion
driven by Brownian couples, and is inversely proportional to the rotary Péclet number
defined as Per= [kTM(κ)]−1γ̇ , where kT is the thermal energy unit and M(κ) is the
aspect-ratio-dependent mobility associated with transverse rotation (Kim & Karrila
1991).
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In the absence of inertia and Brownian motion, equation (2.1) takes the form

∂Ω

∂t
+ 1

hChτ sin α
∂

∂τ

(
hChτ sin ακΩ
(κ2 + 1)

)
= 0 (2.2)

in orbit-aligned coordinates (C, τ ), τ being the orbit phase that satisfies dτ/dt =
κ/(κ2 + 1) (Leal & Hinch 1971), with ṗjeff = hτκ/(κ2+ 1)τ̂ , τ̂ being the unit tangent
vector to a Jeffery orbit. In (2.2), hC and hτ are the metric factors corresponding to
the C and τ coordinate lines, and α is the angle between τ̂ and Ĉ, the latter being
the unit vector along the C coordinate. The convective operator in (2.2) does not
lead to a unique steady state. Every initial condition, except one, leads to a different
time-dependent orientation distribution. The dependence on time is periodic since the
initial condition is merely convected around with the Jeffery angular velocity. As is
evident from (2.2), the exceptional initial condition that leads to a time-independent
Ω must be of the form Ω ∝ 1/(hChτ sin α), where the proportionality allows for a
multiplicative factor that is an arbitrary function of C alone, this corresponding to the
distribution across orbits.

Experiments on anisotropic particle suspensions invariably involve a slight
polydispersity in the particle aspect ratio (Okagawa, Cox & Mason 1973; Ennis,
Okagawa & Mason 1978; Ivanov, Van de Ven & Mason 1982). It turns out that the
phase mixing due to the differential rotations induced by this polydispersity leads to
all of the time-dependent solutions of (2.2) converging to the aforementioned steady
state on a time scale that is O(1/σ) for aspect ratios of order unity. Here, σ is the
standard deviation of the aspect-ratio distribution. However, the polydispersity-induced
phase mixing only leads to a steady-state distribution along a Jeffery orbit, and leaves
the initial distribution across orbits unchanged at leading order.

The distribution across orbits, which is indeterminate at leading order, is determined
over a much longer time scale, the smaller of O((γ̇Re)−1) or O(γ̇ −1Per) (as shown
later, for certain combinations of Re, Per and κ , the actual time scale can be
exponentially larger than the nominal estimates given), from a balance of inertia
and Brownian motion. The relative importance of the latter two mechanisms is
determined by Re Per(∝ γ̇ 2). In the regime corresponding to Re � 1, Per � 1,
with Re Per arbitrary, equation (2.1), with the addition of a slight polydispersity,
may be solved using a multiple scales analysis (Subramanian & Brady 2004). If
h(κ, κ̄, σ ) is the probability density characterizing the aspect-ratio distribution, so
that σ 2 = ∫ (κ − κ̄)2h(κ, κ̄, σ ) dκ , κ̄ being the mean aspect ratio, with σ � κ̄ , the
expression for Ω̄ = ∫ Ωh(κ, κ̄, σ ) dκ may be obtained with the aid of the expansion
Ω̄ = Ω̄0 + ReΩ̄1 (ReΩ̄1� Ω̄0) and the ansatz Ω̄0 = f (C, t2)g(C, τ , t1; σ). Here, Ω̄ is
the orientation probability density corresponding to a spheroid with the mean aspect
ratio κ̄ , and t1 = t (corresponding to Stokesian convection and polydispersity) and
t2 = Re t (corresponding to inertia or Brownian motion when Re Per is O(1)) are the
dimensionless fast and slow time scales. It is shown in the supplementary material
available at https://doi.org/10.1017/jfm.2016.779 that the equations governing Ω̄0 and
Ω̄1 take the forms

∂Ω̄0

∂t2
1
+ 1

hChτ sin α

(
B(κ̄)

σ 2

2t1

∂

∂τ0
− A2(κ̄)

σ 2

2
∂2

∂τ 2
o

)
(Ω̄0hChτ sin α)= 0, (2.3)

∂Ω̄1

∂t2
1
+ 1

hChτ sin α

(
B(κ̄)

σ 2

2t1

∂

∂τ0
− A2(κ̄)

σ 2

2
∂2

∂τ 2
o

)
(Ω̄1hC hτ sin α)
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= 1
2t1

(
1

Re Per
∇2

pΩ̄0 −∇ p · [ ṗiΩ̄0] − ∂Ω̄0

∂t2

)
, (2.4)

where B(κ̄)= (κ̄3 − 3κ̄)/(1+ κ̄2)3 and A(κ̄)= (1− κ̄2)/(1+ κ̄2)2. In (2.3)–(2.4), τ0 =
τ − (κ̄/(κ̄2 + 1))t1, where τ0 denotes the (fictitious) initial phase calculated from the
current phase (of a spheroid of aspect ratio κ) using the Jeffery angular velocity of
the spheroid with the mean aspect ratio. Equation (2.4) shows that the phase mixing
has a diffusive character (with t2

1 as the relevant time variable), with the diffusivity
being given by D= ((1− κ̄2)2/(1+ κ̄2)4)(σ 2/2). Using the ansatz above for Ω̄0, with
g(C, τ , t1; σ) = 1/(hchτ sin α), and applying a secularity constraint to preclude an
algebraically growing term in Ω̄1 on the t1 scale, one obtains the following equation
for the distribution across the orbits f (C, t2):

∂f
∂t2
+ 1

Re
∂

∂C

[(
Re1Ci − χ2

2PerC

)
f
]
= 1

Re Per

∂

∂C

(
χ1

2
∂f
∂C

)
. (2.5)

The second term on the left-hand side of (2.5) denotes the combination of the
O(Pe−1

r ) Brownian and the O(Re) inertial drifts, Re1Ci being the inertia-induced
change in C over a Jeffery period (Dabade et al. 2016), while the right-hand
side denotes orientational diffusion with a C-dependent diffusivity, and χ1 =
((κ2 + 1)/κ2 + C2(7/2 + s(1/4κ2) + κ2/4) + C4(κ2 + 1)) and χ2 = ((−κ2 + 1)/κ2 +
C2(6 − (7/2 + 1/4κ2 + κ2/4)) + 2C4(κ2 + 1)). The one-dimensional drift–diffusion
formulation, together with no-flux conditions that arise from symmetry constraints at
C = 0 and C =∞, implies that the steady-state solution of (2.5), given by Dabade
et al. (2016),

fs(C)=N exp

−Re Per

∫ C


χ2

Re PerC′
− 21Ci(C′; κ)
χ1

 dC′

 , (2.6)

is an equilibrium of the Boltzmann form, N being a normalization constant. It should
be noted that the form arises because the drift in the one-dimensional formulation
resulting from the multiple scale formalism can always be written as the gradient
of a potential, and does not point to a conservative system; there can evidently
be no conserved energy-like quantity in the non-equilibrium strong-shear scenario
under consideration. Thus, (Re Per)

−1 in (2.6) is the kT-equivalent, and the function
multiplying it may be interpreted as an effective potential U(C; κ, Re Per). Inertia
and Brownian motion cause any initial Jeffery-orbit distribution to slide down to
the potential minima, this tendency being balanced by the O(Re Per)

−1 diffusive
fluctuations in C due to Brownian motion alone.

The potential U(C; κ, Re Per) exhibits a rather complicated dependence on κ and
Re Per. In order to develop the thermodynamic analogy, we first focus on a particular
value, Re Per=70 000, to illustrate the variation in the nature of U with changing κ . In
figure 2(b–f ), we have plotted the potential U(C; κ, 70 000) as well as the associated
steady state fs(C) (not normalized for purposes of illustration) for various aspect
ratios. With increasing aspect ratio, the potential starts off as one having a single
minimum close to C/(C + 1) = 1, changes to one with a pair of minima separated
by a maximum (a double-well structure) over an intermediate range of aspect ratios,
and for sufficiently large aspect ratios, reverts to one with a single minimum that is
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FIGURE 2. (a) The extremum locus for Re Per of 70 000; the potential has a double-welled
structure in the range 0.009 < κ < 0.11. (b–f ) The potential (dashed) and steady-state
distribution fs(C) (solid) for various aspect ratios.

now close to C/(C + 1) = 0. The potential minima at each κ may be regarded as
phases in a manner similar to the free energy minima in thermodynamic systems. In
figure 2(a), we therefore track the potential extrema in the κ–C plane, leading to the
S-shaped extremum locus for Re Per = 70 000. It should be noted that, for the chosen
Re Per, the pair of minima have equal magnitudes at κ = 0.019.

One now repeats the above exercise for other values of Re Per, and the loci of
the potential extrema for various values of Re Per are given in figure 3(a). In the
limit Re Per � 1, Per � 1, when Brownian motion alone controls the distribution
across Jeffery orbits, U(C; κ, Re Per) has a single minimum regardless of κ , and this
minimum moves to progressively larger values of C with decreasing κ (see Re Per= 0
in figure 3a). For the oblate spheroids of interest with κ < 1, this minimum lies in the
vicinity of the tumbling mode, and the corresponding fs(C) was originally derived in
Leal & Hinch (1971). The emergence of an inertial drift with increasing Re Per leads
to a broadening of the minimum until, for sufficiently large Re Per, U(C; κ, Re Per)
transitions to a double-welled structure, if the aspect ratio of the spheroid is below
a critical value. This transition is due to the bidirectional nature of the inertial
drift. The critical κ is a function of Re Per, approaching a maximum of 0.14 in the
deterministic limit (Re Per→∞), with the pair of minima asymptoting to the spinning
(C = 0) and tumbling (C =∞) modes, and the intermediate maximum approaching
the κ-dependent repeller in figure 1. For a given multivalued locus, a horizontal
dashed line is drawn at the κ for which the two potential minima have equal
magnitudes, in analogy with thermodynamic tie lines (see figure 3b). The small-C
and large-C minima that it connects may be identified respectively with ‘spinning’
and ‘tumbling’ phases that coexist at the particular κ and Re Per. This leads to a
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FIGURE 3. (a) The extrema loci, together with dashed tie lines, for various values of
Re Per. (b) The potential curves (U) for values of Re Per just above and below 70 000.
(c,d) The two-phase envelope in the κ–C and Re Per–C planes respectively.

phase diagram with a two-phase (tumbling–spinning) envelope that ends in a critical
point, (C, κ, Re Per) ≡ (3.1, 0.0665, 1150). The projections of the phase diagram
in the κ–C and Re Per–C planes are shown in figures 3(c) and 3(d) respectively.
The constant-Re Per loci in figure 3(c) may be regarded as isotherm analogues,
the non-dimensional inverse shear rate squared, (Re Per)

−1, being the non-equilibrium
temperature equivalent. Tie lines in figure 3(a) replace the intermediate non-monotonic
(and, in the one-component case, thermodynamically inaccessible) portion of the
isotherms in the range 1150< Re Per <∞. Interestingly, figure 3(c) includes, on one
hand, the infinite-temperature isotherm calculated in Leal & Hinch (1971); on the
other hand, the two-phase envelope is also finite in extent, being bounded below by
the zero-temperature isotherm at κ = 0.0126. The latter is a piecewise linear curve
defined by C= 0, κ > 0.0126; 0<C<∞, κ = 0.0126; C=∞, κ < 0.0126, and implies
a discontinuous transition from a suspension of spinning spheroids to tumbling ones
across κ = 0.0126 in the limit Re Per→∞ (Dabade et al. 2016)! Thus, in this limit,
the orbit-constant distribution is a delta function at either C= 0 or C=∞, except for
κ = 0.0126, when it comprises a pair of delta functions at both of the aforementioned
C values.

The phase diagrams in figure 3(a–d) arise from a one-dimensional description of
the orientation dynamics along the C coordinate, and for κ � 1, this requires Per�
κ−3 (Hinch & Leal 1972). When Per is O(κ−3) or smaller, Brownian rotations affect
the orientation distribution both across and along Jeffery orbits, close to the gradient–
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FIGURE 4. The three-dimensional phase diagram in C–κ–Re Per coordinates. The
tumbling–spinning envelope ending in a critical point is shown as red-dashed lines.

vorticity plane, and a reduced description requires first determining the full orientation
distribution on the unit sphere.

The tumbling–spinning transition identified above has a striking similarity to the
coil–stretch transition of high-molecular-weight polymers in extension-dominated flows
(De Gennes 1974; Hinch 1974). Intrachain hydrodynamic interactions sharpen the
transition from the coiled to the stretched configuration, with increasing flow strength
(characterized by a Deborah number De= γ̇ τr, τr being the longest relaxation time),
so as to render it discontinuous. The discontinuous transition implies a hysteresis, and
coiled and stretched states (produced by varying deformation histories) can coexist
at a given De for times much longer than τr (Schroeder, Shaqfeh & Chu 2004). The
coexistence, and approach in select scenarios to a bimodal equilibrium, have been
verified in single-molecule experiments (Schroeder et al. 2003) and simulations (Beck
& Shaqfeh 2006) respectively. The coiled and stretched states may be identified
with the aforementioned tumbling and spinning phases respectively, with the average
polymer extension in a coarse-grained description, De and the polymer molecular
weight being analogous to C, κ and Re Per respectively. A tentative phase diagram
in the extension–De plane, the analogue of figure 3(c), appears in Schroeder et al.
(2003).

The hysteretic orientation dynamics of thin oblate spheroids is better understood in
the three-dimensional κ–C–Re Per space in figure 4. The region of multiple extrema
in figure 3(a) now defines a binodal volume, and the shaded regions define a smaller
spinodal volume confined between the inflection-point loci of the double-welled
potentials. The binodal volume shrinks with decreasing Re Per, vanishing at Re Per =
1150 (the vertical plane, with log(Re Per)/(log(Re Per) + 1) = 0.876, passing through
the critical point). Unlike the thermodynamic case, there is no equation of state
that constrains κ to be a certain function of Re Per and C, and all points within the
hysteretic binodal volume remain accessible (this remains true for the polymeric case).
The analogue of spinodal dynamics corresponds to the evolution of f (C) from an
initial condition ( f0(C)) peaked close to the potential maximum, while the analogue
of the nucleation-growth route ensues for an initial condition peaked outside the
inflection-point interval. Figure 5(a) shows the rapid evolution for Re Per = 3 × 105,
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FIGURE 5. The evolutions starting from localized Gaussians (magenta) peaked at the
maximum (a) and adjacent to the small-C minimum (b) of the potential (red); κ = 0.016,
Re Per = 3 × 105. The fs(C) in each case is shown as a blue curve. The dashed line
corresponds to the instant ((a) 6.5× 10−4D−1

r and (b) 6.1× 10−3D−1
r ) at which a tumbling

peak first appears. (c) Corresponding evolutions of the scaled viscosities (see § 2 of the
supplementary material for the details of the evaluation of viscosity) (a) black and (b) red
(η0 and ηs are the initial and steady-state values).
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FIGURE 6. (a) Intrinsic viscosity evolutions for the quenches identified in the text
(the inset shows the evolution for step 2 of the second quench). (b) The quasi-steady
distributions at Re Per= 2× 105. The second quench leads to a greater fraction of spinning
spheroids, and therefore a higher viscosity.

starting from a narrow Gaussian at the potential maximum, into a bimodal distribution
peaked at the potential minima. In figure 5(b), for an initial Gaussian adjacent to the
small-C potential minimum, the distribution remains unimodal, and a second peak
is ‘nucleated’ at much later times via a barrier-hopping process. The time-dependent
viscosities for the aforementioned evolutions are shown in figure 5(c). The viscosity
for the spinodal case changes quickly, on account of peak splitting, in contrast to
the slow evolution of the viscosity for the initial condition in the hysteretic region
outside the spinodal volume.

The generation of the localized Gaussian profiles above requires an external
field. However, an isotropic orientation distribution can be readily generated
by initial mixing. The f0(C) corresponding to this well-mixed state is given by
(CκE[−(C2(κ2 − 1))/(C2 + 1)])/(π√C2 + 1(πC2κ2 + π)), where E is the complete
elliptic integral of the second kind. For this f0(C), a signature of the hysteresis is the
sensitive dependence of the viscosity in the binodal volume to the precise shear rate
history. To illustrate this dependence, we consider a pair of ‘quenches’ applied to an
isotropic suspension of spheroids with κ = 0.04. In the first single-step quench, the
suspension is sheared at an Re Per of 2× 105. In the second quench, the suspension
is first sheared at an Re Per of 25 000 until a steady state (achieved at a time teq), and
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Re Per is then increased to the aforementioned value of 2× 105. The evolution of the
viscosities is plotted in figure 6(a). In the first quench, the distribution, and thence
the viscosity, settles down to a quasi-steady state arising from the partitioning of
f0(C) across the potential maximum, followed by local equilibration in the spinning
and tumbling wells. In the second quench, the viscosity evolves quickly to its
steady-state value in the first step due to the lower Re Per. In the second step, it
evolves to a different quasi-steady state that corresponds to a partitioning of the
steady state for Re Per = 25 000. The true steady states are inaccessible for both
the first quench and the second step of the second quench, due to the exceedingly
large barrier-hopping times. (Kramer’s theory gives the barrier-hopping scale as
((4πRe Per)/(χ1|Cmax( f ′′|Cmax f

′′|Cmin)
1/2)) exp(Re Per1U) (Chandrasekhar 1943), where

1U is the potential difference between the lower minimum (Cmin) and the central
maximum (Cmax).) The pair of quasi-steady states, at Re Per = 2 × 105, are shown
in figure 6(b), and represent a viscosity contrast of approximately 3.8. In terms of
actual experimental parameters, the quenches above may be achieved in a time of
approximately 3 h, by shearing oblate spheroids of L∼ 10 µm in an aqueous medium
with the maximum shear rate needed to achieve Re Per = 2× 105, this being 900 s−1

(a 10 % polydispersity is sufficient to achieve the separation of time scales required
for (2.5) to describe the orientation dynamics and the resulting viscosity variation).
Much higher viscosity contrasts are obtainable from ‘spin-rich’ initial conditions, but,
as indicated above, these require the imposition of external fields (Okagawa & Mason
1974; Ennis et al. 1978).

The focus above was on a thermodynamic interpretation of the tumbling–spinning
transition, and on the hysteresis characterizing the finite-time orientation dynamics of
inertial spheroids in shearing flows in the presence of thermal fluctuations. Inertia and
Brownian motion are somewhat incompatible in terms of the relevant particle size
ranges. Thus, the convergence to a unique long-time equilibrium, consistent with the
thermodynamic picture in figure 3, may require unrealistically long times, especially
for spheroids large enough for the inertial drift to be significant. The rheological
signature of the hysteresis – a multivalued shear viscosity at a given shear rate
(Re Per), as in figure 6, should, however, be measurable.

3. Conclusions

The thermodynamic interpretation of the steady-state orientation distribution in a
dilute suspension of spheroids, and the associated hysteresis discussed in the latter
half of § 2, arises due to the combined effect of a bistable potential induced by
nonlinearity and stochasticity. The bidirectionality of the inertial drift, in fact, persists
at finite Re (Rosén et al. 2015). Other sources of nonlinearity and stochasticity should
lead to similar behaviour. Athermal orientation fluctuations arising from hydrodynamic
interactions should control the tumbling–spinning transition at higher volume fractions
(nL3). Each such interaction changes C by a finite amount, and the resulting relaxation
is non-local in orientation space, being governed by a Boltzmann equation

∂f
∂t
+ Re

∂

∂C
(1Cif ) = nL3

∫
dC′

∫
dr⊥y

∫
dĈ dĈ′

×[ f (Ĉ)f (Ĉ′)K(Ĉ, Ĉ′|C,C′; r⊥)− f (C)f (C′)] (3.1)

for small nL3 when pair interactions drive the fluctuations. The scattering kernel K
in (3.1) relates the pre-([Ĉ, Ĉ′]) and post-([C,C′]) interaction orbit-constant pairs, and
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dr⊥ denotes the differential interaction cross-section. (Unlike the traditional Boltzmann
formulation, in the coarse-grained orbit-constant-based description, the pre- and post-
interaction variables do not bear a one-to-one correspondence (the pair interaction is
also a function of the Jeffery phases), and the probabilistic relation between the two
is appropriately described by a scattering kernel.) It should be noted that Re(nL3)−1 in
(3.1) is the analogue of Re Per in (2.5). Although an analysis based on (3.1) is difficult
due to K not being known (Dabade et al. 2016), this might nevertheless be the most
convenient experimental route, with the hysteretic time scale capable of being tuned
to modest values by varying the volume fraction, rendering both short-time dynamics
and long-time orientational equilibria observable. Fluid viscoelasticity in either steady
(Leal 1975) or large-amplitude oscillatory shear (Harlen & Koch 1997; Leahy et al.
2013) is an alternate (experimentally) more accessible source of nonlinearity, and the
ratio of normal stress differences (besides De) (Dabade, Marath & Subramanian 2015)
may allow one to additionally tune the nature of the nonlinear drift. The existence of
multiple steady states as a function of the particular initial orientation has, in fact,
already been observed in experiments (Petrich et al. 2000) involving oscillatory shear
flow of a dilute suspension of fibres in a dilute polymer solution, although the role of
stochastic orientation fluctuations remains unexplored. It is also worth mentioning that
the thermodynamic interpretation, based on the steady-state orientation distribution,
has a larger regime of validity than the hysteretic dynamics analysed in the latter half
of § 2. While the analysis of the time-dependent orientation distribution in § 2 relies
on the effects of phase mixing due to a finite aspect-ratio polydispersity, the phase
diagrams given in figures 3 and 4 remain valid even for a perfectly monodisperse
suspension of spheroids (provided that Per�κ−3). It should be noted that, in this limit,
Brownian motion alone acts to redistribute orientations both along and across orbits
starting from the initial condition. Since these processes occur on comparable time
scales of O(Perκ

2) for thin oblate spheroids (κ� 1), there is no longer the separation
of time scales needed for (2.5) to be valid.

While figures 3 and 4 bear a striking resemblance to the equilibrium phase
diagram (and its projections onto different planes) of a single-component system,
there are important differences that need to be pointed out. In the thermodynamic
case, the system is macroscopic, consisting of an enormous number (NA∼O(1023)) of
microscopic entities. An overwhelming fraction of all possible microstates correspond
to the average value of the relevant macroscopic property (say, density), and the
fluctuations about this average value are negligibly small, being O(N−1/2

A ). For the
tumbling–spinning transition examined here, there is no such distinction between
micro- and macro-states, since the thermodynamic equivalence is drawn with a single
spheroid. Thus, except in the limit of large Re Per, the phases identified based on
the C corresponding to the peak value of the orbit-constant distribution have a finite
spread about the maximum. Further, the phase space for a single spheroid is the unit
sphere, and this is unlike the spatially extended ensemble typical of thermodynamic
systems. As a result, there is no notion of diverging correlation lengths or times
in the vicinity of the critical point. These peculiar features are also inherent to
the single polymer molecule which exhibits a coil–stretch transition, and thus the
tumbling–spinning and coil–stretch transitions bear a closer connection to each other
than either of them to the thermodynamics of a one-component system.

The tumbling–spinning transition highlights an interesting connection between
suspension rheology and polymer physics. Much like the coil–stretch transition
for polymer solutions (Larson 2005; Shaqfeh 2005), the tumbling–spinning transition
endows an inertial suspension of thin oblate spheroids with a memory that far exceeds
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the nominal microstructural relaxation times. This memory is likely to significantly
influence the suspension stress response in inhomogeneous shearing flows, since the
viscosities corresponding to different (Lagrangian) shear rate histories can differ by a
large amount due to the large difference in the dissipation associated with spinning
and tumbling spheroids. Non-hydrodynamic forces, including Brownian motion, have
been known to play a subtle role in determining the strong-shear rheology of spherical
particle suspensions at high volume fractions (Brady & Morris 1997; Cheng et al.
2011). In contrast, the tumbling–spinning transition points to the subtle role played
by Brownian motion in determining the rheology of anisotropic particle suspensions
at much lower volume fractions. Furthermore, in being a simpler system with far
fewer degrees of freedom when compared with high-molecular-weight polymers, a
sheared suspension of anisotropic particles may serve as a model system for the study
of hysteretic dynamics in complex fluid systems.

The numerical solutions of (2.5) are obtained using the finite-element method which
is implemented on Freefem++ (Hecht 2012).

Supplementary material

Supplementary material is available at https://doi.org/10.1017/jfm.2016.779.
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