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In this article, we consider the two-node fork-join model with a Poisson arrival process
and exponential service times of heterogeneous service rates. Using a mapping from
the queue lengths in the parallel nodes to the join queue length, we first derive the
probability distribution function of the join queue length in terms of joint probabilities
in the parallel nodes and then study the exact tail asymptotics of the join queue length
distribution. Although the asymptotics of the joint distribution of the queue lengths
in the parallel nodes have three types of characterizations, our results show that the
asymptotics of the join queue length distribution are characterized by two scenarios:
(1) an exact geometric decay and (2) a geometric decay with the prefactor n−1/2.

1. INTRODUCTION

In this article, we consider the M/M/1 fork-join queueing system, referred to as the
Flatto–Hahn model, which was first studied by Flatto and Hahn [7] and is depicted
in Figure 1. In this model, jobs arrive at the system according to a Poisson process
with rate λ. Each job arriving at the system creates two tasks simultaneously, which
are assigned to two separate nodes, queue 1 and queue 2, respectively, for processing.
Each node operates like an M/M/1 queuing system using the first-come–first-served
(FCFS) discipline. The service rate in queue i is μi (i = 1, 2). When a task is completed
by the server, it is put in the join queue if the other task of the same job is still in
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FIGURE 1. A two-node fork-join network.

service; otherwise, the task immediately departs from the system, together with the
other belonging to the same job of the task being removed from the join queue.

Fork-join queuing systems have received much research attention in the litera-
ture, as they model parallel processing in computer and manufacturing engineering
(see, e.g., Chao and Zheng [4], Chen [5], Heidelberger and Trivedi [8], Nelson and
Tantawi [10], Nelson and Towsley [11], and Song, Xu, and Liu [13]). In computer and
communication networking, a fork-join model represents the processing of computer
programs, data packets, database systems, and so forth that involve parallel multi-
tasking through splitting/joining information. In manufacturing, a fork-join network,
referred to as an assembly network, represents the assembly of a product or system
requiring two or more parts to be processed simultaneously at separate locations.
A supply-chain fork-join network typically represents filling an order and obtaining
items or products simultaneously from vendors.

Studies on fork-join queuing systems have been conducted for three decades. For
a general m-node fork-join model, for which an intractable m-dimensional Markov
chain is involved, only upper/lower bounds and approximation results of performance
metrics, such as the job response time and the queue length, were derived (see, e.g.,
Ayhan and Kim [1], Baccelli, Makowski, and Shwartz [3], Chen [5], Ko and Ser-
fozo [9], Nelson and Tantawi [10], Nelson and Towsley [11], Varki [16], Varma and
Makowski [17]). (When the arrival process is deterministic in an m-node fork-join
model, a product form solution was obtained by Pinotsi and Zazanis [12].) On the con-
trary, for a two-node fork-join model, exact analysis has been carried out, which was
initiated by Flatto [6] and Hahn [7]. They derived the generating function of both queue
lengths and studied the asymptotics in the distribution for an M/M/1 fork-join model
having two nodes with heterogeneous service rates. The asymptotics of the joint distri-
bution of the queue lengths of the model were also studied by Shwartz and Weiss [14]
using a completely different approach (large deviations and time reversibility). The
probability distribution of the join queue length for the model with the homogeneous
service rate was obtained by Nelson and Tantawi [10], who also obtained an exact
expression of the expected response time. Explicit or approximate expressions of the
joint queue length distribution for the model were derived by Tan and Knessl [15]
under a heavy traffic condition. A discrete-time version of the model was studied
by Zhang [19], who computed the generating function of the queue lengths and the
Laplace transform of the joint waiting times. By adding a situation in which jobs
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cannot be split into two tasks to the Flatto–Hahn model, Wright [18] generalized
the results derived by Flatto and Hahn [7]. An extension to the M/G/1 fork-join
queuing system was made by Baccelli [2].

Most of these studies were concerned with either performance at the system level,
such as the response time and the number of jobs in the system, or the queue lengths of
the parallel queues. However, the join queue size is another key performance metric for
the management of inventories in supply chain fork-join networks and of production
capabilities in assembly fork-join networks. To the best of our knowledge, the only
result of the join queue length distribution reported is for the Flatto–Hahn model
with a homogeneous service rate, but no studies on the join queue length distribution
for a heterogeneous system have been carried out and no asymptotic results have
been reported in the literature. In this article, we generalize the result obtained by
Nelson and Tantawi [10] through an investigation of the stationary join queue length
distribution for the Flatto–Hahn model with heterogeneous service rates. Moreover,
we derive the exact tail asymptotics of the join queue length distribution under two
different scenarios of the service rates.

The rest of this article is organized as follows: Section 2 states the main results and
provides relevant results in the literature; Section 3 derives explicit expressions of two
probability distribution functions based on which the join queue length distribution is
obtained; and asymptotic analysis of the join queue length distribution is carried out
in Section 4.

2. MAIN RESULTS

In this section we first recall some relevant results of the Flatto-Hahn model, which
are necessary for stating the main results of this article. The main results are stated
in Theorem 2.2 and Theorem 2.4, respectively. The former, which will be proved in
Section 3, provides an expression for the probability distribution function of the join
queue length and the later, which will be proved in Section 4, provides a complete
characterization of the exact tail asymptotics of the join queue length distribution.

Without loss of generality, we assume μ1 ≤ μ2 and λ + μ1 + μ2 = 1. The fork-
join network is stable if and only if λ < min{μ1, μ2} = μ1. Under the stability
condition, we denote by Pi,j the probability that there are i tasks in queue 1 and j
tasks in queue 2 and by qk we denote the probability that there are k tasks in the
join queue, for i, j, k = 0, 1, . . .. We define the joint probability generating function
of Pi,j by P(z, w) = ∑

i,j ziwjpij. In [7], Flatto and Hahn determined P(z, w) through
explicitly deriving the following two marginal probability generating functions:

P(z, 0) ≡
∞∑

i=0

ziPi,0 = μ2 − λ

μ2

φ(z)

φ(1)
, |z| ≤ 1, (2.1)

P(0, w) ≡
∞∑

j=0

wjP0,j = μ1 − λ

μ1

ψ(w)

ψ(1)
, |w| ≤ 1. (2.2)
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In Eq. (2.1), φ(z) is given by

φ(z) =
√

a3 − z + √
a3 − 1(√

a3 − z + √
a3 − μ1/μ2

) (√
a3 − z − √

a3 − μ1/λ
) , (2.3)

where a3 is the largest zero of D1(z) = (z − μ1)
2 − 4λμ2z3 and a3 > μ1/λ, as proved

by Flatto and Hahn [7]. In Eq. (2.2), ψ(w) is given by

ψ(w) =
√

â3 − w + √
â3 − 1(√

â3 − w + √
â3 − μ2/μ1

) (√
â3 − w + √

â3 − μ2/λ
) , (2.4)

where â3 = (μ2/μ1)a3. We note that ψ(w) is well defined for |w| ≤ μ2/μ1. In
particular, if μ1 = μ2 = μ, the two generating functions are equal and

P(z, 0) = P(0, z) = (1 − ρ)3/2

√
1 − ρz

, (2.5)

where ρ = λ/μ.

Definition 2.1: For sequences {xn, n ∈ Z+} and {yn, n ∈ Z+} of real numbers, where
Z+ is the set of all nonnegative integers, xn is asymptotic to yn, denoted by xn ∼ yn as
n approaches infinity, if limn→∞(xn/yn) = 1.

With the specified assumption μ1 < μ2, the asymptotics of Pi,0 and P0,j have also
been derived by Flatto and Hahn [7] and are given by

Pi,0 ∼ (μ2 − μ1)
(√

λ(λa3 − μ1) − λ
)

μ1μ2
ρ i

1, as i −→ ∞ (2.6)

and

P0,j ∼ (μ1 − λ)
√

a3 (c1 + c3)(c2 + c3)

4
√

π μ1c1c2

(
1

c1
+ 1

c2
− 1

c3

)
j−3/2

×
(

μ1

μ2a3

)j

as j −→ ∞, (2.7)

where

ρ1 = λ

μ1
; ρ2 = λ

μ2
; c1 = √

a3 − μ1/λ; c2 = √
a3 − 1;

c3 = √
a3 − μ1/μ2. (2.8)

In the following, we denote by q+
k (respectively q−

k ) the limiting probability that
the number of tasks in queue 1 (respectively queue 2) exceeds the number of tasks in
queue 2 (respectively queue 1) by k.
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Theorem 2.2: For the Flatto–Hahn model with heterogeneous service rates satisfying
λ + μ1 + μ2 = 1 and λ < min{μ1, μ2} = μ1, the stationary distribution function qn

of the join queue length is given by

q0 = P(μ1/μ2, 0), (2.9)

and for n = 1, 2, . . . ,

qn = q+
n + q−

n , (2.10)

where

q+
n =

∞∑
i=n

(
μ1

μ2

)i−n

Pi,0, (2.11)

q−
n =

∞∑
j=n

(
μ2

μ1

)j−n

P0,j. (2.12)

Remark 2.3: Indeed, it is also true that q0 = P(0, μ2/μ1), from which we have
P(μ1/μ2, 0) = P(0, μ2/μ1). This equality can be verified through the expressions
given in Eq (2.1) and Eq (2.2).

Theorem 2.4: For the Flatto–Hahn model with heterogeneous service rates satisfying
λ + μ1 + μ2 = 1 and λ < min{μ1, μ2}, the exact tail asymptotics of the join queue
length distribution are given as follows:

1. If μ1 = μ2 = μ,

qn ∼ 2
√

1 − ρ√
π

n− 1
2 ρn as n −→ ∞. (2.13)

2. If μ1 < μ2,

qn ∼ (μ2 − μ1)
(√

λ(λa3 − μ1) − λ
)

μ1μ2(1 − ρ2)
ρn

1 as n −→ ∞. (2.14)

Remark 2.5: We note that the asymptotics of the join queue length distribution is
characterized by either a geometric decay with the prefactor n−1/2 (when the service
rates are the same) or an exact geometric decay (when the service rates are unequal).

When the service rates of the parallel queues are equal, there is an equal probability
that the number of tasks in one queue exceeds the other by n. Intuitively, one might
think that the asymptotic behavior of qn has the same trend as that of Pn,0, which is
confirmed in Theorem 2.2. However, when the service rate of queue 1 is less than
that of queue 2, more tasks in queue 1 than queue 2 are waiting for required services;
that is, in the equilibrium regime, the probability that the number of tasks in queue 1
exceeds queue 2 by n is larger than the probability that the number of tasks in queue
2 exceeds queue 1 by n, for a fixed n. Therefore, the asymptotic property of qn is
dominated by that of q+

n , which has an exact geometric decay.
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3. STATIONARY DISTRIBUTION

It is clear that

q+
k =

∞∑
i=0

Pi+k,i and q−
k =

∞∑
i=0

Pi,i+k , k = 0, 1, 2, . . . , (3.1)

and

qk = q+
k + q−

k , k = 1, 2, . . . . (3.2)

We define

q0 = q+
0 = q−

0 . (3.3)

Lemma 3.1: For k ≥ 1,

(μ1 + μ2)q0 = μ1q+
1 + μ2q−

1 + (μ1 + μ2)P0,0, (3.4)

(μ1 + μ2)q
+
k = μ1q+

k+1 + μ2q+
k−1 − μ2(Pk−1,0 − Pk,0), (3.5)

(μ1 + μ2)q
−
k = μ1q−

k−1 + μ2q−
k+1 − μ1(P0,k−1 − P0,k). (3.6)

Proof: The balance equations for Pi,j are as follows:

State Equation

(0, 0) λP0,0 = μ1P1,0 + μ2P0,1, (3.7)

(i, 0); i ≥ 1 (λ + μ1)Pi,0 = μ1Pi+1,0 + μ2Pi,1, (3.8)

(0, j); j ≥ 1 (λ + μ2)P0,j = μ1P1,j + μ2P0,j+1, (3.9)

(i, j); i, j ≥ 1 (λ + μ1 + μ2)Pi,j = μ1Pi+1,j + μ2Pi,j+1 + λPi−1,j−1. (3.10)

Hence,

q0 = P0,0 +
∞∑

i=1

Pi,i

= P0,0 + μ1

∞∑
i=1

Pi+1,i + μ2

∞∑
i=1

Pi,i+1 + λ

∞∑
i=1

Pi−1,i−1

= P0,0 + μ1

( ∞∑
i=0

Pi+1,i − P1,0

)
+ μ2

( ∞∑
i=0

Pi,i+1 − P0,1

)
+ λ

∞∑
i=0

Pi,i

= P0,0 + μ1
(
q+

1 − P1,0
) + μ2

(
q−

1 − P0,1
) + λq0

= μ1q+
1 + μ2q−

1 − (μ1P1,0 + μ2P0,1) + P0,0 + λq0

= μ1q+
1 + μ2q−

1 − λP0,0 + P0,0 + λq0,

in which Eq. (3.10) was used for the second equality and Eq. (3.7) was used for the last
one. Equation (3.4) is now derived by using the assumption that λ + μ1 + μ2 = 1.
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For k ≥ 1,

q+
k = Pk,0 +

∞∑
i=1

Pi+k,i

= Pk,0 + μ1

∞∑
i=1

Pi+k+1,i + μ2

∞∑
i=1

Pi+k,i+1 + λ

∞∑
i=1

Pi+k−1,i−1

= Pk,0 + μ1

( ∞∑
i=0

Pi+k+1,i − Pk+1,0

)
+ μ2

( ∞∑
i=0

Pi+k−1,i − Pk,1 − Pk−1,0

)

+ λ

∞∑
i=0

Pi+k,i

= μ1q+
k+1 + μ2q+

k−1 − (μ1Pk+1,0 + μ2Pk,1) + Pk,0 − μ2Pk−1,0 + λq+
k

= μ1q+
k+1 + μ2q+

k−1 − (λ + μ1)Pk,0 + Pk,0 − μ2Pk−1,0 + λq+
k

= μ1q+
k+1 + μ2q+

k−1 + μ2Pk,0 − μ2Pk−1,0 + λq+
k ,

in which Eq. (3.10) was used for the second equality and Eq. (3.8) was used for the
second last equality. Equation (3.5) follows immediately. By symmetry, Eq. (3.6) can
be easily obtained. �

Lemma 3.2: For n = 0, 1, 2, . . . ,

q+
n+1 = μ2

μ1
(q+

n − Pn,0), (3.11)

q−
n+1 = μ1

μ2
(q−

n − P0,n). (3.12)

Proof: By summing up both sides of Eq. (3.5) over k from 1 to n and rearranging the
terms, we have

μ1q+
n+1 = μ2q+

n − μ2Pn,0 + μ2C, (3.13)

where C = μ1q+
1 − μ2q0 + μ2P0,0 is a constant. By letting n approach infinity, we

have that C must be zero, which gives

q+
1 = μ2

μ1
(q0 − P1,0), (3.14)

and

μ1q+
n+1 = μ2q+

n − μ2Pn,0, n ≥ 1. (3.15)

We obtain Eq. (3.11) by combining Eqs. (3.14) and (3.15). Using the same argument
on Eq. (3.6), we can obtain Eq. (3.12). �

Proof of Theorem 2.4: The proof follows from Lemma 3.2. �
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4. EXACT TAIL ASYMPTOTICS

Under the specified assumption that μ1 < μ2, we first derive the exact tail asymptotics
of q+

n and q−
n in the following lemma.

Lemma 4.1: If μ1 < μ2, then, as n → ∞,

q+
n ∼ (μ2 − μ1)(

√
λ(λa3 − μ1) − λ)

μ1μ2(1 − ρ2)
ρn

1 , (4.1)

q−
n ∼ ca3

a3 − 1

(
μ1

μ2a3

)n

n−3/2, (4.2)

where

c = (μ1 − λ)
√

a3 (c1 + c3)(c2 + c3)

4
√

π μ1c1c2

(
1

c1
+ 1

c2
− 1

c3

)
(4.3)

with ci given in Eq. (2.8) and a3 being the largest zero of D1(z) = (z − μ1)
2 − 4λμ2z3.

Proof:

q+
n =

∞∑
i=n

(
μ1

μ2

)i−n

Pi,0

=
∞∑

i=0

(
μ1

μ2

)i

Pi+n,0

=
(

λ

μ1

)n ∞∑
i=0

(
λ

μ2

)i

Pi+n,0

(μ1

λ

)i+n
.

This implies

lim
n→∞

q+
n

ρn
1

= lim
n→∞

∞∑
i=0

(
λ

μ2

)i

Pi+n,0

(μ1

λ

)i+n

=
∞∑

i=0

(
λ

μ2

)i {
lim

n→∞ Pi+n,0

(μ1

λ

)i+n
}

= (μ2 − μ1)
(√

λ(λa3 − μ1) − λ
)

μ1μ2

∞∑
i=0

(
λ

μ2

)i

= (μ2 − μ1)(
√

λ(λa3 − μ1) − λ)

μ1μ2(1 − ρ2)
,
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where the second equality is due to the dominated convergence theorem and the third
equality is due to Eq. (2.6).

q−
n =

∞∑
j=n

(
μ2

μ1

)j−n

P0,j

=
∞∑

j=0

(
μ2

μ1

)j

P0,j+n

=
∞∑

j=0

(
μ2

μ1

)j

P0,j+n(j + n)3/2

(
μ2a3

μ1

)j+n

(j + n)−3/2

(
μ1

μ2a3

)j+n

=
(

μ1

μ2a3

)n

n−3/2
∞∑

j=0

(
1

a3

)j

P0,j+n(j + n)3/2

(
μ2a3

μ1

)j+n (
n

j + n

)3/2

,

which implies

lim
n→∞

q−
n

(μ1/μ2a3)nn−3/2

= lim
n→∞

∞∑
j=0

(
1

a3

)j

P0,j+n(j + n)3/2

(
μ2a3

μ1

)j+n (
n

j + n

)3/2

=
∞∑

j=0

(
1

a3

)j
{

lim
n→∞ P0,j+n(j + n)3/2

(
μ2a3

μ1

)j+n (
n

j + n

)3/2
}

= c
∞∑

j=0

(
1

a3

)j

= ca3

a3 − 1
,

where the second equality is due to the dominated convergence theorem and the third
equality is due to Eq. (2.7). �

Proof of Theorem 2.4: When μ1 = μ2 = μ, q0 = P(1, 0) = 1 − ρ and qn =
2

∑∞
i=n Pi,0 (n = 1, 2, . . .) by Theorem 2.2. Meanwhile, Pi,0 is the coefficient of zi

in the Taylor expansion of P(z, 0) given in Eq. (2.5). Therefore, for m = 1, 2, . . . ,

Pm,0 = (1 − ρ)3/2
{[zm](1 − ρz)−1/2

}
= (1 − ρ)3/2gmρm,

where [zm] f (z) is the coefficient of zm in the Taylor expansion of f (z) and

gm = (2m)!
22m(m!)(m!) ∼ 1√

πm
as m −→ ∞.
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Now, for n = 1, 2, . . . ,

qn = 2
∞∑

i=n

Pi,0

= 2(1 − ρ)3/2
∞∑

i=n

giρ
i

= 2(1 − ρ)3/2ρn
∞∑

m=0

gm+nρ
m

= 2(1 − ρ)3/2ρnn−1/2
∞∑

m=0

gm+nn1/2ρm.

This implies

lim
n→∞

qn

2(1 − ρ)3/2ρnn−1/2
= lim

n→∞

∞∑
m=0

gm+nn1/2ρm

= lim
n→∞

∞∑
m=0

gm+n(m + n)1/2

(
n

m + n

)1/2

ρm

=
∞∑

m=0

{
lim

n→∞ gm+n(m + n)1/2

(
n

m + n

)1/2
}

ρm

=
∞∑

m=0

{
1√
π

}
ρm

= 1

(1 − ρ)
√

π
,

where the third equality is due to the dominated convergence theorem. We proved
Eq. (2.13) of the theorem.

When μ1 < μ2, the exponential decay rates of q+
n and q−

n are ρ1 and μ1/μ2a3,
respectively, by Lemma 4.1. Since μ2a3ρ1 > μ2(μ1/λ)(λ/μ1) = μ2 > μ1,

ρ1 >
μ1

μ2a3
; (4.4)

that is, when μ1 < μ2, the decay rate of q+
n is always larger than that of q−

n (or qn is
always dominated by q+

n for sufficiently large n). Therefore, qn ∼ q+
n as n → ∞, when

μ1 < μ2. From Eq. (4.1) in Lemma 4.1, we obtain Eq. (2.14) of the theorem. �
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