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Abstract

This paper examines the necessity of including ion viscosity in modeling laser fusion implosions. Using the Naval
Research Laboratory one-half Mega Joule laser fusion target as an example, it is shown that for virtually the entire
implosion up to maximum compression, and the entire rebound after the implosion, ion viscosity is unimportant.
However for about half a nanosecond before peak implosion, ion viscosity can have a significant, but by no means
dominant effect on both the one-dimensional flow and on the Rayleigh-Taylor instability.
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INTRODUCTION

The behavior and performance of inertial fusion targets are
calculated with complex numerical simulations. These simu-
lations have evolved over the decades and have incorporated
physical processes that are important, but are not always fully
understood. The simplest one-dimensional (1D) (i.e., radial)
fluid models incorporating only classical transport, generally
show robust high gain for well designed targets. As compli-
cating effects such as two-dimensional (2D) fluid instabilities
(Rayleigh-Taylor and Richtmyer-Meshkov) (Weber et al.,
1997; Schmitt et al., 2004; Radha et al., 2005), flux-
limitation (Malone et al., 1975), nonlocal electron transport
(Luciani et al., 1983; Epperlein & Short, 1991; Sunahara
et al., 2003; Manheimer & Colombant, 2004), and laser
plasma instabilities (Kruer, 2000) are included, the problem
becomes more complicated and the viable regions of par-
ameter space generally shrink. One effect not included in
the fluid simulations is ion viscosity.

However, a recent calculation (Li et al., 2006) included the
effect of viscosity on the momentum equation (but in their
original abstract, had not yet included it in the energy
equation) and found that near the peak of the implosion,
the effect of it could be important. We have examined this
as well, using a somewhat different approach. We perform
a fluid simulation on a laser implosion without ion viscosity,
and then post-process the data to determine where viscosity

could be important. We look not only at the dynamics as
Li et al. (2006) did, but we look at two other issues. First
we confirm the standard result, namely that viscosity is
nowhere near important enough that one can dispense
with shock capturing algorithms in the fluid simulation.
Second we examine the effect of the viscosity on the
Rayleigh-Taylor instability. Using a simple slab model, we
find that the effect on the growth rate is negligible at all
times except right before the peak of the implosion, where
it has a significant, but certainly not a dominant effect. In
that sense, we confirm the results of Li et al. (2006) that
for times just near (but not after) the peak of the
implosion, viscosity could be playing a significant role.
However for all other times, it has virtually no effect on
the dynamics.

EVALUATION OF THE EFFECTS OF ION
VISCOSITY FOR A TYPICAL LASER IMPLOSION
AND THE NEED FOR SHOCK CAPTURING
ALGORITHMS

We post-process our simulation of the 0.5 MJ laser fusion
target (Obenschain et al., 2006), to see where viscosity
could be playing a role. The target and laser pulse character-
istics for this target are shown in Figure 1. The target consists
of 153 mm of deuterium-tritium (DT) fuel surrounded by a
146 mm DT-wicked foam ablator and a 5 mm CH outer
layer. The laser pulse consists of a 3.4 ns foot (3.1 TW)
followed by a gradual ramp-up to full power (178 TW) at
t ¼ 7.33 ns that is maintained for 2.1 ns. Zooming also
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occurs in two stages as the target radius shrinks. The yield for
this target is 30 MJ for incident laser energy of 480 kJ,
leading to a gain slightly above 60. The implosion diagram
for this pellet, as well as the inward velocity, as a function
of time is shown in Figures 2a and 2b.

We use the simplest theory of bulk viscosity for the 1D
spherical implosions, assuming that in the heat front, the
temperature, and density gradient scale lengths are much
less than the radius. We will see shortly that this is a very
good approximation. Hence, the configuration is nearly
planar, so we use for the divergence of the viscous plus ion
pressure stress tensor the quantity (Braginskii, 1965; Huba,
2006)
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Thus, the ratio of the viscous to ion pressure stress tensor
is simply 1.28tii(@v/@r). Here tii is the ion–ion collision

time, given by

tii( sec ) ¼ 2� 107 ffiffiffi
a
p

Ti(eV)3=2

Z3ne(cm�3)L
, (2)

a is the ratio of ion mass to proton mass, and L is the
Coulomb logarithm. Note that since these calculations
apply to laser fusion targets, the Z’s are rather small,
usually unity in the fuel or just over unity in the foam
ablator, and always less than 3.5 as appropriate for a
CH layer. For other types of target at higher Z, ion vis-
cosity will be less important generally.

We selected three times during the laser implosion, 5, 7,
and 9.5 ns and plotted out as a function of radius, a variety
of quantities shown in Figures 3–5. Panels a are the electron
density, panels b are the velocities, panels c are both the elec-
tron and ion temperature, and panels d are the magnitude of
the ratio of the viscous to ion pressure tensor. At 5 ns,

Fig. 1. (Color online) Schematics of the 1/2 MJ
target and its corresponding laser pulse.

Fig. 2. (a) r-t diagram for target and laser pulse shown in Figure 1 and (b) average maximum implosion velocity for this target.

W. Manheimer and D. Colombant542

https://doi.org/10.1017/S0263034607000663 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034607000663


this ratio is small everywhere except right at the sharp
density drop at the inner edge of the pellet. However, every-
where else, the effect of the viscosity is on the order of 1023.
At 7 ns, the effect is similar, but now it is generally on the
order of 1022, except for the large value at the inner edge
of the pellet. In these regions of large viscosity, its effect

would be to somehow smooth out the transition in the vel-
ocity profile between the accelerating shell and the inner
low density plasma. However, the viscosity is so large
here, that in this small region, the entire concept of a fluid for-
mulation is questionable. But this is not a very important
region of the plasma at all; the density and velocity are
both very small in the region of large viscosity (or more accu-
rately, the region where a fluid formulation is suspect). At
9.5 ns, we find that the effect of viscosity maximizes. In
the inner region, it is an order unity effect, while in the
outer regions; it is still an order 1022 effect. In order to get
a better idea of the effect of the viscosity at this time, we
plotted in Figure 6a, the total electron and ion pressure on
a greatly expanded scale horizontally, and in Figure 6b, the
electron plus ion pressure plus the viscous stress tensor.
The force on the fluid is the negative gradient of this
quantity. The quantities are plotted as a function of grid
cell up to grid cell 100 (the simulation has about 500 grid
cells, and grid cell 100 is at about r ¼ 0.024 cm where the
density is ne ¼ 1.7�1023 cm23 and the inward velocity is
v ¼ 4.4�107 cm/s). Clearly at around this time, and this
time alone, the viscosity could be playing a non-negligible
role in a significant portion of the plasma. Its effect will be
to smooth out the velocity profile somewhat for this inner
portion of the implosion. However at 10 ns, just after peak
compression where all the flow is outward, the viscosity is
everywhere a correction on the order of 1022.

We now discuss whether viscosity can ever be so import-
ant that we do not need shock capturing algorithms in our
fluid simulations. Since a strong viscous shock, of the type
we utilize in a laser implosion, has a thickness on the order

Fig. 3. (a) Electron density, (b) velocity, (c) ion and electron temperature
profiles, and (d) ratio of ion viscosity to total pressure versus radius at
t ¼ 5 ns (during compression phase).

Fig. 4. Same as Figure 3 but at t ¼ 7 ns, just slightly ahead of shock break-
out. The discontinuity in ion temperature profile occurs at the ablator/CH
interface and ensures continuity of the total pressure at this location.

Fig. 5. Same as Figure 3 but at t ¼ 9.5 ns, a short time before maximum
compression. Same comment applies as in Figure 4 for the discontinuity
in the ion temperature profile.
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of the ion mean free path, we simply post-process the data of
the implosion to calculate the ratio of Dx/lii as a function of
x for a variety of times. Here Dx is the grid spacing and lii is
the ion mean free path. Without displaying the graphs, we
simply summarize the result, namely that this ratio is very
large, on the order of hundreds or thousands in virtually all
regions of the plasma and at all times. Thus, viscosity will
never sufficiently smooth the profile that shock capturing
algorithms are unnecessary.

EFFECT OF VISCOSITY ON THE
RAYLEIGH-TAYLOR INSTABILITY

We consider a simple slab model of the Rayleigh Taylor
instability. Gravity g points downward. A fluid with
density r1 and kinematic viscosity h1 (i.e., h has dimension
of a length squared divided by time), is in equilibrium on top
of a lower density fluid with density r2, and viscosity h2.
Looking at the plots of density as a function of space in
Figures 3–5, the slab model seems reasonable due to the
very large drop in density at the accelerating surface. It is
also reasonable, because, as we will see, the viscous correc-
tion to the growth rate depends almost entirely on the
parameters of the heavier fluid, the fluid for which the
uniform slab is almost certainly a reasonable approximation.

The theory of the Rayleigh-Taylor instability of viscous
fluids is generally considered in specialized text books
only, such as Chandrasekhar’s (Chandrasekhar, 1961). In
the general case, the calculation of the instability requires
the numerical solution of a fourth order polynomial. One
way in which this can be simplified is the so-called Hide
approximation (Mikaelian, 1993; Piriz et al., 2006) where
the vertical dependence of the eigenfunction is taken as
that for the non-viscous fluid. Where valid, this approxi-
mation can be quite accurate. However, in some cases, the
eigenfunction in the vertical direction can depart from
the non-viscous case in a significant way. In these cases,
the Hide approximation is not valid and one must solve the

dispersion relation in a more accurate way. We find this to
be the case for laser produced plasmas. In the appendix,
we solve for the dispersion relation in the appropriate limit.
There, we worked out the theory of the instability, but here,
we simply give approximate analytic expressions for the dis-
persion relation in several limits. In all cases, we assume that
the effect of viscous damping is small compared to the basic
growth rate (kg)1/2 and that r2,,rl. Expanding the dis-
persion relation from the appendix in lowest power of
hk2/(kg)1/2, we find

g2 ¼ kg 1�
2r2

ffiffiffiffiffiffiffiffiffiffi
h1h2
p

k

(kg)1=4(r2
ffiffiffiffiffi
h2
p þ r1

ffiffiffiffiffi
h1
p

)

" #
: (3)

Notice that the correction to the growth rate goes as a frac-
tional power of the ratio of viscous damping rate to growth
rate. Other approximations find that the correction goes as
the ratio of these two rates (Mikaelian, 1993; Piriz et al.,
2006). However these calculations use a variational approach
where they have to assume an eigenfunction, and then, in
terms of the assumed eigenfunction, calculate the correction
to the growth rate. But generally these assumed eigenfunc-
tions are chosen to be the same as the eigenfunctions in the
absence of viscosity. As we see in the appendix, the actual
eigenfunctions are the sum of two parts, one the non-viscous
part, and another, a boundary layer effect, dominated by the
viscosity. It is this boundary layer effect that provides the
dominant dissipation.

Note that in the Rayleigh Taylor instability without vis-
cosity, the velocities of the fluids parallel to the interface,
at the interface, is equal and opposite, giving rises to a
strong viscous stress. In the presence of viscosity, the fluids
are governed by a no slip boundary condition. This means
that there must be a great deal of dissipation in the viscous
boundary layer, implying a strong effect on the growth rate.

However, what happens if the top fluid is supported by a
massless bottom fluid (essentially a vacuum, but one that
supports the top fluid’s pressure)? Then r2 vanishes in

Fig. 6. Differences between the total pressure
(a) without and (b) with ion viscosity as a
function of grid cell number at t ¼ 9.5 ns.
Effects of the ion viscosity are seen to take
place very close to the center of the target
where the ion temperature is larger than the
electron temperature.
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Eq. (3) and there is no correction to the growth rate on this
order. However if there is no bottom fluid, a no slip and a
no separation boundary is no longer meaningful and the
problem must be reformulated. This is also discussed in the
appendix. There it is shown that the dispersion relation
becomes approximately

g2 ¼ kg 1� 2
h1k2ffiffiffiffiffi

kg
p

� �
: (4)

Hence if there is no strong shear flow at the interface, the
reduction in growth rate is much less.

Now let us use our knowledge of the physics of a laser
plasma implosion to get a simpler expression for the
growth rates, valid in all limits, as long as the correction to
the growth rate is small. In the laser implosion, pressure is
approximately constant across the interface, certainly the
variation in pressure is always far less than the variation in
density or temperature, so r1Ti1 � r2Ti2. Also for either
fluid, h is proportional to lii[Ti/M]1/2, and lii � Ti

2/r.
Using these relations, we find that in the denominator of
Eq. (3), the low density term dominates by roughly a factor
of [r1/r2]3/4. As is apparent from Figures 3–5, density
ratios are typically about 20–25, so the low density term
dominates by about an order of magnitude. But it cancels
the low density term in the numerator, so Eq. (3) reduces to

g2 ¼ kg 1� 2
ffiffiffiffiffi
h1
p

k

(kg)1=4

� �
: (5)

Notice that the viscous damping is governed entirely by the
viscosity of the high density fluid. This makes the theory
more credible in the inhomogeneous fluid because the
uniform density approximation is much better satisfied in
the high density fluid than it is in the low density fluid.
Thus we expect the slab model to be a reasonable
approximation.

In our calculations of laser implosion, the code estimates
Rayleigh-Taylor growth using various dispersion relations
for the growth rate. With an expression for the growth rate
as a function of mode number l (k ¼ l/Rab, with Rab being
the ablation radius), the post- processor calculates the growth
rate at various times of the implosion. The calculation of abla-
tive stabilization of the Rayleigh-Taylor instability is compli-
cated and different theories (Bodner, 1974; Takabe et al.,
1983; Betti et al., 1998) give somewhat different results. In
the Naval Research Laboratory (NRL) 1D simulations, we
typically apply several of these theories to get several different
graphs of g(l ) where l/rab ¼ k and rab is the radius of the abla-
tion surface. In this way, we have several estimates (without
performing a much more difficult and time consuming 2D
simulation) of the effects of the Rayleigh-Taylor instability
on laser fusion targets. The theory we use here and which is
widely used in the community is that of Takabe et al.
(1983). While this is regarded as sufficient for present

purposes, it is of course only an approximation to the effect
of the stabilizing effect of the dynamic overpressure created
at the unstable interface. We consider the growth rate

g ¼
ffiffiffiffiffi
kg

p
1� 2

ffiffiffiffiffi
h1
p

k

(kg)1=4

� �1=2

� 3kvabl, (6)

where vabl is the ablation velocity. Eq. (6), without the curly
bracket is similar to the standard expression for growth rate
used in our 1D simulation to estimate the Rayleigh-Taylor
growth. We plot the growth rate in s21 of mode number one
from Eq. (6) in Figure 7a. To get an idea of the reduction of
the growth rate due to viscosity, we plot out the square root
of the curly brackets as a function of mode number at a
variety of times ranging between 5 and 9.5 ns as shown in
Figure 7b. All times except the last are bunched up to make
effectively a single graph for the reduction. At 9.5 ns, the
effect of viscosity on the growth rate is considerably larger,
but at all times the dominant stabilization mechanism is the
ablative stabilization. Even assuming a 10% reduction in
growth rate at l ¼ 200, for half an ns, we see that the integrated
growth is only reduced by about 0.1.

CONCLUSIONS

For almost the entire time of the implosion of the NRL
0.5 MJ pellet, viscosity plays essentially no role. At the
places in the plasma where it is important, just to the back
of the fuel, the plasma has essentially no density or velocity.
In fact, in this tiny region, viscosity is so important that the
viscous stress is by no means a perturbation, but is the domi-
nant effect. This calls into question the very idea of a fluid
formulation. However, this region of the plasma is so unim-
portant to the overall implosion, that for this alone, it is not
worth including a viscosity in the fluid formulation, and
even if one did, it is not clear that it would provide any
more accuracy. Similarly, the effect of viscosity on the
Rayleigh-Taylor instability is so small for these times (it
reduces the growth rates by at most a couple of percent)

Fig. 7. (a) Rayleigh-Taylor growth rate from dispersion relation without ion
viscosity at t ¼ 8.5 ns and (b) correction to the growth rate when including
ion viscosity as a function of mode number for various times.
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that calculations neglecting the viscosity should be reason-
ably accurate.

However for a very small time before the peak of the
implosion, the ion viscosity has a significant, although by
no means dominant effect on the dynamics and on the
Rayleigh-Taylor instability. After the peak of the implosion,
at 10 and 10.5 ns in our simulation, the effect of viscosity is
again down to a percent or less. Target designers must con-
sider whether it is worth the effort to include viscosity so
as to more accurately model these effects which become sig-
nificant just before the peak of the implosion. Of course if
viscous stress is included in the momentum equation, then
viscous heating should also be included in the energy
equation.
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APPENDIX: SOLUTION OF A MODEL PROBLEM
FOR VISCOUS DAMPING

Here we assume a heavy fluid with density r1 and kinematic
viscosity h1 on top, a gravity g pointing down in the negative
z direction, and a light fluid with r2, h2 on the bottom. We
assume a simple viscous model so we take as the linearized
equations for each fluid

r
@v
@t
¼ �rP� rgþ hr2v (A1)

and

r† v ¼ 0: (A2)

Assuming that the fluid quantities have spatial and temporal
and spatial dependence going as exp[gtþikx], Eqs. (A1 and
2) can be combined into a single equation for vz:

g 1� k�2 @
2

@z2

� �
vz ¼ h �k2 þ @2

@z2

� �
1� k�2 @

2

@z2

� �
vz (A3)

and the expression for the perturbed pressure p in terms of the
z component of velocity is

p ¼ � g

k2 r
@vz

@z
þ hr

k2 �k2 þ @2

@z2

� �
@vz

@z
: (A4)

There are four solutions to Eq. (A3),

vz ¼ va exp+ kz (A5a)
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and

vz ¼ vb exp+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ g

h

r
z (A5b)

Clearly only the upper signs are used in the lower fluid, and
only the lower signs are used for the upper fluid, so as to have
solutions which do not diverge. Thus, the problem is speci-
fied by four coefficients which we specify as v1a, v1b, v2a,
and v2b. The former, Eq. (A5a) is the same as the solution
without viscosity, while the latter Eq. (A5b) is, in the limit
of small viscosity, a thin boundary layer surface mode. In
the inviscid Rayleigh-Taylor instability, there is a strong
shear at the boundary. That is the fluid motions parallel to
the surface, just across the surface from one another, are in
opposite directions. Thus when viscosity is present, and a
no slip boundary condition is imposed, we expect that the
viscosity dominated mode will play an important role. We
will see shortly that this is the case. To find the dispersion
relation, we need four boundary conditions relating the
four coefficients. Clearly one is that there is no separation
of the fluids, or v1z ¼ v2z. For viscous fluids, there is also
a no slip boundary condition, so at the interface v1x ¼ v2x.

The other two boundary conditions come from the fact that
the stress tensor must be continuous across the perturbed
boundary between the two fluids. The ambient gravity
gives a contribution to the stress tensor at the perturbed
surface, all other components of the stress tensor arise only
from perturbed quantities. In our simple model however,
we take the viscous stress tensor as 2hr@vi/@xj.
Continuity of both components of the stress tensor across
the perturbed boundary gives the result that

�pþ rg
vz

g
þ rh

@vz

@z
, (A6a)

and

rh
@vx

@z
, (A6b)

are continuous across the interface. Imposing these four con-
ditions leads to a 4�4 determinant of the coefficients. Setting
this determinant equal to zero gives the dispersion relation.
This relation is

1 1 �1 �1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g

k2h1

r
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g

k2h2

r

1 1þ g

k2h1

� r2h2

r1h1
� r2h2

r1h1
1þ g

k2h2

� �

J1 C1
r2

r1
J2

r2

r1
C2

														

														
¼ 0, (A7)

where

Jj ¼ � 1þ (�1)j kg
g2
þ
hjk

2

g

 !
, (A8a)

Cj ¼ � (�1)j kg
g2
þ
hjk

2

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g

k2hj

s0
@

1
A: (A8b)

Eq. (A7) could be solved numerically for g2/kg in terms of
three-dimensionless parameters, r1/r2, h1/h

2, and kg/h1
2 k4.

However at this point, we prefer to get analytic insight instead.
The determinant has ah to a variety of powers in the numerators
and denominators. Assuming small h’s, we can keep only the
dominant term and solve for the vb’s (the coefficient of the
boundary layer solutions) in terms of the va’s. The result is

v1b ¼ �
r2g

1=2k
ffiffiffiffiffiffiffiffiffiffi
h1h2
p

(v1a þ v2a)

r2
ffiffiffiffiffi
h2
p þ r1

ffiffiffiffiffi
h1
p (A9a)

and

v2b ¼ �
r1g

1=2k
ffiffiffiffiffiffiffiffiffiffi
h1h2
p

(v1a þ v2a)

r2
ffiffiffiffiffi
h2
p þ r1

ffiffiffiffiffi
h1
p : (A9b)

Assuming that both the correction to the classical growth rate
from viscosity is small, and furthermore that r2 ,, r1 (which
as Figs. 3–5 show, is clearly a good approximation), then we
find the correction to the classical growth rate is as given in
Eq. (3). Notice that the reduction in growth goes as the square
root of the viscosity, rather than the viscosity. The reason is
that the dominant dissipation arises from the boundary layer
viscous mode, as we expect, due to the strong shear at the inter-
face in the absence of viscosity. Any theory, which assumes a
mode proportional to exp+kz will, of course miss this effect.
Also, Eq. (3) shows that the reduction in growth rate scales as
the density of the lighter fluid. This is reasonable, because the
lighter the lower fluid is, the less important this shearing
motion is. In the ultimate limit of no lighter fluid at all,
r2 ¼ 0, this shear obviously does not exist at all, so it
cannot exert a stabilizing effect on the instability.

In the limit of no lighter fluid at all, that is, the heavier fluid
supported only by the pressure of the vacuum, it is a simple
matter to calculate the dispersion relation. Since there is no
fluid underneath, there is no need for the no slip and no sep-
aration boundary condition. There are only two solutions, v1a

and v1b, the standard Rayleigh-Taylor and the boundary layer
modes of the upper fluid. The boundary condition is that both
components of the stress tensor must be continuous from the
fluid to the vacuum. Imposing this condition, it is a simple
matter to see that the dispersion relation, in the limit of
r2 -. 0 is given by Eq. (4). In this case, where there is no
shear motion between the top and bottom fluid, viscous
stabilization is a much weaker effect.
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